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ABSTRACT 

While many datasets carry geographic and temporal references, our ability to analyze these 
datasets lags behind our ability to collect them because of the challenges posed by both data 
complexity and scalability issues. This study develops a visual analytics approach that integrates 
human knowledge and judgments with visual, computational, and cartographic methods to 
support the application of visual analytics to relatively large spatio-temporal, multivariate 
datasets. Specifically, a variety of methods are employed for data clustering, pattern searching, 
information visualization and synthesis. By combining both human and machine strengths, this 
approach has a better chance to discover novel, relevant and potentially useful information that is 
difficult to detect by any method used in isolation. We demonstrate the effectiveness of the 
approach by applying the Visual Inquiry Toolkit we developed to analysis of a dataset containing 
geographically referenced, time-varying and multivariate data for U.S. technology industries.  

1 INTRODUCTION 
Exploring and analyzing large spatio-temporal multivariate datasets is challenging because of 
data complexity (i.e. potential interactions among space, time, and attributes) and scalability 
issues (i.e. both data volume and high dimension). Existing approaches, from entirely 
computational to visually-led methods, are limited in analyzing complex patterns that include 
space, time and attribute components together. Moreover, traditional information visualization 
methods do not support analysis of large data sets. Data mining and other computational methods 
have been developed explicitly to deal with large and high-dimensional data sets, but typically 
do not provide ways to incorporate both space and time nor do they leverage the power of human 
vision and cognition to help analysts notice and quickly interpret patterns in complex data. One 
goal for visual analytics is to bridge this gap by developing analytic methods that couple visual 
and computational methods in productive ways. Specifically, we introduce a Visual Inquiry 
Toolkit that integrates visual, computational, and cartographic methods to support an 
overview+detail strategy for visual analytics of multivariate spatio-temporal datasets of 
relatively large size. Our Toolkit also emphasizes flexible interaction strategies designed to 
enable human knowledge and judgment to be coupled productively with computational pattern 
finding methods. The presented research was initiated for the IEEE InfoVis 2005 contest, the 
focus of which was to analyze the changing characteristics of U.S. technology industries and 
companies over time. 

The reminder of paper is organized as follows. Section 2 reviews related literature. Section 3 
discusses our strategy and methodologies, with a focus on representation issues. Section 4 
demonstrates an interactive visual analytics approach for mining spatio-temporal multivariate 
patterns. Section 5 discusses the advantages and limitations of the approach and possible further 
work.  

2 RELATED WORK  
We first discuss visualizing multivariate data. The commonly used data representations for 
multivariate visualization include tables and scatter plots; more sophisticated methods include 
scatterplot matrices (1972), parallel coordinate plots (Inselberg 1985),  matrix permutation 
(Bertin 1981; Mäkinen and Siirtola 2000), and multivariate glyphs (Pickett, Grinstein et al. 
1995). A comprehensive review of the methods can be found in a paper by Keim, et. al.(2005).  
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All of these methods have difficulty representing large data sets. As the number of data 
entities/variables (dimensions) goes up, the potential for over plotting on displays goes up as 
well. Two major solutions are proposed to address this problem. One is to reduce data size being 
displayed by grouping individual data records into subsets (e.g. aggregation or clustering), in this 
case, collective characteristics of the grouped data are visualized and investigated (Johansson, 
Treloar et al. 2004; Ward 2004; Guo, Gahegan et al. 2005). The other solution is data selection 
which allows zooming, filtering, and focusing on a subset or individual data (Keim, Panse et al. 
2005). This research takes a combination of both approaches as discussed in section 3.1. 

