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ABSTRACT: A growing need for demographic small area estimates beyond the scales of census 
units has led to increased interest in dasymetric modeling. Landcover-based residential areas are 
typically used as limiting ancillary variables to spatially refine demography to sub-tract level. 
This paper examines statistical associations between landcover-derived variables and census-
based housing characteristics at fine spatial scale defined by areas within census block groups. To 
validate, parcel data are allocated to these areas to create fine-scale ‘ground truth’ data for the 
attribute of interest (number of different building types) which is highly correlated to census 
housing attributes. A number of related ancillary variables are tested such as target zone area and 
measures of ‘urban-ness’ which are called Inner Dimension Metrics (IDMs). IDMs indicate for 
each pixel within the developed landcover class the minimum number of neighbors of the same 
class in each direction which is then averaged for each target zone. For each landcover class 
Poisson Adjusted Generalized Linear Models (GLMs) are computed to estimate each of the 
housing attributes at the target zone scale. We demonstrate our methods for Boulder County, 
Colorado. 

The results show highly significant relationships between the number of various building types 
and related ancillary variables across the different landcover classes. Maps of model residuals 
identify spatial clusters of over- and under-predictions of individual models. These preliminary 
results indicate that the related ancillary variables have predictive power for estimating census 
housing attributes at fine spatial scale.  This research could improve dasymetric models for small 
area population estimates by establishing a statistical basis for selecting related variables. It may 
also eliminate the need for limiting variables, since all dasymetric ancillary information could be 
considered as related variables. 
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Introduction 
An urgent need exists to improve small area estimates of demographic characteristics 
beyond spatial scales provided by census units such as tracts or block groups. Methods to 
create finer resolution estimates include dasymetric mapping (Semenov-Tian-Shansky, 
1928; Wright, 1936) - a special type of areal interpolation that makes use of other 
ancillary variables. Ancillary variables, which are assumed to have finer spatial 
resolutions than the source zones of the demographic data, allow the partitioning of space 
into homogeneous (target) zones minimizing variation within each zone and showing 
steepest changes in values at the boundaries (Mennis, 2009). The growing body of 
literature on dasymetric modeling describes the incorporation of various types of 
ancillary data such as landcover (Mennis, 2003), road density (Reibel and Bufalino, 
2005), Landsat TM (Yuan et al., 1997), parcel data (Tapp, 2010) or address points 
(Zandbergen and Ignizio, 2011). Two types of ancillary variables are commonly 
considered. Limiting ancillary variables constrain the study area to regions that can be 
populated versus areas that have zero population. Related ancillary variables are intended 
to define more complex relationships with population data to constrain or amplify 
demographic estimates at finer spatial scale. How to identify such meaningful 
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relationships objectively has been discussed for some time (e.g., Harvey, 2002; Li and 
Weng, 2005; Mennis and Hultgren, 2006; Maantay et al., 2007; Zandbergen and Ignizio, 
2010) and remains a persistent challenge (Mennis, 2009). One main reason is the absence 
of ‘ground truth’ data to establish statistics-based relationships between ancillary and 
population data at the scale of the target zones. Due to confidentiality issues publicly 
available population (census) data are aggregated and thus dasymetric population 
refinements at finer scales are commonly difficult to verify. 

Landcover data derived from remotely sensed imagery are the most common ancillary 
data type used in dasymetric mapping, frequently applied as a limiting variable to 
predetermine residential area. Attempts to use landcover as related variables usually 
suffer from above described problems and are often based on subjective assumptions 
(Eicher and Brewer, 2001; Mennis and Hultgren, 2006; Zandbergen and Ignizio, 2010). 
Thus one question is whether landcover can be used in a statistical framework to 
dasymetric modeling. This can only be done if statistical relationships between 
population data and related ancillary data can be established in an objective, validation-
driven way. This question is highly relevant because landcover data are often released as 
national datasets. Moreover, establishing objective statistical associations would allow 
researchers to carry out the same analysis for any study area within the same country. 

