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ABSTRACT: Decision makers increasingly rely on science to inform public policy decision-
making. Although this integration of science and policy offers the potential to support more 
informed decisions, scientific results are often not provided in a manner usable to decision 
makers. When faced with highly uncertain conditions, such as climate change, communicating 
science in a usable manner becomes even more important. In decision support settings, 
visualization of geographic information offers a powerful means to communicate uncertain 
science to decision makers. However, building believable representations does not provide a 
complete understanding of the potential consequences of decisions.  
 
Developing uncertainty representations to reflect the processes of decision-making under 
uncertainty offers a means to provide insight into the relationships between decisions, uncertainty, 
and outcomes (consequences of policy decisions). Yet, visualizations often avoid the explicit 
inclusion of contextual information, such as explanations of risk and uncertainty. This research 
makes a distinction between explicit and implicit uncertainty for visualization in decision support. 
In explicit visualization, uncertainty is conceived of, and evaluated as, unique information, related 
to, but not the same as, the underlying data. Implicit visualizations embed uncertainty information 
into the representation, instead of expressing uncertainty as separate or additional data. When 
reframing uncertainty in this way, the relationship between uncertainty, outcomes and decisions is 
emphasized over explicit representation frameworks that dissociate the method from the user.  
 
This paper presents an implicit method for visualizing the impact of climate change uncertainty 
on policy outcomes in a water model for a hypothetical metropolitan area. The effectiveness of 
this method for visualizing the relationship between uncertainty and policy impacts was evaluated 
through a human subject test. The paper reports on the results of the pilot study and how this 
method compares to methods for explicitly visualizing uncertainty.  

KEYWORDS: uncertainty visualization, outcome space, decision support, decision frames 
 
1. Introduction  
As an inherently geographic phenomenon, research on climate change exists throughout 
geography, with results and predictions commonly represented on maps and graphic 
displays. Mediated visual communication has played a central role in the climate change 
dialogue between science and policy—shaping perception and opinion, and as a result, 
influencing public policy (Corbett and Durfee 2004; Smith 2005; Boykoff and Boykoff 
2007). When used to support decision-making, these visualizations often do not include 
explicit explanations of risk and uncertainty (Carvalha and Burgess 2005). Instead the 
focus is often on simple projections and more realistic view to ease understanding 
(Abbasi 2005). Building believable visualizations, however, does not provide a means to 
understand the relationship between decisions, uncertainty and the decision outcomes.   
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Researchers acknowledge the importance of identifying and evaluating uncertainty in 
geographic analysis and outputs used for decision support. Decision makers also 
understand that uncertainty is an unavoidable component of policy decisions, especially 
when those decisions are informed by science. However, even though both researchers 
and decision makers understand the presence and importance of uncertainty, decision 
makers do not widely request visual methods for working with uncertainty in GIS, and 
uncertainty is often missing from geographic visualization. There is an apparent disjoint 
between uncertainty visualization research and its practical application (Goodchild 2006).  

Uncertainty broadly refers to what is not known about the relationship between a 
measured (or predicted) value and the actual value. Existing typologies of uncertainty 
include a wide range of data characteristics, such as quality, error, precision, 
completeness and lineage. GIS uncertainty research often centers on these data 
characteristics, identifying, evaluating, or tracking spatial component of uncertainty in 
data. Research themes include visualizing the geographic distribution of uncertainty 
(Cliburn et al. 2002; Aerts, Clarke, and Keuper 2003; Slocum et al. 2003), quantifying 
uncertainty and propagation (Goodchild, 1994; Heuvelink 2005; Goovaerts, 2006) as well 
as applied research into geographic uncertainty in areas such as climate change, ecology, 
and planning (Devillers and Jeansoulin 2006; Isendahl et al. 2009; Gober et al., 2010) 
Although the topics and fields of application are diverse, the approach is often similar, 
focusing on presenting uncertainty in explicit and quantifiable ways, with the intention of 
developing generalizable methods applicable to many different domains. This somewhat 
uniform approach to uncertainty visualization contrasts with the contextual nature of 
uncertainty in decision support settings, where diverse stakeholders often posses differing 
experiences, expectations and goals. 

