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ABSTRACT: Map Generalization is the process by which coarse scale maps are to be derived 
from fine scale maps, balancing the amount of real-world information with visual confusion. This 
requires the use of operations such as simplification, selection, displacement and amalgamation of 
features that are performed subsequent to scale change. Map schematization can be regarded as a 
specific type of map generalization, focusing more on the readability, the purpose and the user 
context, including the visualisation device, for example the London Tube map. Advanced 
generalization functionality derived from the literature is now being found in commercial GIS 
software, but many research challenges remain. Recently, focusing on the attribute values of the 
geometrical objects, some research has been on thematic maps, such as demographic maps, soil 
maps, land cover and land use maps. For these situations, algorithms need to consider ontology 
associated with the theme and/or statistical clustering methods. What is happening to the 
attributes when performing a geometrical generalization or schematization of a map with 
polygons in which some attributes describe their semantics? Conversely what is happening to the 
geometries when, some kind of generalization based on attribute values and their spatial 
distribution, is performed? For instance, these questions concern sequential approaches, implying 
that one generalization either geometrical or attribute based, will force another generalization on 
the other characteristic. Investigating how to use the two main generalization steps in a more 
integrated approach will be the ultimate goal of this paper. Examples from land cover dataset and 
census dataset are used for this study. 
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Introduction 
Traditionally the domain of cartographers, map generalization or schematization aims to suit the 
purpose of the map and the scale of the required output , Robinson et al. (1995); Ware and Jones 
(1998). When creating a map using traditional manual techniques, a cartographer aims to achieve 
a balance between the amount of real-world information required to make the map useful and 
avoiding confusion for the user. This is a time consuming and expensive process. GIS has led to 
the realization that the efficiency of the cartographer could be increased through the automation 
of some of the more time consuming techniques such as line and polygon simplification, 
Robinson el al (1995), Weibel (1995); Weibel and Jones (1998); Jones and Ware (2005). Current 
GIS software contains tools that allow basic generalization to be performed. Although these 
algorithms go some way to help in the automated production of smaller-scale maps, there is lot of 
work to be done to achieve full scale automation of this. The challenge of replacing an 
experienced cartographer with a computer that can make the same decisions to produce a map is 
significant. Map schematization, Waldorf (1979), Avelar (2002), Anand (2006), can be regarded 
as a specific type of map generalization that is concerned mainly with the simplified 
representation of line data. Considering both geometries and attribute values, Liu et al. (2003), 
Steiniger and Weibel (2005) and Revell (2007) approach generalizing thematic maps for an 
upscaled map delivery. So a general question is: what is happening to the attributes when 
schematizing a map with polygons in which some attributes are describing their semantics? The 
context can be either qualitative, where polygons for example will be associated to land cover 



classes, or be quantitative where polygons have one or more quantitative measurements attached 
to them such as in census data. We propose to examine the situation using three different 
approaches: the first two explore the sequential approaches where one would perform either a 
polygon schematization then an attribute “adaptation” for the new polygon delineations, or an 
attribute clustering and then a polygon schematization on modified/merged polygons. The third 
approach focuses on performing geometric and attributes transformations in a combined way, by 
integrating the two schematization steps in one. This can be done simply  by conflating the 
different approaches or by integrating the two objective functions involved in attribute and 
geometric algorithms. We will use the terms sequential Attribute-Geometric Schematization 
(sAGS) and sequential Geometric-Attribute Schematization (sGAS) for sequential approaches, 
and the term combined Attribute-Geometric Schematization (cAGS) for the fully combined 
approach. On the Attribute Schematization side we are looking for classification and/or clustering 
algorithms helping “simplifying” the attribute description. The term classification implicitly 
means using non-spatial algorithms, while the term clustering may bring some spatial concept 
into the algorithm. On the geometric schematization side we are using optimisation principles, 
widely adopted for example in map generalization and described in Anand (2006), Sester (2005), 
Anand et al. (2007ab) within a schematization context. For the combined situation the idea is to 
integrate the two objective functions in the same algorithm. A general framework is described to 
allow competing optimization at each iteration step. A similar approach is done in Neun (2008) 
using web services and multi-criteria selection and collaboration filtering for orders of 
transformations, Burghardt (2008). The herein approach is nonetheless seen as operating at a 
micro-level or atomic level, therefore proposing a real integration between the two types of 
generalization. 
The paper is illustrated for qualitative and quantitative attributes using real datasets- the very 
same dataset used by Revell (2007) which is an Ordnance Survey land cover map, Data-OS-LC 
(2000), and a census dataset with of the population in the Nottingham area, Data-Census-Nott 
(2001). Within the proposed general framework it is possible to take into account the use of 
ontology associated to a particular attribute, but also multivariate quantitative attribute 
considerations. 

