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Visualizing Spatial Uncertainty of Multinomial Classes  
in Area-class Mapping  

 
Abstract: Area-class maps are conventionally delineated by human hands based on 
limited observed (or high-quality) data and expert knowledge. It is recognized that area-
class maps contain spatial uncertainty because the classification of unobserved locations is 
not completely certain. Spatial uncertainty associated with an area-class map may be 
quantified by spatial statistical approaches through estimating the occurrence probability 
of a class at each unobserved location. In this study, we use both indicator kriging and the 
recently proposed Markov chain geostatistics (MCG) to simulate spatial distribution of 
multinomial classes and assess spatial uncertainties associated with simulated results. The 
spatial uncertainties are represented by occurrence probability vectors, which are further 
visualized as occurrence probability maps. Results show that given the same observed 
dataset the spatial uncertainty assessed by MCG is apparently lower than that assessed by 
indicator kriging. In simulated realizations, MCG generates apparently higher PCCs 
(percentages of correctly classified locations) than indicator kriging. It is concluded that 
the spatial uncertainty assessed by MCG should be closer to the real spatial uncertainty 
associated with an area-class map.  

 
1. Introduction 
Many spatial variables (e.g., soil distribution, land cover) are classified into multinomial classes 
and delineated as area-class maps. The delineation of area-class maps may be conducted by 
human hands or by quantitative methods based on limited observed (or high-quality) data and 
expert knowledge. While observed data must be honored in map creation, expert knowledge is 
normally incorporated into human mental qualitative models (for hand delineation) or into 
parameter estimation of quantitative (e.g., statistical) prediction methods. It is widely recognized 
that area-class maps created in such ways contain spatial (or locational) uncertainty because the 
classification of unobserved locations is not completely certain, particularly at the locations of 
polygon boundaries (e.g., Goodchild and Dubuc 1987, Goodchild et al. 1992, Lagacherie et al. 
1996, Lark and Bolam 1997, MacEachren 1992, Mark and Csillag 1989, Wilson and Burrough 
1999).  

Although interpolation methods can be used to predict the spatial distribution of variables, 
interpolation, however, does not estimate spatial uncertainty. An interpolated map is not a 
reflection of the reality because of the smoothing effect. Conditional simulation (i.e., stochastic 
imaging) provides an alternative to interpolation in which both original data and the statistics of 
the original data are honored. The word “conditional” refers to the fact that simulated values take 
into account original data and previously simulated data. Thus, conditional simulation produces 
maps in which the general patterns of spatial variation in the original data are recreated, and 
which, consequently, are “possible realities”. The multiple realizations generated by conditional 
simulation embody the inherent uncertainty in the original spatial samples (Curran and Atkinson 
1998). And more interestingly, we may estimate the occurrence probabilities of single classes at 
every location – probability vectors - from a number of simulated realizations as the complete 
estimates of spatial uncertainty.  

Probability vectors were suggested to represent the spatial uncertainty of categorical 
variables (Goodchild et al. 1992, Mark and Csillag 1989) and they can be further visualized as a 
series of probability maps to demonstrate spatial uncertainty of classes at each location of the 
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mapped area (Li et al. 2005, Zhang and Li, 2005). However, the acquirement of accurate 
probability values for representing spatial uncertainty depends on the development of high 
quality stochastic conditional simulation models, and adequate models for assessment of spatial 
uncertainty of area-class maps have been lacking (Goodchild 2003; MacEachren et al. 2005). An 
area-class map is a collection of discrete objects (i.e., polygons). In repeated mappings, positions 
and numbers of objects may vary and positional uncertainties widely depend on boundary clarity. 
Goodchild (2003) suggested six requirements of error (i.e., uncertainty) models for area-class 
maps: (1) the model should address confusion at every point between observed class C' and 
consensus class C; (2) variation between realizations should emulate variation between repeated 
mappings; (3) autocorrelations should be incorporated in outcomes at nearby points; (4) the 
model should emulate effects of map generalization, both thematically and cartographically; (5) 
realizations should be invariant under changes in underlying representation, e.g., raster cell size; 
and (6) in nominal case simulated results should be invariant under reordering of classes. He 
further examined six models ever suggested for error modeling of area-class maps and pointed 
out their pros and cons. We think it may be useful to consider two extra requirements: (1) 
interclass relationships should be respected and (2) the model should deal with classes 
nonlinearly.  

