
Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 1  

MapShaper.org: A Map Generalization Web Service 
 
 
Matthew Bloch and Mark Harrower 
Department of Geography, University of Wisconsin-Madison 
550 N. Park St, Madison WI 53703 U.S.A. 
e-mail: matt@grammata.com and maharrower@wisc.edu 
ph: 608-265-0012    fax: 608-265-3991 
 
 
ABSTRACT: Despite recent advances in map-generalization tools and theories, this work has 
been slow to find its way into the hands of the map-making public. Mapshaper.org is a free-to-
use generalization web service developed to help mapmakers simplify and smooth their vector 
linework using a suite of visual-editing tools. This paper details some of the technical barriers 
that had to be solved to enable real-time WYSIWIG map generalization: (1) optimized 
distribution of work between client and server, (2) support for Douglas-Peucker, Visvalingham-
Whyatt, and weighted Visvalingham-Whyatt, and (3) data compression and file-format 
optimization for near real-time editing capabilities. 
 
 
1. INTRODUCTION 
 
Because maps are scale models of geographic reality they almost always require some form of 
graphic generalization. Furthermore, even on the same map, different data layers may require 
different amounts of generalization to accommodate both the purpose of the map (e.g., tourism 
versus navigation) and the nature of the source data (e.g., different source scale for roads and 
contours). Although much of this work is now done digitally—and, in some cases, 
automatically—for many mapmakers generalization remains a surprisingly time-consuming and 
labor-intensive process, since every dataset, every map, and every audience present a unique 
design challenge (Ormsby and Mackaness 1999). As a result, in the last 30 years, academic and 
industry researchers have focused their energies on developing better approaches to map 
generalization, such as agent-based modeling (Hardy et al. 2003), or continuous optimization 
approaches, such as “beams” and “snakes” (Bader 2001, Galanda and Weibel 2003), in the hopes 
of improving the rendering speed, visual quality, and flexibility of the maps created from our 
ever-growing geospatial databases. This work spans a continuum from very technical to highly 
conceptual (Mackaness and Edwards 2002). One current branch of this broad research effort is 
learning how to generalize maps on-the-fly for web-based mapping services (such as Google 
Maps), and how to port those on-demand maps across a range of display devices (Bédard and 
Bernier 2002, Burghardt et al. 2005). The large number of papers, conferences, and coordinated 
international efforts (such as research commissions and web-data standards that incorporate 
generalization principals) speaks to the relevance of this topic today. 
 
While a few advanced map-generalization systems have been built—notably Laserscan’s Clarity 
system—much of the research on map generalization has yet to find its way into commercial 
software and thus into the hands of everyday map makers. As a step in bridging that gap, this 
paper reports on MapShaper which is a free-to-use, Flash-based web service designed to help 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 2  

professionals and novices alike generalize their cartographic data. MapShaper contains tools for 
both simplification (reducing the number of vertices in a polyline) and smoothing (reducing the 
jaggedness of a polyline). Unlike other commonly available digital-map tools—such as ArcGIS 
and Mapublisher—MapShaper allows the user to work visually in a WYSIWYG (“what you see 
is what you get”) environment. MapShaper contains efficient implementations of both the 
Douglas-Peucker (DP) and the Visvalingham-Wyatt algorithms, enabling the user to adjust the 
level of generalization and see the changes almost instantaneously. This means no more tinkering 
with opaque variables to achieve the desired level of generalization. Figure 1 shows the main 
MapShaper interface. 
 
MapShaper offers a number of significant advantages over current commercial software for 
simplification and smoothing of vector linework: (1) unlimited undos, (2) a new breed of tools 
like the generalization brush and eraser, (3) vertex locking/unlocking, (4) visual overlay of 
original data, (5) the conversion of polylines to Bezier curves, and (6) the automatic construction 
of polygon topology. As a web service, the latest version is always live, is platform independent, 
and allows users to upload and save their work (to continue editing at a later time if they wish). 
Currently, the application supports importing ESRI Shapefiles (.shp) and exporting/conversion to 
.shp, .ai, .eps, and .as files. 
 
