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ABSTRACT: The cartographic community has taken a renewed interest in evaluating the effectiveness 
of automated map displays, given their increasing prevalence among general map users. The changing 
values of the mapped area from frame to frame in a dynamic thematic map constitute its main element of 
visual complexity, while many of the peripheral map components often change little (titles) or not at all 
(scale bars, color ramps). Building on recent research into visual complexity as it relates to dynamic 
thematic mapping, this study developed a raster-based GIS model for evaluating the graphical variability 
between sequences of choropleth maps as they would appear as scenes in a dynamic map. The evaluation 
of visual complexity is based on two previously established metrics, Basic Magnitude of Change 
(BMOC)  and Magnitude of Rank Change (MORC), for describing the variability and average class 
‘jump’ for enumeration units across map scenes. The model presented in this paper uses a neighborhood 
focal operator that sequentially moves across the entire map, replicating the user’s viewing perspective as 
it divides the scene to instantaneously focus only on the part of the map within the foveal viewing area, a 
zone of enhanced visual-cognitive acuity. This model accepts a single vector map, uses its class 
membership attribute data as inputs, computes the BMOC and MORC variability, and writes the value to 
the focus. The model output is two smoothed map images depicting relative visual complexity values for 
the sequence of maps. While the neighborhood paradigm can theoretically be used to quantify change on 
either a vector or raster map, the raster-based approach suggests several improvements over one based on 
vector polygons.  These include a potentially higher degree of accuracy in modeling the user’s  
perspective, especially if enumeration units vary widely in size within the foveal area and map itself, plus 
the ability to use (with minimal customization)  existing image-processing software such as ERDAS 
Imagine,  ArcGIS Spatial Analyst  and ENVI to perform analysis of dynamic map complexity. 
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Introduction 

Visualization and dynamic map design are two of the most active research fields in modern 
cartography. This is not surprising, given the prevalence of increasingly sophisticated hardware 
and software, access to cloud-computing resources via the Internet , and the immense quantities 
of geographic data that are currently being collected, such as high-resolution remotely-sensed 
datasets. Today, while technological capabilities exist for processing these datasets, what is now 
needed is investigation into improved ways to synthesize these spatial data into forms that allow 
scientists to effectively analyze and model complex systems such as global-scale atmospheric 
circulation models. The need for advanced visualization techniques for exploratory data analysis, 
and for scientific research such as epidemiological mapping is great, and has driven visualization 
research since its early days (DiBiase et al. 1992). 

However, there is an emerging area of visualization research that is tailored to a different 
audience – that of the casual map user. ‘Casual’ refers here to non-scientists such as the citizen 
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accessing the local municipal online GIS service, the high-school student researching a term 
paper, the voter interested in past election returns, or the visitor to the US Census website. While 
variation does exist within this group with respect to age, socioeconomic status, education level 
and other characteristics, its members tend to have two things in common. These are a) the 
probable lack of a specialized background in data analysis or the sciences, and b) a limited 
amount of time to devote to the task (i.e., they are not being paid to analyze the data, as a 
researcher may be). For these users, the Internet is the medium through which most digital 
spatial data is accessed, and thus the digital web map, in either static or animated form, is often 
the method of spatial data presentation most commonly encountered  by these users in their 
investigations. It has been argued that map animations more congruently depict change in spatial 
phenomena with respect to time than do static maps (Slocum et al., 2009). While researchers and 
data analysts typically explore the complex interrelationships among numerous variables in the 
course of their work, casual map readers are more often exposed to displays that map a single 
variable. To be effective in communicating both general trends and specific information to these 
casual users, cartographic complexity may have to be sacrificed for the sake of clarity and ease 
of interpretation. One method does not ‘fit all’ users when it comes to dynamic geovisualization. 

Since this paper focuses on using raster-based GIS modeling to evaluate complexity in dynamic 
choropleth maps, a distinction must be made here: the term ‘dynamic map’ or interactive map 
can also refer to other types of non-static maps, such as digital thematic displays in which the 
user clicks on or ‘mouses’ over a polygon to access more detailed information about a specific 
area, often in the form of a ‘bubble’ or small data table. These are fundamentally different from 
the type of map animation examined in this study.  