The relevant form of uncertainty for a given decision problem is often determined by the 
user, context, and purpose of the data. This poses a significant challenge for visualization 
methods intended to facilitate informed decision making through the communication of 
uncertainty, as complex scientific representations may not support communication, since 
they are not easily understood. In these settings, the specific form of uncertainty might be 
less important than a general awareness of its presence. Moreover, many users consider 
uncertainty visualization either irrelevant or detrimental for successful data 
communication and insight generation (Cliburn et al. 2002; Slocum et al. 2003; Brugnach 
et al. 2007). In contrast, research suggests that decision makers now often view 
uncertainty itself as unavoidable, and potentially, as integral to understanding a problem 
(Brugnach et al. 2008). This is a shift from the perception of uncertainty as something to 
eliminate or minimize in decisions to something that might help guide choices.   

Visualization methods should build upon this attitudinal shift by incorporating existing 
methods of working with uncertainty into methods for visual uncertainty communication. 
This requires moving from explicit and quantitative methods appropriate for science-
based communication to more implicit visualizations that incorporate the decision frame 
of the user. Decision frames encompass how individual experiences and beliefs establish 
the boundaries and constraints of a decision problem and course of action (Tversky and 
Kahneman 1981).   The perceptual shift from avoidance to acceptance, and even use, 
changes decision makers’ framing of a problem. Providing decision makers with methods 
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that allow them to gain insight into the relationship between uncertainty and outcomes 
reframes uncertainty so that the relationship between the method and needs of the user 
are emphasized. 

This research makes a distinction between explicit and implicit uncertainty and 
visualizations. Explicit uncertainty is defined by the direct identification of gaps, errors, 
and unknowns displayed or represented through quantitative values (such as error bars) or 
qualitative estimations (certain versus uncertain). Explicit visualization refers to methods 
where uncertainty is extracted, modeled and quantified separately from the underlying 
information. In explicit representations, uncertainty is conceived as specific values, to 
evaluate as unique information, related to, but not the same as, the underlying data. 
Implicit uncertainty, by contrast, is linked to the decision making process, where 
uncertainty is an inherent characteristic of the data. Implicit uncertainty is more context 
dependent, where experience informs definition, interpretation and, potentially, 
representation. Implicit visualization, support exploration of the relationship between 
uncertainty and decisions, by integrating uncertainty and decision outcomes in the 
visualization. With these definitions, it is possible to explicitly define uncertainty (such as 
providing probability for a model projection), and then use implicit methods for 
visualizing that uncertainty (visualizing the range of probability values for several 
different models).  Implicit representation supports adaptive decision making by allowing 
users to explore the relationship between decisions, outcomes, and uncertainty.  

This research works to address the gap between uncertainty visualization research and 
practical application, presenting a method for implicitly visualizing uncertainty, 
specifically seeking to address the following: 

• Do decisions made with implicit representations of uncertainty differ from those 
made with explicit representations of uncertainty? 

• Do users perceive implicit representations as effective for supporting decision-
making tasks? 

• Are implicit representations seen as uncertain?  
 

This remainder of this paper begins with a brief review of relevant literature, and then 
presents the results of a pilot study where users were asked to make policy decisions 
using both implicit and explicit uncertainty representations.  