 

 
 
Figure 1: The MapShaper interface, showing both the original linework (blue) and the simplified linework (black) 
along with the amount of data reduction. The GUI was designed to maximize the amount of space for the map and 
minimize the complexity of the interface. 
 
 
One of our key goals was to create a system that was fast enough to allow for real-time visual 
editing of even large geographic files, as map design is a creative and visual process. This was 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 3  

achieved through a mix of server-side and client-side processing as well as optimization of data 
formats. Another goal was to create a service that would be free to use and transparent enough 
that even novice mapmakers would feel comfortable. In fact, the occasional or novice mapmaker 
was who we felt would most benefit from this service, since they may lack either the knowledge 
(why) or commercial software (how) to effectively generalize their digital data. In this regard, 
MapShaper was built in the same spirit as the “Cartable” system (Hubert and Raus 2002), which 
also presents a user-friendly, web-based “front end” that hides much of the computational 
complexity from users, so they are free to focus on the visual design of their maps. 
 
This paper will demonstrate both the MapShaper application and the underlying 
code/architecture that was developed to support our goals. The biggest technical challenges to 
date have been:  
 

1. MapShaper uses a combination of server-side preprocessing and efficient client-side line-
simplification algorithms to achieve the fastest possible performance, as well as a degree 
of performance stability from user to user since much of the computational work is done 
on our servers. Determining the optimal division of labor between the various 
components required some experimentation and benchmarking of performance. By 
identifying bottlenecks and rewriting performance-critical code in C++, processing time 
has improved by two orders of magnitude. 

 
2. MapShaper efficiently converts the Shapefile format into a topological data format that 

can support editing of polygon layers without introducing slivers, gaps, or overlaps 
between adjacent polygons.  

 
3. MapShaper stores vector data in a compact format so that large Shapefiles can be 

transferred quickly over the Internet and processed easily at the user’s end (i.e., works 
well on low-end hardware). 

 
4. Building support for three kinds of line simplification into Flash: (i) Douglas-Peucker 

(1973), (ii) Visvalingham-Wyatt (1993), and (iii) Weighted Visvalingham (Zhou and 
Jones 2004). 

 
5. Creating an efficient “history” system that supports unlimited undos. 

 
6. Support for two kinds of line smoothing, because users may wish to export their work to 

either GIS or illustration software: (i) conversion of straight polyline segments to 
mathematically defined continuous curves (e.g., Bézier curves) that can be understood by 
programs such as Adobe Illustrator, or (ii) the displacement of vertices in polylines to 
approximate smooth curves (for output in the Shapefile format).  

 
 
The rest of this paper is a report on the first three of these problems and how we developed 
solutions to each. For a more general introduction to MapShaper we encourage the reader to see 
Harrower and Bloch (2006) or to visit the website itself and see the system in action 
(www.mapshaper.org). 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 4  

 
 
2. GENERAL SYSTEM ARCHITECTURE 
 
MapShaper is not a conventional single-user software application. Rather, it is a web application 
consisting of a client interface that runs in a user's web browser and a collection of services 
running on a central server (Figure 2). Developing cartographic software using the web-services 
model introduces a set of interrelated challenges. Two central challenges that we confronted in 
developing MapShaper were: (1) how to efficiently exchange data between the server and client 
and (2) how to perform as much of the computational "heavy lifting" as possible on the server 
side. 
 

 
Figure 2: MapShaper does much of the computational “heavy lifting” (such as constructing topology) on the server 
to speed-up both transmission and client-side performance in Flash. The amount of pre-processing is driven by the 
user’s end needs: Will they use their map as a simple web graphic or a high-resolution printed map?  
 
 
Mapshaper's approach to Shapefile simplification involves two relatively intensive 
computational tasks, both of which are handled on the server. First, in order to edit polygon data, 
MapShaper must convert Shapefile polygons into a topological data model. The Shapefile format 
encodes polygons as polyline cycles, or rings of points. Shapefiles do not explicitly encode 
shared boundaries between adjacent polygons. MapServer detects shared polygon boundaries 
and converts them into single vector lines (polyline arcs) using an efficient hash-table algorithm 
developed by us. (Our method runs approximately in O(n) time, details are available on request). 
Topological conversion avoids the problem of creating overlaps and gaps (or “slivers”) between 
adjacent boundaries, as would occur if adjacent polygons were simplified independently. 
Performance measurements for MapShaper's border-detection routine are shown in Table 1 
below.  
  