In visualizing spatial uncertainty, MacEachren (1992) suggested three methods: (1) map pairs 
in which a data map is depicted side-by-side with a map of uncertainty about that data; (2) 
sequential presentation in which a user might be warned about uncertainty with an initial map 
which is followed by a map of the data (or interactive tools that allow toggling between the data 
and the uncertainty representations); and (3) bi-variate maps in which both the data of interest 
and the uncertainty estimate are incorporated in the same map. With probability vectors the map-
pair strategy may be expanded into a map-series strategy, which includes a map of the data, a 
map of uncertainty for the data map, and a series of maps of uncertainty for single classes (Li et 
al. 2005, Zhang and Li 2005). Most attempts thus far to graphically depict uncertainty of spatial 
data have used the map-pair (or -series) strategy, partly maybe because this strategy is intuitive 
and easy to present (e.g., Bierkens and Burrough 1993, Zhang and Goodchild 2002).  

Conventional geostatistical methods are widely used to deal with the uncertainty of 
continuous variables. However, methods for simulating and assessing uncertainty of categorical 
variables are relatively rare. As a practical spatial statistical technique for prediction and 
conditional simulation of indicator variables (cutoffs and thresholds of continuous variables, and 
categorical variables), indicator kriging geostatistics is commonly cited as a potential candidate 
for spatial uncertainty assessment of categorical variables (e.g., Goovaerts, 1997) and has been 
used for spatial uncertainty analysis of categorical variables in pioneer studies in the last decade 
(e.g., Bierkens and Burrough 1993, Kyriakidis 2001, Zhang and Goodchild 2002). However, 
conventional indicator kriging geostatistics such as the popularly used sequential indicator 
simulation (SIS) algorithm has limitations such as using linear estimators (Bogaert 2002) and 
only considering spatial auto-correlations. Currently, it still has difficulties to incorporate 
interclass relationships into indicator kriging algorithms. Thus, they use only part of spatial 
heterogeneity information conveyed by data and expert knowledge and deviate from experts’s 
human mental models, which are normally nonlinear and consider interclass relationships and 
ancillary information in delineating an area-class map. The recently-proposed Markov chain 
geostatistics (MCG) is a new emerging spatial statistical approach outside kriging, specifically 
suggested for prediction and conditional simulation of multinomial classes (Li and Zhang 
2005b). Methodologically, MCG is closer to human mind of experienced experts in estimating 
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an unobserved location because of its nonlinearity and incorporation of interclass relationships. 
Thus, this approach may better capture spatial patterns of multinomial classes at their 
approximate locations and generate less spatial uncertainty. 

In this study, we use both indicator kriging geostatistics and MCG to assess spatial 
uncertainties associated with area-class maps through conditional simulations. The spatial 
uncertainties are represented by occurrence probability vectors, which are estimated from 
simulated results and further visualized as occurrence probability maps. We use both simulated 
realizations and occurrence probability maps generated by the two approaches to show the 
spatial uncertainties that may exist in area-class mapping. By comparing results generated by the 
two approaches we show that MCG has some advantages over indicator kriging geostatistics for 
estimating spatial uncertainty of area-class maps. Since we focus on visualizing the spatial 
uncertainty of multinomial classes in area-class mapping, the technical details of MCG and 
indicator kriging will not be introduced in this paper.   

 
2. Area-class Mapping 
In making area-class maps, the traditional method is hand-delineating based on field survey data 
and expert knowledge of surveyors. Most existing area-class maps, such as the United States 
Department of Agriculture Soil Survey Geographic Database, were created in this way. The 
development of modern geostatistics provides the possibility of automatic area-class mapping. 
Below we examine the processes of creating an area-class map using different ways.  

 
2.1. Hand-delineating 
In hand-delineating an area-class map, map creators need to use the following information: (1) 
observed data, which may be observed points or other styles of data, (2) expert knowledge, 
which may be built on domain knowledge and field/lab experience, and (3) if available, ancillary 
information such as topographical data, as illustrated in Figure 1. The observed data (assumed 
correct) must be honored in the mapping process. Based on the observed data, their domain 
knowledge and field experience, and available ancillary information, map creators build their 
expert knowledge about the mapped area and map classes, which may include class number and 
names, approximate proportion of each class, general polygon size of each class (i.e., auto-
correlation), spatial configuration of different classes (interclass relationships), etc. Based on the 
expert knowledge, map creators further build their mental qualitative models for mapping the 
classes. Although no specific spatial measure is used, both autocorrelations and interclass 
relationships (e.g., cross-correlations) are more or less qualitatively included in their mental 
models.  

