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Abstract

We present two new surface representation techniques: scooping and overdetermined
Laplacian PDE approximation. Scooping reveals the terrain by removing material with a set
of operators that resembling a 3-axis drill. Each operator has a square cross section, perhaps
7 x 7 posts, and a surface that is a polynomial of degree ranging from 0 to 3. Scoops may either
partition the whole data cell, or else may may applied hierarchically and adaptively as needed
to reduce errors. The longterm goal is for scoops to model geologic formation mechanisms
such as water erosion.

The overdetermined PDE solves a overdetermined system of linear equations to produce
a smooth surface approximation to a set of elevation posts. This representation has several
advantages, such as the ability to infer local maxima inside nested rings of contours, and the
ability to compute a best fit to an inconsistent set of inputs. The input data may be produced by
an incremental Triangulated Irregular Network program, supplemented by an iterative insertion
of the most inaccurately fitted points.

Both representations are part of the GeoStar project to lossily compress large terrain eleva-
tion matrices while preserving their usefulness for applications such as visibility and mobility.



1 Introduction

How shall terrain, meaning elevation above (or below) sea level, be represented in a computer? To
simplify, we assume that elevation is single-valued; overhangs and caves are not considered here.
However, we try to represent discontinuities, as they are perhaps the most important class of terrain
feature. Discontinuities greatly affect visibility and mobility, and are easily recognizable.

The novel surface representation techniques presented here are intended to answer these ques-
tions: What terrain operators are appropriate, and how realistic they should be? There is a sweet
spot: Fourier series are too unrealistic, but a complete geological evolution model is too complex.

2 Classical Terrain Representations

The following brief survey of three classical representations illustrates concerns and techniques
that are relevant to our new representations, while presenting some new views.

2.1 Contour lines

Contour lines are perhaps best suited for hand sketching of a map. Since the actual terrain is not
nearly as smooth as the contour line says, as typically realized on a paper map, they are quite lossy.
This fact, combined with the elevation spacing between adjacent lines, means that important small
features, such as gulleys and other minor elevation changes, may be unrepresentable. Therefore,
determining visibility and mobility is much more error-prone. Also, representing very steep slopes
and cliffs require distorting the contours.

Implementing contour lines on a computer reveals other disadvantages, arising from their es-
sential nature as a hand-drawn technique. The first question is, how shall each line be represented?
The obvious answer is as a polyline or sequence of points. If there are many points, then much
space is required. If there are few points, then the spacing between lines is inaccurate, or the lines
may even cross. The deep reason for this is the separate representation of each line, ignorant of
their relationships.

One solution is to use level-set techniques, (Osher and Fedkiw, 2003), but that requires one of
the techniques discussed later, so that the contours themselves become redundant.

An additional problem with contours is how to interpolate intermediate elevations, while avoid-
ing problems like the following. When interpolating an elevation at some test point, the closest
contour line in all 8 cardinal directions from the point may all be the same contour. This causes the
test point, which lies between two contours, to have the elevation of one of the contours, which is
probably wrong. Also, inferring a mountain top inside a set of nested contours is desirable.

(Gousie and Franklin, 2005), (Gousie and Franklin, 2003), presents a new method that starts by
computing new intermediate contours in between existing isolines. These are found by finding the
shortest line segment that connects points on two neighboring contours with differing elevations.
The midpoint of the line segment becomes a point on the intermediate contour. The contours are
completed by connecting individual points. The new contours are then used as data for successive
iterations, until an initial surface is formed. Peaks are computed by Hermite splines that follow
the slope trend. Gaussian smoothing is applied to the entire surface or only to newly computed
elevations, yielding an approximated or interpolated surface, respectively.



2.2 Triangulated Irregular Network

The Triangulated Irregular Network (TIN), a piecewise linear triangular spline, first implemented
in cartography in 1973 by (Franklin, 1973), is purely a technique for computers; no one would
implement a TIN by hand. After reviewing the TIN, this section discusses coding techniques for
the TIN points. “Coding” a data representation means to represent its coordinates, pointers, or
whatever, as a sequence of bits. It is often overlooked that an efficient coding is as important as the
representation itself, and that a representation’s efficiency is not even a well formulated concept
absent the coding.

One common implementation takes a set of data points {(z,y, z)}, and uses a greedy point
insertion to refine an initial triangulation into one with more points and a smaller error. A subtle
issue is that inserting a point into the triangulation often increases the maximum error. However,
in this case inserting the next point usually reduces the error considerably. The stopping criterion
for this process can be the attainment of a desired maximum surface error, of the insertion of the
desired number of points.

