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ABSTRACT: 
 
Along with the constantly improving acquisition, processing and visualization techniques, the amount of spatial data that is available 
today has dramatically increased. As a consequence, various data sets for one and the same area are often available, reflecting temporal 
changes or representations at different resolutions. Thus, there is a rising need to compare such data sets in order to assess their quality 
and pick out the proper one for a specific application. In this paper, the focus lies on the shape assessment of building ground plans for 
which various versions are available as a result of cartographic generalization. The commonly used characteristic for measuring the 
deviation between the outlines of polygonal objects is the Hausdorff distance. On generalized building data, however, the metric 
performs less intuitive from a human point of understanding. Examples resulting from the geometric simplification of footprints are 
given, the shortcomings of the Hausdorff distance discussed, and an alteration of the metric motivated therewith. This new metric does 
not allow for a direct connection of the two points of shortest distance, but restricts it to remain inside the polygonal difference between 
the two footprints. Besides the shortest distance, a variation of the metric is also shown to express the complexity of shape differences. 
 
 

1. INTRODUCTION 

In urban areas, buildings make up an essential portion of GIS-
data. And even though 3D models are already captured for many 
cities, the predominant building type for comprehensive data sets 
is still 2D footprints. For various reasons, multiple versions of 
one and the same building might be available that differ both in 
geometry and shape. The reasons are various like data collections 
at different times, transformations by means of analyses (e.g. 3D 
building reconstruction) or for visualization purposes (e.g. 
generalization). While small geometric differences are naturally 
inevitable and insignificant for most applications, it is, however, 
important to be able to automatically identify with certainty large 
changes in location, extent and particularly in the shape of the 
objects; the last being the topic of the paper with a focus on data 
quality regarding generalized building footprints. 
 
In order to compare the contours of two arbitrarily shaped ob-
jects, the prominent characteristic widely used both in the scien-
tific area and in commercial products is the Hausdorff distance. 
This metric measures the distance between two non-empty, closed 
and bounded point sets in metric space (Herrlich et al., 2002). The 
definition, which states that each spatial object can also be con-
sidered an infinite compact point set, is standardized by ISO 
(Andrae, 2009; ISO 19107, 2003). The metric has been success-
fully used in such disciplines as image processing and computer 
vision. Since then, its application field is not only restricted to the 
measurement of distances between the locations of two objects, 
but it is used for the assessment of geometric similarity of two 
contours as well. Thus, in the approach from (Schlüter, 2001), the 

Hausdorff distance is applied along with other characteristics for 
similarity-based classification of the contours of polygonal ob-
jects. In the work by Volz (2006), the Hausdorff distance is used 
among other parameters for the detection of correspondences be-
tween multiple representations of objects, a so called feature 
matching, in a road network. Due to its significance, the highest 
weight was assigned to this characteristic. In (Kreveld, 2006), the 
Hausdorff distance is referred to as a characteristic for the simi-
larity measure of boundaries usable on any two objects for the 
automatic data correction after manual digitizing. It helps to de-
tect, e.g., if the same data was captured several times like com-
mon boundary segments of neighboring objects. In this way, the 
topological consistency of a data set can be guaranteed or at least 
considerably improved. 
 
In (Bouziani et al., 2010), the Hausdorff distance is particularly 
applied to compare the geometry of buildings extracted from high 
resolution satellite images to a reference map. This work is 
dedicated to the automatic change detection with regard to the 
shape of objects in urban areas such as streets, parking places, 
vegetation, water objects and building footprints. The Hausdorff 
distance is part of the quantitative evaluation of the results that 
are provided by this approach and used along with the analysis of 
identification accuracy (rate of correct change detection) and area 
ratio analysis (percentage of detected areal change). 
 