Visualization of spatio-temporal, multivariate data is challenging because traditional single 
2D or 3D views do not provide enough dimensional space to simultaneously display all space, 
time, and multivariate attribute components.  A widely-adopted method for space-time data is to 
represent these data in a three-dimensional view where time data is visualized in the third 
dimension over the two-dimensional map (Kwan 2000; Lodha and Verma 2000; Gatalsky, 
Andrienko et al. 2004; Kapler and Wright 2004). But the method has severe limitations for 
visualizing multivariate data with even modest size (e.g., hundreds of records for more than 2-3 
variables). Some other systems use animation to display time, presenting sequential 
representations of spatial information at a moment of time (Stojanovic, Djordjevic-Kajan et al. 
1991; Oberholzer and Hurni 2000; Slocum, Yoder et al. 2000). However, this technique imposes 
burdens on human short memory to retain temporal changes thus not suitable for complex, large 
datasets. Two approaches that show some potential to address these issues are: (1) small multiple 
adjacent views  (MacEachren, Dai et al. 2003); (2) linked views  (MacEachren, Wachowicz et al. 
1999; Andrienko and Andrienko 2001; Robinson, Chen et al. 2005). We extend both approaches, 
combining with computational clustering methods. 

Successful analysis of large, space-time-attribute datasets requires more than advances in 
visual representation methods. Human interaction also plays an important role in detecting and 
interpreting complex patterns. Considerable efforts have been made in interactively mining 
multivariate patterns (Seo and Shneiderman 2002; Harri 2004), temporal patterns (Carlis and 
Konstan 1998; Paolo, Aleks et al. 2005), and spatio-multivariate patterns (Guo, Gahegan et al. 
2005).  Some efforts have been made in visually mining spatio-temporal patterns, with a focus 
respectively on spatial distribution of temporal behaviors (Andrienko and Andrienko 2005), on 
events (Gatalsky, Andrienko et al. 2004), and on activity patterns (Kwan 2000).  However, few 
approaches have been developed to interactively search for patterns using strategies that consider 
all aspects of space, time and multivariate attribute components.  

3 VISUAL INQUIRY TOOLKIT– AN INTEGRATED APPROACH 
We first discuss tasks and our strategy. Questions posed by spatio-temporal data analysis usually 
involve three components: where (space), when (time), and what (attribute/thematic objects) 
(Peuquet 1994). Drawing upon Peuquet’s ideas, Andrienko, et al (2003) discussed three basic  
analysis tasks in detail as they relate to exploratory visualization: when + where  what;  when 
+ what  where; where + what  when. The tasks follows a general question scheme A+B X, 
where A and B denote known and X stands for unknown information. Based on Bertin’s concept 
of levels of reading (elementary, intermediate, and overall), Andrienko, et al (2003) introduced 
two “search levels” to the analysis tasks: (1) elementary level on which a task deals with 
individual objects (such as a time, a place or a characteristic) ; (2) general level on which a task 
considers a set of object as general situations. A sample elementary level task related to our 
industry analysis is: What were the industry sales in the year t for the state l? A question of this 



style can be easily answered by an interactive data query. The more challenging questions are the 
general level ones like: What industrial characteristics (e.g. industry combinations) have been 
developed in U.S. during the past decade? What geographical areas have similar or unusual 
characteristics, and what are they? These questions are hard to answer through interactive queries 
alone because: (1) exploratory goals are initially vague and we do not know what data 
components (what, when, where) to query; (2) these questions are too general to be stated as 
formal queries. Furthermore, a system that forces users to query data iteratively and view and act 
on a partial result at each iteration is time-consuming, error-prone and often does not produce the 
desired results (Kapler and Wright 2004). Hence, analysts working with large and complex data 
sets need to first gain an overview of the entire dataset to quickly understand the scope of their 
data set and discriminate between the interesting and uninteresting content (Greene, Marchionini 
et al. 2000); then focus on a subset of data with more viable patterns in detail views. 