Sequential Approaches 
Classification and/or clustering algorithms helping at “simplifying” the attribute description is 
used for Attribute Generalization. Notice the problem is not a segmentation problem as spatial 
objects have been already discovered and their geometry delineated, but aim at being a 
simplification process the attribute schematization algorithm may use a pixel-based clustering 
algorithm, or at least denying the rigid geometrical structure of the input dataset. The ontological 
description plays also an important role, especially when dealing with qualitative description 
where a hierarchy of classes for example may be part of the simplification classifying algorithm. 
We will show on a theoretical example and on the real datasets, that sequential approaches may 
emphasize the antagonism between the two characteristics. 
The task of map generalization, is usually seen as geometrical, but papers dedicated to map 
generalization,  Buttenfield and McMaster (1989); Muller et al.(1995); Weibel(1995); Weibel and 
Jones (1998) ; Jones and Ware (2005) usually exhibit sets of operators, in order to perform the 
generalization, which indeed may contain some attribute aspects. In summary these operators 
carry out tasks that include the following operators or transformations (Shea and McMaster, 
1989): 

 Simplification: Involves selection of a subset of the original coordinate pairs. The key 
objective of the simplification process is to reduce the amount of information to portray it 
legibly at the chosen reduced scale. Line simplification algorithms are good examples of 
this process. This type of operators appears purely geometrical. 



 Smoothing: Refers to relocating coordinate pairs in order to plane away any small 
perturbations. Various smoothing procedures are applied to reduce the angularity of the 
source lines to fit curves which approximate the caricature of the source line. This type of 
operators appear also purely geometrical. 

 Elimination: The removal of less important features based on given criteria, retaining the 
more important features. This type of operators can contain some attribute criterion, e.g. 
comparing the relative areas and attribute distances to the surroundings. 

 Amalgamation: This process joins distinct features into a larger representative objects. It 
is usually applied to a set of adjacent objects of the same class. For example a group of 
adjacent buildings may be joined as a single building. This type of operators contain an 
attribute constraint, either equality of attribute of ontological proximities of them. 

 Collapse: Refers to the loss of dimension by the feature during the reduction in scale 
process. Examples are changes from area features to line features and point features 
during scale reduction. This operator can be seen as elimination in the attribute space. 

 Typification: This uses a representative pattern of features or symbols and is used in 
cases where there is a complex pattern consisting of individual features that need to be 
processed to retain the essence of the pattern on the smaller scale map. This operator 
seems very much attached to an ontological characteristic influencing the geometrical 
transformation. 

 Exaggeration: Amplifies the shape or size of features to meet the specific requirements of 
a map. This is done when the mapmaker needs to deliberately highlight important 
features like roads on a scale reduced map. The width of the roads is in that case 
exaggerated compared to their real world width to highlight their importance. This 
transformation appears related to a constraint in the spatial attribute space induced by an 
ontological property, i.e. the width of the road. 

 Displacement: Shifts the position of features to gain clarity. 
 On the attribute side, statisticians and geographers have provided ways of dealing with map 
productions, acknowledging some difficulties such as the MAUP issue (Modifiable Areal Unit 
Problem), Marceau et al. (1999). MAUP is related to first the choice of the spatial units at a given 
scale, and in a dependent fashion to the change of scale by aggregating these units. As here we 
suppose the initial representation legitimate, there is merely the second issue which could 
introduce a bias in the interpretation of the produced map. Putting a legend on a map with 
numerical attributes is already an attribute schematization; one usually chooses a number of 
intervals, e.g. equal breaks, percentiles. For qualitative attribute simplification can occur by 
reducing the number of categories to display; one usually uses an ontology associated to it or a 
hierarchical tree dependent on this ontology. Dealing now with spatial occurrences of the legend 
colors may lead to another simplification and/or a reassignment of some “regions” to specific 
classes. It is worth noticing that the geometric transformation by a series of operators is not going 
to change dramatically the units structure, on the other hand attribute clustering, already by 
merging polygons with the same attribute will modify the structure significantly depending on the 
clustering algorithms chosen. Constraints may be willing to be set in order to be conserve as 
much as possible some structures: for example for  census data with administrative units, either 
by geometric schematization or by attribute schematization (and both) one usually wishes to 
preserve the number of administrative units. Before using real datasets it was interesting to 
imagine, according to a set operator respecting the rules given, what could give a sequential 
schematization? This is not an automated procedure but rather an interpretation of what the 
cartographer would do if he/she was performing these operators accordingly to the designed 
sequence. So we drew a simple sketch called the Before map of Figure 1, with polygons and an 
attribute (which could be taken as qualitative or as quantitative). This is theoretical exercise, as 