In three-dimensional space, the Hausdorff distance enables to 
measure the maximum distance between two surfaces. A frequent 
example given is the comparison of a triangulated surface to its 
simplified version (Luebke et al., 2003). Since the accurate com-
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putation of the Hausdorff distance in 3D is very complex, the ap-
proximate deviation will be evaluated instead, though the meth-
ods of its computation can vary. In (Cignoni et al., 1998) one of 
the two surfaces, the reference surface, will be approximated by a 
regular distributed grid with given resolution, the value of which 
depends on the required accuracy of the result. After that, the 
shortest distances will be computed from each vertex of this grid 
to the second surface.  
 
In another approach, the pattern parallel to any of the two triangle 
sides, which the surface of the object is compound of, is used in 
(Aspert et al., 2002) to approximate each of them separately. At 
last, only the parts of the triangulation surface with the expected 
maximum distance to the other surface will be approximated in 
(Guthe et al., 2005).  
 
As in the case of similarity measure, the objects are compared to 
their references for the purpose of quality evaluation as well. The 
primal difference between these two tasks consists in their goal. 
Thus, similarity measure basically aims to identify if an object 
fits a certain search pattern or if the compared objects are alike. 
From the decision that is made depends, e.g., whether the object 
will be included into the search result. Or it could be determined 
that the objects are different representations of the same 
phenomenon and will be considered appropriately with all the 
consequences that follow. For this reason, it is common in the 
field of similarity measure to operate with thresholds. Here, the 
attention is principally paid only to the fact whether the distance 
value exceeds a given limit or remains within it. Thereby, the 
specification of the Java Conflation Suit explains that the explicit 
calculation of the Hausdorff distance for similarity measure of 
objects and the subsequent detection of their correspondence is 
not necessarily within the scope of this approach, although this 
concept exactly underlies it (Blasby et al., 2003). Instead, it is just 
sufficient to know that the maximum distance between the objects 
and their contours does not exceed the so called distance 
tolerance, which can be modeled by the generation of a buffer. In 
this case, polygonal objects will be mutually tested whether they 
completely stay within the buffers of each other; buffers around 
the objects themselves and around their boundaries are considered 
separately. 
 
In contrast to the similarity measure, the value of the quality 
measurement itself is of major interest for the process of quality 
evaluation, because the sensible classification of results can only 
be application-specific. The possibility of direct usage of the 
Hausdorff distance for data quality assessment is proclaimed in 
(Hangouët, 2006). It is shown that it can be applied to 
characterize the geometric aspect of quality of such object types 
as points, lines and particularly closed lines. Moreover, this work 
suggests to compare not only individual objects, but also to 
indicate the correspondence between whole data sets. 
 
However, the Hausdorff distance turns out to perform less effec-
tive for building footprints, which is discussed in section 2. It is 
shown that the distance computed in such a way is not always 
comprehensible by a human or can help one to detect the relevant 
shape differences of two building footprints. In section 3, an al-
teration of the Hausdorff metric is proposed, which restricts the 
computation of the maximum distance between the contours to be 

within the polygons of the symmetric difference. As the distance 
measured by a straight line does not always run completely inside 
these polygons, the second distance metric measures the length of 
a polyline that lies within the aforementioned area (section 4). 
The results are discussed in the last section. 
 
 

2. DIFFICULTIES IN MAXIMUM DISTANCE 
IDENTIFICATION BETWEEN TWO GROUND PLANS 

Since the exact mathematical definition of the Hausdorff distance 
is difficult to implement for continuous objects, it is common to 
calculate an approximation of this characteristic, called the vertex 
Hausdorff distance. It considers only the distances from the 
vertices of one object to the edges of the other one and 
contrariwise, where the notion of this characteristic originates 
from (Schlüter, 2001) and (Volz, 2006). In fact, the maximum 
distance between two objects often originates at a vertex lying on 
either of the outlines (if their line segments run in approximately 
similar direction). In this case, the vertex Hausdorff distance 
completely coincides with the original characteristic, which 
makes the accurate computation redundant. 
 
