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ABSTRACT: Demographic data are typically collected at various levels of spatial aggregation (i.e. census 
unit, county, or village), resulting in the modifiable areal unit problem (MAUP), with significant 
implications for analysis. This study uses demographic survey data from an impoverished area in rural 
South Africa to investigate aggregation (or scale) effects attributed to MAUP in global and local 
modeling approaches for migration outcomes. Aggregation effects in migration models are not well 
understood and interactions between aggregation and effects of spatial non-stationarity have not been 
studied to-date. This study makes use of spatially referenced household-level data to develop a spatial 
permutation approach to systematically aggregate analytical units. The random generation of aggregated 
units is repeated 500 times at each of nine levels of aggregation and global and local Generalized Linear 
Models (GLM) are run on each permutation to produce robust results. The local GLM model is based on 
a random region permutation algorithm which allows for robust analysis and diagnostics with statistical 
inference thus overcoming limitations of existing local estimators.  

Results show that some variables, such as socio-economic status (SES), have very high operational scale 
sensitivity in that they represent highly significant predictors for migration at only (or close to) the 
operational scale of the process (household level). As units of analysis are aggregated these variables 
become non-significant and local models show little significant variation in local relationships. Other 
variables seem to be less sensitive to aggregation, such as ‘Level of Household Education,’ which 
remains a significant predictor across all levels of aggregation. This study shows that spatial aggregation 
reduces spatial variation in migration-related associations but affects variables differently. 

KEYWORDS: MAUP, cross-scale spatial non-stationarity, spatial migration models, random spatial 
permutation, local coefficient maps 

 

Introduction 
Demographic data are collected at various levels of aggregation (i.e. census unit, county, village, 
etc.) and this aggregation’s structure has significant implications for analysis and interpretation 
(Flowerdew et al., 2002). This phenomenon has been explained as the modifiable areal unit 
problem (MAUP) as it applies to the analysis of geographic information (Openshaw, 1983). The 
delineation of aggregated units (e.g., census tracts, zip codes) is usually an administrative and 
non-data driven process, and thus any analytical procedure, be it spatial or aspatial, will be 
influenced and confounded by the nature of aggregation. Wong (1995) divides MAUP into two 
sub-problems: scale effect and zoning effect. The former addresses the scale of aggregation (i.e. 
the number of observations being grouped into each aggregated unit) and implies that different 
results might be obtained by analyzing the same data at different levels of aggregation.  As such, 
any interpretation would have to address the scale of analysis.  The latter, zoning effect, refers to 
the form or shape of the partitioning of observations (i.e. the different ways in which 
observations can be aggregated into x number of units). This effect implies that the way the 
atomic units of the underlying process (i.e. individuals or households) are grouped could produce 
different results. The zoning effect is compounded by successive data aggregation, which in turn 
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exacerbates the scale effect acting on results at different aggregation levels. Therefore it is very 
difficult to separate the impacts of these two different effects. 

The effects of MAUP on regression models using demographic data have been studied 
extensively at nested levels of aggregated units (i.e. census blocks, groups and tracts) (Openshaw 
and Taylor, 1979) but usually only a few such levels are available. These studies have shown that 
coefficient estimates can fluctuate significantly and even exhibit sign changes at different scales. 
More recent research has addressed such aggregation effects within multiple regression models 
(Fotheringham and Wong, 1991), effects of random aggregation (Flowerdew et al., 2001), and 
effects on population - environment interactions (Walsh et al., 2004). To that limit, the effects of 
MAUP on spatially aggregated census data are well understood (Wong, 2009). However, most 
demographic processes studied, such as migration, have a very different—and much finer—
operational scale (i.e., the individual or household) on which data should be ideally analyzed. 
Data are rarely available at such atomic units and if so (e.g., in U.S. census microdata) spatial 
identifiers are typically not readily available; this can be seen as one main reason why the impact 
of MAUP on migration models is widely unrecognized and understudied to date.  