An alternate construction technique proceeds by constructing a complete triangulation of the
given data and then incrementally removing points. To our knowledge, these two techniques have
not been combined, although that would seem to reduce the error attained with a given number of
TIN points.

In either case, edges in the triangulation are flipped when necessary to main some property
such as Delauney. It is not a priori obvious that that should be a more desirable property than
minimizing the total edge length or elevation error. However, our experiments find that Delauney
triangles do work better.

One misconception is that the unconstrained TIN does not adequately capture surface features
like ridge lines, which must instead be explicitly inserted into a constrained triangulation. However,
our experiments, on synthetic data constructed with both sharp and gradual, straight and curved,
ridges, and even discontinuities as would occur in a road cut, found no such problem. Perhaps this
was a problem with some other early implementations.

Another application of a TIN is a transform an irregular set of points into a regular grid, (Speck-
mann and Snoeyink, 1997). Here, the points are completely triangulated, and then grid points are
interpolated inside the triangles. This may be performed on very large datasets by sweeping up the
triangulation.

Implementing a TIN requires choosing an appropriate planar graph data structure. The obvious
answer, available in geometry packages, represents every topological dimension (point, edge, face),
and all their adjacency relations explicitly. The first problem is the storage cost required by all these
pointers, which can be an order of magnitude more than the elevations themselves. The second
problem is that keeping all this redundant information consistent as points are inserted and edges
flipped is tedious.

An advantage of requiring that the triangulation be Delauney is that storing any topology at
all is unnecessary, as it may be recomputed when needed. This is the endpoint of a sequence of
time—space tradeoffs. Succinct planar graph data structures, (Turan, 1984), which can store the
topology in a few bits per element, form an intermediate point in that tradeoff.

The TIN has the advantage of facilitating a progressive transmission of the surface over a slow
communication link. That is, suppose that we wish to transmit the surface from server S to client
C. C may not even be certain that s/he wants the whole terrain until seeing a preview. Suppose that



S computes a TIN using the insertion method, and then transmits the points one-by-one in their
insertion order. C rebuilds the TIN by inserting the points as received. If the approximate surface
appears unsuitable, then C tells S to stop.

Once the TIN has been computed, the next step is to code it, or to represent it in as few bytes
as possible. This emulates other good data compression techniques, such as JPEG and BZIP,
whose space efficiency results from their design as a pipeline of compression techniques, with the
output from one step being the input to the next. For example, BZIP2 text compression contains
the following five steps in sequence: e Run length encoding e Burrows-Wheeler transformation
e Move to front e Another run length encoding e Arithmetic encode. JPEG image compression
performs these steps in sequence: e Rotate RGB to YCrCb e Discrete cosine transform e Low-pass
filter o Arithmetic encode.

To code the TIN points, we are considering various methods, but currently like the following
technique.

1. Start with the set of points, {(x,y, z)}, in the triangulation.

2. Compress the horizontal points, S, = {(z,y)}, separately, using one of the current bitmap
compression techniques designed for facsimile transmission, (Salomon, 2000). A tech-
nique’s efficiency may be evaluated by comparing the size of its output to the information
theoretic bound, obtained as follows.

Let M be the number of original potential points in the terrain. E.g., for a level-1 DEM,
M = 12012

Let N be the number of points in the triangulation.
Then, b, the information content, in bits, or entropy, of S, is b = lg (1) = Ig N'(+'—N' where

lg means the logarithm in base 2 and (%) is the number of combinations from M elements
taken N at a time. b may be approximated as follows. Let p = N/M and ¢ = 1 — p. Then

b~ M(—plgp —qlgq)
E.g.,if N = 10°, then p = 0.07,¢ = 0.93 and so b ~ 1.4 - 10° bits, or 18 000 bytes. This is
much less space than merely listing the (x, y) coordinates.

One obvious potential optimization is to reduce M, which is similar to reducing the number
of significant digits in x and y. The simplest realization is to subsample the input data
before TINning it. However, reducing several points to one, say by averaging, loses perhaps
too much information. A more sophisticated technique might proceed by first TINning the
original data set, and then perturbing the selected TIN points so that they fall on a coarser
grid. This has the advantage that the increased error is easily computable.

The definition of information content used here does assume that there is no structure to the
points, that is, that there are no other usable relations between them. That is not quite true.
In mountainous regions, the points will be close and in flat regions, widely spaced. However,
it’s not clear either how much information content there is in this fact, nor how to exploit it.