Nevertheless, this approach fails if the compared objects are 
shaped quite differently (Hangouët, 1995). Figure 1 illustrates a 
typical case for such a situation. The shape of the initial ground 
plan presents an open ring with its right part eliminated by gener-
alization. As a consequence, a U-shaped object is generated. It is 
significant for such a shape change that the distances from the de-
leted element, considering the entire points of its outline to the 
second contour, are the shortest at the vertices of this element. 
The longest distance between the two contours in this position is 
shown in Figure 1a as a thin dashed line. However, the distance 
increases moving from the end point to the middle part of the ver-
tical segment of the deleted element. The actual maximum dis-
tance from the generalized contour point is to be identified under 
consideration of all points delimiting the deleted element and lies 
on its longest side. According to this, there are two distances from 
this point to the generalized contour available with exactly the 
same length (cp. Figure 1b). 
 
 

      a)                     b) 
Figure 1. Result of the approximated vertex Hausdorff distance in 

comparison to the real Hausdorff distance. 
 
 
The calculation of the maximum distance is basically meant to 
identify the area of highest discrepancy between two contours, 
which must not exceed a tolerance threshold. As it is shown in 
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Figure 1 by the bold dashed line, the maximum distance is not 
just quantitatively underestimated, but even falsely located. 
 
A further question that is just as important for the development of 
a new characteristic is to which extent the solutions are actually 
intuitive to understand. Basically, the correspondence between 
the parts of the two contours is based on the shortest distances 
between the points of their outline, which can result in an 
incomprehensive result for the human viewer. 
As Figure 2a presents, the maximum distance between the two 
objects runs from the upper right corner of the eliminated element 
to the closest edge of the generalized ground plan and is shown 
with a bold dashed line. However, a human viewer would per-
ceive the maximum distance in all likelihood as the thin dashed 
line. It can be explained by the fact that the eliminated element 
rather corresponds to the low part of the generalized ground plan 
to which it was connected to. A similar example can be seen in 
Figure 2b. In this case, the maximum distance runs between the 
upper vertex of the eliminated element and the left edge of the 
generalized ground plan, although this element belongs rather to 
the bottom side of the original contour. 
 
 

        
        a)            b) 

Figure 2. Computed maximum distances between two contours 
compared to what a human might perceive. 

 
 
Figure 2 clearly demonstrates that the Hausdorff distance as a 
characteristic for computing the maximum distance between two 
building ground plans does not always deliver adequate results. 
Thus, neither the accurate mathematical solution nor its approxi-
mation may correspond to human perception. In order to over-
come this disadvantage, it is suggested to evaluate the maximum 
distance between the two contours not by means of the shortest 
distances between their points, but considering each eliminated 
part as a whole. 
 
Summarizing all above, it is to point out three properties, which 
arise with the identification of the maximum distance between the 
two contours and cannot be solved by using of the Hausdorff 
distance: the new characteristic must be able to detect erroneous 
situations produced by the generalization, the results should be 
intuitive to a human viewer, and the computation must be simple. 
 
 

3. MODIFIED HAUSDORFF DISTANCE 

3.1 Maximum distance within the symmetric difference 

In order to avoid a false identification of the correspondence 
between the elements of the original and generalized polygon, the 
computation of the Hausdorff distance can be based not on their 
entire set of vertices, but evaluated within each individual 
eliminated element i instead. For this purpose, it must be first 
determined, what segments belong either to the original or to the 
generalized ground plan, which are accordingly identified as sets 
of points (O) and (G). After that, the Hausdorff distance (HDi) is 
determined between these two original and generalized polylines 
forming the eliminated element. The overall maximum distance 
between the ground plans (HDMod) is the maximum value of all 
Hausdorff distances within the eliminated elements computed in 
the same way. Altogether they compose a set of distances (HD). 
 
To be exact, the notion of the eliminated element implies the 
deleted as well as the newly generated parts of the original 
building ground plan after generalization. Conceptually, this 
approach is based on the assumption that only the intersection 
points of the two ground plans express the direct correspondence 
between these objects. From this, it follows that the discrepancy 
of the two contours will be measured between the sections 
running between the same intersection points of the ground plans. 
The course of action of this approach consists of the following 
steps: 

 
1. By means of intersecting the original and generalized ground 

plan, the eliminated parts, so called intrusions and extrusions, 
are detected, as Figure 3a and b show. After the notion of set 
theory, they can be identified altogether as symmetric 
difference (SD). 
 