Autocorrelation can be embodied on polygon sizes of single class points or the boundary 
location between two observed points with different class labels. For example, if map creators 
know that class A usually occurs as small polygons (i.e., weakly auto-correlated), when finding a 
single observed point of class A they may draw a small polygon around the point (Figure 2a); on 
the contrary, if they know class B usually occurs as large polygons (i.e., strongly auto-
correlated), a large polygon will be drawn around a single point of class B (Figure 2b). To decide 
the class label of an unknown location, map creators actually consider all surrounding observed 
data, not just those belonging to the same class. This means interclass relationships are 
considered more or less. For example, assuming there are two neighboring observed points 
belonging to two different classes, if map creators know that they usually occur as neighbors, the 
polygons of the two classes will share a common boundary (Figure 2c); otherwise if map 
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creators know that the two classes can never be neighbors, they will probably draw a strip of 
class C, which is known a neighbor of both class A and class B (Figure 2d). In addition, mental 
models of map creators are normally nonlinear because human brains are very complex and do 
not necessarily consider things linearly.  

In addition, if a minor class is missed in sampling but surveyors or map creators can confirm 
its existence at some places, they also can draw that class on the area-class map. 

 

 
 

Figure 1. Illustrating how an area-class map is 
hand-delineated. 

 

 

Figure 2. Consideration of autocorrelations 
and interclass relationships in area-class 
mapping: a, weak autocorrelation; b, strong 
autocorrelation; c, classes A and B are 
neighbors; d, classes A and B are not 
neighbors, but both are neighbors of class C. 

 
2.2. Indicator Kriging Geostatistics 
Indicator kriging was developed for estimating thresholds of continuous variables such as 
mineral contents. It has been used for interpolation and simulation of categorical variables and in 
recent year for spatial uncertainty analysis (e.g., Kyriakidis 2001). The most popularly used 
simulation algorithm of indicator kriging is the SIS algorithm with ordinary kriging (Note that 
simple kriging is generally inferior to ordinary kriging). In using indicator kriging to interpolate 
or simulate categorical variables, classes were estimated one by one: when class A is estimated, 
data of class A are coded as 1 and other data are coded as 0; and when class B is estimated, data 
of class B are coded as 1 and other data are coded as 0. Thus, only observed data of the same 
class and auto-correlation information of the class are used to estimate the occurrence probability 
of the class at an unobserved location (Figure 3). Auto-correlation was represented by indicator 
auto-variogram models (see Figure 4). In modeling experimental auto-variograms estimated 
from samples, some expert knowledge on auto-correlations such as auto-correlation ranges may 
be incorporated. Because interclass relationships are completely ignored in SIS, data of other 
classes do not contribute to the occurrence of the class to be estimated at an unobserved location. 
Note that theoretically SIS may consider cross-correlations by using cokriging, but in practice it 
is difficult and no literature can be found. Of course, minor classes missed in sampling will never 
be captured in SIS. Therefore, SIS did not use all spatial variation information conveyed by 
samples and expert knowledge. In addition, as an estimator, indicator kriging is still linear (see 
arguments in Bogaert 2002). 
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The ordinary indicator kriging estimator for the occurrence probability of a class Ci at the 
location  is defined as a linear combination of the surrounding indicator data I0x α (Cressie 1993), 
with  
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In Equations (1) and (2), )( αβγ hii  denotes the indicator auto-variogram between data locations 
 and , and αx βx )( 0βγ hii denotes the indicator auto-variogram between data location  and ; βx 0x

iμ  is the Lagrange parameter. Apparently, as an estimator, indicator kriging is still linear. 
It should be noted that while optimal prediction maps based on maximum occurrence 

probabilities generated by SIS can be regarded as area-class maps, realizations generated by SIS 
actually contain only dispersed patterns. To make area-class maps from realizations, one has to 
delineate polygons further on simulated patterns, which causes a new source of spatial 
uncertainty. 

 

 
Figure 3. Illustrating the generation of 
area-class maps using indicator kriging. 

 
 
Figure 4. An indicator auto-variogram (experimental 
data and model).  

 
2.3. Markov Chain Geostatistics 
MCG is proposed for dealing with multinomial classes. Compared with indicator kriging, the 
major advantages of MCG lie in its ability of incorporating interclass relationships and the 
nonlinearity of its estimator (Figure 5). MCG estimates all involved classes simultaneously. In 
estimating a class, it considers surrounding nearest data no matter which class they belong to; 
that is, contribution of data of the same classes to the occurrence probability of the class being 
estimated is taken into account through auto-transiogram models and contribution of data of 
other classes is taken into account through cross-transiogram models (Figure 6). For MCG, the 
modeling of transiograms is far more flexible than the modeling of indicator variograms for 
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indicator kriging (Li 2006a). If experimental transiograms are reliable, experimental 
transiograms (discontinuous points) can be directly interpolated into continuous models for 
simulation (Li and Zhang 2005a). Not only more heterogeneity information conveyed by sample 
data can be incorporated into simulated results through transiograms, expert knowledge in 
interclass relationships and classes missed in sampling also can be incorporated into a 
simulation.  