Another phenomenon that has recently gained increasing interest in demographic research 
involving geographic information is spatial non-stationarity. Local estimators have been 
proposed to examine the effects of spatial non-stationarity in statistical associations, showing 
that these effects can confound the results of an aspatial modeling approach that essentially 
ignores spatial relationships. A number of local estimators have been developed, with 
geographically weighted regression (GWR) (Fotheringham et al., 2002) being the most 
commonly used. However, recent research has shown that the GWR method lacks robustness for 
statistical inference (O’Sullivan and Unwin, 2010) and has further been argued to induce 
multicollinearity (Griffith, 2008, Wheeler, 2007) and patterns of spatial heterogeneity in 
coefficient surfaces (Cho et al., 2010). In response to some of these shortcomings an alternative 
modeling framework has been proposed that allows for more robust analysis and diagnostics 
when modeling local migration-environment associations (Leyk et al., 2012). However, since 
MAUP has not been investigated in migration research, the interaction between effects of 
aggregation and spatial non-stationarity is widely unknown although it can be expected to 
confound the analysis in complex ways. 

This study can be situated within the fields of spatial demography as focused on migration 
modeling, and geospatial sciences concerned with fundamental concepts addressing MAUP and 
spatial non-stationarity. It makes use of spatially explicit demographic surveillance data at the 
household level from a remote rural region of South Africa to investigate the effects of 
aggregation on migration models across very fine spatial scales. The term global in this paper is 
used to refer to a regression model where all observations are used to return one set of coefficient 
estimates. In contrast, a local model estimates a different set of coefficients for each observation. 
Since the importance of local migration models has been demonstrated recently, this study will 
investigate how aggregation affects both global and local statistical models. This will allow 
evaluation of the interactions between effects of spatial aggregation (scale effects) and spatial 
non-stationarity to better understand the implications for migration-related associations under 
both modeling frameworks. The analysis is based on a complex spatial permutation approach in 
order to handle large volume spatial data and to ensure statistical robustness of the results and 
identified trends. The availability of household level migration data provides a unique 
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opportunity to compare statistical associations at different levels of aggregation with the 
associations at the non-aggregated level (households) at which the process of interest operates.   

Data 
This study employs the 2007 household census conducted at the Agincourt Health and 
Demographic Surveillance Site (AHDSS) in a rural region of northeastern South Africa, operated 
by the MRC/Wits Rural Public Health and Health Transitions Research Unit.  The dataset consists of 
9,374 geo-referenced households representing 38,118 individuals from 21 villages. This dataset 
allows comparison of model properties (for global and local regressions) between the atomic 
household unit and increasingly aggregated scales of analysis, thus providing a unique 
opportunity to study the scale effect of MAUP. 

The models we employ estimate the number of temporary migrants (tempmign) as the outcome 
variable on two independent variables: total years of education of all household members 
(HHeduc) and socio-economic status (SES). The following control variables were also included 
in the model: number of household members (HHpop), female head-of-household (Boolean 
variable—femhead), married head-of-household (Boolean variable—marhead), proportion of 
household members working (HHwork), proportion of males to females in household 
(mascprop), dependency ratio of household (number of individuals over 65 years old divided by 
number of individuals between 15-65 years old—deprop), and indicator of available natural 
resources for the household (greenness). A temporary migrant is defined as an individual, older 
than 15 years of age who spends more than six months in a year away from home while 
remaining linked to the household. The SES variable is a combined measure of household 
modernization assets, livestock assets, and information about power source used, dwelling 
structure, and sanitization. The greenness variable was derived from MODIS Normalized 
Difference Vegetation Index (NDVI) imagery by first taking a 2000 meter buffer around each 
household. Then the sum of NDVI pixel values within the buffer was divided by the number of 
households within the buffer, representing an approximation of the communal natural resources 
available to each household. 