Our toolkit employs the overview + detail strategy. Moreover, it enables human knowledge 
and judgment to be coupled productively with computational and visual methods for 
incrementally filtering and searching for novel and relevant patterns. Specifically, we employ a 
self-organizing map (SOM) (Kohonen 2001) to cluster multivariate data, then encode the clusters 
with a 2D diverging-diverging cartographic color scheme. The colored clusters are visualized in 
a Space-Time matrix (a recognizable, graphical tabular view). Supported by some hierarchical 
clustering methods, the matrix reorders layout of the rows (clusters), thus presents an overview 
of coarse grained patterns and exposes major explicit patterns by grouping similar entities. A 
parallel coordinate plot, linked to the matrix, serves as a legend for interpreting the multivariate 
patterns in a detail view. A matrix of small multiple geographic maps supports the perception of 
both spatial distribution of multivariate patterns and changes in that distribution over time. 
Finally, a Pattern Basket (a place in which an analyst can store interesting fragments of 
information during an extended analysis process) supports pattern synthesis. The proposed 
approach and tools outlined above are implemented in a proof-of-concept software application–
the Visual Inquiry Toolkit.  

State Year AUT ... TEL TRN

Alabama 1992 0.022 ... 0.02 0.01

... ...
Alabama 2003 0.005 ... 0.027 0.015

Arizona 1992 0.005 ... 0.045 0.13
... ...

Wyoming 2003 0.1 ... 0.069 0.04

reference: place + time 18 attributes: industries composition

588  records:
49 places *12 years

 
Figure 1:  Aggregated data model in a tabular view. It has 588 records (49 places * 12 years) and 20 columns. 
The state and year columns constitute a “reference column” and 18 attribute columns represent 18 industries 
respectively. Hence, each record has a state-year as reference and 18 attribute values, each of which is an 
industry’s percentage of total sales.  For each record, the 18 attribute values depict the industry composition 
for the state in the year, and sum of the value is equal to 1.  

We demonstrate our research and the Visual Inquiry Toolkit through an application to a 
benchmark dataset, provided for the IEEE InfoVis 2005 contest(Grinstein, Cvek et al. 2005) . 
The full dataset has around 563,000 records. The focus is on the change in geographic patterns 
for national industry composition over time. Hence, the data are aggregated by state and year as 
shown in Figure 1. The 18 industries to be analyzed are: factory automation (AUT), 
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biotechnology (BIO), chemicals (CHE), computer hardware (COM), defense (DEF), energy 
(ENR), environmental (ENV), manufacturing equipment (MAN), advanced materials (MAT), 
medical (MED), not- primarily-high-tech (NON),  pharmaceuticals (PHA), Photonics (PHO),  
computer software (SOF), Test & Measurement (TAM), telecommunications and internet (TEL), 
transportation (TRN) and subassemblies and components (SUB).  

3.1 Visualization of Multivariate Patterns 

The Parallel Coordinate Plot (PCP) method (Inselberg 1985) is one of the widely used 
techniques for visualizing multivariate data. As one component in our Visual Inquiry Toolkit, we 
have extended the method and implemented an enhanced, dynamic parallel coordinate plot to 
serve as a “legend” for multivariate patterns.  

A well-known problem with PCPs is overplotting – data patterns become illegible with 
increasingly amount of data entities displayed. This problem has been addressed primarily from 
two directions (Edsall 2003; Ward 2004; Andrienko and Andrienko 2005; Guo, Gahegan et al. 
2005): (1) computationally grouping the data (e.g. aggregating or clustering) to achieve an 
overview with fewer data groups displayed; (2) data selection ( zooming, focusing, filtering) to 
investigate individual data record or a subset of data in a detail view. Both methods are adopted 
in our research.  

Grouping data can be achieved by a wide array of computational clustering methods (Hastie, 
Tibshirani et al. 2001). Among them, the Self-Organizing Map (SOM) has proved to be effective 
method for multivariate clustering (Kohonen 1997; Vesanto and Alhoniemi 2000). Basically, a 
SOM projects a set of n-dimensional data vectors to an array of nodes on a 2D space. As a result, 
the entire dataset is divided into a group of non-overlapping subsets; and a cluster contains a 
subset of similar multivariate vectors. Johansson (2004) demonstrated an integration of a SOM 
with a PCP for the exploration of large multivariate data. Guo,et al (2005) also adopts the similar 
approach, enhancing interpretation of cluster results by applying a 2-D cartographic color 
scheme so that similar clusters are assigned similar colors while different clusters are assigned 
distinct colors. More importantly, a color is used to uniquely encode a multivariate pattern. 
This approach is adopted in this research.  

