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ABSTRACT: We describe an extraction method for area features, which are defined by 
composite cartographic elements and derived from historical manually produced maps of low 
graphical quality. Composite elements appear in many existing topographic maps of the 19th and 
20th century, which provide unique information about the landscape in the past. To advance recent 
research efforts we further developed a method for extracting forest area in the Siegfried Map, 
which is represented by a set of circle-like forest symbols and boundary regions for closed forest. 
First, a prototype search identifies forest symbols that can be characterized by “idealized” 
combined properties using geometric attributes of connected components, morphological 
properties of the local image plane and the degree of spatial association between similar objects. 
Next, the complete set of forest symbols is iteratively determined. Forest symbol candidates in the 
vicinity of prototypes are labeled as prototypes if they reach conditions of spatial association. 
Finally, spatial expansion determines the forest net area, which is described by the set of 
recognized forest symbols, and continues to fill gaps between forest net area and boundaries as 
well as larger objects within forest area. 
The automated extraction from three map pages resulted in accuracies of 95% (Kappa) and 
indicates a high robustness for automated processing of the whole map series. The developed 
approach represents a methodological framework for the extraction of areas, which are described 
by composite map elements, within similar cartographic documents. 
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Introduction 
Pattern recognition in cartographic documents aims at the delineation and extraction of spatial 
information and its incorporation into GIS as raster or vector data (Chen et al., 1999). To 
establish methods for recognition in maps is particularly challenging because of the complexity of 
map contents (Cordella and Vento, 2000; Watanabe, 2000) as well as the presence of single and 
composite map elements (Llados et al., 2002). These composite elements consist of sets of low-
level symbols whose spatial distribution and pattern can define higher-level spatial objects such 
as paths (Gamba and Mecocci, 1999), line-work (Yamada et al., 1993; Zhong, 2002), or forest 
areas (Leyk et al., 2006). The recognition of such complex objects is particularly problematic in 
maps of low quality such as historical maps, which are often hand-drawn documents with vague 
information about the underlying concepts for map production. Such historical maps are valuable 
sources for land cover change analysis and represent the most reliable data source of historical 
land cover before aerial photography could be used for interpretation. A large number of 
historical map series exists (Figure 1), which indicates the high demand for such extraction 
methods. 

Forest area in the Siegfried Map, the Swiss national topographic map of the 19th century, 
is one typical example of composite spatial information. The representation of forest 
consists of distributed individual circular symbols bounded by line objects or unbounded, 



for closed or open forests, respectively. Line objects, which represent the boundary of 
forest areas, are frequently fragmented, merged with other objects or missing due to the 
manual drawing process. This results in an inherent inconsistence and requires the 
description of such objects by combining geometric, morphological and structural map 
attributes. The Siegfried Map also represents an example of low graphical quality due to 
ageing, blurring, false coloring and mixed coloring. Recent research efforts resulted in a 
first prototype for multi-step forest extraction (Leyk et al., 2006). This prototype aimed at 
the recognition of all relevant map objects such as text, bedrock, line-work or buildings. 
The drawback of this approach was its complexity and thus its lacking robustness if map 
properties such as font size of map text changed drastically. Nevertheless this recognition 
prototype was successful in that it provided the fundamental principles to successfully 
extract forest as an area object and indicated limitations where improvement was needed. 
This paper describes follow-up research to these earlier efforts aiming at a simpler but 
more robust forest extraction process, which does not require the recognition of objects of 
any other map category. The extraction process is based on the combination of different 
information domains such as geometric and morphological attributes of objects 
(connected components), analysis of spatial association of similar objects and 
morphological characteristics within the local image plane. The described sequence of 
methodological steps can be transferred to similar recognition problems where composite 
map elements have to be extracted. In this paper the approach is demonstrated to work for 
maps of low graphical quality. Thus it would allow the extraction of spatial composite 
information from other historical maps of similar time periods (Figure 1). 
 

   
(a)         (b) 

   
(c)         (d) 

Figure 1: Subsections of historical topographic map series with composite elements describing forest area: (a) Military Geographical 
Institute, Poland 1930, 1:25 000; (b) Royal Prussian Surveying Unit, Map of Western Russia, 1915, 1:100 000; (c) Imperial and 

Royal Military Geographical Institute, Austria, Map of the Austrian-Hungarian Monarchy and foreign map pages, Russia, 1878, 1:75 
000, (d) Federal Topographic Bureau, Swiss Topographic Map (Siegfried Map) 1912, 1:25 000. 