3. Now the elevations need to be compressed. The order of the z is important since each z must
be associated with the correct (x, y). Without loss of generality, we can assume that the (z, )
are lexicographically sorted. Then using a delta encoding for the 2 is reasonable, assuming



that the consecutive elevations’ values are close. This property would become more true if
we used a space filling curve instead of a mere lexicographic order for the (z,y). That is
not totally trivial for unevenly spaced points, but all that is necessary is that the ordering be
unambiguously determinable from the set of points.

Various TIN extensions have been considered, such as using a higher degree triangular spline.
That raises two issues. First, this idea’s effectiveness requires that the terrain generally have a
higher degree continuity. More precisely, this requires that the terrain data being used possess this
property. That distinction is relevant because terrain data is often artifically smooth. Second, there
are technical difficulties with using higher degree triangular splines, compared to using Cartesian
product splines.

There is an easy (but not as good) way and a hard (but better) way to use a higher degree
triangular spline. The easy way goes as follows.

1. Compute a traditional TIN.

2. Fit a higher degree spline to this triangulation, while requiring the appropriate degree of
continuity across each edge.

This method will work to the extent that the terrain data possesses the appropriate degree of conti-
nuity.

The hard but better way is to incrementally build up a higher degree spline. Note that deter-
mining the optimal spline points of any order is an exponential problem, so that some heuristic is
necessary.

An advantage of TINs is that their resolution adapts to terrain regions of varying complexity.
They are also not wedded to any particular coordinate system. However, any algorithm using them,
such as visibility determination is complicated by the necessity of traversing the triangulation.

2.3 Gridded Elevation Matrices

If the TIN is too complicated, then a simple matrix, or array, of elevations is a reasonable alterna-
tive. The objection that this is not appropriate since the earth is not a developable surface, that is,
cannot be flattened, is answered with the Riemannian manifold, (Jost, 2002). This is a geometric
construct that represents a space of some dimension as an overlapping set of charts, each valid
only in some specific limited region. The charts are organized in an atlas. The major application
lies in modeling curved space-time.

An invalid objection to the matrix of elevations originates in the variable nature of terrain.
Since a goal is to represent the terrain as compactly as possible, the matrix must be compressed,
and good compression techniques adapt locally to the local information content of their input data.

Since so much effort has gone into image compression techniques, such as JPEG and SPIHT,
it is worth trying them for terrain. SPIHT, (Said and Pearlman, 1993) lossily compresses elevation
matrices quite well, (Franklin and Said, 1996).

In the following sections we propose other ways to compress elevation matrices.
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Figure 1: WI11IN31 level-2 DTED sample Figure 2: Percent of elevation errors after tiling
dataset with regular tiles.

3 New Terrain Representations

3.1 Scooping Operators

Scooping is an attempt to blast through the information theoretic limit for terrain compression by
identifying and exploiting additional structure in the terrain. Such structure might originate from
the geological formation processes.

Initially, we consider three different scoop operators to realize terrain scooping. The first one
is flat and horizontal, the second one is flat and tilted and the third one is a quadratic equation.
Those operators are used to scoop the terrain using either regular constant size tiles, or hierarchical
quad-tree-like recursive tiles. Given the regular tiles’ limitations, such as the inability exactly to
follow nonsquare features, the quality of their approximations is surprisingly good. We are already
planning a future production system with a richer set of operators.

3.1.1 Horizontal (Degree 0) Scoops

The first operator is flat and horizontal. Given a tile of the terrain, this operator can approximate
the terrain in three different ways. The first is way is to approach the tile from above and set the
estimate to the maximum elevation in the tile. The second approximation is from below, thus we
set the estimate to the minimum elevation in the tile. The third way is to set the estimate to the
mean of all of the elevations in the tile. While both the overestimate and the underestimate of the
terrain diverge from the mean with larger tile sizes, they also provide a convenient envelope, which
may be of value to certain terrain applications. The range in the scoop given by the difference of
the estimates is a local metric of terrain variance. All of these estimates are in effect bringing the
terrain resolution down. The level of lowering resolution is controlled by the scoop size. They are
convenient since they consist of a single parameter c, but are very simplistic as a model. The data
model is z = c.