 Wisconsin Counties Oregon Zipcodes World Countries 
Number of Vertices 60796  159681 403268 
Number of Polygons 72 790 3784 
Build Topology 60 msec 70 msec 160 msec 
Compute Douglas-Peucker 120 msec 220 msec 490 msec 
Compute Visvalingham-
Wyatt 

40 msec 60 msec 90 msec 

* Tests were run on a 1300 MHz Pentium M computer with 1.5G RAM. 
 
Table 1: Performance tests: Average time in milliseconds to complete core MapShaper functions. 
 
 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 5  

The second major server-side task is the simplification of topologically converted vector lines. 
Due to the inherent performance limitations of the Flash web client, it was not feasible to 
perform vector-line simplification on the client. We met this challenge by designing a method for 
pre-computing simplification data and storing the results in a compact data structure that could 
be sent quickly to the client, such that a modified version of a map layer could easily be 
generated at any degree of simplification. Our solution is described below. 
  
To understand how MapServer simplifies linework, it may be useful to review the basic concept 
of polyline simplification. Simplification is typically defined as the process of reducing the 
complexity of a polyline by eliminating a subset of vertices from the line. One broad class of 
simplification algorithms determines whether each point in a polyline should be discarded 
according to a metric that quantifies the amount of error or deviation from the original line that 
the point's removal would incur. Setting the degree of line simplification is equivalent to 
removing all vertices whose elimination results in less than a given amount of error. This broad 
category of simplification algorithms includes both top-down algorithms, such as Douglas-
Peucker, and bottom-up algorithms, such as Visvalingham-Whyatt. 
 
In MapShaper, a server-side program scans the vector lines in a map layer and calculates the 
error threshold at which each point drops out of its associated line. With the exception of the two 
endpoints, each point in a polyline becomes associated with a particular threshold. Threshold 
data is stored in a parallel array to the arrays containing x- and y-coordinate data. On the client-
side, when a user manipulates a slider bar to set the degree of simplification, the MapShaper 
client translates the slider bar setting to an error threshold and redraws the layer at the new level 
of simplification. Only those vertices whose removal would exceed the error threshold are 
drawn. Array scanning is fast, so changes in the level of simplification appear almost 
instantaneous. In most instances, the speed at which simplification occurs is limited only by how 
fast the Flash client can redraw the vector lines in a map layer. This approach makes possible 
real-time, interactive line simplification. 
 
 
3. SIMPLIFICATION ALGORITHMS 
 
Currently, MapShaper supports three simplification methods (Figure 3): Douglas-Peucker, 
Visvalingham-Whyatt, and a modified version of Visvalingham-Whyatt (Zhou and Jones 2004) 
that is designed to filter out certain kinds of small-scale detail.  
 
The Douglas-Peucker (DP) algorithm is a venerable workhorse that is still in common use in 
cartographic and GIS systems. It is a top-down algorithm with a simple implementation and 
adequate performance on our test data. Even on relatively large polygon layers (~500,000 
vertices), execution time is well under one second using standard computer hardware (see Table 
1). Various modifications to the basic algorithm have been proposed: A performance 
optimization using convex hulls improves performance to O(nlogn) for all input, with output that 
is identical to the original implementation (classic DP is O(n2), worst-case, when run to 
completion) (Hershberger and Snoeyink, 1992). We judged the performance of the simple 
implementation to be adequate. Other modifications have been proposed to prevent polyline self-
intersections, a possible avenue for future development (Wu and Marquez 2003). 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 6  

 
DP uses the maximum linear displacement of simplified line segments from the original polyline 
as an error metric. One consequence of DP's fixation on minimizing linear displacement is a 
tendency to retain protruding features. The effect has been characterized as being overly “spiky,” 
prone to self-intersections and not ideal for general cartographic output (Dutton 1999). As an 
alternative to DP, we selected the Visvalingham-Whyatt (VW) algorithm. Instead of linear 
displacement, VW uses areal deviation to quantify the effect of vertex removal. Specifically, 
areal deviation is quantified as the area of the triangle formed by a vertex and its two neighbors 
in a polyline. Simplification is an iterative process consisting of removing the vertex with the 
smallest associated areal deviation from a polyline, recalculating the area associated with the two 
vertices adjacent to the removed vertex, then repeating the removal process until the desired 
level of simplification is attained. (Visvalingham and Whyatt 1993) Our implementation of VW 
runs in O(nlogn) time, where n is the number of vertices in a polyline. Performance on several 
sample Shapefiles is shown in Table 1. Subjectively, VW tends to produce linework that has less 
of the “spikiness” associated with DP. 
 