2. Visualizing Uncertainty 
Researchers have sought the most appropriate and effective means of representing 
uncertainty to users, carrying out experiments comparing representational techniques. A 
common approach is to adapt Bertin’s (1983) visual variables for visualizing uncertainty. 
Additional graphic variables, such as transparency, saturation and clarity have also been 
proposed (MacEachren 1992; Slocum et al. 2004) specifically for uncertainty 
visualization. Computer environments offer possibilities for uncertainty visualization, 
allowing users to manipulate the display of uncertainty by deciding how and when to 
display information (Fisher 1994; Ehlschlaeger, Shortridge, and Goodchild 1997; Cliburn 
et al. 2002; Aerts, Clarke, and Keuper 2003).  
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Explicit visualization strategies fall into two general categories: intrinsic and extrinsic 
(Gershon, 1998). Both rely on an explicit definition of uncertainty. Intrinsic techniques 
integrate uncertainty in the display by varying an existing object’s appearance to show 
associated uncertainty. Although the uncertainty and “object” are represented in unified 
representation, such as using fuzzy lines to represent vague boundaries, uncertainty is still 
explicitly depicted as separate from the underlying data.  Extrinsic techniques rely on the 
addition of geometric objects to highlight uncertain information. Here, the explicit nature 
of the uncertainty is more apparent, since the representation uses separate objects to 
depict uncertainty. These categories are suitable for both qualitative and quantitative 
descriptions of uncertainty.  For example, model results might be qualitatively identified 
using a range of certain to uncertain using hatch marks of varying density (extrinsic), 
while surface heights offer a method for representing error quantitatively (intrinsic).  

The primary focus of most experiments has been on designing methods to communicate 
explicit values. MacEachren et al. (1998) developed and tested a pair of intrinsic methods 
for depicting “reliability” of data on choropleth maps.  Newman and Lee (2004) 
evaluated both extrinsic and intrinsic techniques for the visualization of uncertainty in 
volumetric data. Leitner and Buttenfield (2000) focused on the alteration of the decision-
making process by changing the representation, through systematically altering Bertin’s 
visual variables.  

Researchers have also explored differences in interpretations and use between novice and 
expert users. Cliburn et al. (2002) developed an environment to allow decision makers to 
visualize the results of a water-balance model.  The study found that the complexity and 
density of the representation methods seemed to overwhelm decision makers, while 
experts were able to use the detail more readily. They suggest that intrinsic methods 
provide a more general representation of uncertainty that non-expert users may prefer 
over more-detailed extrinsic representations. 

3. Methods 
At its most general, this study aims to identify whether implicit visualizations of 
uncertainty result in decisions that differ from those made with explicit visualizations of 
uncertainty. Additionally, this research explores whether implicit visualizations are seen 
as effective for decision-making, and if users interpret these representations as uncertain.  

I conducted a human-subject test consisting of decision tasks related to water policy in a 
hypothetical western city. In the pilot study, participants were presented with a survey 
where they were part of a general council reviewing policy recommendations for 
reducing the impact of growth on groundwater. Participants were provided with maps 
showing predicted groundwater usage that would result from three sets of policies. They 
were asked to rank the policies from most to least robust, with the most robust choice 
being the policy that impacted groundwater the least over the widest range of future 
conditions. They did this for three decision sets. Each set had a different visualization 
strategy using either implicit uncertainty, no uncertainty or explicit uncertainty. 
Participants were also asked to indicate whether they used the visualizations when 
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making their rankings, whether they were effective for the task, and if they saw the 
information as including the uncertainty of climate change.  

To test whether implicit visualizations resulted in rankings that differed from explicit or 
no uncertainty, all participants worked through the same three decision sets. There was 
no “correct” ranking, as the purpose of the ranking was to compare rankings and answers 
across the decision sets. With participants working through policy rankings using each of 
the visualization strategies, within participant responses could be compared for all 
answers. Other than the visualizations, efforts were made to keep the questions otherwise 
similar. The wording of questions for each decision set was kept the same, but the order 
that the policy options were presented was different for each decision set  (see Section 
3.2) to avoid bias in selection of policy. Additionally, the order that participants saw the 
decision sets was randomized to avoid learning.  