Due to the fact that dynamic – or animated – maps are often (although not always correctly) the 
medium of choice for communication with casual users, the topic of designing effective 
animated maps has received increasing attention in the literature, especially during the past 
decade. This research has begun addressing the issue of temporal constraints, cognitive load and 
complexity with respect to these animations’ interpretability by map users. It appears possible 
that rapidly advancing technology for creating animations (plus wider access to these techniques 
by non-specialist amateur cartographers) risks conflicting with what has been termed the 
‘bottleneck’ of the map user’s finite cognitive capacity (Harrower, 2007). This is exacerbated by 
the very nature of animation, since each scene follows the previous one at a fixed pace that is 
often not directly controllable by the user. Some have suggested that VCR-type controls can give 
users more control over the animation’s pace (Harrower, 2003), but others argue that this control 
– pausing the animation to allow fuller absorption of information –  degrades or removes 
altogether animation’s chief benefit of temporal congruence, effectively turning the animation 
into little more than a set of small multiples (Harrower and Fabrikant, 2008). Still others have 
questioned the general effectiveness of animation (Tversky et al., 2002).  

Although the most recognizable animated web map is probably the weather map, the choropleth 
map is also a common dynamic map type in web displays, and is a popular means of presenting a 
single geospatial theme to users. Interestingly, its use in dynamic displays presents several 
important issues that must be addressed (it is outside the scope of this paper to address the 
questionable usage of choropleth maps - static or dynamic - to depict inappropriate data 
distributions.). One notable aspect of the dynamic choropleth map is that, unlike an animated 
isoline, dot-density or proportional symbol map, its spatial arrangement (i.e., its polygon 
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structure) is usually fixed throughout the animation, while the values of the mapped variable 
change or persist according to their spatio-temporal distribution. Thus, the change in the class 
(which here means lightness or hue) of the polygons that represent the enumeration units of its 
mapped area is the animated choropleth map’s chief element of inter-scene complexity. While it 
could be argued that reducing the number of volatile elements may make choropleth animations 
easier to understand, static choropleth maps have in fact been found to be slightly more 
‘complex’ than isoline maps for representing identical datasets, especially for communicating 
general spatial trends (MacEachren, 1982b). Moreover, both cartographic research (Fish et al., 
2011) and the cognitive psychology literature (Levin et al., 2000; Rensink 2002) have shown that 
humans are susceptible to ‘change blindness,’ or the inability to detect surprisingly large 
graphical changes from one scene to the next. The topic of change blindness is especially 
germane to the study of choropleth map complexity since, with polygonal extent fixed and no 
visual cues present other than (the sometimes-subtle) lightness change, it is possible that 
polygons may change class during an animation without the reader’s noticing. This is especially 
important in animations containing both large and small polygons, whether regionally stratified 
or intermixed. On the other hand, it is also possible for animated choropleth maps to show the 
movement of a cluster over time, and, if visually salient, this movement may attract a viewer’s 
attention. This allows the anticipation and prediction of its next location in each successive frame 
in an animation (Griffin et al, 2006).   

It seems reasonable to assume that a map viewer can visually attend to only a limited number of 
change events or mini-scenes during even a short animation, particularly if the extent of the 
mapped area is large. One example of this would be a web map of US states that occupies half of 
a typical-size computer screen – in this case, a user focusing on class change in New England 
may not notice similar change in Oregon, since it is likely taking place in the user’s peripheral, 
vs. foveal, vision. Obviously, this is not a major issue if either of the following is true: a) the 
viewer focuses on one area (such as a home state’s population change) during the entire 
animation to the deliberate exclusion of all other areas, or b) the viewer has prior knowledge of 
the data’s distribution or temporal trend, and is viewing the animation only to confirm this 
knowledge. In either case, the viewer’s cognitive load is significantly diminished. Scale plays a 
role here since, to continue with the example given above, changes in both New England and 
Oregon might achieve a similar level of visual and cognitive salience if the map’s extent was 
instead shrunk to 7 cm across. For this paper, it is assumed that the map reader is a casual user 
viewing an animation to learn the general trends in a dataset rather than specific values, and the 
complexity of animated choropleth displays is here evaluated specifically for these users.   

Issues of change blindness, cognitive load and general pattern recognition have led researchers to 
create two magnitude of change (MOC) metrics for quantifying localized inter-scene complexity 
of animated choropleth maps, and to propose models that evaluate adjacent animation scenes 
using these metrics in a vector-based modeling environment (Goldsberry and Battersby, 2009). 
Their work with these metrics forms the starting point for this paper, and will be reviewed in 
more detail below. Building upon their work, the purpose of this study is twofold: 1) it applies 
the same MOC metrics, but in a raster environment, and 2) it uses ArcGIS’s Model Builder to 
make the model easier to use, requiring less input from the user, and thus, less potential for user 
error. The format of this paper will be as follows: section one introduces the topic, then a brief 
review of relevant literature in section two will be followed in section three by an outline of the 
requirements and methods of developing the raster model. Section four discusses the differences 
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between the results of the vector and raster output for similar datasets as well as ways to compare 
these results, and  section five concludes by summarizing key points and suggesting paths for 
future research.   