The third simplification method in MapShaper's current repertoire is a modified version of VW 
that is intended to create linework with an even less jagged appearance. As described above, 
classic VW uses triangle area to quantify deviation. VW can easily be modified to use a 
combination of area and other properties of triangles, such as “flatness,” “skewness,” and 
“convexity” (Zhou and Jones 2004). We used an error metric that weights the area of triangles 
using the angle formed by the two line segments that are adjacent to each polyline vertex. Given 
two triangles of equal area, the triangle with a more acute angle will be removed first. Our 
modified area metric results in polylines that are smoother than those produced by standard VW.  
 

 
 
Figure 3: A comparison of DP simplification (green), modified VW simplification (black) and the original linework 
(blue). Note that at this level of simplification, modified VW has filtered out the narrow spits of land, while DP has 
created spikes and a self-intersection. Modified VW has retained more of the undulating detail in the upper left 
section of the screen.  
 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 7  

 
 
Many additional polyline simplification methods can be adapted to work with MapShaper. With 
its current design, MapShaper is compatible with any simplification method that meets the 
following criteria: (1) The method must simplify lines using vertex removal, (2) retained 
vertexes may not be shifted from their original positions, and (3) simplification must be 
progressive—when vertices are dropped as the degree of simplification is increased, they may 
not be re-introduced into the polyline at higher levels of simplification. 
 
 
4. DATA TRANSMISSION VIA FLASH REMOTING 
 
The problem of server-client communication rounds out this discussion of core MapShaper 
techniques. The challenge we faced was how to transfer bundles of map-layer data comprising 
coordinate data, layer metadata, and simplification data from the server to the Flash client, and 
how to send information about modifications to the layer back to the server for output.  
 
We chose Flash Remoting as our method for sending data between MapServer's server-side 
processes and the Flash client. Flash Remoting, developed by Macromedia to support passing 
data in and out of Flash applications, affords a number of advantages over the major alternative, 
XML. First, remoting uses a binary format called AMF ("Action Message Format") that is more 
compact than XML, so map-layer data travels more quickly between server and client over the 
Internet. Second, the time needed to convert AMF messages into a usable form inside the Flash 
client ("deserialization") is also much less than the equivalent process using XML. Finally, 
serialization and deserialization are performed automatically using Flash Remoting, unlike with 
XML, making life easier for the software developer. (Information about Flash Remoting can be 
found at http://www.macromedia.com.) 
 
There are a number of available implementations of server-side Flash Remoting gateways for 
linking Flash applications to server-side programs. For MapShaper, we chose the open-source 
AMFPHP gateway (http://www.amfphp.org), which is stable, free, and has acceptable 
performance.  
 
Flash Remoting provided an effective communications channel but did not entirely solve the 
problem of how to import layer data. An early version of MapShaper imported coordinate and 
simplification data in the form of arrays of floating-point numbers. We soon found that Flash's 
implementation of the array data structure consumed excessive amounts of computer memory, 
seriously impacting client performance when working with relatively large Shapefiles (>50,000 
points).  
 
We found a two-part solution. First, we transformed coordinate data from the original 64-bit 
floating-point numbers of the Shapefile format to 16-bit integers. This transformation reduced 
the quantity of data to be transmitted, and, more importantly, it enabled us to represent arrays of 
coordinate data as Unicode strings, which in Flash consume a fraction of the memory of arrays 
of equivalent length. These two modifications allowed MapShaper to import much larger 
Shapefiles than originally possible.  