 
 

A

 
Figure 2: Six industries are displayed in the PCP, each represented by an axis.  Each axis is scaled to a range 
from 0 to 1, a value on the axis represents an industry’s proportional contribution to the total for a place and 
time.  We select the salient red string marked as A in the overview, and switch the PCP to detail view mode 
which displays the data items belong to the cluster. The outline of the strings depicts a pattern of the cluster: 
it has a high percentage of TEL industry, some TRN, SOF) and MED industries.  

Our PCP implementation allows switching between overview mode (to display data groups) 
and detail view mode (to display individual data items). In the overview mode (Figure 2, left 
plot), a string represents a cluster (with it median vector values) and depicts a multivariate 
pattern for the cluster. In the detail view mode (Figure 2, right plot), a string represents an 
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individual data item; and these strings together represent a cluster of data items. The outline of 
the strings depicts the pattern of the cluster.  The overview implementation in the PCP alleviates 
the overplotting problem while also reducing the “noise” generated by individual variations, 
exposing multivariate patterns in a more legible manner.  

3.2 Visualization of Space-Time and Multivariate Patterns 
To visualize distribution of mutlivariate patterns across places over time, a space-time matrix is 
employed and coupled to the PCP to achieve a holistic view of space, time, attribute components 
of the data. Specifically in the matrix (Figure 4, top-left), rows represent states, columns 
represent years. A cell reflects via its color a coarse grained multivariate pattern in a place for a 
year. The pattern, uniquely encoded by a color, roughly depicts an industry composition. The 
detail of the pattern is visualized in the PCP. Simply put, the matrix provides an overview of 
patterns carrying all the space, time, and attribute components. The coupled PCP serves as a 
legend for illustrating the multivariate pattern in detail.  
 

Kansas

Transportation (TRN) Telecom(TEL)

 
Figure 3:  The matrix row representing Kansas (shown independently here) has two distinct colors (thus two 
patterns): purple and red.  Each snapshot of the PCP (in detail-view mode) depicts a pattern: purple strings 
depict an industry mix for Kansas in 1992-98 dominated by Transportation, while red strings depict a Kansas 
industry mix in 1999-03 dominated by the Telecom industry. In both cases, Environmental is the most 
apparent secondary industry. Hence, Kansas switched focus from Transportation (purple) to Telecom (red) 
in 1999, while maintaining a secondary focus on Environmental through the period. 

The PCP and matrix are coupled on two levels: a dynamic link and a “static” link. A dynamic 
link(Becker and Cleveland 1987; Buja, McDonald et al. 1991) typically means simultaneously 
highlighting visual elements that represent a single data record in all the views so that various 
aspects of the data can be investigated concurrently. “Static” link, a term introduced by 
Andrienko and Andrienko (2005) refers to visual connections in a static graphic having multiple 
views divided into a number of classes. Each class of elements is assigned unique symbol or 
color to so that they are known to visualize the same “thing” in the multiple views. Figure 3 
illustrates the “static” link implemented in our toolkit: The group of purple strings (or red 
strings) is (visually) linked to the group of purple cells (or red cells) in the matrix, depicting a 
pattern (on industry mix) for the state and years. A string in the PCP is linked to a matrix cell in 
the same color. The link is visualized dynamically via highlighting operations. 

In addition, a map matrix (Figure 4, top-right) is coupled to the space-time Matrix and PCP 
in the same way. It complements the space-time matrix by displaying the distribution of 
multivariate patterns on small multiple geographic map views that are ordered by years. While 
each individual map is useful to display patterns across space, the multiple yearly-ordered maps 
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are particular useful to uncover how geographic patterns change across space over time (see 
Figure 4, D), especially when a subset of data are displayed (see detail in section 4.2). 