Methods 
This research provides a modeling framework for investigating the effects of aggregation on 
local and global regression models of outmigration in a comparative way. The local model as 
described in more detail below has been adjusted and extended from a method developed by the 
authors (Leyk et al., 2012). To define benchmarks, the two models are computed at the 
household level, which is referred to as ‘level one’. To clarify, this is the level at which the 
process of interest—which is household temporary outmigration—operates (i.e., operational 
scale), as the choice to send a family member as a temporary migrant is typically a household 
decision. The household data are systematically aggregated to spatial units. These entities will 
then be used as analytical units in estimating outmigration at the different levels of aggregation 
using both the global and local models. This comparative approach allows examination of model 
behavior across increasing aggregation levels. The dataset used here provides a unique 
opportunity to investigate fine-scale aggregation effects since the survey is reported at the 
operational scale (including spatial identifiers) for outmigration and all other scenarios can thus 
be compared to this original level. 
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Creating modifiable units: The aggregation algorithm is based on a so-called binary tree 
partitioning scheme which recursively divides the household level data into subregions until each 
of these regions meets a size criterion defined by the number of households. Starting with the 
original household data (i.e., level one), the algorithm randomly chooses two seed points 
(household locations) and then groups all remaining households to one of the two seed points 
based on minimum (Euclidean) distance. This creates two spatially contiguous regions, which 
are each then subdivided again into two new contiguous regions using the same procedure. This 
procedure is repeated until each of the resulting subregions has a number of households that is 
within a set range of thresholds. The lower threshold is given as the minimum number of 
households for each region, and the upper threshold is twice this minimum, allowing the size of 
regions to vary in a way that is similar to an administrative unit (e.g., a rural community or a 
census unit). For example, the first level of aggregation—level two—consists of regions 
containing between 2 and 4 households. Nine levels of aggregation will be examined; level ten 
will thus have regions containing between 10 and 20 households. Aggregating beyond level ten 
would not provide enough sample units on which to run the local model. The households in the 
determined subregions represent the new units of analysis at each level of aggregation and are 
spatially referenced by the centroid of the region. Attributes of the households within one region 
are aggregated by calculating the mean for HHeduc, HHwork, deprop, mascprop, SES and 
greenness, and the sum for tempmign, HHpop, femhead, and marhead.  

Statistical modeling as described below was carried out multiple (500) times for each of the 
aggregation levels to derive robust results. Thus for each of 500 simulations at the same 
aggregation level, a new random aggregation process as described above resulted in 500 different 
aggregation outcomes at each of the nine aggregation levels (two through ten). It is important to 
note that the regions are partitioned differently for each simulation due to the random choice of 
seed points, and therefore the centroids determined for the aggregated units at the same 
aggregation level do not correspond spatially and summarized attributes for the aggregated units 
vary across the 500 simulations.  

Statistical Modeling: For each of the 500 simulations at each aggregation level, we run both 
global and local regression models. Both models use the same set of dependent and independent 
variables, which allows direct comparison of global vs. local regression results as well as the 
corresponding surfaces of residuals. Our dependent variable is counts of temporary migrants per 
household or per spatially aggregated unit of analysis which follows a Poisson distribution. Thus 
we employ Poisson-adjusted Generalized Linear Models (GLM). We investigate the spatial 
structure of regression residuals from both the global and local models using Moran’s I to test for 
global spatial autocorrelation and local indicators of spatial association (LISA) to examine the 
existence of local clustering of residuals. Local clusters in model residuals often indicate 
systematic over- or under-prediction resulting in non-random error structures.  

Global Statistical Models across different aggregation levels: The global Poisson GLM is run 
for each of the 500 simulations at each aggregation level (two through ten). Coefficient 
estimates, corresponding p-values, Moran’s I for residuals, and the number of significant LISA 
clusters (p<0.05) from residuals are recorded. Thus, for each level of aggregation 500 sets of 
global model results are stored. The results are then summarized by aggregation level providing: 
average coefficients and their proportions of significance tests for each variable (p<0.05), 
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Moran’s I values and the average number of significant local clusters in model residuals derived 
from LISA analysis.  