Literature Review 

Static Map Complexity 

While study into designing effective animated maps began at least as far back as Norman 
Thrower’s brief ‘how-to’ guide (Thrower, 1959), the bulk of research into map complexity prior 
to the late 1990s involved the study of static maps. This reflects the technical limitations of the 
nascent digital era, which resulted in the relative scarcity of animated maps. The static map 
literature’s importance in the current discussion cannot be understated, however, since all map 
animations can be understood as being composed of sequences of static maps, punctuated by 
transitions such as ‘tweens’ or ‘wipes’ (Battersby and Goldsberry, 2010).  Moreover, the MOC 
metrics are deployed by the raster model on a static ‘difference’ map between two frames; this 
intermediate, ‘imaginary’ map is the actual input to the GIS model.  Finally, many of the studies 
on map complexity have tended to focus largely on choropleth maps, making a comparison 
between these findings and those of the current study more meaningful. 

What is complexity? MacEachren (1982a) distinguishes between two different sub-types: 1) 
graphical complexity, or how difficult it is for the map reader to visually decode the information 
presented in the map display, and 2) conceptual complexity, or  how intellectually challenging 
the mapped variable is to comprehend. For example, an unclassed choropleth map representing 
burglary rates for the 50 states is one example that ranks rather high in graphical complexity 
(unclassed schemes generally take more time to interpret), but low in conceptual complexity 
(most people understand the concept of a burglary rate, and the term itself -  as well as potential 
spatial patterns - is familiar to them). On the other hand, a classed choropleth map for the 50 
states depicting ordinal classes of low, medium and high levels of out-of-wedlock pregnancies to 
women under age 30 as a percent of all such pregnancies presents exactly the opposite scenario.  
While such a map with three non-numeric classes of ‘low’, ‘medium’ and ‘high’ is easy to 
interpret graphically, its variable is more conceptually demanding – it takes a bit of time for 
many people to grasp. This study focuses mainly upon graphical complexity. 

Castner and Eastman (1984, 1985), approaching complexity from a slightly different angle, 
employed eye-movement tracking of human subjects in a series of studies seeking to discover 
what drew a viewer’s attention to a particular part of a map.  Their methodology evaluated a set 
of simple choropleth maps using graph theory. Graph theory classifies objects or shapes 
according to the number of faces, edges and vertices in a graphical display, and provides a 
conceptually simple yardstick for comparing choropleth maps, since their vector polygon format 
uses these same topological elements. Castner and Eastman’s metric of a map’s complexity was 
entropy, and they compared highly-entropic regions within a map to higher ‘hit’ rates and longer 
dwell times from the eye-tracking analysis. Their research only considered the geometry of a 
map object (such as an enumeration unit), and did not address issues relating to color differences. 
Because much of the literature cited here combines geometry and color, this focus on graphical 
entropy is helpful in singling-out these effects (inter-scene complexity) from simple color 
changes (intra-scene complexity) in capturing the map reader’s attention. Research into entropy 
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was continued by Bjork (1996). Eye-movement research into dynamic map complexity using 
‘gaze-maps’ has recently been performed by Fabrikant and colleagues (2008, 2010).  

Steinke and Lloyd (1981, 1983) conducted a series of studies to compare three measures of a 
choropleth map’s graphical variability: correlation (‘similarity of overall map patterns’), 
blackness (‘similarity of the spatial units within greyscale map classes’)  and complexity (‘class 
similarity of the neighboring spatial units’) (Steinke and Lloyd 1981, p. 13). The authors’ 
complexity coefficient measured the size of neighboring polygons of different class 
memberships, a methodology with roots in graph theory. Test subjects were found to judge map 
pairs’ similarity based first on blackness, then on correlation and complexity, using these 
researchers’ narrow definitions of the terms. It is assumed that the ‘blackness’ metric is not 
exclusive to greyscale maps, but could be applied to any monochromatic choropleth map as tonal 
‘darkness’. The present study’s use of the term ‘complexity’ is semantically broader, 
encompassing all three of the above graphical attributes; however, by statistically quantifying 
graphical differences between choropleth maps, Steinke and Lloyd’s work probably has the most 
immediate relevance to the present study of the pre-animation research reviewed. 