schematization was done manually, in order to investigate the added value of attribute 
schematization and to guide the choice of algorithms to perform the tasks (sGAS and sAGS). 
Geometric Schematization First 
Examining the sGAS (sequential Geometry schematization followed by an attribute 
schematization) there are, concerning the second step, two different cases to consider, i.e. the 
attribute schematization step. Once the geometric schematization has been done according to the 
series of operators given in the previous section, a simple and rather naïve attribute operation is 
the “follow-up” strategy. Respecting the changed vector structure the attribute associated to a 
particular geometry follows or in other words stays attached to the given geometry. The topology 
of the “database” ensures integrity of the evolving map.  
On Figure 1, this result is illustrated by the sGASnaive map. A second possible approach is 
related to a true attribute “simplification” which could result from a clustering algorithm 
performed on the pixel representation of the geometrically schematized map. The map on the top 
right illustrates the ambiguity the attribute values may encounter, as the result of the geometrical 
schematization which is then adapted with an attribute “clustering”, giving the sGASAdapt map. 
The values of the attribute may change, as for example with the value 1 which now 1+, meaning 
that it should be in between 1 and 2 (either qualitatively or quantitatively). For this very example 
one also may “decide” that the overlap is not enough between 1 and 2, to allow a change of 
values. Notice a change of value for the small polygon with the value 4 (on BeforeMap) which 
became for spatial coherence of the three plots” on the top right corner of the map. This is a kind 
of attribute amalgamation/typification based on closeness of values and spatial position (area and 
distance). Another amalgamation combined with a displacement happened for the small triangle 
at the bottom of the map, while an attribute collapse took place in the top right corner. This last 
operation can be seen as an approach already combining geometric-attribute in geometric 
generalization,as in Tinghua (2003) where additional semantic information were used with 
generalization. 

 

 
Figure 1: Sequential schematisation, geometrical first: hypothetical results with a naïve or adaptable approach for the attribute 

transformation; (top right is the Geometric Schematization superimposed with the Before map (top left) and the 1st step) 

Based on pixel spatial neighborhoods, smoothing of the shapes occurred for the large polygon 
frontiers. To summarize, this sequence makes a geometric simplification preserving details that 
the attribute schematization either conserves or amplifies. In term of changes attribute values, we 



expressed a “semantic” change for example 1+ would mean something between 1 and 2. For a 
quantitative attribute this would mean a real increase in value by averaging according to areas 
concerned by the overlapping of the two values, for a qualitative attribute this could be a new 
created class, e.g. mainly 1 but occasionally 2 or if an existing class from the ontology of the 
classes. For either qualitative or quantitative, one may decide depending on an overlap threshold, 
if a new representing “value” has to be assigned or estimated, or if the dominant class or value 
can be retained. The tasks, described above for geometric schematization, can surprisingly be 
valuable  for attribute schematization. It may be not that surprising if you consider the fact that an 
attribute will be “normally” attached to the geometry (polygon, line or point) in the map, unless 
we come back to the duality of model representation: vector or raster. Nevertheless in both 
model, these geometric tasks operators can be translated in relation to attribute values (range, 
distribution, thresholds, and series of intervals) but also to the contiguous areas and gradients. 
Attribute Schematization First 
The naïve and adaptable approaches can also be adopted for the sAGS sequence (sequential 
Attribute clustering followed by a geometric “schematisation”). The operations done for the 
attribute step in the second step of sGASAdapt can be “stronger” in term of spatial coherence as 
we do not try to preserve any geometric aspects, top right corner of Figure 2. Notice that the 
“groupings” due to clustering forces some potentially geometrical schematization as well in the 
sense of geometric smoothing and orientation (border effect). The naïve approach makes the 
geometry follows this forcing, the new delineation of categories (quantitative or qualitative) as a 
vectorization algorithm would do. Here, a vector based clustering algorithm or a high resolution 
pixel based algorithm may provide a less angular (not the case here) delineation, making then a 
fundamental difference between sAGS and the sGAS of the previous paragraph. On the 
sAGSAdapt second step, the little “triangle” (North-East) was eliminated due to surroundings of 
bigger areas polygons of different type (no extra typification). To summarize the sAGS sequence 
makes the attribute schematization smooth and simplify surfaces which are more likely line 
generalized at the second step. This is probably due to traditional statistical approach to perform 
an attribute schematization via attribute clustering is to consider the spatial content as pixels with 
values (univariate or multivariate). This is quite frequent on raster image data but also on vector 
data seen as a raster dataset. With this approach the clustering method will provide new classified 
values for each pixel which then will give rise to a zonation via a polygon representation of the 
raster. 