Local Statistical Models across different aggregation levels: The local modeling approach for 
temporary outmigration is based on a random region permutation approach in the same setting. 
The algorithm computes a Poisson GLM applied to randomly generated sub-regions in a Monte 
Carlo-like framework which allows for robust analysis of existing statistical relationships at local 
geographic scales. The advantage of this approach is the model’s simplicity; there are no 
assumptions about the underlying spatial structure inherent in the model, making it more 
parsimonious than commonly used spatial models (i.e. GWR, spatial lag or spatial error models). 
A GLM framework also provides for extensive model diagnostics. Spatially contiguous 
subregions were randomly generated using the same binary tree partitioning algorithm described 
above but with a different intention: using these subregions as geographic extents across which 
local models are fit on the units of analysis (i.e., households at level one or aggregated 
subregions at all other levels). The regions generated for local modeling contain between 100 
and 200 units of analysis. The minimum threshold of 100 units is based on a preliminary analysis 
to minimize prediction error and optimize AIC, while maintaining sufficient degrees of freedom 
for statistical inference.  

To illustrate the procedure of local modeling, when analyzing the level one data the units 
(households) are randomly partitioned into spatially contiguous regions containing between 100 
and 200 households. A Poisson GLM is run on the units within each region. The coefficient 
estimates, their corresponding p-values and model residuals are stored for all units in each 
region. This procedure is repeated 500 times, each time randomly generating a different 
permutation of regions for local modeling. Then for each unit (i.e., households at level one) the 
mean is calculated across all 500 simulations for the coefficient estimates and residuals. The 
proportion significant (p<0.05) of the p-values for each household across all simulations is 
calculated and recorded.  

The local modeling procedure is then repeated for the nine levels of aggregation; however, the 
units of analysis are not households but the aggregated units as described above. Everything that 
applied to the case on the household level is now transferred to the corresponding aggregated 
spatial units of analysis, and repeated 500 times at each level. Thus subregions for local 
modeling are created by 100-200 units of analysis, which, for instance, are aggregates of 10-20 
households for aggregation level ten. The number of subregions for local modeling is decreasing 
with increasing aggregation level. This modeling approach results in 2.25 million simulations in 
total for the local model. 

Our overall objective is to contrast results from the global and local models at the same levels of 
aggregation. This detailed approach will allow improved understanding of MAUP as it manifests 
within examinations of household-level temporary migration. 

Results 
Global model results: As seen in Table 1, the coefficients for HHeduc are relatively constant and 
highly significant on average across all simulations for each aggregation level. This indicates that 
the level of household education is a strong predictor variable which is stable under various 
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levels of aggregation, and the positive value is in line with substantial migration research linking 
education to higher migration probabilities (White and Lindstrom 2006). The coefficient values 
for SES decrease significantly with increasing aggregation and are not significant (p<0.05) 
beyond level four. The consistent decrease in average p-value with increasing aggregation 
indicates that this variable is a significant predictor only at the household level and the first three 
aggregation levels. Substantively, SES also exhibits a positive association with temporary 
outmigration, at least at lower levels of aggregation. This is consistent with research in some 
regions that demonstrate the necessity of household assets in fueling migration, given that 
migration entails costs (e.g. Gray and Mueller 2012).  Still, just as the variable loses predictive 
ability at increasing aggregation, the positive substantive association is also not consistent across 
regional and cultural settings. 

Local model results: To visualize the results of the local models across all 500 simulations at 
each aggregation level, the point vector features (centroids of aggregated units of analysis) were 
converted to a raster representation with 30m resolution. Such a data reduction and visualization 
strategy was necessary since the modeling process resulted in extremely large datasets. For 
example, running 500 simulations at level two alone resulted in 1.6 million points. The 
aggregated vector units (i.e., points) were converted to raster using a mean function for all points 
inside a given cell. This was done to create surfaces of regression coefficients and proportions 
significant for each variable. Coefficient estimates and proportions significant of HHeduc and 
SES are shown for four aggregation levels in Figures 1 through 4 to represent the trends across 
all nine aggregation levels.  