The MCG estimator for the occurrence probability of a class C at the location x  is defined as 
a non-linear combination of the surrounding data (Li 2006b), with  
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where any denotes a transiogram from state l to state k over the lag h in the ith direction, 
and m is the number of data considered in different cardinal directions. 
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As a nonlinear geostatistics, a special characteristic of MCG is that it directly generates 
polygon features in simulated realizations. This does not mean it generates objects directly and 
ignores inner-polygon spatial uncertainty. In fact, MCG still conducts a simulation pixel by 
pixel. However, because the patterns generated by MCG are normally strongly convergent, they 
appear as polygons. Therefore, in area-class mapping MCG is apparently superior to indicator 
kriging and it is closer to human brains.  

 

 
 

Figure 5. Illustrating the generation of 
area-class maps using Markov chain 
geostatistics. 
 

 

 
Figure 6. An auto-transiogram (a) and a cross-
transiogram (b) (measured data and models). 
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3. Spatial Uncertainty 
Quantification and 
Visualization 
Given a sample dataset, one 
way to quantify spatial 
uncertainty associated with 
unsampled locations is to 
estimate the occurrence 
probability vectors of classes 
at each location from a large 
number of simulated 
realizations generated by a 

stochastic spatial statistical model. Figure 7 shows a reference area-class map and a sample 
dataset (Li and Zhang 2005a). The reference map is delineated based on detailed survey and high 
resolution remote sensing satellite images and we assume it is correct here. The sample dataset is 
extracted from the reference map. We used both SIS with ordinary indicator kriging and a MCG 
algorithm to simulate 100 realizations on the dataset, respectively.  

 
Figure 7. A reference map and a regular sample dataset of 441 
points (0.5% of total pixels) (From Li and Zhang 2005a).  

Occurrence probability vectors were estimated from 100 realizations for each simulation and 
visualized as occurrence probability maps. Based on maximum occurrence probabilities, optimal 
prediction maps (area-class maps) were generated. To show the difference in spatial uncertainty 
assessment between indicator kriging and MCG, we obtained probability difference maps by 
subtracting probability values generated by SIS from those generated by MCG.  

 
3.1. Optimal Prediction Maps and Associated Spatial Uncertainty 
Figure 8 shows optimal prediction maps generated by the two approaches and their 
corresponding maximum occurrence probability maps. Apparently, the two prediction maps look 
quite similar. However, this does not mean that both maps have similar spatial uncertainty. The 
maximum occurrence probability maps corresponding to these two optimal prediction maps are 
obviously different. The maximum occurrence probability map from MCG has clearer and 
narrower white-grey stripes (called transition zones) and darker areas (i.e., polygons) than that 
from SIS has. The average maximum occurrence probability values from MCG and SIS are 
0.883 and 0.749, respectively; the former is 0.134 higher than the latter. It can be concluded, 
therefore, that the optimal prediction map from MCG is generally more credible (i.e, has less 
spatial uncertainty) than that from SIS. 

Figure 9 displays the difference map of the two maximum occurrence probability maps (i.e., 
MCG data – SIS data). It can be seen that within polygons, particularly at the places that are 
close to boundaries (see the dark blue in Fig. 9), MCG generates higher maximum occurrence 
probabilities than SIS does. But on polygon boundaries (i.e., the transition zones), MCG 
generates lower maximum occurrence probabilities than SIS does (see the red in Fig. 9). These 
imply that locations of polygons are more certain in simulated results by MCG than in simulated 
results by SIS, thus MCG is more desirable in area-class mapping. 
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Figure 8. Optimal prediction maps based on 
maximum occurrence probability maps and 
corresponding maximum occurrence 
probability maps, generated by MCG (a, c) and 
SIS (b, d). 

 
 
Figure 9. The difference map of maximum 
occurrence probabilities generated by MCG 
and SIS (i.e., Difference = MCG data – SIS 
data). 

 
3.2. Simulated Realizations 
Optimal prediction maps contain smoothing effect; for example, small classes may be 
underrepresented because of their relative lower occurrence probabilities at most locations; 
hence optimal prediction maps usually do not reflect effectively the complex spatial distributions 
of classes. In applications, particularly for studying error propagation or for getting the spatial 
uncertainty information of response variables, it is necessary to directly use simulated 
realizations as input data or reference data. A single realization represents one possible spatial 
distribution configuration of classes. Different realizations normally share similar spatial 
statistics but are more or less different in details. Therefore, spatial uncertainty may also be 
represented by a number of realizations.  