3.1 Scenario Overview 
Water management systems are traditionally operated under the assumption of 
stationarity—the idea that natural systems fluctuate within an envelope of variability that 
does not change (Milly et al. 2008). Under the assumption of stationarity, water planners 
acknowledge the possibility of errors in estimation of water inputs, but assume it is 
reducible through additional observations, improvements in data collections, or increased 
data. Climate change, however, poses a challenge to the stationarity assumption; as 
changes to the Earth’s climate are altering the rate of river discharge, mean precipitation, 
sea levels, and other aspects of the water cycle and water supply. Uncertainty 
visualization offers an opportunity for decision makers to perceive how climactic 
uncertainty (evidenced by changes to the stationarity assumption) affects outcomes of 
policy decisions, through communication of the relationship between uncertainty and 
predicted policy outcomes. 

For this study, uncertainty is expressed as the effect of climate change on the assumption 
of stationarity, in this case, changes to the historical flows of two hypothetical rivers. The 
implicit outcome space (Section 3.2) represents all potential outcomes for a given set of 
policy conditions for all future flows of the rivers. For this study, the outcome space 
consists of the net cumulative change in groundwater resulting from running a single set 
of policy choices for all predicted future river flows in the hypothetical model. 

Study participants were presented with a scenario depicted current drought conditions in 
Wake County, a hypothetical city in the West. Survey participants were told that they 
were members of a water planning board tasked with evaluating three sets of policy 
options for managing future growth and water use. The goal of this planning board was to 
select the policy choice that provided the most robust options for future conditions. 
Participants ranked the following policy choices for each decision set (corresponding to 
implicit, explicit and no uncertainty groups): 

• No change in population growth, agriculture or personal water usage 
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• General plan allows for increased residential and commercial development, with 
population growth increasing to twice the rate predicted by the prior county plan. A 
public education plan about reducing water use will be implemented. 

• A policy to protect ground water is implemented in five years, requiring that ground 
water levels no longer be depleted; meaning use must be balanced with recharge. This 
policy will be strictly enforced through water restrictions for existing and new 
residents as well as businesses. Additionally, there will be increased use of effluent 
water for agricultural and commercial uses. 

The policy choices did not change across the decision sets, but the order they were 
presented in varied. For example, in the implicit decision set the first policy shown was 
the No Change option, but for the no uncertainty decision set it was the growth plus 
education policy option.  

3.2 Visualizations 
3.2.1 Implicit Uncertainty Decision Set  

This research builds upon methods presented by Lempert, Popper, and Bankes (2003) for 
mapping Landscapes of Plausible Futures. The landscapes provide visualizations 
intended to aid in exploration of large, multidimensional data sets produced as output to 
robust decision making scenarios. In these landscapes, the vertical and horizontal axes 
represent two uncertainty variables identified as vital to the problem under consideration. 
Each point of intersection between values on the axes represents the outcome of a given 
scenario. The area within the landscape that represents all possible outcomes (defined in 
this research as the outcome space) can further be delineated into regions of 
no/mild/overwhelming regret.  

An adaptation of this method 
is proposed as an implicit 
visualization of uncertainty. 
An example is shown in 
Figure 1.  The vertical and 
horizontal axes represent 
future flows of the 
hypothetical rivers as a 
percentage of historical flow. 
This represents two of the 
uncertain variables in the 
water model, incorporating 
the uncertain impact of 
climate change on river flow 
(the challenge to the 
stationarity assumption). The 
outcome space represents the 
net cumulative change in 
groundwater. Additionally, 

Figure 1. Elements in implicit representation 
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areas within the outcome space are identified using a range of sustainable to not 
sustainable based on the amount of change in ground water usage.  

While this does not depict geographic space, it does reflect the spatial distribution of 
uncertainty across the possible futures of each river system. It allows decision makers to 
identify policies that result in the most robust strategies across the widest range of future 
possible climate conditions. Once these policies are selected, decision makers can further 
evaluated the geographic impact of the policy choices. The set of implicit policy maps 
from the pilot survey and their associated policy options are shown in Figure 2.  

Figure 2. Implicit uncertainty visualization decision set 

 

3.2.2 Explicit Uncertainty Decision Set 

This decision set depicted model results for each policy choice assuming continued 
drought conditions for the next ten years along with the uncertainty of the model results. 
Here, uncertainty was explicitly represented using transparency.  This decision set used a 
geographic map as the base. While this differs from the implicit visualization, both depict 
an outcome space of model results. The visualizations for this decision set are shown in 
Figure 3.  