O)\(GG)\( ∪= OSD              (3.1) 
 

2. In order to identify the original and generalized components, 
the contour of each individual eliminated element will be 
successively intersected with the contour of the original and 
generalized ground plan. These polylines are accordingly 
shown with red and blue in Figure 3c and d. 
 

OSDO ii ∩∂=∂                (3.2) 

 
GSDG ii ∩∂=∂                (3.3) 

 
3. The computation of the one-sided Hausdorff distance between 

the original and generalized components hdi(O) and 
conversely hdi(G) is based on the vertex Hausdorff distance, 
which means the shortest distances will be identified from the 
vertices of the initial polyline to the edges of the second 
polyline. 
 

))(),((),()( GSDOSDdGOdOhd iiiii ∩∂∩∂=∂∂=     (3.4) 

 
))(),((),()( OSDGSDdOGdGhd iiiii ∩∂∩∂=∂∂=     (3.5) 
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4. The maximum distance within an eliminated element of a 
ground plan is the maximum of the both reciprocal Hausdorff 
distances as Figure 3e presents. 
 

))(),(max( GhdOhdHD iii =            (3.6) 

 
5. The maximum of all Hausdorff distances computed for each 

eliminated element makes the modified Hausdorff distance 
between the initial and generalized building ground plans. 
 

)max(HDHDMod =               (3.7) 

 
Figure 3 demonstrates clearly that the described approach reaches 
the expected outcome in this case. The important advantage of 
this method consists in its simplicity. The desired correspondence 
between the segments of the original and generalized ground plan 
can be determined while avoiding an additional analysis of the 
situation. Nevertheless, further examination is required to deter-
mine in which other cases and to what extent there will be differ-
ences in the use of the modified compared to the original Haus-
dorff distance, which the next section is dedicated to. 
 
 

    
a) b) c) d) e) 

Figure 3. Calculation of the modified Hausdorff distance 
 
 
In anticipation of the following metrics, all computing steps listed 
above remain the same over all metrics described in this paper. 
Only step 3 is altered in order to get more precise results. First, a 
shortest path is calculated from two given points (subsection 4.1) 
and then a maximum shortest path between the line segments of 
the symmetric difference is presented afterwards (subsection 4.2). 
 
3.2 Original vs. modified Hausdorff distance 

The examples given in Figure 2 illustrate that the discrepancy be-
tween the outcomes using the original and the modified Hausdorff 
distances, is basically caused by the diversely determined corre-
spondence between the elements of the initial and generalized 
ground plan. In this case, the distance of the original characteris-
tic is shorter than the modified one. At the same time, both char-
acteristics provide identical results, if the maximum points be-
tween the two contours lie on the outline of the eliminated 
element. However, even the equality of the resulting distances 
computed by means of these two characteristics cannot guarantee 
that this maximum distance completely runs within the eliminated 
element. As it is shown in Figure 4, it is typically the case if the 
symmetric difference of the two ground plans includes concave 

elements. Then the parts of the direct connection of the two points 
from the modified distance can lie outside the symmetric differ-
ence. 
 
 

  
a) b) 

Figure 4. Hausdorff distance and modified Hausdorff distance for 
concave elements. 

 
These examples open an interesting question, how in general the 
maximum distance between two contours containing concave 
elements is to be evaluated. The result of the original and the 
modified Hausdorff distance is compared in Figure 5a and b. The 
Hausdorff distance identifies in this case a perpendicular line 
from one of the topmost vertices of the original contour to the up-
per edge of the generalized one. As the perpendicular point does 
not belong to the symmetric difference, the modified characteris-
tic provides a different result. Assuming that the distance between 
the two contours has to be measured only within the eliminated 
element, it should follow the fine dashed line in Figure 5 c. 
 