Distinct from the vector, choropleth map research trend, Olson (1975) used 10-by-10 grids of 
greyscale raster cells, in a study which compared their levels of spatial autocorrelation to human 
test subjects’ perceptions of their complexity. Based upon her study’s mixed results, she 
hypothesized that an objective quantification of map complexity may be difficult. Due to 
variability between individuals’ visual acuity and perceptive-cognitive capacity, arriving at 
measures of a graphic’s interpretability or complexity has proven elusive, and Olson’s cautionary 
opinion on the subject of seeking a use-anywhere quantitative yardstick of map complexity is 
significant. 

More recently, Fairbairn (2006) took a new approach to investigating graphical complexity. 
Under the assumption that the more homogeneous the detail in the map, and the higher its 
proportion of ‘white space’, the more compressible it is as digital file, he created several vector 
and raster maps at three different scales apiece, and compared each map’s respective file 
compression ratio (using several lossless algorithms) to several measures of the intra-map 
variation. These measures included Shannon’s diversity and evenness indices, Moran’s I 
autocorrelation coefficient, and, for the panchromatic images, the ratio of black to white area. 
Using principal components analysis to narrow his results, he found that run-length encoding 
(RLE) file compression and spatial autocorrelation showed the strongest relationship (-0.91). 
One improvement to his study would be to see whether map readers’ opinions also were in 
agreement. However, file compression as a metric seems unlikely to work well for a choropleth 
animation’s individual frames, since whatever their level of complexity, compression ratios 
would probably be fairly constant since only the fill colors change from scene to scene.  

At its time of publication, each of these studies significantly advanced cartographic knowledge, 
and each of them informs the current study. Although focused on static maps, they have much to 
offer in evaluating dynamic choropleth map complexity, since an animation ‘frame’ contains 
many of the same elements as a static map. However, of even greater value to this study is more 
recent scholarship in the field of animated map design. 

 

Proceedings - AutoCarto 2012 - Columbus, Ohio, USA - September 16-18, 2012



6 
 

Complexity of map animations 

DiBiase and colleagues (1992) proposed the addition of three ‘dynamic visual variables’ to the 
seven developed by Bertin (1983) for static maps. These new variables were 1) Duration (how 
long each scene persists on-screen), 2) Rate of Change (the relationship between magnitude of 
scene change and the duration of that scene), and 3) Order (chronological, attribute or other). The 
MOC metrics under evaluation here measure Rate of Change. Duration and Order may influence 
interpretability and therefore the perceived complexity of an animation, but are not the focus of 
this paper. 

The present study of animated maps’ complexity is largely based on the research of Goldsberry 
and Battersby (2009). Three aspects of their work merit particular attention.  First, as stated in 
this paper’s introduction, they have developed a pair of metrics for evaluating change between 
choropleth maps - Basic Magnitude of Change (BMOC), and Magnitude of Rank Change 
(MORC). Second, they distinguished between three levels of change detection for choropleth 
animations: Level 1 (polygon changes class – corresponds to BMOC), Level 2 (polygon’s class 
membership increases or decreases), and Level 3 (the magnitude of the positive or negative 
change is detected – corresponds to MORC). Third, their research was the first to localize the 
study of graphical complexity, by considering limitations on the visual perspective of the map 
reader. This was done by evaluating the MOC for each enumeration unit (EU) of a choropleth 
map (as part of a continuous display) in relation to its surrounding polygons in the frame only 
within the foveal area, the region of a human’s highest visual and perceptual acuity (Williams 
1982, Goldstein 2007). The foveal area (FA) is defined based on an angle of 1.5 to 2° on either 
side of a point directly in front of a viewer’s eyes, and thus its diameter varies as a function of 
viewing distance. If this page is viewed from 50 cm (arm’s length or average eye-screen 
distance, the foveal area is about 3 cm in diameter.  Assuming a classed choropleth map 
animation, for any pair of scenes:  

 