Planar Quadratic Cubic

Degree of scoop surface 1 2 3
Number of coefficients needed to represent one scoop 3 6 10
Number of scoops 301,859 159,626 95,099
Maximum absolute error 31 15 9
Mean absolute error 3.93 3.62 3.99
Number of scoops with error larger than 10 149 2 0

Table 1: Hierarchical scooping experiments on W111N31

3.1.2 Planar (Degree 1) Scoops

The second terrain scooping operator is still flat as the first one but it is no longer required to
be horizontal. In effect we introduce a second parameter, which is the normal vector, producing
z = ax+by-+c. We fit a plane to the tile can be done by finding the regression plane that minimizes
RMS vertical error. Our test data included DTED Level 2 files, containing 3601 x 3601 elevations,
such as the WI11N31 cell shown in Figure 1. Experiments show that errors are rare and large
errors are even rarer. Those occur on ridges and valley bottoms, where the planar model is not
enough to capture data variance. Results from regularly tiled scoops of sizes: 3 x 3,5 x5 and 7 x 7
are shown in Figure 2. For instance, when using 7 X 7 scoops, over 90% of points had an absolute
error under 4, or 0.05% of the elevation range.

3.2 Quadratic (Degree 2) Scoops

The third scooping operator is based on the quadratic equation z = ax? + by? + cxy +dx +ey + f.
Our hope is that the reduced number of required scoops will more than offset the doubled num-
ber of coefficients per scoop, especially when used in conjuction with the irregular size scooping
algorithm described in the next section.

3.3 Hierarchical Scoops

This refinement is a recursive quadtree-like extension of any of the above methods, by varying the
scoop size. Initially, the whole data cell is approximated with one scoop of the desired degree. If
the maximum absolute error is larger than a threshhold, which is /0 in this case, then we subdivide
the cell into four subcells and repeat. This process stops at 3 x 3 cells, which are represented by
listing their 9 elevations.

Table 1 gives some results from testing linear through cubic hierarchical scoops on the
WI111N31 level-2 DTED cell, with 12.9 million points and elevation range [809,2882]. The num-
ber of scoops refers to how many scoops were needed to get either the maximum absolute error
below the threshhold of 10, or the scoop size down to 3 x 3. Some of the latter scoops have a
maximum absolute error over 10, as listed.



3.4 ODETLAP — Overdetermined Partial Differential Equations

This terrain representation technique is an extension of a Laplacian Partial Differential Equation
(PDE). That interpolates from a set of data points to a complete array of elevations by defining an
equation

dzij = zim1j + Ziv1j + Zig—1 + Zijn (1)

for every unknown non-border point. Border points are special cases, which are a little tricky
to define properly. This equation has a physical origin. If the values represent temperatures in a
planar medium instead of elevations, and the known points are places where heat is being applied or
removed to maintain them at the given temperature, then the equation solves for the temperatures
at all the unknown points. The Laplacian is easily solvable, say in Matlab, on arrays of several
thousand square. However, the Laplacian has some limitations when used to interpolate terrain
elevations, although these properties are physically correct for heat flow.

1. The interpolated values fall within the range of the known values, so local maxima, such as
mountain tops, are never generated.

2. When a set of nested contours is interpolated, the generated surface droops, much like a cloth
draped between two supports.

To remove those limitations, to provide other benefits, we extend this classical technique as fol-
lows.

1. Equation 1 is applied to every non-border point, known or unknown.

2. The known points also have a second equation,
Zij = hij ()

where h;; is the known elevation at that point, and z;; is the computed elevation. Equation 2 is
not trivial because our system of linear equations now has more equations than unknowns, that is,
it is overdetermined, and almost certainly inconsistent. Therefore an exact solution is impossible.
The best we can do is to solve the equations approximately, while minimizing the RMS errors.
That is, if we combine the two types of equations into one matrix and one column vector: Az = b
then the best we can do is to solve Az = b + e while minimizing the error e. The solution is z =
(AT A)~tATh although practical solution techniques use more efficient, albeit more complicated
formulae. Although this system has very many unknowns, 12012 for a level-1 DEM, most of the
coefficients in A are zero, that is, the system is sparse. The key consideration when solving a sparse
linear system is, to what extent are the zero entries filled in with nonzero values as the system
is solved? Specialized solution techniques exist, and more are being developed. ODETLAP’s
novelty is the overdetermined system, which was not feasible until recent large sparse system
solution techniques were developed. Matlab can easily process cells with 400 x 400 posts (160000
unknowns). (Childs, 2003) processes larger systems.

There are several advantages to using an overdetermined Laplacian (ODETLAP) system of
linear equations for approximating terrain. (Any resemblence to interpolation with springs is only
superficial.) Approximation is now the correct term instead of interpolation since the fitted surface
does not pass through the data points. Since the data is not exact, that is an advantage, as it leads
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to smoother surfaces while minimizing the error. ODETLAP can handle both continuous contour
lines of elevations, which may have gaps, and isolated points, while producing a surface that infers
mountain tops inside innermost contours while enforcing continuity of slope across contours and
so showing no visible indication of the input contours, i.e., no generated terraces. So far as we
know, no other interpolation method has all these advantages.