Figure 10 shows two realizations simulated using MCG and two realizations simulated using 
SIS. Difference in details can be seen from different realizations simulated by the same method. 
Apparently the two different methods generated different styles of realizations. MCG directly 
generates polygon maps, which is close to hand-delineated area-class maps. But SIS generates 
realizations with dispersed patterns, which need further processing to generate polygon maps. 
While it is difficult to say which kind of realization maps is better, important is the accuracy of a 
realization in reflecting the real spatial distribution of classes. Using the reference map as 
verification data, PCC (percentage of correctly classified locations) values were calculated. The 
average PCC value for realizations of MCG is 75.23% and that for realizations of SIS is 68.51%. 
So the former is obviously higher than the latter with an absolute difference of 6.72%, which 
means that MCG can better capture classes at their correct locations. Therefore, it can be 
concluded that MCG is superior to SIS in simulating multinomial classes. 
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In the simulation example, because we have no 
class missed in sampling and also no classes that 
cannot be neighbors, we cannot examine clearly the 
differences of the two approaches in obeying the 
non-neighboring interclass rule and capturing 
missing classes. But from their different working 
principles, it is easy to understand the differences of 
the two approaches in these aspects.    

 
Figure 10. Realizations generated by 
MCG (a, b) and SIS (c, d) 

 
3.3. Spatial Uncertainty of Single Classes 
Maximum occurrence probability maps only show 
the spatial uncertainty or credibility of optimal 
prediction maps. To effectively represent the spatial 
uncertainty of all studied classes at unsampled 
locations, occurrence probability maps of single 
classes are needed..  

Figures 11 and 12 show the occurrence probability maps of six classes, generated by MCG 
and SIS, respectively. These probability maps clearly show where and with how much 
uncertainty (or certainty) a class may occur. It is apparent that the occurrence probability maps of 
single classes generated by SIS are fuzzier than those generated by MCG. This means that given 
the same sample dataset the occurrence of a class at an unobserved location is more certain in 
simulated results by MCG than by SIS.  

Figure 13 shows the difference map between the occurrence probability maps of six single 
classes generated by MCG and those by SIS. It can be seen that the classes generated by MCG 
are always convergent at several places with clear boundaries (see the blue areas in Fig. 13), but 
those generated by SIS are distributed in larger areas with moderate probabilities (including both 
the blue areas and red areas in Fig 13).  

 

 
Figure 11. Occurrence probability maps of six single classes generated by MCG 
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Figure 12. Occurrence probability maps of six single classes generated by SIS 
 

 
Figure 13. The difference map between occurrence probabilities of six classes generated by 
MCG and those by SIS (i.e., Difference = MCG data – SIS data) 

 
4. Conclusions 
The exact spatial uncertainty associated with a hand-delineated area-class map is never known, 
because human brains are generally too complex to quantify, let alone that an area-class map 
may be delineated by a team of experienced surveyors and map makers. However, it is clear that 
human brains seldom think questions linearly and they can incorporate complex knowledge from 
various sources into area-class mapping. Therefore, to exactly quantify the spatial uncertainty 
associated with a hand-delineated area-class map may be impossible. But it is also recognized 
that complex quantitative models may approach to the involved spatial uncertainty. 

To effectively capture the spatial uncertainty of multinomial classes, important is that the 
approach used must be able to incorporate various spatial heterogeneity information conveyed by 
sample data and expert knowledge. Although as a practical technology indicator kriging 
geostatistics has been used to quantify spatial uncertainty of classes, it apparently deviates a lot 
from human minds in delineating area-class maps. MCG as an emerging nonlinear Markov 
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chain-based geostatistical approach is relatively closer to human minds in knowledge 
incorporation into area-class mapping. 

Our simulated results using SIS and MCG demonstrated that MCG generates obviously less 
spatial uncertainty and higher PCC values than SIS does. This proved that interclass relationships 
and nonlinearity do play important roles in prediction, simulation, and spatial uncertainty 
assessment of multinomial classes. Because MCG is more mimic of human minds, we think that 
the spatial uncertainty assessed and visualized using MCG is closer to the real spatial uncertainty 
associated with human-delineated area-class maps. No doubt that human area-class mapping 
processes are very complex and spatial uncertainty arising in mapping is not limited to the spatial 
uncertainty caused by the limited number of samples. How to quantify the uncertainty caused by 
other sources, such as map generalization (e.g., omission of small polygons) and human mapping 
errors (e.g., wrong labeling), is still a challenging issue.    
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