This paper proposes an analytical procedure to establish statistical associations between 
parcel data building-related attributes, which are highly correlated to census housing 
attributes, and variables derived from the National Land Cover Database (NLCD), to 
build a dasymetric model at a target scale finer than the block group level of the U.S. 
census data. Parcel data will support formation of a fine-resolution validation dataset, and 
be tested here for Boulder County, CO. In recent years, as an increasing number of local 
governments release digital cadastral records, it has been argued that land parcel data will 
improve the precision and accuracy of dasymetric maps (Tapp, 2010). Parcel data is not 
available yet in some parts of the country however, and often available only at significant 
expense. Also, parcel data provide only a limited number of attributes that can be related 
to census data and processing them is labor- and computer-intensive. The aim of this 
paper is to examine whether parcel data with their landuse/building type information 
allow establishment of statistical associations to variables derived from the NLCD. Since 
parcel-based building type is assumed to be highly correlated to census housing variables 
such as ‘Units in Structure’ (Table H30 in the American Community Survey 2006-10, 5-
year averages) the existence of such relationships would have considerable impact on 
small area estimation. For example dasymetric methods for estimating many different 
demographic attributes at the census tract level based on spatial allocation of household 
microdata (Leyk et al., in press) would greatly benefit from such advancement. It would 
allow use of these relationships to guide further allocation of households to fine-scale 
target zones inside census units and thus the computation of demographic summaries for 
all attributes found in public use microdata samples (PUMS) at the same fine scale.  

Data and Pre-processing 
Parcel data from Boulder county for the year 2008 (Figure 1) were obtained including 
geometry and attribute data. The data were filtered by the ‘Land Use/ Building Type’ 
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attribute to generate a parcel dataset of residential land use. Parcels were identified as 
residential if there was residential use or multi-use with one being residential indicated in 
the building type attribute. The residential building type categories had to be reclassified 
in order to create data as comparable as possible to the ‘Units in Structure’ census 
attribute (see below). Since categories do not overlap perfectly and the perspective of the 
data is slightly different (parcel/property information vs. household/housing information) 
comparability is close but not perfect. The resultant aggregated ‘Building Type’ classes 
were ‘One-Family Residences’ (including detached and attached as well as farm 
residences), ‘Duplex/Triplex’, ‘Multi-Unit Buildings with 4-8 Units’, which included 
condominiums, ‘Multi-Unit Buildings with 9 and more Units’ and ‘Manufactured 
Housing’ including mobile homes. 

 

Figure 1: Study area: Boulder County, CO. Top: Reclassified NLCD data overlain by census block group 
boundaries. Bottom: Reclassified building types derived from parcel data.  
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The second source of data is the 2006 National Land Cover Database (NLCD) produced 
by the U.S. Geological Survey. The NLCD is a 30 x 30 m raster grid of the entire United 
States, with each cell preclassified into a single landcover type based on remote sensing 
techniques. The NLCD classes deemed most similar in terms of expected population 
were aggregated (Figure 1). This resulted in one ‘Non-Residential’ class including water, 
barren and snow/ice, as well as three ‘Vegetated’ classes namely ‘Forest/Shrub’, 
‘Grassland’ and ‘Crop/Wetland’. These vegetated classes are kept separated because they 
are distinct classes and are found in different settings of landcover that can have different 
population and housing patterns. Finally the four ‘Developed’ landcover classes in NLCD 
(‘Open Space’, ‘Low’, ‘Medium’ and ‘High’ intensities) were left as single classes. 

A third source of data is taken from U.S. Census block group summaries of the housing 
attribute ‘Units in Structure’ (Table H30) from the 2006-2010 5-year estimates of the 
American Community Survey (ACS). Reclassifying the categories of ‘Units in Structure’ 
resulted in the five classes ‘One-Family Residences’ (including detached and attached), 
‘Buildings with 2-4 Units’, ‘Buildings with 5-9 Units’, ‘Buildings with more than 9 
Units’ and ‘Mobile Homes’. In order to test whether parcel data building types are indeed 
representative for ‘Units in Structure’ in ACS, correlations with block group summaries 
generated for parcel data building types will be calculated. The existence of such 
correlations is important to ensure that relationships between parcel-derived building 
types and landcover attributes are representative for the “Units in Structure”-landcover 
connection also at the scale of target units.  