BMOC  =  
ி	௦௧௧௨௦		௦௦		௧௧	ா௦		࢚࢛ࢉ

௨௧		ா௦		௦௧௧௨௦	ி
 

MORC  =        
ி	௦௧௧௨௦		௦	௦௦	௧௧		࢛࢙

௨௧		ா௦		௦௧௧௨௦	ி
 

For two adjacent map animation frames, these metrics’ outputs differ from each other only in 
cases where enumeration units change by more than one class. The output is a map with polygon 
decimal values ranging from 0.0 to a maximum of either 1.0 for BMOC (i.e., every EU in the FA 
changed), or [(# classes) * (# EUs in the FA)] for MORC (every EU in the FA changed by the 
maximum # of classes in the map). In their study, a Python script was written which computed 
the metrics using the shapefile’s attribute table. The resulting value is stored in the polygon at the 
center of the instantaneous foveal area, and the program moves on, visiting each polygon in the 
change map via the attribute table.  
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Methods 

The goal of this study is two-fold: 1) to apply the Magnitude of Change (MOC) metrics to a 
raster data model, in order to discover whether these metrics produce significantly different 
results when the data type of the enumeration units is altered from indivisible vector polygons to 
rasterized symbolization that (depending on the cell size chosen) has the same graphical 
appearance but can be subdivided, and 2) to automate this functionality by constructing a GIS 
model within ArcGIS’s Model Builder. Doing so has the advantage of making the process more 
user-friendly, by eliminating most of the  Python programming involved in the existing vector 
model. The model’s specific requirements are as follows:  

1) Accept any pair of choropleth maps with identical classification schemes and polygons / 
EUs 

2) Compute MOC statistics for each pixel’s neighborhood, as defined by the foveal area 

3) Size the foveal area / neighborhood automatically using typical eye-screen distance, and 
the scale and units of the input map as currently displayed in ArcMap. This should 
require no computation or other input from the user. 

Since the basics of the MOC computation (vector and raster) have been detailed above, this 
section will briefly outline the differences between the functionality of the two models, by 
describing each model step sequentially.  

Model Input 

Both models accept a vector shapefile as initial input; in the vector model, the shapefile’s full 
path reference is a hard-coded model attribute, while the raster model, as a Model Builder 
process within an active ArcMap .mxd document, allows input selection via a parameter pop-up 
dialog. (To take advantage of the automated computation of the foveal area below, the shapefile 
must be open in the map document while the model is in use.) Both require that each polygon’s 
class membership (1,2,3…N for an N-class map) for each of the two map frames being compared 
exist in a separate column of the attribute table. The raster model then uses this information and 
the desired analysis cell size to re-create the two maps under comparison via a Vector-to-Raster 
conversion. 

The other important input is the extent of the foveal area, which is coded as a local variable in 
the vector model, where the user must perform this computation ‘by hand’ and embed the value 
in the code. However, in the raster model, this is computed with no user input, via a script that 
reads the scale and map units from the current data frame, assumes standard eye-screen distance 
(50 cm), and computes the radius of the foveal area in map units as a local variable. A 
conditional statement applies the appropriate conversion factor (map units can be meters or feet, 
but not degrees), since the Focal Statistics operator accepts a window radius in map units, not 
centimeters. The expression for the computation of the foveal area radius for input to the 
Neighborhood operator is given below. 

 

Proceedings - AutoCarto 2012 - Columbus, Ohio, USA - September 16-18, 2012



8 
 

ௗ௨௦ܣܨ ൌ tanሺ1.5ሻ ∗ ாௌݐݏ݅݀ ∗ ݈݁ܽܿݏ ∗  ܨܥ

Where: 

 is the eye-to-computer screen distance for the map user, in cm   ࡿࡱ࢚࢙ࢊ

 is the appropriate conversion factor to change radius from cm to map units        ࡲ

 

Determination of Inter-scene Class Change 

The vector model uses basic value subtraction in a loop structure to derive the absolute 
difference of the class membership attributes, while the raster model obtains this result via a map 
algebra function. A new difference (‘imaginary’) raster map is thus created at this step, which 
incidentally may or may not resemble the mental image of change used by viewers of the 
original animation.  

Derivation of Change Metrics 

As part of the loop structure, the vector model uses the Select By Location function and the 
foveal area’s radius (as the search distance) to compute metrics for each record and write the 
result to a new column in the attribute table. The raster model uses the Neighborhood toolset’s 
Focal Statistics tool to visit each cell in the difference map, perform the calculation and write the 
result to the cell. It accepts the previously-derived foveal area as the radius of a circular 
neighborhood window. The main difference in the result is that, provided the cell size is small 
enough, the raster model computes metrics for cells precisely within the foveal area, while the 
vector model includes all polygons of which any portion falls within the foveal area. This 
difference is detailed further in the Discussion section, and illustrated in Figure 2. 