The space-time matrix, map matrix and PCP complement each other to construct a holistic 
overview of complex patterns from spatial, temporal and thematic perspectives. The space-time 
matrix displays the salient patterns as distinct color regions (e.g. (A), (B), (C) in Figure 4). Each 
of the patterns is depicted in detail in the PCP. For example, the green region (A) reflects an 
industry composition dominated by NON industry as depicted by a green string in the PCP (in 
overview mode). The map matrix, as noted above, supports interpretation of spatial distribution 
of multivariate patterns over time. Obtaining such an initial overview of the entire dataset is 
critical for exploring large datasets, especially when the exploration goal is vague initially; 
because it can help determine what subsets of the data may potentially contains interesting 
patterns and thus be worth further investigation. Iteratively querying the entire dataset without 
such guidance can be time-consuming, error-prone and usually does not produce desired results. 
In the Visual Inquiry Toolkit, the linked views provide a complementary human interaction 
interface for exploratory analysis that allows analysts to move back and forth between overview 
and detail. We discuss it in section 4.2. 

 

C

A

B

D TRNTELNON

 
Figure 4:  An overall view of spatio-temporal multivariate patterns. Here, the PCP is in overview mode.   

(A) The green clusters statically linked to green strings in PCP, which have NON as the dominant industry. 
(B) Purple clusters have TRN as the dominant industry. (C) Red clusters have TEL as the dominant industry. 
(D) In the last row (year 2001-2003) of the map matrix, many states change to green, indicating a shift in 
relative importance of non-primary high tech industry.   

Next, we discuss how the patterns (that appear as similarly colored regions) are 
computationally constructed within the space-time matrix. An agglomerative hierarchical 
clustering method is employed to reorder the matrix rows and to group rows (states) with similar 
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industry compositions (represented by similar colors) together. The general approach has been 
found to be effective for pattern identification (Bar-Joseph, Gifford et al. 2001; Seo and 
Shneiderman 2002). Basically, the method includes following three basic steps: (1) initially each 
data item is treated as its own cluster, (2) the most “similar” pair of clusters (e.g. A and B in 
Figure 5) is found and merged into a new parent cluster. (3) Repeat step 1, 2 until all the clusters 
are agglomerated in one root cluster. Based on the definition of “similar”, various algorithms 
have been developed (Jain and Dubes 1988). Generally, no single algorithm alone is best suited 
for all cases. Hence, we implement Single-Link and Complete-Link algorithms for comparison 
purpose and other clustering methods can be easily added.  
 

C

D
E

A
B

C

A EDB

Length

 
Figure 5.  A dataset {A, B, C, D, E} is agglomeratively clustered and visualized in a dendrogram (middle).  In 
this research, a dendrogram (oriented horizontally) is attached to the matrix (right), with similarity value 
ranges from 0 ( means not similar) to 1 (means same). States with similarity value less the threshold value 
(currently 0.79635 as specified by the vertical bar) are filtered out (e.g. TN, GA, VA, WI).  

Besides, the clustering outcome – the clusters can be conveniently visualized in a 
dendrogram. Basically, a dendrogram(Jain and Dubes 1988) is a binary tree in which each 
branch (connecting two sub-branches or leaves) is a cluster and the leaves are individual data 
items. The length of branches expresses a distance between two clusters/elements (e.g. the length 
in Figure 5means the distance between D and E). A shorter length means a shorter distance (thus 
more similar) between two clusters/elements. With our implementation of a dendrogram (Figure 
5, right), an analyst can dynamically adjust the similarity threshold value by horizontally 
dragging the vertical bar across the dendrogram. Rows with similarity values less than the 
threshold are filtered out and appear as deselected (the cells are shrunken to a quarter of their 
original size). The remaining rows (in full size) are what attention should be focused on at the 
moment. The detail application of dendrogram is illustrated in section 4.1. 