Method 
The use of landcover data as a related dasymetric ancillary variable, and derivation of 
statistical relationships to census population at fine scales raises some interesting 
challenges. Landcover does not allow direct estimation of population attributes but 
appears to be indirectly linked to housing attributes as can be seen in definitions for 
different categories of developed land in NLCD. These definitions describe most 
common housing types. However, establishing statistical associations between census 
housing variables and landcover characteristics represents a difficult problem since public 
census population and housing data are aggregated to differing spatial units; spatially 
more precise data would be needed to examine whether associations exist at finer scales. 
Therefore the central question in this study is: Can building type information found in 
parcel data be used to identify statistical relationships between census housing attributes 
and variables derived from nationally available landcover datasets? Answering this 
question will help to better estimate the potential of landcover as a fine scale related 
dasymetric variable. Four different steps will be carried out in this study: construction of 
target zones; spatial allocation of parcel units to target zones; ancillary variable 
generation; and statistical modeling. 

Constructing the Target Zones 
Target zones in this paper were defined as areas of aggregated landcover classes found 
within block groups. As a consequence larger landcover patches, which span several 
block group units, were subdivided into groups of the same class each of which obtained 
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a unique identifier (Figure 2). Technically, the 
block group spatial boundaries were converted to 
raster data at NLCD spatial resolution. A simple 
map algebra operation created unique identifiers 
for each class of landcover found within block 
group areas. Since Boulder County contains 200 
block groups, each landcover class could occur up 
to 200 times, also representing the maximum 
number of modeling units that can be used to fit a 
landcover-specific model to estimate the number 
of different building types. 

 

Figure 2: Creation of target zones for dasymetric modeling: 
landcover patches within block groups. 

Spatial Allocation of Parcel Units to Target Zones 
In order to generate reliable spatial estimates of the numbers of buildings of different 
types at the scale of the target zones (landcover patch within a census block group; Figure 
2), parcel units were allocated to the various target zones. This allocation problem is not 
trivial and impeded by several factors. First, the landcover data and thus the target zones 
are in raster format with 30m resolution while parcel boundaries are in vector format. 
Second, the ratio between the relative sizes of a parcel unit and of a target zone can invert 
between urban and rural areas. In urban areas parcels can be very small (even smaller 
than a landcover raster cell) but parcels in rural areas can be very large and frequently 
include areas of different landcover classes within the same block group unit. Third, 
parcel units can intersect with block group boundaries such that landcover patches found 
within one parcel unit could be contained in different block groups. 

A spatial allocation was carried out as follows. First, the target zone areas in raster format 
were vectorized and intersected with the parcel units. The resultant vector dataset 
consisted of more than 181,000 features many of which were created as small fractions of 
parcels which crossed target zone boundaries. All polygons were retained to maintain the 
pycnophylactic property (Tobler, 1979). The pycnophylactic or mass-preserving property 
requires that while population is re-aggregated from source to target zones, the total 
number of entities must remain unaltered. 

Second, each parcel unit was distributed across the target zones it spatially intersected 
with according to proportions of these target zones within the parcel unit as well as 
conditional on the existence of certain landcover types. The following logical assignment 
procedure was applied: 

For each parcel: 
• Identify how many and what type of target zones can be found inside the parcel; 
• Calculate the proportion occupied by each of these target zones; 
• If only one target zone was found, allocate the whole parcel unit to this target zone; 
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• Else, if one or more target zones of any type of ‘Developed Land’ are detected the 
parcel is allocated to these target zones only; each developed land target zone obtains 
a fraction of the parcel that corresponds to its proportion on the total area of 
developed land within the parcel; all other landcover classes are excluded; 

• Else, if there are only target zones of type vegetated land (no developed) the parcel 
unit is proportionally allocated to each of the vegetated classes (relative to their 
area); if non-residential land is identified this area is excluded and proportions 
recalculated to the total area vegetated land. 