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 8  

 
It should be emphasized that the technique of encoding array data as Unicode strings is not 
intended as a solution with general applicability. Rather, it has the character of a hack for 
overcoming the limitations of one particular application platform, in this case Macromedia Flash. 
Furthermore, the solution entails several tradeoffs. First and foremost is the reduction in 
precision incurred by converting double-precision floating-point numbers to 16-bit integers, 
analogous to rounding a decimal number to the nearest integer. The effect of the loss in precision 
is to shift the location of polyline vertices away from their original position. The amount of 
deviation varies from one vertex to another; our concern was to ensure that the maximum 
deviation remained within acceptable limits. While 16-bit precision would likely be inadequate 
for analytical GIS applications, visual editing is inherently imprecise. One way to visualize the 
practical effect of 16-bit integer transformation is to imagine using MapShaper to edit a 
Shapefile with the browser window set to a width of 1000 pixels. If the user is working at the 
5000% zoom level, the maximum positional inaccuracy is still less than a single pixel. We 
considered this degree of imprecision to be acceptable. 
 
 
5. DISCUSSION 
 
The current version of MapShaper is already a working cartographic tool; nevertheless, 
considerable potential exists for future development. We can imagine enhancements and 
improvements both on the side of interface and workflow and on the side of algorithms and basic 
functionality. In keeping with this paper's emphasis on technical aspects of MapShaper, this 
portion of the paper will suggest possible improvements to MapShaper's simplification methods 
and other core functionality.  
 
One avenue for improvement would be to expand MapShaper's repertoire of simplification and 
smoothing algorithms. As discussed above, MapShaper is designed to work with any polyline 
simplification method that uses progressive point removal. An expanded repertoire might include 
modified versions of the DP and VW algorithms for such purposes as avoiding polyline 
intersections and collisions or for retaining or filtering out certain kinds of detail. Additional 
algorithms might be optimized for generalizing certain classes of feature, for example building 
footprints or right-angle boundaries. We can imagine further generalizing MapShaper's polyline 
simplification framework to support algorithms that combine vertex removal and local vertex 
repositioning, such as the method developed by Garland and Zhou based on the quadric error 
metric (Garland and Zhou 2005).  
 
Another possible direction for future development is to support concurrent editing of multiple 
polyline and polygon layers. This functionality might include enforcement of topological rules 
governing relationships between features on multiple layers. For example, polyline segments 
from a rivers layer could be linked to coinciding portions of a borders layer, such that 
modifications to one layer would be propagated to the associated layer (e.g., Ware et al. 2003)  
 
Dynamic client-side line generalization has applications beyond interactive map-layer editing. It 
is an important step in the direction of creating web maps that display appropriately generalized 
linework at a continuous range of scales. Web maps could adjust their degree of generalization 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 9  

dynamically to suit a range of output devices. Examples include resolution-independent web 
maps that reveal more or less detail according to the pixel density of the viewer's monitor or web 
maps that can be printed at a higher level of detail than what appears onscreen. Fast client-side 
line generalization could also be used to implement smooth, continuous zooming in web maps, 
with lines that gradually increase or decrease in detail as the scale of the map changes.  
 
 
6. CONCLUSIONS 
 
We believe that MapShaper points the way to a new class of cartographic tools that are web-
based, interactive, and accessible to non-specialists. In designing Mapshaper, we have tried to 
strike a balance between automation and manual editing. MapShaper bridges several gaps within 
the field of cartography: the gap between source data and finished maps, the gap between 
academic cartography and non-specialist mapmakers, and the gap between automated computer 
cartography and graphic design. From the user's point of view, Mapshaper's most important 
innovation is its ability to generalize map linework interactively. Unlike most other cartographic 
software tools, simplification occurs in real time, as fast as the cartographer can move a slider 
bar or click on vertices. In order to provide this level of functionality, we overcame several 
technical challenges. This paper describes our solutions to three of these problems: (1) how to 
store the results of polyline simplification such that modified versions of a polyline can be 
rapidly generated at any degree of simplification; (2) how to apply this technique to a selection 
of simplification algorithms; and (3) how to pass simplification data and coordinate data rapidly 
between a web client and processes running on a remote server. Because Mapshaper is a rolling 
release, new functionality is being added as it is developed. The public is encouraged to visit the 
website (mapshaper.org) and give us feedback. 
 