Figure 3. Explicit uncertainty visualization decision set 
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3.2.3 No Uncertainty Decision Set 

The third decision set depicted the geographic distribution of ground water drawdown 
assuming continued drought conditions for the next ten years. This was used as a control 
for comparison to both the implicit and explicit uncertainty visualizations. The no 
uncertainty decision set is shown in Figure 4.  

Figure 4. No uncertainty decision set 

 

3.3 Questions 
For each decision set, participants were asked to use the visualizations to rank policy 
options from most to least robust. They were then asked to answer several questions:  

• The visualizations of the model output for the range of future river flows 
(groundwater drawdown) is effective for evaluating the impact of policy decisions 
on groundwater 

• The groundwater results in the visualization incorporates the uncertain impact of 
climate change on groundwater 

• I used the represented outcomes to evaluate the impact of climate change on 
groundwater 
 

These questions were used to evaluate whether participants were selecting the same 
policy option rankings across the decision sets, as well as to identify the manner in which 
they were using and interpreting the visualizations.  

4. Results  
This research focused on methods for representing uncertainty in GIS that incorporate 
decision frames of decision makers. An implicit method for visually representing 
uncertainty and outcomes as integrated information was evaluated through a case study of 
a hypothetical county facing the need to make policy decisions on growth and water use. 
In this work, water managers understanding of stationarity (their decision frame) was the 
basis for the implicit visualization. Uncertainty was operationalized as the unknown 
impact of climate change on the stationarity assumption, and in the implicit visualization, 
the outcome space was related to this uncertainty. A web based pilot study was conducted 
to evaluate whether implicit visualizations result in different decisions, are viewed as 
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including uncertainty, and are effective for making decisions. Participants were drawn 
from GIScience faculty and researchers, GIS analysts working in decision support 
settings, planners and PhD candidates working with GIS. Forty surveys were collected in 
all, with ten partially completed surveys discarded.  

4.1 Policy Ranking Comparison 
The rankings for each decision set were compared for each participant for the following 
pairs of decision sets: Implicit versus Explicit, Implicit versus No Uncertainty, and No 
Uncertainty versus Explicit. The purpose of this comparison was twofold. First, to 
identify whether participants were selecting the policy choices they favored personally, 
and second to evaluate whether the different visualizations resulted in differences in 
rankings for each decision set. The rankings were first processed to allow easy 
comparison. The absolute value of the difference between the rankings for each region 
was calculated for each participant. A change in ranking from three to one would result in 
a score of two (three minus one), and a change from two to three would result in a score 
of one (three minus two). The minimum score between sets of rankings is zero, indicating 
no change, and the maximum is four indicating a complete reversal.  
 
The null hypothesis for this test was that there would be no difference between the 
rankings for the decision sets, which would mean that participants were possibly 
choosing policy options based on personal preference and not the presented information. 
I evaluated this hypothesis by calculating a 95% confidence interval around the mean 
difference for all participants: if the rankings from the decision sets were similar, this 
confidence interval should include zero. Each distribution was also evaluated to ensure it 
was close to normal prior to selection of a statistical test.  
 
The difference between the rankings for the three decision sets was statistically 
significant for the comparisons identified at the beginning of this section. In this case, the 
actual rankings provided were not of interest, but only whether the rankings were 
different between the decision sets. This indicates that participants did not choose policy 
options based solely on their opinion of the policy options listed, since the only element 
that changed for each decision set was the visualization. Table 1 presents the results of 
the t-test comparison for each of the ranking pairs.  