Summing up fractions of parcels allocated to target zones results in a statistically precise 
solution which preserves the pycnophylactic property and allows for derivation of 
meaningful summary statistics for small areas. Allocation results were created for total 
counts of buildings (i.e., parcels) but also separately for each building type category, by 
adding up fractional values only if the corresponding building type has been found as 
attribute. This allocation also allowed to create sub-block group maps of the number of 
parcels (i.e., buildings), as well as the number of each individual building type. Maps of 
building and building type densities could be created at the same scale. The resultant 
allocation represents both a dasymetric map of a housing attribute (‘Building Type’ 
which is related to census-derived ‘Units in Structure’) and at the same time reflects some 
kind of ground truth data. As these ground truth data are created at a spatial scale defined 
by landcover data they can be used to examine if statistical associations exist between 
these housing attributes and characteristics of landcover-derived target zones. 

Creating Related Ancillary Variables for Dasymetric Modeling 
To ensure that related variables are generic (i.e., they can be defined the same way for 
any other study area) they have to be directly derived from landcover data and extracted 
from within target zones. The first related variable used for statistical modeling was the 
area of the target zones since it can be assumed that the number of buildings as well as 
the number of particular building types are related to the extent of the spatial unit. 

It can also be assumed that the degree of ‘urban-ness’ or simply ‘how far inside of a 
developed region a target zone is located’ could influence the number of buildings and in 
particular of different types of buildings. For example, it could be expected that the 
further inside a developed region a target zone is located the more urban the building 
types will become, conditional on the underlying landcover class of the target zone itself. 
A measure was derived, which is called the ‘inner dimension metric’ (IDM). IDM 
quantifies for each developed land pixel in the NLCD the minimum number of neighbors 
which also belong to one of the developed classes, in all directions. The higher the metric 
becomes the further inside a developed region a considered pixel is located (Figure 3).  

For each target zone the mean IDM value was extracted as a zonal statistic. Three 
variants of this mean IDM variable were derived: IDMall which includes all developed 
classes (‘Open Space’, ‘Low’, ‘Medium’ and ‘High Intensity’), IDMlow which includes 
only ‘Open Space’ and ‘Low Intensity’ developed land, and IDMhigh which includes 
‘Medium’ and ‘High Intensity’ developed land.  
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Figure 3: Creating IDM surfaces; reclassified landcover (left), IDMall which includes all developed NLCD 
classes (middle) and IDMlow which includes only ‘Open Space’ and ‘Low Intensity’ developed land (right).  

Statistical Modeling to Examine Related Ancillary Variables 
The three IDM metrics were input to develop different landcover-specific models, since it 
has to be expected that relationships between outcome variables and related variables 
would be different within different landcover classes. For example, a model for ‘Low 
Intensity’ developed land would be computed based on all target zones that were created 
by regions of ‘Low Intensity’ developed land found in block groups. Since Boulder 
County contains 200 block groups, models can be fit on 200 entities at a maximum if 
every block group contained at least one pixel of the corresponding landcover class. In 
addition, individual models were computed for each of the six outcome variables (i.e., 
number of buildings and number of different building types) because within the same 
landcover class each outcome variable will have a different relationship to the individual 
related variables. This model setup resulted in the computation of 48 models in total. It 
also allowed for each landcover class the estimation of each of the outcome variables of 
interest and thus a very detailed examination for the existence of statistical relationships 
that would be useful for a dasymetric model based solely on landcover-derived variables.  

Since the statistical distributions of the number of buildings and numbers of different 
building types follow a Poisson distribution, Poisson Adjusted Generalized Linear 
Models (McCullagh and Nelder, 1989) were fit. The coefficient values, their p-values as 
well as the Akaike Information Criterion (AIC) establish the strength of observed 
associations between outcome and related variables. Maps of model residuals were 
created to examine their spatial patterns across the study area, to visualize where the 
model performs most accurately and where it over- or under-estimates. 

Results and Discussion 
All correlations between the reclassified census attributes (‘Units in Structure’) and the 
parcel-derived ‘Building Types’ were significant (p<0.01) on the block group level. 
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Correlation coefficients ranged from 0.57 to 0.95 for different categories. Some 
discrepancies between the sources will be addressed below, however these correlations 
provide evidence that parcel data ‘Building Type’ estimates can be used as reliable, 
spatially more precise, ground truth data for the ‘Units in Structure’ attribute in the ACS. 