 

  



Figure 2: Sequential schematisation, attribute first: hypothetical results with a naïve (bottom left) or adaptable (bottom right) 
approach for the geometrical transformation; (top right is the Attribute clustering superimposed with the Before map (top left) 

As a matter of fact the sGAS and sAGS sequences should not necessarily stop in two steps as after 
the second step of naïve or adaptable geometrical or attribute schematization there must be at 
least a naïve “follow the change” for the other characteristic. Also nothing stops us  carrying on 
the sequence to improve schematization at a higher level. 

Combining Optimization 
The previous experiment convinced us to find common ground for combining the tasks, described 
in the first place as geometrical, but revealing themselves as attributical as well. Spatiality is in 
the attributes as well as semantic is in spatial pattern. This may be not that surprising if you 
consider that an attribute will be usually attached to a geometrical object (polygon, line) in the 
map, unless we come back to the duality of representations: vector or raster. It becomes 
interesting to investigate possible combinations of the two generalization issues. 
Conflating Results 
A consensus or an assimilation of the two schematised map can be a first solution. How do we 
conflate these two maps with schematization rules in mind? Carrying on the theoretical 
experiment we obtained in Figure 3. Conflation doesn’t ensure, as it happens here, a schematized 
final map result: just compare to the original (Figure 1 or 2). Conflation principle means also you 
would have more information in the conflated than in “the sum of the two”, somehow. The 
conflation of the end-results of the sequential approach can be also considered but would not 
necessarily reach a simplification level either. Though at first sight, it would be better than 
conflating just 1st steps of the two sequential approaches. The other combined way is doing a 
simultaneous optimization on geometry and attribute values. 
 

 

  
Figure 3: Combined schematization by (hypothetical) conflating (bottom right) of geometric schematization (top left) and the attribute 

clustering (top right) 
 
Integrated Approach 
A much more integrated approach consists of combining the two objective functions or heuristics 
associated to the two different characteristics of a map, i.e. attribute characteristic and geometric 



characteristic. For a chosen characteristic, we suppose that, a particular map M will provide an 
associated characteristic description c. Both the map instance and the specific characteristic 
description are the key elements to select a transformation operator to be applied: T belonging to 
a family of appropriate operators for the intrinsic properties of the characteristic, and the 
associated family type of maps, e.g. networks, land covers and economic map. T will operate by 
transforming the map instance and by setting up a possible new characteristic description. 

 
At each step of the generalization optimization, the best transformation  also depends on the 
available objective functions: 

 
This can be seen as a sequential approach but, at an atomic level, within a competing algorithm in 
where the objective functions have to be normalized. Instead of doing an ad-hoc normalization, 
we used a functional able to cope with both: the entropy information framework has shown some 
success in the context of map generalization, Bjorke (1996): 

 
where here pk are proportions of equivalent classes in the mathematical sense, identifying 
categories semantically for the given characteristic description. For the attribute characteristic this 
can be defined by the grouping used for the legend, which for example would be the set of 
modalities for a qualitative attribute. For the geometric characteristic, classes of segments for 
example are defined by groups of angles values. Minimizing the entropy will therefore diminish 
the heterogeneity of the map. Because of different numbers of classes for different characteristics 
a simple normalization in comparison to uniform distribution is still necessary. This means 
simply dividing the entropy by log(nci) .  In terms of spatial heterogeneity, spatial co-occurrences 
of the categories represented can be used instead of occurrences as in the standard entropy. These 
spatial co-occurrences defined for a given distance give rise to a definition of spatial entropy, 
Leibovici et al. (2008a 2008b).  