 Table 1. Global and local model residual analysis, and global coefficients and their p-values for HHeduc and SES. 
Moran’s I values, numbers of significant High-High (H-H) and Low-Low (L-L) LISA clusters as well as global 

coefficient estimates and p-values are shown as means across all 500 simulations for levels two through ten.  

The surfaces of HHeduc coefficient values (Figure 1) and the corresponding proportions 
significant (Figure 2) across all 500 model runs at each aggregation level are highly correlated as 
can be seen in these spatial distributions. In the upper left map (level one), pockets of the highest 
coefficient values are overlapping with the highest proportions significant indicating that there is 
a considerable degree of spatial variation across the study area in model performance and spatial 
non-stationarity in the underlying process. The results reveal significant change in the coefficient 
and proportion significant surfaces with increasing aggregation. Changes in the sign of the 
coefficient values can be seen in a few places between levels one and two. From level two, these 
effects are smoothed out with increasing aggregation, resulting in a rather regional phenomenon 
at level ten (bottom right map). There is an increasingly noticeable north-west to south-east 

Level 
Moran's I 

Global 
Moran's I 

Local 
H-H 

Global 
H-H 
Local 

L-L 
Global 

L-L 
Local 

HHeduc 
Coef. 

SES 
Coef. 

HHeduc 
p-value 

SES 
p-value 

One 0.041 -0.008 270 173 85 99 0.038 0.175 1.66e-26 1.38e-12 
Two 0.091 0.006 86.986 55.130 84.8 72.5 0.037 0.121 8.52e-09 2.95e-03 

Three 0.121 0.018 65.342 40.628 62.9 54.0 0.038 0.101 6.50e-08 2.84e-02 
Four 0.145 0.029 50.744 32.546 46.4 37.3 0.040 0.089 3.73e-07 7.22e-02 
Five 0.165 0.039 40.404 27.450 39.2 31.3 0.041 0.081 6.04e-06 1.36e-01 
Six 0.181 0.049 33.904 24.028 33.7 27.1 0.042 0.072 4.07e-06 1.96e-01 

Seven 0.193 0.055 28.046 20.570 29.1 24.7 0.044 0.064 3.89e-06 2.58e-01 
Eight 0.204 0.062 23.666 18.450 25.8 22.0 0.044 0.062 1.03e-05 2.99e-01 
Nine 0.212 0.068 20.514 17.142 23.1 19.8 0.045 0.055 1.26e-05 3.53e-01 
Ten 0.218 0.074 18.246 15.984 20.6 17.5 0.045 0.055 2.67e-05 3.64e-01 
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gradient in coefficient values and proportions significant with increasing aggregation. However, 
boxplots of all coefficient estimates from all model runs at each level show that the range of the 
values is fairly consistent with increasing aggregation (Figure 5), indicating that this variable is 
fairly stable under aggregation in the local model. 

 Figure 1. Spatial distribution of coefficient estimates for household education (HHeduc) from local models 
computed for household level (level one) and nine aggregation levels (levels two, six and ten shown). 

 Figure 2. Spatial distributions of the proportions significant of the coefficient estimates from local models for the 
HHeduc variable across different levels of aggregation as shown in Figure 1. 