Model Output and Visual Comparison 

The output of the vector model is the input shapefile, with added fields for the two MOC metrics. 
These decimal fields can be symbolized in ArcMap, either classified or as continuous greyscale. 
The raster model’s MOC output is two new raster map-images.  

The models’ respective output can be symbolized several ways. One way to compare the results 
of the vector output is to create a pseudo-stretched greyscale effect (to imitate the raster’s 
continuous output) by symbolizing the MOC metrics using quantiles and the maximum number 
of classes in ArcMap (32), and turning off the polygon outlines. Figure 1 compares the two 
outputs using this method, showing the source ‘difference’ map as well, in which blue represents 
counties that changed class between two adjacent animation frames. Insofar as the whiter areas 
represent polygons or pixels of high MOC, while darker parts of the map changed little, these 
map-images somewhat resemble a single band of remotely-sensed data. The areas marked by red 
circles indicate areas with limited change according to the ‘difference’ map, but which are 
labeled in the output as regions of very high change. For more on this behavior, the reader is 
referred to the Discussion section, below.  

Conversely, the raster output can be scaled to more closely resemble that of the vector maps by 
level-slicing, or classifying its continuous, smoothed images (not shown). However, this type of 
analysis must be carried out carefully, as the classification method chosen will greatly affect the 
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appearance of the result, and thus its usefulness in determining the location(s) of highly complex 
areas in the animation.  

 

 

  

 

                                     

 

Figure 1: MOC complexity model graphical output (clockwise from top): the source difference map, vector-based 
MORC, and raster-based MORC. Source dataset is a four-class equal interval classification of US county population 
for 1990 and 2000. Raster cell size is 5 km. Under close examination, the foveal area’s diameter becomes apparent. 

 

Discussion 

Limitations of vector-based focal analysis 

When viewed within a GIS, choropleth maps are fundamentally vector-based data displays. The 
geographic area in question is represented as a polygon layer (often a feature class or shapefile), 
with the enumeration units colored an appropriate tint. However, these units cannot be 
subdivided, and the phenomenon being mapped is assumed to uniformly fill the entire area of 
each unit. Indeed, this is often seen as one shortcoming of choropleth maps for mapping certain 
types of spatial distributions. 

Figure 2 depicts the variation in the size of the instantaneous foveal area, when processing is 
constrained by a vector data structure. Elko, Nevada and Hancock, Kentucky were selected as 
examples of two enumeration units (here, counties) of vastly different sizes and environments, 
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whose comparison using foveal area-based MOC metrics poses significant problems when 
comparing the ‘complexity’ of the two regions in a single choropleth map animation. Two 
different problems exist which are compounded when combined. First, since the instantaneous 
foveal area is derived by the vector model by using a fixed radius from the boundary of the 
polygon currently under investigation (here, a county), the foveal area for any polygon will of 
necessity be larger than it ideally should be. Unless the foveal area were computed for a 
dimensionless point (which removes choropleth maps from consideration), this holds true. In the 
example below, the transparent red buffer shows the effective 200 km ‘search radius’ for each 
county. This issue could be removed by using county centroids (black dots) as a preprocessing 
step in the analysis. 

                            
Elko county, Nevada     Hancock county, Kentucky

                                 

 

Figure 2: Variation in polygons counted as belonging to instantaneous foveal area as a function of polygon size, 
shape and arrangement. Solid black line is 200 km buffer from county centroid (vector) or cell (raster). 

  

Yellow = county being processed 

Transparent red = 200 km buffer from county border 

Blue = counties that fall ‘within’ this buffer (ArcGIS’s definition)
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However, a further problem lies in the fact that the model uses the ‘Within’ option in Select by 
Location, and any county of which even a tiny portion lies within this irregular radius is counted 
in its entirety. Of course, other Select options could be used, such as ‘completely within’ or 
‘centroid within,’ but the problem posed by large, irregular counties would persist, albeit less 
noticeably. Although only count, not area, is used in the MOC metric derivation, the model’s 
inclusion of counties that changed but which are over 450 km from the edge of a county (as in 
the Elko example in Figure 2)  can have a significant, artificial, MOC-inflating effect in 
animated maps which consist of enumeration units of different sizes, and / or significantly 
irregular shapes. In this example, the light blue counties’ class change or lack of it can impact the 
MOC value assigned to the county being processed, shown here with yellow hatching. 