Optimization Framework for the Integrated Approach 
Implementing the Integrated Approach can be done within a general optimisation framework. 
This framework generalises in some sense the optimisation schema developed by Swan et al. 
(2008) and its web service version as in Foerster et al. (2008). This framework allows considering 
various optimisation strategies such as genetic algorithm, tabu search, and even the classical hill 
climbing, as can be seen on Figure 4. In brief the framework considers an optimisation procedure 
as depending on three components: the states, a neighbourhood of a state and a heuristic function 
evaluating a state.  
Here a state is defined by the couple (c,M) where M is a map and c is the characteristics 
considered. Here c is a list of length 2: the attribute and the geometric characteristics; each of 
these characteristics is also a set of the different classes associated. So c is a couple of  vectors of 
characteristics. The neighbourhood of a state is created by applying the available operators 
associated to the characteristics. The heuristic function is our objective function described above. 
To illustrate this framework we used in the first place some simple operators and characteristics 
associated to the attribute or geometrical properties targeted in the generalization/schematisation. 



 
Figure 4: UML description of the optimization framework  

 
The list of operators specific to each characteristic could be expanded with further development 
as discussed in the last section. One can notice that in equation (1), without regards to the 
characteristics used, the operator T operates in a separable manner: 

 
Each time T operates conditionally on the current state of either c or M. The first operation is 
changing the structure and the second is changing the instance. 
 
Simple Attribute Operators 
Many different operators for the attribute transformations can be derived from classification 
clustering methods used in statistics and spatial statistics. Lots of these methods can work either 
in vector representation or in raster representation, though the latter is more often adopted 
especially for spatial clustering. For this first implementation we chose to stay in a vector 
representation system and use simple k-means ideas and hierarchical ascendant clustering based 
on Euclidian distances. 
The k-means attribute operator, Oattkm can be summarised as follows. At the current state, a map 
is described from the attribute characteristic with all the classes represented by the available 
different attribute vectors. The distances of all the distinct objects can be computed using these 
vectors. k objects, called centres in attribute space, randomly chosen or selected from previous 
Oattkm transformation, initiate the transformation. Then iterations between assignment and update 
of the centres take place: (i) The centres determine the assignments of all the others according to 
the minimum attribute distance. (ii) The attribute vectors of the k centres are updated as for 