 

Ranking Comparisons 

Test Value = 0 

t Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence Interval 
of the Difference 

Lower Upper 
Implicit versus No 
Uncertainty 5.794 29 .000 1.733 1.12 2.35 

Implicit versus Explicit 9.109 29 .000 2.267 1.76 2.78 
Explicit versus No 
Uncertainty 4.267 29 .000 1.200 .62 1.78 

Table 1. The results of the ranking comparison reflect statistically significant differences between the 
rankings for each decision set 
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This illustrates that the implicit uncertainty decision set resulted in rankings that differed 
significantly from rankings made with explicit or no uncertainty. This suggests that the 
visualization method influenced ranking choices and interpretation of decision problems. 
 
4.2 Do visualizations incorporate uncertain impacts of climate change? 
For each decision set, participants were asked whether the visualizations included 
uncertainty about climate change. Participants responded using the scale strongly 
disagree, disagree, neither disagree nor agree, agree and strongly agree. These responses 
were then coded with strongly disagree as negative two, agree as negative one, neither 
agree nor disagree as zero, agree as one and strongly agree as 2. This allowed evaluation 
of the average response for each decision set using the t-test to identify whether responses 
were significantly different from zero (neutral) and whether they were positive 
(indicating agreement) or negative (indicating disagreement) using the reported 
confidence interval. For each decision set, a t test was performed to identify whether the 
average response was greater than zero (indicating that the visualization included climate 
uncertainty). In this case the null hypothesis was that mean results were less than or equal 
to zero. Table 2 summarizes the results of the t-tests for the uncertainty responses for 
each decision set including the significance and confidence interval. 

 

Uncertainty 

Test Value = 0 

T 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence Interval of the 
Difference 

Lower Upper 

Implicit  2.628 29 .014 .50000 .1108 .8892 
No Uncertainty -1.733 29 .094 -.36667 -.7995 .0662 
Explicit  3.084 29 .004 .66667 .2245 1.1088 

Table 2. The results of the uncertainty comparison indicate that both the implicit and explicit visualizations 
were seen as including uncertainty, while those without uncertainty were not 

 
The tests show that for the implicit and explicit decision sets, users identified the 
outcomes as incorporating climate change uncertainty. This is indicated two ways in the 
analysis. First, with significance values less than 0.05 we can reject the null hypothesis 
that the average response is zero, which would indicate that users were unsure of whether 
uncertainty was present. Additionally, the confidence interval for both includes only 
values greater than zero, which indicates a level of agreement, since positive values are 
associated with agreement in the coding.  
 
For the no uncertainty decision set, the results fail to reject the null hypothesis with a 
significance greater than 0.05. Additionally, the confidence interval includes both 
negative values and zero, meaning that it is not possible to reject that users do not 
identify uncertainty in this set. This evaluation serves as a control, as the no-uncertainty 
decision set does not represent uncertainty.  
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The indication that implicit visualizations were interpreted as depicting uncertainty, even 
though uncertainty was not expressly depicted, supports the hypothesis that it is possible 
to effectively communicate uncertainty without explicitly representing statistical 
uncertainty values. 

4.3 Is the visualization effective for evaluating the impact of policy 
changes on groundwater? 
Participants were asked whether the visualizations were effective for evaluating the 
impact of policy decisions on ground water drawdown. Participants responded using the 
same disagree-agree scale used for the uncertainty question previously discussed. These 
responses were then coded using the same negative to positive values as the uncertainty 
question. This allowed evaluation of the average response for each decision set using the 
t-test to identify whether responses were significantly different from zero (neutral) and 
whether they were positive (indicating agreement) or negative (indicating disagreement) 
using the reported confidence interval. For each decision set t test was performed to 
identify whether the average response was greater than zero (indicating that that it was 
effective). In this case the null hypothesis was that mean results were less than or equal to 
zero. 

Table 3 summarizes the results of the t-tests for the effectiveness responses for each 
decision set including the significance and confidence interval. 