This means that large, oddly-shaped counties in the test dataset surrounded by other large, oddly-
shaped counties (such as those found in Nevada, Arizona and other western states) may be coded 
with disproportionately high MOC values. While it is to be expected that larger polygons will 
have higher MOC values due to their higher visual salience, this advantage is augmented by 
‘drawing on’ neighboring units, even if only a small portion of these units fall within the search 
radius for the polygon whose MOC is being computed. This advantage is problematic when 
comparing these regions to others within the same animation which have exactly the opposite 
characteristics, of which Hancock, Kentucky (right) is one example. Due to the small size and 
uniform shape of most of Hancock’s neighboring counties within the foveal area, the match 
between the counties truly within the instantaneous foveal area and those within a 200 km search 
radius used in its MOC computation are much more similar than in the case of Elko, Nevada. 

This issue is significantly reduced by using the raster model, since each unit is no longer 
structurally a polygon, but a polygon-shaped mass of individual cells. Assuming that the cell size 
chosen is small enough, the raster-based foveal area closely resembles the circular buffer 
pictured in Figure 2 by the solid black line, and favorably compares with the ‘zero-dimensional 
point’ buffering situation mentioned earlier in this section. The result is a more equal treatment 
of all units regardless of size during the scanning and MOC-computation process. 

A second limitation is one of convenience. Few, if any, commercial software packages are 
currently able to perform moving window calculations as part of a pre-packaged vector-based 
routine, since such analysis methods are fundamentally a raster construct. Of course,  scripting 
languages such as Python offer flexibility to developers in customizing applications, but this is 
dependent upon programming skill. This approach has been used by Goldsberry and Battersby 
(2009) in modeling the complexity of change within the county-level population change dataset 
from the US Census described earlier. ArcGIS’s Model Builder module contains a Feature Class 
Iterator function that can ‘visit’ each enumeration unit, but any statistical measures for windows 
or ‘kernels’ centered on these areas must be custom-programmed within the Python 
environment. However,  there is only the illusion of a true moving window. 

A raster model using existing software 

This study instead developed a raster-based model – one that accepts the same input map as in 
the case of the vector model, converts class membership values stored in its attribute table into a 
pair of raster map-images, generates a  difference map via map-algebra, and uses a focal GIS 
operator to scan each cell in the difference map. The window is set to the size of the user’s foveal 
viewing area as a function of  the scale of the map and the eye-screen distance. BMOC and 
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MORC is computed for all cells within the window, and the resulting value is written to the 
center cell. The only major functional difference between this model and its vector predecessor is 
that this one uses cells and not irregular units. Two greyscale maps are output, with individual 
pixel values replacing vector polygons in depicting which EUs changed and which persisted 
across the animation pair. 

A prototype model was developed that used ‘out-of-the-box’ ArcGIS Model Builder and 
ArcToolbox Focal Statistics functions (e.g., the MEAN operator). As part of computing BMOC, 
the Reclass function was also used. Key variables set to parameters allowed a dialog box to open 
upon initial execution of the model, asking the user to supply the reference of the input map, the 
workspace for the project, the names of the two fields in the attribute table to be used to create 
the raster map pair, and the cell size. However, the user is relieved of defining the parameters of 
the Neighborhood window. This window’s shape is locked to ‘circular,’ based on research that 
has found (Williams, 1982) that the human foveal area is best approximated by a circle or 
slightly elliptical shape, and its radius is computed assuming a standard eye-screen distance of 50 
cm. 

Comparison of the two models’ output 

The dataset used in this paper is US county-level population change by decennial Census year, 
and the adjacent frames (if it were displayed in animated form) depict 1990 - 2000 population 
shifts. It reveals a pattern whose general trend will be familiar to many readers; the South and 
Southwest are growing in population at the expense of the Northeast. A visual comparison of the 
two model’s graphical outputs in Figure 1 shows general agreement between the models on 
which counties saw sufficient population change between 1990 and 2000 to effect a change in 
class membership. However, the two outputs are far from identical; while the vector map shows 
class change as more specific and identifiable, but with sharp discontinuities at political 
boundaries,  the raster’s representation of the same difference map using the foveal area filter 
greatly smoothes the MOC data. It is this behavior that may cause the raster modeling framework 
to more closely resemble what a map reader subconsciously ‘sees’ when locating and 
interpreting class change among choropleth polygons.  