 
 
 
7. REFERENCES 
 
Bader, M. (2001). Energy Minimization Methods for Feature Displacement in Map 

Generalization. Ph.D. thesis, Department of Geography, University of Zurich. 
 
Bédard, Y., and E. Bernier (2002). Supporting Multiple Representations with Spatial View 

Management and the Concept of "VUEL". In Proceedings of the Joint Workshop on 
Multi-Scale Representations of Spatial Data, ISPRS WG IV/3, ICA Commission on Map 
Generalization (Ottawa, Canada), July 7th-8th. 

  
Burghardt, D., M. Neun, and R. Weibel (2005). Generalization Services on the Web – A 

classification and an initial prototype implementation. Cartography and Geographic 
Information Science, Vol 32(4): 257-268 (12). 

 
Douglas, D.H. and T. K. Peucker (1973). Algorithms for the reduction of the number of points 

required to represent a digitised line or its caricature. The Canadian Cartographer, 10(2): 
112-122. 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 10  

 
Dutton, G. (1999). Scale, sinuosity, and point selection in digital line generalization. 

Cartography and Geographic Information Science, Vol 26(1): 33-53. 
 
Galanda M. and R. Weibel (2003). Using an Energy Minimization Technique for Polygon 

Generalization, Cartography and Geographic Information Science, Vol 30(3): 259-275. 
 
Garland M. and Zhou Y (2005). Quadric-based simplification in any dimension. ACM 

Transactions on Graphics Vol 24(2): 209-239. 
 
Hardy, P., M. Hayles, and P. Revell (2003). Clarity – A new environment for generalization 

using agents, java, xml and topology. Proceedings of the ICA Generalization Workshop, 
Paris, April 2003. 

 
Harrower, M. and M. Bloch (2006). MapShaper.org: A Map Generalization Web Service. IEEE 

Computer Graphics and Applications (CG&A) Special Issue on Geographic 
Visualization. July / August 2006. 

 
John Hershberger, J and J. Snoeyink (1992). Speeding up the Douglas-Peucker line-

simplification algorithm. Proc. 5th Intl. Symp. on Spatial Data Handling, Vol 1: (134–
143). 

 
Hubert, F. and A. Raus (2002). A method based on samples to capture user needs for 

generalization. Proceedings of the ICA Generalization Workshop, Paris, April 2003. 
 
McMaster, R. B. and S. Shea (1992). Generalization in Digital Cartography, The Association of 

American Geographers, Washington D.C., 1992. 
 
Mackaness, W. and G. Edwards (2002). The importance of modeling patern and structure in 

automated map generalization. Proceedings of the Joint Workshop on Multi-Scale 
Representations of Spatial Data, Ottawa, Canada, July 7th-8th, 2002. CCRS – Canada 
Centre for Remote Sending, Ottawa, Canada. 

 
Ormsby, D. and W. Mackaness (1999). The development of phenomenological generalization 

within an object-oritneted paradigm. Cartography and Geographic Information Science, 
Vol 26 (1): 70-80. 

 
Visvalingham, M., and D. Whyatt (1993). Line generalization by repeated elimination of points, 

The Cartographic Journal 30(1): 46-51.  
 
Visvalingam, M. and P. J. Williamson (1995). Simplification and generalization of large scale 

data for roads. Cartography and Geographic Information Science 22(4): 3-15.  
 
Ware, J. M., C. B. Jones, and N. Thomas (2003). Automated map generalization with multiple 

operators: A simulated annealing approach. International Journal of Geographical 
Information Systems, 17 (8): 743-769. 



Proceedings of AUTOCARTO 2006                     Bloch and Harrower 
 

 Pg 11  

 
Wu, S.-T., M. R. G. Márquez (2003). A non-self-intersection Douglas-Peucker Algorithm. 

Proceedings Brazilian Symposium on Computer Graphics and Image Processing 
(SIBGRAPHI XVI) 2003. 

 
Zhou S and C.B. Jones (2004) Shape-Aware Line Generalisation With Weighted Effective Area. 

In Fisher, Peter F. (Ed.) Developments in Spatial Data Handling 11th International 
Symposium on Spatial Data Handling. Springer, pp 369-380. 

 
 
 