 

Effective 

Test Value = 0 

t 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence Interval 
of the Difference 

Lower Upper 

Implicit 6.289 29 .000 1.00000 .6748 1.3252 
No Uncertainty 3.881 29 .001 .70000 .3311 1.0689 
Explicit 4.173 29 .000 .76667 .3909 1.1424 
Table 3. The results of the effectiveness comparison indicate that all three visualizations were seen as 

effective for evaluating the policy decisions 

 
The tests show that for all three methods, users identified the outcomes as effective for 
evaluating the impact of policy changes on groundwater. . This is indicated two ways in 
the analysis. First, levels of significance for all three are less than 0.05. This allows 
rejection of the null hypothesis that the average response is zero, which would indicate 
that users were not sure whether they found the visualizations effective. Additionally, the 
confidence interval for all three includes only values greater than zero, which indicates a 
level of agreement, since positive values are associated with agreement in the coding.  
Each method being rated as effective for supporting the decision task presented suggests 
that implicit visualizations of uncertainty offer a viable method for integrating 
uncertainty into visualization environments for decision support. 
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4.4 Comparison of change in rankings and indication of whether they 
used the visualization in decisions 
Lastly, participants were asked whether they used the represented outcomes to evaluate 
the impact of climate change on groundwater. The purpose was to evaluate whether their 
answer to this question was reflected in the rankings, assuming that ranking would be 
different based on whether or not they indicated that they used the visual depiction in 
their policy decisions. Participants responded either true or false to this question.  

The true/false responses were then compared with the ranking difference responses 
(Section 4.1) with the assumption being that if participants used the visualizations, then 
the ranking difference should be different from zero, and if they did not, then the ranking 
difference should equal zero. Each set of rankings was divided into two groups based on 
the true false responses. For each group a t test was performed to identify whether the 
average response was greater than zero (indicating that there was a change in ranking 
between decision sets). In this case the null hypothesis was that mean results were equal 
to zero (indicating no change).   

Decision sets were presented to participants in a random order to avoid bias and learning 
impacts in responses. This means that it is not possible to know the order in which 
participants saw the decision sets. If the order of the decision sets was know, the change 
in ranking from one decision set to the next could be evaluated based on the responses to 
the use question for the second of the sets. For example, if a participant went through the 
implicit first, then explicit, their response to the use question for the explicit decision set 
should correspond to whether their answer changed from the implicit to the explicit 
rankings. Since the order is not known, the difference in rankings is evaluated for the use 
response for both of the decision sets in the ranking comparison. 

Tables 4A-4C identify the results of the t-test for the use-based comparisons for each 
ranking comparison. All of the results, with one exception, show a significant difference 
in rankings regardless of whether or not the participant indicated that they used the model 
results in their decisions. The one exception is the explicit versus no uncertainty ranking 
comparisons for individuals that responded that they used the visual information, which 
had a significance value of 0.104, which is larger than the alpha value 0.05.  
 
Based on these results, there appears to be a discrepancy in how users responded to the 
question of whether they used the visualizations and their actions. When ranking 
differences were divided between those that indicated they did use the visual information 
and those that indicated they did not, the analysis showed that regardless of their 
response, the differences between rankings was statistically significant, a result that 
matched the overall analysis of the rankings (as discussed in Section 4.1). This is an 
interesting result, as it indicates that participants were either not aware that the 
visualizations were influencing them or there were other factors being used between the 
decision sets.  
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Implicit Uncertainty Use Response 

Test Value = 0 

t 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence Interval 
of the Difference 

Lower Upper 

False 

Implicit vs. No Uncertainty 
Ranking Comparison 

2.497 7 .041 1.750 .09 3.41 

Implicit vs. Explicit 
Ranking Comparison 

5.612 7 .001 3.000 1.74 4.26 

True 

Implicit vs. No Uncertainty 
Ranking Comparison 

5.231 21 .000 1.727 1.04 2.41 

Implicit vs. Explicit 
Ranking Comparison 

7.599 21 .000 2.000 1.45 2.55 

Table 4A. Implicit decision set use responses reflect a statistically significant difference in rankings for 
both the true and false groups. These results conflict with the expected distribution, since it would be 
assumed that participants who did not use the visualizations would not have had a change in rankings.  