 

Data and Material 
The Siegfried Map is the national topographic map series of Switzerland of the 19th century and 
was published in the scales of 1:25,000 in the Swiss Midlands and 1:50,000 in the mountainous 
areas. Forest belongs to the black color layer. The graphical representation of the black layer is 
characterized by merged objects of different categories, inconsistent shapes and varying 



dimensions of map symbols, which are consequences of manual production techniques 
(engraving). In addition to these problems the scanned maps suffer from ageing effects, blurring, 
false and mixed coloring and thus result in low image quality (Figure 1d). The map data in this 
paper are preprocessed to carry out color image segmentation using a method that is described in 
Leyk and Boesch (in press). The result of this segmentation process is an image that contains the 
reconstructed black, red and blue map color layers (Figure 3a). 
 

Methods 
The method is based upon morphological attributes, which are derived from connected 
components and from the local image plane, as well as upon the spatial association of similar 
objects. 

The different stages of this extraction process are: 
- Low-level recognition of prototypes (individual forest symbols) 
- Defining the composition of symbols and their spatial extent  
- Identification of boundary and embedded objects 

Low-level recognition of prototypes  
In a first step forest symbol prototypes are identified based on geometric and morphological 
properties of connected components, a prototype test in the local image plane (“Octopus” test), a 
test for spatial containment, as well as a test for spatial association among similar objects in the 
local environment of the symbol of consideration. 
 
Region-based candidate search 
Connected components of the black layer in the color-segmented image (Figure 3a) are processed 
to derive geometric and morphological attributes of the resulting regions. We used attributes such 
as area, number of holes, perimeter, dimensions in horizontal and vertical direction, and 
circularity. This attribute space is used to define and label an initial set of “first-level” candidates 
(Figure 3c) that meet the general geometric constraints of forest symbols. We used broad ranges 
of admitted attribute values to ensure that all individual symbols are included regardless of their 
fragmentation and distortion, which are consequences of manual production, scanning and color 
segmentation. 

A subset of these first-level candidates is defined by a filtering step in attribute space to 
identify objects, which reach conditions of “idealized” forest symbols. These candidates 
are labeled as “direct prototype candidates” (Figure 3c). They meet much stricter 
constraints of geometric and morphologic properties, which indicate a high similarity to a 
non-distorted and non-fragmented forest symbol. 
 
Morphological test in the image plane 
Due to the often distorted and fragmented forest symbols their original shape is not a reliable 
feature for recognition. For this reason it was necessary to develop a specific morphological test 
for circle-like local environments, which is independent from connected components (Figure 3b). 
This “Octopus” test has a distant similarity to concepts found in the generalized Hough-
transformation (Ballard, 1981). Instead of using a functional model, a geometric model is 
combined with a spectral model to describe a single forest symbol. A forest symbol is 
characterized by a court of bright pixels in the center from which a raising and falling edge 
transition can be observed in eight search directions according to eight limbs of an octopus 



(Figure 2). In contrast to common edge models in computer vision, which depend on second 
order differentiation, we use a weaker edge definition. Starting from the center, a valid edge is 
identified if a transition from bright to dark is followed by a transition from dark to bright 
(direction E in Figure 2). Intermediate dark pixels between raising and falling edge transitions are 
valid (direction W). A center is considered bright if there is a majority of bright pixels (here 8 of 
9 pixels within the central 3x3 box). Direction SE represents a valid edge transition; directions S 
and SW are invalid because there is no transition to dark. Dark and bright are based on value 
ranges in lightness and hue. Due to the coarse resolution and the small size of forest symbols 
(typical box size is between 11x11 and 15x15 pixels) a finer differentiation of angles for search 
directions is not meaningful and would result in highly increased computational burden. 

In imitation of the Hough space, the accumulator space of the Octopus is defined by the 
edge test in eight directions. If a sufficient number of edge evaluations are valid (6 in 
Figure 2), the shape in the local image plane is recognized as a circular symbol that meets 
the morphological conditions of forest symbols and the central pixel is labeled, 
accordingly.  