example by the mean of all the assigned attribute vectors. The iterations stop when the 
assignments do not change anything. Then as this optimisation stops, the attribute vectors of each 
object take the values of the centre it belongs to. It is also possible to diminish k by 1 every time 
it is used. The hierarchical ascendant attribute operator, Oatthier can be summarised as follows. At 
the current state, a map is described from the attribute characteristic with the classes represented 
by all the available different attribute vectors. The metric distances (or any chosen ultrametric) 
between these objects in the attribute space are computed and the closest pair is aggregated. Like 
for the Oattkm the aggregating function can be the mean of these 2 vectors. One can also keep the 
pair vectors and use a membership variable to indicate the aggregated status. This is convenient 
when using the minimum linkage criterion, i.e. the minimum distance, as the clustering 
ultrametric.  
These operators can be used as such, but in order to introduce more interactions between the 
attribute and the geometrical characteristics, one can take into account some spatial properties of 
the objects within the operators and particularly for the aggregating function: weighting the 
objects by their areas when computing the mean, or using the inverse of the areas as weights 
when computing attribute distances for the clustering function. At the moment, as we do not use 
any spatial clustering based for example on pixels the geometrical properties of the objects are 
not modified when using a attribute operator Oatt. As we implemented amalgamation in the 
geometrical attribute, it is not needed as an Oatt. 
Simple Geometrical Operators 
Line simplification and amalgamation are the two basics operators we have chosen to implement. 
The amalgamation operator Ogenama will simply work on a constraint that the attribute of two 
adjacent objects (minimum distance chosen) have the same attribute vectors (minimum distance 
in attribute space chosen) and will merge the two objects by the envelope of their geometries. The 
line simplification algorithm Ogen line will remove one point for the geometry of an object 
(being represented by a polygon or a line) using the well known Douglas-Peucker algorithm. The 
classes’ characteristic description will be given by the number of points in geometries. Here when 
modifying the geometry of an object by Ogenline one could consider a change of attribute for this 
geometry: either no change which corresponds to the naive approach in the previous section, or a 
weighted transformation in order to conserve the volumes (attribute values are multiplied by the 
ratio from old to new area). For these two sets of operators, Oatt and Ogen, some particularities 
occur for qualitative attributes. Distances and aggregations depend on the ontological structure or 
graph. If the ontological structure is not use for aggregation, rules such as majority linked to 
spatial coverage can be used. 
Discussion about First implementation Results 
Java programming using GeoTools has been used to implement the framework. Different 
parameters for the sets of operators and the way they operate can be chosen beforehand. The 
overall idea of the optimisation is to allow operators to be selected in a competing way. The 
tuning of the parameters has to be done for fair competing optimisation. For nearly each operator 
it is possible to investigate and use a version of it that  is as atomic as possible or allowing a 
series of atomic transformation. For example the Ogenline can be operating one polygon 
transformation or a given number, proportion of the objects (or classes) or until we get (k-1) 
classes in term of the geometric characteristic. Oatthier can be chosen to perform one attribute 
aggregation, equivalent here to (k-1) classes, or a given number, proportion of the objects (or 
classes). The behaviour of these two operators in terms of number of classes is very different. 
Oatthier will, after one iteration, reduce the number of classes by one, whilst Ogenline will be 
unlikely to do so, but will have fewer classes in practice. In fact the Oattkm transformation may be 
favoured too much, if allowed to reduce too drastically the number of classes, and, reducing just 
by one is equivalent to applying Oatthier. The former problem is somehow reduced by the 
normalisation of the entropy relatively to uniformity. 



For a simple implementation keeping the various operators, we allowed Oattkm to do a (k-2) 
clustering and kept the other operators as defined earlier. Do the operators of one characteristic 
need to imply or use a transformation/regulation on the other characteristics? When using Oatt, 
changes of the attribute values may take into account weighting of the areas used. In the same 
manner Ogen by suppressing one vertex of a polygon may change the attributes of the polygon 
(and the outside polygon) when focusing on conserving volumes on each particular attribute: area 
times attribute, or when focusing on conserving densities. These conditions appear to be sensible, 
in that attribute space maps are not just displays of numbers, the spatial context or extent is 
obviously meaningful for the attribute statistics; in the geometric space the relative comparison 
from geometry to geometry about their attribute should be conserved when modifying one 
geometry. 
On an example small dataset, we were very pleased to see the series of operators used in the log 
history for the optimisation, coming sometimes from the attribute characteristic, and sometimes 
from the geometry characteristic. Unfortunately due to some issues with java within the GeoTools 
library used for the implementation, we are  so far unable to produce a visualisation of the results. 
This happens for a complex object (a multiset of polygons) which is at the moment not 
interoperable with geoserver. The inconsistency of the identification of java objects made also the 
algorithm unreliable to date.  

Conclusions 
This paper described a general approach on using both attribute values and geometric properties 
to perform a schematization of a map. On a simple example we investigated the possible 
outcomes of chaining in sequencing classical algorithms for geometric schematization and 
clustering. A general framework to embed both schematization issues in order to perform a 
combined, simultaneous schematisation is also proposed. For a first implementation of this 
framework we concentrated only on quantitative attribute datasets, but we believe this framework 
sufficiently general to be able to adapt to datasets from different domains, but these may require 
specific constraints.  
Constraints play an important role in schematization; they are related to the domain, the purpose 
and the desired level of schematization to provide. For example, in a map representing the land 
cover background of the Tour de France circuit, one would be interested more in the mountain 
differentiations rather than the forest and fields. The framework presented here with entropy 
based objective functions, can accommodate constraints by incorporating rules on some 
characteristic classes in terms of their list of allowed transformations. When using an entropy 
measure, the lack of spatiality has been notified by few authors, Li and Claramunt (2006). The 
last authors proposed with success to modify the entropy using spatial weights onto class k. The 
weights were linked to spatial coherence of the classes events using intra and inter-distances. We 
investigated here the direct use of co-occurrences of the events to describe the distributional 
property of the characteristic description classes, as in Leibovici et al. (2008ab). 
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