 

One possibility is that users were relying on heuristics to evaluate policy rankings for 
each decision set. When faced with uncertainty, individuals must evaluate both the 
likelihood and desirability of an outcome (Tversky and Fox 1995), often without a 
definitive knowledge of all the factors that may influence an outcome. Individuals learn 
to apply abstract mental rules (heuristics) that result in the most favorable outcomes, and 
reduce the complexity of assessing alternatives and outcomes. Individuals who indicated 
that they did not use the visualizations, but had different rankings, may have relied on 
prior experience or understanding to work through the decision.  

No Uncertainty Use Response 

Test Value = 0 

t 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence Interval 
of the Difference 

Lower Upper 

False 

Implicit vs. No Uncertainty 
Ranking Comparison 

3.873 15 .002 1.500 .67 2.33 

Explicit vs. No Uncertainty 
Ranking Comparison 

4.341 15 .001 1.750 .89 2.61 

True 

Implicit vs. No Uncertainty 
Ranking Comparison 

4.266 13 .001 2.000 .99 3.01 

Explicit vs. No Uncertainty 
Ranking Comparison 

1.749 13 .104 .571 -.13 1.28 

Table 4B. No uncertainty decision set shows similar responses to implicit, with the exception that the 
difference shown on the true comparison is not statistically significant.  
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Explicit Uncertainty Use Response 

Test Value = 0 

t 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence Interval 
of the Difference 

Lower Upper 

False 

Explicit vs. No 
Uncertainty Ranking 
Comparison 

4.382 6 .005 2.286 1.01 3.56 

Implicit vs. Explicit 
Ranking Comparison 

4.500 6 .004 2.571 1.17 3.97 

True 

Explicit vs. No 
Uncertainty Ranking 
Comparison 

2.865 22 .009 .870 .24 1.50 

Implicit vs. Explicit 
Ranking Comparison 

7.800 22 .000 2.174 1.60 2.75 

Table 4C. Explicit decision set use responses reflect a statistically significant difference in rankings for 
both the true and false groups. These results conflict with the expected distribution, since it would be 
assumed that participants who did not use the visualizations would not have had a change in rankings.  

 

6. Conclusion 
Incorporating uncertainty information into GIS data and output is a vital component for 
the effective use of spatial data to support decision making under uncertainty. This work 
focuses on a method for incorporating decision frames of stakeholders into uncertainty 
visualization. Doing this requires understanding what aspects of a problem are uncertain, 
that manner in which decision makers currently work through or interact with that 
uncertainty, and what information they need/desire when making decisions. As this case 
study demonstrates, implicitly representing uncertainty offers a means to integrate 
decision frames and uncertainty into a single visualization. The focus here shifts from the 
importance of individual uncertainty values to identifying the relationships and 
interactions between decisions, uncertainty and outcomes. As illustrated in this pilot 
study, showing this integrated view (implicit) results in different decisions than explicitly 
representing uncertainty, while still be viewed as uncertain information. The results of 
this study will support further research into the effects of implicit uncertainty 
visualizations, as well as the development of additional implicit methods.  

There are a number of factors about the administration of this survey could be modified if 
the survey were repeated. The repetitive nature of the survey made it take longer than 
anticipated to complete and resulted in 25 percent of the surveys being incomplete. 
Streamlining the survey information and questions might increase the completion and 
response rates. This issue also impacted collection of demographic information for all 
participants, as once they finished the decision sets, and then did not provide all of the 
requested demographics. For the remainder of the study, the important demographic 
information will be moved to the beginning of the survey to ensure it is completed.   
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Extensions of the study could include identifying whether decisions improve or more 
“correct” decisions are made with the inclusion of implicit uncertainty. Involving more 
decision makers and individuals that work with uncertainty would allow evaluation of 
how experience and domain knowledge (factors in how a problem is framed) influence 
whether implicit uncertainty informs decisions or is seen as uncertain.   

This material is based upon work supported by the National Science Foundation under 
grant no. BCS-1026865 Central Arizona-Phoenix Long-Term Ecological Research. 
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