 
Figure 2: Illustration of the Octopus test to examine for edges in eight different directions. 

 
Containment test and spatial association of prototypes 
Next the pixels that are labeled as Octopus are tested for containment within the boundaries of 
one of the direct prototype candidates. If the containment condition is true, the candidate is 
further examined; if not, the candidate is degraded to a first-level candidate. 

The local neighborhood of the prototype candidate is examined for the presence of a 
minimum number of other candidates (first-level or prototypes). If this condition is 
reached the candidate is labeled as a prototype (Figure 3c). We examined for the presence 
of at least three other candidates within a 50x50 pixel window. 
This three-step test strategy, which combines attributes at the object level, shape 
descriptors of the local image plane as well as the degree of spatial association, aims at 
highest certainty that only well-shaped forest symbols of certain dimensions are 
identified as prototypes. 

Defining the composition and spatial extent of forest symbols 
The derived primary set of prototypes represents the starting point to examine each first-level 
candidate whether it belongs to the spatial set of forest symbols or not. This represents an 
iterative process that includes a test for spatial association of the candidates in the vicinity of 
prototypes with similar objects. Once the complete set of spatially “associated” forest symbols is 



identified the spatial extent, which these symbols describe, is determined to derive the forest net 
area.  
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Figure 3: Prototype search and symbol composites: (a) Color-segmented image; (b) Labels of approved Octopus tests (blue); (c) 
Types of candidates after the prototype search (prototypes: red, second-level candidates: blue, remaining first-level candidates: 

green); (d) Composition of forest symbols after iterative analysis for spatial association (red) and large objects (yellow). 
 

Iterative analysis of symbol composites 
First-level candidates in the vicinity of the primary prototypes are labeled as “second-level” 
candidates (Figure 3c). These second-level candidates are then examined whether they are in 
spatial association with a minimum number of similar objects or not (first-level, second-level or 
prototype). If this condition is reached the second-level candidate is labeled as a prototype 
(Figure 3c); if not the candidate is eliminated from the set of potential candidates. First-level 
candidates that are found in the search box are labeled as second-level candidates to initiate the 
next iteration. This procedure is repeated until no new second-level candidate is labeled and 
provides the complete set of forest symbols (Figure 3d). 
 
Spatial expansion 
The spatial extent of forest net area is determined by expanding contiguous forest color between 
individual pixels of the identified forest symbols (set of prototypes), which are less distant from 



each other than a predefined distance lnetfor (lnetfor=18 pixels) (Figure 4a). Expansion takes place 
along search paths of length lnetfor in each of the eight neighbor directions dnetfor. All examined 
locations along the search path between the starting pixel and the most distant forest pixel found 
are labeled as forest.  
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Figure 4: Stages of spatial expansion: (a) based on the set of forest symbols; (b) including nearby Octopus labels (study area 
clipped using buffered forest area); (c) Expansion after filling gaps between forest and large objects in the vicinity; (d) Filling of 

embedded large objects of low local dimension. 

There is only one constraint included with regard to large objects. Large objects are 
connected components with an area greater than 100 pixels and include, e.g. road 
segments or boundary regions. If a pixel of a large object is encountered, the search path 
is examined in full length. If a forest pixel is found after encountering the large object, 
expansion takes place but is restricted to the pixels between the starting and the 
encountered large-object pixel. If no forest can be found nothing is done. This constraint 
ensures that large objects within forest such as roads are completely embedded but not 
crossed and that forest is not expanded uncontrolled. Spatial expansion continues, 
iteratively, until no new location is labeled as forest. The result is the spatially expanded 
forest net area, which is described by the set of associated forest symbols (Figure 4a). 



In a next step the remaining Octopus labels, which are located in the vicinity of the net 
forest margin, are included in the expansion process (Figure 4b). Thus forest symbols, 
which do not reach the geometrical requirements needed because they are merged with 
forest boundary fragments, bedrock, text or remaining color layer segments, can still be 
used for expansion. If the Euclidean distance between an Octopus label and the closest 
forest pixel is less than a given threshold (10 pixels) the Octopus label is converted to 
forest color and included in the iterative expansion process. This step further expands 
forest net area towards large objects without closing the gaps (Figure 4b). 

