The sensitivity of pattern analysis due to cartographic scale and map complexity

Introduction

The results of pattern analysis techniques such as Moran'’s I, LISA and other

of spatial au ion is known to vary at different geographic scales

(McGarigal et al. 2002). When scale is defined by geographic extent, varying scale
can mean that pattern results vary from negative spatial autocorrelation, no spatial
autocorrelation, to positive. Other pattern indices, such as measures of composition
or complexity, also vary when scale changes. Attribute composition, when
measured by the total number of attribute classes, increases when cartographic
scale increases. That is, when maps become more detailed (larger scale), the
number of ies also i Thei of scale and the relationship
to pattern analysis are seemingly well understood.

There are two components on the relationship between pattern and scale
that remain unclear. The first is which pattern indices are the most sensitive to scale
changes and to what extent. An important component of this analysis is what
aspects of pattern are measured by the indices that are most and least sensitive to
scale. The second is how variations of pattern differ when the density of geographic
entities varies. The inherent relationship between scale and object density is due to
i izati i with scale. The goal of this research
is to report on the sensitivity of pattern metrics to the scale changes and geographic
object density. Geographic object density can vary due to scale and the processes
that influence them. While the question of pattern sensitivity to scale is purely
descriptive by design, it will enhance our understanding of the strengths and limits
to these measures.

The method of assessment will be to empirically evaluate six different pattern
analysis approaches in the context of the three different density contexts. One of
the datasets used will be simulated so that there will be known controls over
accuracy, scale, and the spatial distribution of geographic objects. The pattern
analysis techniques that will be evaluated will reflect measures of composition and
configuration.

Elizabeth A. Wentz
School of Geographical Sciences
Arizona State University
Tempe, AZ 85287-0104
wentz@asu.edu

Figure 2. of Arizona geology from data sources at three different scales; a) 1:500,000; b) 1:1,000,000; c) 1:2,500,000.

Methods
Data

Two different data sources were used in this study. The first is a simulated data source so
that | have complete control over the size, shape, configuration, and composition of the entities
within the geographic display (Figure 1). | used a vector representation of square grid regions with
three different sizes of grid squares. It appears as a raster display would except the boundaries of
the regions are defined by vector lines. The number of categories per density of areas will increase
proportional to the number of vector regions. The categories will be assigned to regions based on a
random number generator. The random numbers will be assigned to the unique vector id of each
polygon.

The second data source is digital data of geology in the State of Arizona (Figure 2). The
original analog maps were at three different scales so the differences in pattern techniques can be
compared on real world data rather than the simulated data. The three scales are 1:500,000,
1:1,000,000, and 1:2,500,000. The 1:500,000 of Arizona geology was published in 1983 by the U.S.
Geological Survey by Wilson, Moore, and Coope (Hershberg and Pitts 2000). The geology data at
1:1,000,000 was published by the Arizona Geologic Survey in the Lambert Conformal Conic
projection published in 1988, and obtained from the United States Bureau of Land Management.
The third data source was from the Geology of the Conterminous United States at the scale of
1;2,500,000 obtained from the U.S. Geological Survey Digital Data Series DDS-11, U.S. Geological
Survey, Reston, VA (Schruben et.al. 1994). The portion representing only Arizona was extracted for
use in this study.

Analysis

To measure composition | will calculate total area, number of categories, and mean patch
size per category. | will use Moran’s |, nearest neighbor analysis, and fractal analysis to measure
configuration of pattern. Moran’s | is a global measure of spatial similarity and nearest neighbor
analysis measures the clustering of objects. Fractal analysis can be used to measure map
complexity. Emerson et al. (1999) reported that the fractal dimension indicates great complexity as
pixel size increases and varies depending on the type.

Results

Using the regression relationship (r2 = 0.988) between the
total number of categories and the total number of regions
in the geology data, | determined the total number of
categories needed for the simulated data. The results,
along with the summary descriptions of pattern
composition, are reported in Table 1. The total area of
each category type and mean patch size by category for
each of the geology data are reported in Table 2. The
results in Table 2 however display only those where the
percent study area is greater than 2%. The pattern
configuration results are displayed in Table 3. They show
that the overall pattern of the geology data are have a
random dispersion. The square grid polygon data have a
uniform distribution. There appears to be little difference
between the data scales.
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This graphic shows the percent
of the total area for the geology
types that are greater than 2% of
the total study area (Table 3).
Red line shows the data from
the 1:500,000 scale; gold line
shows the 1:1,000,000; blue line
shows the 1:2,500,000.

Discussion and Conclusions

Pattern composition reported by the total number of classes will vary depending on
scale. The results here agree with that assumption and empirical evidence (Table 1). In
contrast to that expectation, when analyzing the percent area of different classes and
examining only those classes with a percent of total area greater than 2%, the three
different scales are represented by approximately the same number of classes (Table 2).
In fact, the class type with the greatest percent area was the same geology type (or
subtype in the case of the 1:500,000 scale). This is encouraging because it tells us that
the results from metrics for pattern composition do not vary much between different data
scales. The majority of the class types are represented similarly. Pattern composition
metrics are less sensitive to scale changes when examining the data on a per class
basis.

A basic result is the total area — of individual classes and the complete study area.
The official area of the state of Arizona, as reported by the UC Census, is 294312.06
km2. This value is close to the values reported for the 1:500,000 scale and the
1:1,000,000 scale data. The smallest scale, however, was higher by a much larger
margin of error.

As as scale i of pattern changed. This
conclusion is more notable in the geology data. The fractal dimension, and therefore the
geometric complexity, is highest with the smallest scale data. The 1:500,000 scale data
also had the smallest nearest neighbor score, showing a random distribution. The
Moran's | score also suggested a random distribution but this score was statistically
significant for the 1:1,000,000 scale only. The nearest neighbor score showed a uniform
distribution for the square grid polygon data, which is what we expected. As the density of
the data increased, however, the statistic suggested a less uniform distribution, which
could lead to misleading conclusions.

The study here was limited because in the total number of datasets analyzed and
the number of pattern metrics applied. A more comprehensive study would have much
more variability in the types of data analyzed to explore the range of attribute composition
and ic distributi The second limitation is the pattern metrics selected. |
selected what | assume are commonly applied metrics that represent how attribute

ition and i i ion are These particular measures,
however, fail to explore local patterns (e.g., LISA measures would be a possible choice)
and are limited in the ability to analyze the distribution of nominal data.
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