3.4.1 Choice of ODETLAP Input Points

ODETLAP approximates a surface to a set of points {(z, y, z) }. How shall we select those points?
We’ve tried several methods.

Regular method: Subsample every k-th point in both the x and y directions. This is easy.

TIN method: Run TIN on the input elevation file, and then use the first K points inserted into the
TIN as the ODETLAP interpolation points.

Refined method: Iterate the ODETLAP process, as follows, by analogy to the TIN greedy inser-
tion idea.

1. Start with some terrain, A.

2. Pick S, a set of input points, by the TIN method.

3. Run ODETLAP on them to reconstruct an approximate terrain, .
4

. Compute the error between A and B, and find M, a set points with greatest absolute
error.

5. Insert the M points into S.
6. Rerun ODETLAP.

3.4.2 Experiments

We experimented with those three methods on five sets of terrain with a resolution of 400x400.
Each method started with 1000 points; the refined method added 100 more worst points to the
1000 TIN points. The smoothness parameter 2 = 0.3, which means to value accuracy more than
smoothness.

In the following table, “avg err is shorthand for “average absolute error” and “max err is
shorthand for “maximum absolute error”.

TIN Regular Refined
Data avg err max err avgerr maxerr avgerr maxerr
wl13n3310 15.870 108.932  9.152 196.590 15.135  84.441
wl13n3311 18.703 144.557 10.541 161.193 15.654 105.767
wl13n3312  7.262  44.063 2.566 137.632  6.722  40.959
wl13n3313 24.214 104.089  6.810 115434 22.844  80.978
wl13n3314 21.093 104.676 4471 121.059 17.313  63.388




From the table, we have the following observations:

1. The regular method generally has a lower average error than the TIN method, but its max-
imum error is larger. The regular method’s errors are quite nonuniform, as is shown by its
maximum error being much larger than its average error.

2. The TIN method generally has a much lower maximum error than the regular method, but a
higher average error, so its errors are more evenly distributed, which is probably desirable.

3. The refined TIN method has the best maximum error. Its average error is less than the
unrefined TIN method, but still larger than the regular error. Overall, this method has the
most uniform error distribution, and we recommend it.

Because of the possibility that these results might be specific to the parameters used, we re-
peated the comparison of the (unrefined) TIN method to the refined TIN method for the 15 cases
of R = 0.3, 1,3 combined with N = 1000, 3000, 10000, 30000. The average error improved by an
average of 5.2%, and the maximum error improved by an average of 11.2%.

3.4.3 Data Conflation

Sometimes we wish to supplement A, a large, low precision, terrain database with B, a small, high
precision, database. BB covers only part of .4, and is probably somewhat inconsistent with .4 there.
Since ODETLAP processes inconsistent equations, it can merge A and B.

3.5 Correcting Errors in General

This is a general technique for refining the accuracy of any terrain representation. e Start with a
terrain matrix A. ¢ Apply any lossy technique to A, to produce B, which when uncompressed pro-
duces an approximate terrain C'. ¢ Compute the error matrix £ = A — C'. e« Compress F, forming
a representation F'. e Store or transmit (B, F'). This method’s utility resides in the errors’ correla-
tions, so that |F'| is small. Note that correlations in the errors mean that the original compression
did not exploit all the structure in the terrain, but that’s another topic.

4 Future Work

Scooping was designed to be is analogous to scooping earth out of the side of a hill. Eventually, the
scoops will follow a trajectory, starting from a given point, and proceeding in a downhill direction
from there along a straight line trajectory for a given distance. It will scoop out a new gully of some
width, whose bottom has some slope. As described, there are five parameters, although that could
be varied. This will have several properties. o It will not create a local minimum. This desirable
feature contrasts to every other known terrain representation method. e It naturally lends itself to
the creation of complex drainage systems, again in contrast to other representations. e It will be
quite nonlinear, and so has a power not available to linear methods.

Finally, any representation should have a more sophisticated evaluation criterion than absolute
error. We are performing experiments on the effect the errors on important applications such as
visibility and mobility, which may be combined into the smugglers’ path test. We site observers,

10



compute viewsheds, and find an optimal path between some source and goal on the alternate terrain
representation. Then, we compute the observers’ accurate viewsheds on the original elevation
matrix, and count how much of that path, which was supposed to be completely hidden, is actually
inside any of the accurate viewsheds. Preliminary results show that are representations are quite
good under this metric.
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