Boundary identification and filling embedded objects 
The derived forest net area is buffered using the observed mean distance between the boundary 
and the closest non-merged forest symbols, multiplied by two. The whole image is clipped using 
this buffered area to constrain the boundary search to this region (Figure 4b). This intermediate 
step increases efficiency and prevents incremental extraction errors. 

If a forest pixel has a background pixel in its direct neighborhood in direction dbound, 
search paths of length lbound (lbound=8) are defined in the same direction. If a large object is 
encountered the pixels between the starting pixel and the first large-object pixel along 
this path are labeled as forest. There is no requirement to identify a forest pixel after 
encountering a large-object pixel. This process is repeated until there is no new forest 
pixel labeled (Figure 4c). 
The final step aims at filling line-like large objects that are embedded in forest area using 
search paths similar to the boundary identification. If a forest pixel has a large-object 
pixel in the direct neighborhood, search paths are defined in this direction. If another 
forest pixel is found within a very short distance (3 pixels) the local dimension of the 
large object encountered is considered very low. Consequently, the pixels along this 
search path are labeled as forest (Figure 4d). 
 

Results and Discussion 
We compared the forest extraction with a visual inspection (manual digitization) done by an 
experienced cartographic interpreter to evaluate the performance of the method. The underlying 
presumption is that the human being is the most reliable interpreter of cartographic information 
due to his/her ability to visually explore spatial and topological relationships, even if the 
graphical representation lacks in completeness, quality or precision.  

Accuracy assessment: We tested three complete map pages with 7000 × 4800 pixels each 
to obtain some first estimations of the robustness of the extraction approach, which was 
developed on a different set of map pages. A simple confusion matrix was established 
and different class-specific and global accuracy measures could be derived. Sensitivity 
and specificity (Fielding and Bell, 1997) are the conditional probabilities that forest or 
non-forest, respectively, is correctly classified. Positive predictive power (PPP) and 
negative predictive power (PNP) (Fielding and Bell, 1997) indicate the probabilities that 
a pixel is forest or non-forest if the extraction classifies it as forest or non-forest, 
respectively. To estimate the overall classification accuracy some global measures were 
calculated, i.e., percent correctly classified (PCC) or accuracy (ACC) (Michie et al., 
1994), Kappa coefficient of agreement (K) (Cohen, 1960) and normalized mutual 
information criterion (NMI) (Forbes, 1995). K and NMI represent more conservative 
measures than simple accuracy estimates, which make full use of the information 
contained in the confusion matrix. 



 
Table 1: Extraction results as validated for three whole map pages of 4800x7000 pixels each. 

 
Confusion matrix derived 

measures 
Map page 

042 
Map page 

043 
Map page 211 Total 

Sensitivity 0.97 0.98 0.97 0.98 

Specificity 0.98 0.98 0.97 0.98 

Positive predictive power PPP 0.95 0.96 0.93 0.95 

Negative predictive power PNP 0.99 0.99 0.99 0.99 

PCC/ACC 0.98 0.98 0.97 0.98 

Kappa 0.95 0.96 0.93 0.95 

NMI 0.85 0.86 0.79 0.83 

Performance: The presented results (Table 1) demonstrate a very high global accuracy of 
95% in average (Kappa). The parameters defined proved to be valid for each map page 
tested. Thus the extraction process runs very robust with a certain independence from the 
color segmentation process except in some situations, which are described below. 
Sensitivity (0.98) and specificity (0.98) indicate high conditional probabilities that forest 
and non-forest, respectively, are correctly classified. PPP shows the smallest class-
specific probability measure in Table 1 (PPP=0.95). This can be partly explained by a 
trend of the extraction process to “over-detect” forest. Existing small groups or chains of 
forest symbols are very likely to be detected and will be extracted as forest area (Figure 
5, 6). In some instances the interpreter did not delineate these symbol groups as forest 
because of their small size or elongated shape (Figure 6). This effect results in a slight 
decrease in PPP. A subsequent filtering step to eliminate forest patches with areas below 
a threshold value would further improve the accuracy.  

 
               (a)                   (b) 

Figure 5: Forest/non-forest classifications of map page 042 (1913) (a) automatically extracted and (b) visually inspected. 