4 EXPLORATORY PATTERNS ANALYSIS 
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Our exploratory data analysis process follows three steps of the so-called “information-seeking 
mantra” (Shneiderman 1996; Keim, Panse et al. 2004): (1) Overview- examine the representation 
of a summary of the entire data, which presents a context from all space, time, attribute 
perspectives;(2) Focus and filter - select interesting patterns revealed by the holistic view or by 
previous processes; (3) Details on demand - focus on the patterns identified in the previous step, 
inspecting details from various perspectives. In addition, we add one more step: information 
synthesis - export novel, relevant patterns and reorganize them to yield more useful information. 
The concept of synthesis was introduced by DiBiase (1990) and has been discussed repeatedly as 
a core stage in the geovisualization process by MacEachren and colleagues (1994; 1997; 2004), 
but little progress has been made toward tools that support synthesis. The four steps form a 
cyclic process to incrementally search, identify and analyze patterns, and eventually synthesize 
useful information out of the patterns for knowledge construction and decision making. 



4.1 Pattern detecting, filtering and synthesizing 

Initially, the space-time matrix displays an overview of patterns in which matrix rows are 
ordered by a computational method alone (Figure 4). Patterns seen in this overview are not fully 
satisfying because all kinds of patterns – relevant/irrelevant, explicit/implicit ones - are put 
together on the matrix view. The mixture of patterns can distract human attention and hinder an 
analyst in identifying the most important patterns as well as any hidden ones. Hence, we need to 
go through step 2 (as mentioned at beginning of section 3) -Focus and filter -to find the most 
interesting and relevant patterns. A key tool for achieving this is the interactive dendrogram that 
is attached to the space-time matrix. 
 

ENR,CHE

COM,ENR,NON

SUB,PHA,MED

NON

TEL,NON

TRN

MAT

AUT, PHA

change frequently
 

Figure 6: Left - pattern filtering: novel, relevant and important patterns are picked and export to a Pattern 
Basket (middle) through which interpretations can be captured and later retrieved. Well known, irrelevant 
and unimportant rows can be filtered out. Right – pattern synthesis: rows of Pattern basket are manually 
adjusted and some implicit patterns are exposed (e.g. TEL region shows DC, AR switched away from TEL 
while CO, MS, KS switched to TEL in recent years). 

Analysts can gradually adjust the threshold value (by dragging the bar) and select the most 
interesting rows, which usually are ones having high similarity values. However, high similarity 
values do not necessarily mean being relevant and potentially useful, hence an analyst must 
investigate the detail patterns in the PCP and apply domain knowledge to determine what 
patterns are novel, relevant and important. Rows that carry irrelevant, known or unimportant 
patterns can be manually disabled (thus filtered out). The rows with interesting patterns can be 
exported. By “export”, we mean copy the selected rows from the space-time matrix to the Pattern 
Basket (Figure 6 middle) so that the patterns can be saved for further analysis.  

A Pattern Basket is a variation of the space-time matrix. The motivation for introducing the 
component is: human working memory is limited and unable hold all the patterns found during 
the exploratory analysis process; the Pattern Basket enables the analyst to expanding the memory 
capacity by offloading found patterns to external memory – the basket. Moreover, row order in 
the pattern baskets can also be manually adjusted based on domain knowledge to achieve a better 
view of patterns (Figure 6 middle) and to expose implicit patterns. For example, the TEL region 
on the matrix (right) shows how some states switched industry focus to/away from 
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telecommunications over time.   The space-time matrix, PCP, and map matrix, when combined 
with Pattern baskets, provides a platform for a spiral and incremental processes of pattern 
searching, filtering, analyzing and synthesizing. Eventually with more rows exported, we achieve 
an overview with patterns thematically organized (Figure 6, right). 

4.2 Interactive pattern examining 
Having found some interesting patterns via step 2 - filtering, we can go to step 3 – examine the 
patterns in detail.  We demonstrate the process via an analysis case.  