 

  
a) b) c) 

Figure 5. a) Hausdorff distance, b) modified Hausdorff distance, 
c) shortest path within the eliminated ground plan element 

 
 
Let the third characteristic be identified as the shortest path within 
the eliminated element. Whereas the original and the modified 
Hausdorff distance characterize the maximum deviation between 
the outlines of the two objects, the shortest path rather defines the 
shape complexity of the eliminated element. Figure 5 demon-
strates that this characteristic can also be considered for the qual-
ity evaluation of generalization along with the maximum distance 
between the original and generalized object. Section 4 discusses 
in detail the geometric meaning and methods for computing this 
distance. 
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4. MAXIMUM SHORTEST PATH 

4.1 Maximum distance with regard to concave elements 

The modified Hausdorff distance as well as the original 
characteristic is measured as a straight line between two points 
identified by its algorithmic computation. However, these points 
of maximum distance cannot always be connected with a single 
line segment on the condition that it must completely run within 
an eliminated element. Rather a polyline with several segments 
has to be used. The difference between the direct distance and the 
connected line segments that lie inside an element of the 
symmetric distance can be interpreted as its shape complexity. 
The computation of such a polyline can be associated with the 
shortest path problem from graph theory which consists of finding 
a path with minimal weight of all its connected edges between the 
two given nodes in a weighted graph (Sedgewick, 1988). The 
shortest path itself is an alternating sequence of nodes and edges 
never repeated (Gould, 1988). 
 
The graph is generated on the basis of the corresponding polygon 
of the symmetric difference SDi with n points and sides which 
contains the modified Hausdorff distance. Let G = (p,q) be a 
weighted graph of order (number of nodes) p = n or p = n + 1 if 
the modified distance consists of one perpendicular base point to 
a polygon side. Firstly, all possible connections between the 
graph nodes will be generated as illustrated in Figure 6a. In the 
next step, those edges that only partially run within an eliminated 
element will be rejected (cp. Figure 6b). The remaining connec-
tions, including the edges composing the contour of the elimi-
nated element, will be considered as the edges of the new graph. 
Their weights w result from the Euclidean distance between the 
corresponding start nodes. Finally, the shortest path between the 
two given nodes of the generated graph is computed as it is, for 
instance, shown in Figure 6c. This single-pair shortest path can be 
solved, for example, by means of the Dijkstra algorithm (Cormen 
et al., 2001). 

 
 

   
a) b) c) 

Figure 6. a) All connections between points of the eliminated 
element, b) the resulting graph, c) the shortest path within the 

eliminated element. 
 
 
The start and end points of the shortest path are defined as the 
same points as the modified Hausdorff distance. This way, the 
two characteristics can be easily compared. The complexity of a 
shape is computed as described in Formula 4.1. Here, the higher 
the value, the more complex the shape of the eliminated element 
appears. This complexity metric can help a generalization process 
to (re-) consider elements for elimination during simplification. 

 
 

 ModSinglePair HDthShortestPaComplexity −=     (4.1) 

 
 
Thus, the main points of the presented approach are: the 
maximum distance can be calculated on basis of the shortest path 
within the eliminated part, so that it will consist not of a straight 
line, but of several line segments. And this shortest path is 
computed between the two specified points, identified as the most 
distant by the modified Hausdorff distance 
 
4.2 The shortest path from point to contour 

As explained in the previous subsection, the new characteristic 
for the shape complexity results from the comparison of the 
modified Hausdorff distance and the shortest path between the 
same vertices running within an eliminated element. Neverthe-
less, the shortest path calculated in such a fashion cannot be con-
sidered an adequate independent characteristic and this restricts 
its further interpretation. The main reason of this limitation is de-
termined by the fact that the shortest path between the two given 
points must not necessarily coincide with the shortest path from a 
point on one contour to the other contour. Figure 7 demonstrates 
an appropriate example for such a case. Here, it can be clearly 
seen that the shortest path (thin dashed line) between the start and 
end points of the modified Hausdorff distance (bold dashed line) 
in Figure 7a is longer than the one between the original (red) and 
generalized (blue) line segments of the eliminated element 

(Figure 7b). 
 