 



Observed minor problems: Some problems occurred where map text crossed forest 
boundary regions. The expansion of forest area would often not allow to bridge objects of 
this size resulting in some underestimations (decreasing PNP). In other cases text objects 
could result in some overestimations (decreasing PPP) if they are located outside the 
forest boundary but falsely identified as boundary objects (Figure 6). 
If elongated color layer fragments of e.g., elevation contours remained in the image they 
are completely embedded in forest area by the expansion process. Only if such an object 
is located in the direct vicinity of the forest boundary, it is treated as a boundary object in 
some instances and can result in decreasing PNP and sensitivity. 
Another problem observed is the false recognition of forest area where backyard 
signature that surrounds buildings shows geometric properties similar to forest symbols. 
This problem could be reduced by combining the extraction with a topological analysis of 
building symbols. Similarly, riverbanks, which have a punctuated signature but 
occasionally show geometric properties similar to forest, are misclassified as forest. 
These two problems result in decreasing PPP and specificity. 
There are some examples where broken and fragmented forest boundary objects allow for 
the expansion of forest area over the boundary especially if other forest symbols outside 
but in close vicinity to the boundary are found (Figure 6). These “overshoots” represent a 
minor problem due to a strict expansion control but contribute to decreasing PPP and 
specificity. 

   
(a)                    (b)                    (c) 

Figure 6: Detail of the extraction: (a) Color-segmented image; (b) Automated extraction (green, superimposed over the map); (c) 
Visual inspection (green, superimposed over the map). 

The most important drawback is the missing ability to differentiate between bedrock and 
text, which require semantically different actions during extraction (expansion vs. 
clipping). Since these objects strongly vary in shape and size and are frequently merged 
with other objects a reliable differentiation based on geometry or morphology is nearly 
impossible. Even text recognition of isolated labels is very demanding, because text is 
often curved or rotated and has varying character spacing within the same label word. A 
feasible solution to this problem would be to label these conflicting locations, treat them 
as described in this paper, and include an interactive component at the end of the 
automatic extraction process. The analyst would return to these locations and correct the 
result if the large object encountered represents bedrock. This interaction is at the cost of 
full automation but will ensure a minimum recognition error – especially in mountainous 
regions where bedrock can have considerable spatial extents. As can be seen in Figure 5 
there are small holes in the extracted forest area. These are examples where text elements 
create a bright court similar to bedrock and thus require a revisiting to verify the category 
of the encountered object. 
 



Conclusions 
The presented methodological framework describes the procedure for robust automated extraction 
of areas, which are defined by composite cartographic elements in mainly hand-drawn historical 
map documents. The strength of this approach is that extraction proceeds very class-oriented 
without trying to recognize other map categories – one mentioned problem in recent research 
efforts to develop a recognition prototype for the investigated map (Leyk et al., 2006). The 
conservative strategy of testing for combined salient attributes before adding an object to the set 
of forest symbols and conducting constrained expansion allowed to minimize extraction errors. 
Thus the extraction performed equally well in maps where color image segmentation showed 
some problems or fragmentation of the forest boundary regions was observed. 

In general the presented results, their reproducibility and the automation level reached 
give reason to continue such extraction efforts for the Siegfried Map but also for 
comparable maps from similar time periods. Whereas such historcial documents impose 
significant problems of inherent uncertainty (Leyk and Zimmermann, 2007) retrospective 
landscape research for land cover change, urban development or conservation will greatly 
benefit from gaining access to such unique historical information for large areas. Thus the 
authors hope to see an increasing number of research efforts to make these historcial 
documents available for GIS-based analysis.  
With regard to the presented method, an improved analysis for spatial association 
between similar objects will be tested. This test will take into account the directions in 
which similar objects are found. Thus additional constraints can be formulated for forest 
symbols that are located inside a forest patch as opposed to those located at the margin of 
forest patches. These methodological extensions will be linked to the problem of 
composite elements that cause the described overestimations of forest area in urban 
environments. Further steps will be taken to focus on the problem of differentiating 
between bedrock and text elements inside forest areas as mentioned above. While this 
paper focused on forest extraction we will also examine the extraction of other composite 
elements such as wetlands or vineyards. 
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