For SES the patterns are related but differ to some extent. Very local pockets of positive high-
valued coefficients (Figure 3) overlap with the highest proportions significant (Figure 4), as seen 
with HHeduc. However, the pattern of high spatial variation in the local model coefficients at 
level two breaks down much faster for both coefficient estimates and proportions significant with 
increasing aggregation. Both surfaces show a stronger smoothing effect than HHeduc indicating 
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less stability of the surface at higher levels of aggregation. In contrast to the surfaces related to 
HHeduc, SES shows only a weak gradient at level ten across the study site which is accompanied 
by decreasing ranges in the boxplots for the values of both coefficients (Figure 6). This is also 
reflected in the spatial distribution of proportions significant (Figure 4). The decrease in the 
range of coefficient estimates and the low proportions significant indicate that SES is less stable 
and has lower predictive power across aggregation levels than HHeduc (Figure 5 and 6). 

 
Figure 3. Spatial distribution of coefficient estimates for socio-economic status (SES) from local models computed 

for household level (level one) and nine aggregation levels (level two, six and ten shown). 

 
Figure 4. Spatial distributions of the proportions significant of the coefficient estimates from local models for the 

SES variable across different levels of aggregation as shown in Figure 3. 

Error Structure: The spatial structure of regression residuals from local models shows a similar 
trend to the global models across aggregation levels but with systematically lower numbers of 
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local LISA clusters (Table 1), indicating that there is spatial non-stationarity in the underlying 
process (at the operational scale) and thus the need for a local model. This is further shown by 
the Moran’s I statistic calculated on the residuals which is lower for local models than for global 
ones. An increasing trend is seen in both cases suggesting that spatial autocorrelation is more 
severe in the error surfaces at higher aggregation levels. The Moran’s I statistic was significant 
(p<0.05) for all 500 model runs on all aggregation levels for both global and local models. 

 
Figure 5. Boxplots of the local model coefficient estimates for the household education variable (HHeduc) at level 

one and across all 500 simulations for each aggregation level (two through ten). 

 
Figure 6. Boxplots of the local model coefficient estimates for the SES variable for level one and across all 500 

simulations for each aggregation level (two through ten) for the local model. 

Discussion and Concluding Remarks  
While MAUP’s aggregation effects have been examined in spatial analysis of demographic data 
extensively, researchers rarely have the opportunity to compare results from different 
aggregation levels to the scale at which the process of interest most logically takes place. In this 
study, household level demographic survey data from a rural area in South Africa including 
spatial identifiers are used to examine effects of aggregation on models of temporary 
outmigration in comparison to the operational scale of the process of interest, the household-
level. Moreover this study examined aggregation effects within two different model frameworks, 
a global and a local approach. By including a local model it was possible to evaluate interactions 
between effects of aggregation and local migration-related associations while accounting for 
inherent spatial non-stationarity. Such interactions have not been investigated to-date since most 
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studies on spatial non-stationarity use aggregated demographic data (e.g., census tracts or 
counties).  

The results from the global models allow first insight into aggregation effects on statistical 
migration models if spatial non-stationarity is not considered. HHeduc remains a highly 
significant and stable predictor for temporary outmigration up to the highest level of aggregation. 
SES represents a significant predictor at scales close to the operational scale of the outcome, the 
household. In contrast, HHeduc appears to be a more general predictor, less sensitive to the 
underlying scale of analysis. 

We argue that it is highly relevant to examine the effects of aggregation in a local modeling 
framework in comparison to this global approach.  The importance of the evaluation of local 
model relationships has been demonstrated in a recent study (Leyk et al., 2012) which described 
the method used here for robust local coefficient estimation with statistical inference but did not 
address aggregation effects. The results from the local models allow for more in-depth 
interpretations: increasing levels of aggregation reduce the effects of spatial non-stationarity in 
the local model relationships evidenced by the observed decrease in local variation and the 
overall smoothing of coefficient surfaces. Looking closer at the two variables tested it becomes 
obvious they differ in what can be called “operational scale sensitivity”. This means that some 
variables represent statistically significant predictors at a wide range of scales (e.g., HHeduc) 
while others are significant only at scales close to the operational scale of the process of interest 
(e.g., SES). Thus a model’s performance (and estimated coefficients as well as their substantive 
interpretations) could depend on the selection of predictors used in relation to the given scale of 
analysis.  
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