 

Figure 3: Result of subtracting  MORC vector output from raster output (Figure 1). Yellow indicates areas where the 
two models were in general agreement about the magnitude of perceived change as measured by the localized 
metrics. 
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One way to compare these outputs is to subtract one from the other. Figure 3 shows the result of 
subtracting the vector output (rasterized after the model finished processing, to permit map 
algebra) from the raster output. The cell size used in this study is 5 km, which at the scale of the 
dataset, was sufficiently small to avoid visible pixilation. This method yields positive values 
(red) where the raster model over-indicated the level of class change relative to that shown by the 
vector model, and negative values (green) where raster under-indicated change. Yellow indicates 
areas within ½ standard deviation of the mean, which was close to zero; due to the normal 
distribution of brightness values, these class breaks were chosen in order to highlight areas where 
both models predicted about the same amount of perceived change.   

A second way that the raster output can be analyzed is to perform histogram stretching on the 
image-maps. This can be done with the vector model output as well, provided that it has first 
been rasterized. Doing so can increase understanding of the MOC maps in Figure 1 by 
graphically enhancing MOC in some areas of the map as an aid to regional analysis, or it can 
isolate ‘hot spots’ or zones of highest inter-scene change complexity. When used this way, 
histogram manipulation can define various ‘resolutions’. Figure 4 shows examples of both 
actions. 

 

      
Figure 4: Histogram contrast stretching as applied to the raster model’s output. Two standard deviations (left), 0.5 
standard deviation (right).  

 

A final observation should be made here: it is readily apparent from Figure 1 and Figure 4 
(especially the 2 standard deviation map) that the zones of highest complexity as indicated by 
either  model often do not contain the highest number of polygons that changed class (compare 
the areas in Figure 1 circled in red). For example, a region along the Gulf coast in Mississippi 
and Louisiana is shown as a very complex region, and is thus colored bright white in the output. 
However, an examination of the ‘difference’ map shows that this area contains only a few 
scattered counties that changed class during the ten-year period: most of the change occurs 
around the periphery of a foveal area centered on this region. A similar behavior is apparent in 
the Southwest, where high-intensity change areas are found, particularly in the raster output, 
offset from change areas in the difference map by a significant amount. This is a result of the 
interplay between the focal MOC operation and the size of the foveal area. Since the focus of the 
moving window has no precedence in the calculation, i.e., change (or the lack of it) in the focus 
county (vector) or cell (raster) can be trumped by a lot of changing units near the edges of the 
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foveal area. The result seems to be a possible shift in the focus of change; whether this is an 
accurate representation of the viewer’s perspective has yet to be seen. 

                                                                                                                                                                   

Conclusion  

This paper outlines an improved framework for evaluating the complexity of animated map 
displays. The raster version of the MOC animated map complexity model shows promise. It is 
easier to create and modify, has a shorter processing time than the vector model at all but the 
very smallest cell sizes, and uses a consistent-sized instantaneous foveal area during the focal 
analysis and metric generation.  

However, further research is necessary to address questions raised by both this project and the 
research of Goldsberry and Battersby (2009). How well do the MOC metrics agree with a map 
reader’s cognitive process? How well do they measure complexity as experienced by such a map 
reader interpreting an animated choropleth map? What about the concept of the foveal area, and 
of its size and shape? While it seems that the regularly-shaped circular window generated by the 
raster model (Figure 2) would more closely imitate an organic process of the human eye-brain 
system, perhaps this is not true.  

Questions of a more psychological nature include, What attracts the eye’s attention to one part of 
an animation rather than to another? Is it related to a single large polygon that changes 
significantly, causing the eye to search its vicinity because ‘something is happening here?’ Or 
does a cluster of changing polygons have more of an effect in this situation? Does the difference 
map really replicate an ephemeral mental image instantaneously created by the map reader? 
While these types of questions have been partially addressed by cognitive scientists, among them 
Nothdurft (2002), the cartographic literature has only recently begun to focus upon them. 

Neither the raster model developed in this paper nor its vector predecessor have yet been 
validated with human subjects. Doing so may begin to answer some of these questions, but a 
wide variety of test animations will need to be presented to large, representative samples of map 
readers before any definite verdict on MOC effectiveness can be reached. Comparison of MOC 
output maps with eye-tracking analysis and ‘gaze maps’ would be one possible validation step.  

Modern GIS and image-processing systems  offer an substantial toolkit for research into these 
questions and others yet to be raised, while a growing body of existing research exists in both 
dynamic mapping and related fields. Work on validating these models using human-subject 
testing is ongoing, and the results promise to offer new insights into ways of quantifying the 
cognitive inter-scene complexity of map animations.  
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