In Figure 4 dasymetric maps are shown for two building types illustrating the spatial 
distribution of the outcome variables as well as the calculated densities at the spatial scale 
of the target zones. Such maps are useful in representing direct results when parcel data 
are used in combination with landcover data to create related ancillary variables which 
spatially refine the distribution of the housing attribute ‘Units in Structure’. Second, these 
maps show how related ancillary variables directly derived from landcover data can be 
used in the absence of parcel data if the statistical relationships described below prove to 
be stable.  

 

Figure 4: Top: Dasymetric maps for number of ‘One-Family Residences’ (left) and ‘Multi-Unit Buildings 
with 4-8 Units’ (right); Middle: The same attributes presented as densities; Bottom: Spatial distributions of 
residuals from models for the two building types. 
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Table 1 reports model fits for the different types of target zones and landcover classes. If 
a model could not be fit because there were no or very few target zones that overlapped 
with any residential parcels of the considered building type, it was assumed that no 
association exists between ancillary variables derived from these target zones and the 
corresponding outcome variable. 

As for the ‘Non-residential’ and ‘Vegetated’ classes it should be noted that only one 
related variable (the area of the corresponding target zone) could be used for modeling. 
Only two ‘Non-residential’ target zones had values greater than zero, meaning there is no 
association between the number of any building type and the area of these non-residential 
landcover patches. For ‘Forest/Shrub’, ‘Grassland’ and the ‘Cropland/Wetland’ classes 
highly significant but small coefficients can be observed for the related ancillary variable 
when modeling ‘One-Family Residences’ as well as the total number of buildings, which 
are very similar in these cases. Very few target zones showed counts greater than zero for 
the other building types suggesting that there is no statistical relationship. 
Table 1: Model coefficients of variables tested significant (p<0.01) sorted by landcover type. 

Landcover Building types Area IDMall IDMlow IDMhigh 
Forest/ 
Shrub 

1-family 0.0167 x x x 
All 0.0167 x x x 

Grassland 1-family 0.1111 x x x 
All 0.1111 x x x 

Cropland/ 
Wetland 

1-family 0.0633 x x x 
All 0.0611 x x x 

Developed 
Open 
Space 

1-family 0.9667 -0.0357 0.2094 x 
Dup/Tri   0.2655 x 
Multi (4-8) -0.2333 -0.0395 -0.1193 x 
Mobile 1.2333   x 
All 0.9111 -0.0357 0.1924 x 

Developed 
low 
intensity 

1-family 1.0956 0.0033 0.1266 x 
Dup/Tri -0.7444 0.0395 0.1096 x 
Multi (4-8)  0.0199  x 
Multi (9+) -2.1222 0.0578  x 
All 0.9700 0.0078 0.1039 x 

Developed 
medium 
intensity 

1-family 2.2111 -0.0243 x -0.946 
Dup/Tri 0.9900 0.0458 x 0.4001 
Multi (4-8)  0.0098 x 0.743 
Multi (9+)  0.0511 x 0.587 
All 1.5889 -0.0084 x -0.150 

Developed 
high 
intensity 

1-family -0.6111 -0.0398 x  
Multi (4-8) 0.9422 0.022 x 0.711 
All   x 0.478 

Among the models for ‘Open Space’ landcover interesting patterns could be detected. All 
three variables – Area, IDMall and IDMlow – were tested significant (p<0.01) when 
estimating the total number of buildings as well as the number of ‘One-Family 
Residences’ with very similar coefficient values. The negative coefficient for IDMall 
suggests an inverse relationship while the positive coefficient for IDMlow indicates that 
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higher IDMlow values are associated with higher numbers of ‘One-Family Buildings’ 
(note that IDMlow is derived from ‘Open Space’ and ‘Low Intensity’ developed classes 
only). When estimating the number of ‘Duplex/Triplex’ building types only IDMlow was 
tested significant with a positive coefficient. This indicates that for target zones of ‘Open 
Space’ landcover type higher numbers of this building type can be expected further inside 
of larger patches of lower intensity developed land. When estimating ‘Multi-Unit 
Buildings with 4-8 Units’ both IDM variables are tested significant (p<0.01) with 
negative coefficients. Finally, when estimating the number of mobile homes, target zone 
area was tested significant with a positive coefficient. 