We select the blue region (Figure 6, in the middle of the matrix). It contains four states - 
Maine (ME), Indiana (IN), Arizona (AZ), Alabama (AL).  The strings in the PCP approximately 
depict an industry composition pattern that is dominated by SUB industry (Figure 7 left). This is 
a where+when  what process in which where and when are specified in the space-time matrix 
and what is found in PCP. We do an incremental brushing along the SUB axis. It is a what  
where+when process and two more states - NH (New Hampshire) and WA (Washington) – are 
found to focus on the SUB industry. The six rows are exported into Pattern Basket and manually 
reordered for better interpretation (Figure 7 right). 

 
Figure 7. Left - PCP (in detail view mode) shows industry mix for four states: ME, IN, AZ, AL.  All axes 
scaled from 0 as the min value to 1 as the max value – representing the proportion of all technology industry 
in that place and time represented by the specific industry. The industry mix is dominated by SUB industry 
with considerable amount of NON industry.  Right - Six states are found to focus/ had focused on an industry 
mix dominated by SUB industry, which is represented in blue. 

In the map matrix (Figure 8, top plot), we notice that most of the states were in dark blues in 
early years; more recently, from 1998 to 2000, Arizona changed to bright blue and some 
dramatic changes in color occurred from 2001 to 2000. To determine what this means, we make 
four drill-down selections according to the four major color themes in the map matrix.  The 
outcomes are displayed in all three views: space-time matrix, PCP and map matrix.  Because of 
the space limitation of this paper, we take four PCP screenshots for the four selection operations, 
and they “share” one map matrix screenshot. Our complementary linked views effectively 
visualize how multivariate patterns (i.e. A, B, C in Figure 8) change across spaces (i.e. the six 
states) over time (for details, see figure 8). In addition, the views allow interactive exploring 
from all space, time, and attribute perspectives; and compound selection operations can be made 
to achieve any combination of where, when and what for a query schema of either A+B  C or 
A  B+C.  The queries can be made either on a group of entities to address general level 
questions (explained in section 3) or on an individual entity to address elementary level 
questions. For example as shown in Figure 7, a selection on the space-time matrix makes a query 
of “where+when  what”, with what displayed in the PCP. Conversely, a brushing on the PCP 
makes a query of what  where + when, with the outcome displayed in the matrix. In summary, 
being coupled together, the space-time matrix, map matrix and PCP, with their underlying 
computational clustering and sorting methods, complement each other to support the overview  
detail  strategy for an exploratory data analysis process. 
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(A)

(D)

(C)

(B)

 
Figure 8.  A map matrix screen shot is “shared” by four screen shots (A, B, C, D) which display the outcome 
of four selecting operations. (A) Almost all six states except NH focused on SUB in the early years; (B) From 
1998 to 2000, AZ switched focus to COM, NON, MAT, but still kept some SUB. (C) From 2001 to 2003, IN 
switched focus to NON and PHA, while still kept some SUB. (D) From 2001 to 2003, AZ and AL switched 
focus to NON. We conclude SUB expanded from ME to NH while it “died” in the other states after 2001. 

5 CONCLUSION 
The proposed exploratory analysis approach for spatio-temporal multivariate data provides two 
major advantages: (1) by integrating visual, computational, and cartographic methods, we 
achieve a holistic overview of the entire data set as well as detailed views on a particular aspect/a 
subset of data. The views effectively support our overview+detail exploratory analysis strategy; 
(2) by productively coupling human knowledge with computational, our toolkit supports 
incremental pattern searching, filtering, and synthesizing processes, thus has a better chance to 
find novel, relevant and potentially useful information. One of the future efforts of this research 
will be to address the scalability issue. Currently, our methods work well for modest numbers of 
places and times (data aggregated to states and to years).  Additional insights are likely if 
methods can be extended to deal effectively with multiple levels of drill down – for the current 
case study to monthly data by zip code. In general, the goal is to support visual analytics 
activities that move smoothly across scales of analysis as suggested by patterns and relationships 
that are uncovered.  
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