 

  
a) b) 

Figure 7. a) Shortest path between two specified points and b) 
from point to contour. 

 
Therefore, the shortest path between the vertices of the modified 
Hausdorff distance cannot be accepted as a final solution for the 
maximum distance between the contours. In order to overcome 
this problem, an approach analog to the notion of the Hausdorff 
distance can be applied. The only difference consists in the use of 
the shortest paths instead of the Euclidean distances. Thus, the 
two most distant points belonging to the outline of an eliminated 
element and lying respectively on the intersection of this outline 
with the original and generalized contour must be determined. 
The final outcome results as the maximum from the maximum 
shortest paths between the original and generalized line segments 
of the symmetric difference computed reciprocally. 
 
In the first step, the shortest paths from each point of the first con-
tour to the other contour will be calculated. Subsequently, a 
weighted graph will be generated on the basis of this polygon as 
explained in subsection 4.1. The perpendiculars from all the ver-
tices on one contour to each line segment of the other one will 
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also be included. As a result, the connection to the perpendicular 
foot points that are completely running within an eliminated ele-
ment (black) will be added to the already generated edges (grey) 
of the graph. After weighting all of the edges of the new graph, 
the shortest paths from all the vertices of the initial contour to the 
other one can be computed successively. 
 
First, the shortest paths from a start node to all other nodes of the 
graph will be computed. Then, the path with the minimum length 
will be picked from all the shortest paths from the start node to all 
the nodes belonging to the other contour. This path presents the 
sought-for shortest path from a given start point lying on the ini-
tial outline to the other outline. Figure 8b shows an arbitrary start 
point on the original contour marked with red and the alternatives 
for the end points of the shortest path marked with blue. The 
shortest path from this start point to the generalized contour is 
shown with a bold dashed line in Figure 8c. 

 
 

   
a) b) c) 

Figure 8. a) Additional connection (black) in the graph,  
b) shortest path alternatives from start point on original (red) to 

all end points on generalized contour (blue), c) result. 
 
 

4.3 The maximum shortest path between the contours 

In order to gain the final metric, the maximum from all shortest 
paths from each point of one contour to the other contour will be 
chosen, which can be defined as a one-sided maximum distance 
between the two contours. After identification of the one-sided 
maximum distance from the second contour to the initial one, the 
maximum of these two distances presents the maximum distance 
between the original and generalized contour to be determined 
within the given eliminated element. 
 
 

5. CONCLUSION 

In this work, it is demonstrated that the Hausdorff distance as 
well as its approximation, the vertex Hausdorff distance, do not 
always correspond to what a human viewer would perceive as a 
maximum difference between two building contours. As a result, 
two new characteristics were suggested, the calculation of which 
is analog to the Hausdorff distance and which are both based on 
the symmetric difference of two objects. This enables to compare 
the outlines of these objects not as a whole using the shortest 
distance between their points, but to evaluate their deviation 
within each eliminated element. 
 
The first characteristic, the modified Hausdorff distance, identi-
fies the two most distant points lying on the contour of the elimi-
nated element by means of a straight line. Since in the case of 
concave elements, this distance can run out of the eliminated 

element, a further characteristic, the maximum shortest path, was 
proposed. In contrast to the modified Hausdorff distance, it can 
consist of several line segments so that it completely remains 
within an eliminated element. It has to be noted, that this distance 
is really a length of the path. The difference between the modified 
Hausdorff distance and the shortest path between the same end 
nodes can be considered as the complexity of an eliminated ele-
ment and used for evaluation of the importance of this element for 
the whole shape of an object. 
 
Although the first characteristic is sufficient for most of cases, the 
shortest path enables to cover all of them without any exception 
though its computation is somewhat more complex. In the future, 
the suggested characteristics will be applied to large data sets in 
order to demonstrate their advantages. 
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