As for the models for the ‘Low Intensity Developed’ landcover class, significant (p<0.01) 
variables could be found for most building type outcomes. All three related variables, 
target zone area, IDMall and IDMlow, were tested significant when modeling total number 
of buildings, ‘One-Family Residences’ as well as ‘Duplexes/Triplex’. IDMall was tested 
significant when modeling ‘Multi-Unit Buildings with 4-8 Units’ as well as ‘Multi-Unit 
Buildings with 9 and more Units’. All these IDM coefficients were positive suggesting 
that in models across target zones of ‘Low Intensity Developed’ landcover IDMall and/or 
IDMlow are positively related to the number of all building types except for mobile homes 
which were rarely found within this landcover class. 

Among the models fit for the ‘Medium Intensity Developed’ landcover class negative 
relationships were observed between the IDM variables (IDMall and IDMhigh) and both the 
total number of buildings and the number of ‘One-Family Residences’. When modeling 
any of the multi-unit building types the significant regression coefficients of IDM 
variables were positive. These observations suggest that the further inside developed land 
a target zone of this landcover type is located the more multi-unit buildings and the fewer 
‘One-Family Residences’ can be expected. Finally, the models for the ‘High Intensity 
Developed’ landcover class show negative associations between ‘One-Family 
Residences’ and both IDM variables (IDMall and IDMhigh) as well as positive associations 
between ‘Multi-Unit Buildings with 4-8 Units’ and IDM. These trends are similar to the 
models for the ‘Medium Intensity Developed’ landcover class.  

The two maps at the bottom of Figure 4 show the spatial distribution of model residuals 
computed for the two outcome variables ‘One-Family Residences’ and ‘Multi-Unit 
Buildings with 4-8 Units’ (note that for target zones of different landcover type the 
residuals come from different models). These maps demonstrate where a model tends to 
under- and overpredict. The residuals computed from the model for ‘One-Family 
Residences’ shows a distinct pattern of clusters of over- and under-predictions and 
indicates spatial non-stationarity in the error terms. The model for ‘Multi-Unit Buildings 
with 4-8 Units’ shows a somewhat similar pattern. This outcome variable is less 
correlated with its corresponding census category on the block group level and thus the 
relationships are less reliable. 

Conclusions 
This study describes an attempt to shed light on the problem of establishing statistically 
based relationships among related ancillary variables and demographic attributes in 
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dasymetric modeling as one persistent challenge for demographic small area estimation. 
The ability to use nationally available landcover data to derive related ancillary variables 
at fine scales would empower existing approaches of dasymetric modeling considerably. 
As shown in this paper, parcel data represent an appropriate data source to examine 
whether statistical relationships exist between building type characteristics highly 
correlated with census housing attributes and variables directly derived from the NLCD 
at fine spatial scales. The model results indicate that there are several highly significant 
relationships identified for Boulder county that would allow dasymetric models to be 
computed using NLCD-derived related ancillary variables only. Thus there would be no 
need for incorporating any limiting variables. This could be an important finding if these 
relationships are valid for other study areas as well. Also, this study demonstrated that 
parcel data and NLCD in combination (where available) provide a very valuable set of 
input data to create fine-scale dasymetric maps. 

There are some limitations that will need attention in the near future. First, the 
correlations between block group level parcel and census attributes indicate that the 
partitions were sub-optimal and need reconsideration. This observation might be 
explained to some degree by the subjectivity that can be expected when respondents are 
answering the census questions on ‘Units in Structure’. Second, parcels are considered 
here as a spatially more precise data source but have also limitations in detecting 
residential buildings. If parcels in rural areas have larger spatial extents this aspect 
becomes important and needs to be addressed. Future steps will include roads and 
imperviousness surfaces also released as national datasets to further improve the 
described analysis by extending this research to other study areas. 
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