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ABSTRACT: The problem of determining a suitable map projection for side-looking synthetic 
aperture radar (SAR) satellite imagery is examined. Using a foundation in dynamic mathematics, 
a new Space Oblique Conic projection (SOC) is proposed that is specifically designed for side-
looking radar imagery. The geometric model of SOC is formalized, and the ground track 
projection of the central line of a side-looking field of view is established based on this model. 
The forward and inverse formulas for the SOC projection are derived and the projection’s pattern 
of distortion is discussed. As an example, SEASAT-A radar imagery is considered, and a 
particular SOC projection model for this satellite derived. 
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Introduction  
Side-looking radars have enjoyed continued success in mapping earth phenomena--
including geology, vegetation, forestry, and topography--since the 1960s from aircraft, 
and from the 1970s from space platforms (Simonett, 1970; Leberl, 1976; Henderson and 
Lewis, 1998). While recent attention has turned to mapping terrain, which can be 
achieved with radar in all weathers and illumination conditions, and to high resolution 
methods such as interferometric SAR, nevertheless the string of successful radar satellites 
(SEASAT, SLAR, RADARSAT, TerraSAR-X, Magellan, SIR-C, etc.) means that radar 
data for earth are ubiquitous, and now are available over a 50 year timespan. Work to 
date on mapping from SAR has been based on single images, stereo, and image overlap 
(Leberl, 1976). Most solutions for earth geometry for small scale mapping have used 
ground truth and rubber-sheeting style geometric rectifications. In this paper, we seek a 
purely analytic solution based on orbital and radar geometry, and on map projections, in 
particular the class of map projections known as space projections (Ren  and Zhu 2001; 
Ren 2003). 

Space map projections are dynamic map projections  specifically established for a 
remotely sensed satellite platform, in which both geometry and time play a part in 
determining the structure of the image.  It is desirable to specify the geometry of a map 
projection model so that satellite imagery can be geo-rectified to earth-based coordinate 
systems for cartography and further image applications. A space map projection is 
necessary to establish the precise processing and cartography of side-looking radar 
imagery, in particular from Synthetic Aperture Radars that generally image at a fixed 
angle to the vertical. To date, few have considered the geometry of side-looking radar, 
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and fewer still have considered a direct map projection of the data. A simple view of the 
radar imaging geometry is shown in figure 1. 

 

 

 

 

 

 

   

The concept of space projections is generalized from the initial work of Colvocoresess , 
who pioneered the field while cartographic coordinator for earth satellite mapping at 
USGS in 1974 with the space oblique Mercator projection (SOM) (Colvocoresess, 1974). 
Since then, other space projections have been developed and the SOM equations derived 
(Junkins and Taylor, 1977; Snyder, 1977). More recently, work on space projections has 
been focused in China (Yang, 1996, 1999; Liucheng, 2003; Liucheng et al., 2010).  

Side-looking radar (SLR) is an active microwave remote sensing system, the imagery 
data is obtained by sending a radar pulse toward the ground, then receiving the reflected 
pulse wave after its interactions with the ground surface. The mathematical foundation 
for the system geometry is an important problem for cartographers to solve, so that the 
imagery can be precisely geometrically corrected, and the errors minimized. The 
geometric distortion of SLR imagery can be influenced by many factors, such as the 
orientation, roll, pitch and yaw of the satellite, the rotation and curvature of the earth, the 
orbital precession of the satellite and the selection of the image projection plane, among 
many other factors. The selection of a suitable map projection is very important for high 
precision and accurate rectification of SLR imagery. 

Existing mathematical models for SLR representation are based on instantaneous imaging 
equations which, in turn, are built point by point or row by row for the scanner’s sweep 
across the earth’s surface (Qian, et. al, 1992). However, these models cannot represent all 
of the image data, which is obtained continuously by the radar. The Space Oblique 
Mercator projection, the Conformal Space Projection (CSP) (Cheng, 1996) and other 
space map projections have all been designed specifically for satellite imagery that is 
scanned around a nadir ground track, such as SPOT and TM imagery. The precision of 
the projection can only satisfy the demands of cartography within 1 of latitude and 
longitude around the ground track. However, the central line of the swath for SLR is 
about 270km away from the ground track of the satellite generally, outside the region of 

1 around the ground track of the satellite. For example, the effective imaging region of 
the SLR imaging system of SEASAT-A was 2  away from the ground track of the 

Figure.1 Geometric model of the SOC projection 
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satellite (Leberl, 1981). Obviously, the SOM and CSP projections are not suitable for 
representing SLR imagery, because the precisions of the projections do not satisfy 
cartographic accuracy requirements. Our solution to this problem is to design a space 
map projection specifically for the representation of the SLR image data. 

The aim of this paper is to describe the space oblique conic projection (SOC) for SLR 
image data based on simulating the physical processes and geometric relations of imaging 
with SLR. A space projection has the characteristic of establishing the corresponding 
relation between pixels and ground points approximately while keeping the central line of 
the SLR swath distortion-free. SOC is a new time-related projection designed for the 
precise rectification of satellite based SLR.  

Geometric principles of the Space Oblique Conic Projection 
While accounting for the factors of satellite geometry and movement, for the rotation of 
the earth and for the satellite’s orbital procession, assume a cone that is defined by a 
circular orbit (Figure 1) with the projection surface tangent to the spheroid of the earth, 
and for which the tangent line is the central line of a SLR swath. There exists a set of 
relative movement relations among the cone, the satellite and the earth, making up four 
principal motions: (1) the satellite’s scanner sweep across the earth’s surface; (2) the 
satellite’s orbit; (3) the earth’s rotation; and (4) the earth’s orbital precession. To keep 
these motions from distorting the SLR image, the conic surface of the projection is made 
to oscillate along its axis at a compensatory rate that varies with latitude. Simulating the 
physical process of SLR imaging according to this model, a new projection is derived as 
follows. In order to solve the projection model, two conditions must be assumed: 1. zero 
length distortion on the central line of the image swath; and  2. conformality, or local 
“shape” preservation. 

Because the space oblique conic projection is a periodic function of time t , its formula 
can be denoted as 

            ),,(1 tfx  ， ),,(2 tfy   

 

Ground Track of the central line for a side-look region 

In order to establish the formula for the SOC, first the projection formula of the 
groundtrack projection of the central line of the side-look region must be established.   

    Denoting the central line as L. Assuming ),,( tA LL  is any point on L, the 

corresponding projection on the projection plane is ),,( tyxB LL . 

Maintaining length Suppose the arc length of the central line L at time t  is:  

     s v dL

t

  ( ) 
0

                (3.1) 
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The corresponding arc length on the projection plane is: 

       s
dx
d

dy
d

dL L
t

( ) ( )  2 2

0

      (3.2) 

where v tL ( ) is the instantaneous velocity of the scanning point at time t  on the central 
line L of the side-look region. In order to preserve length, that is s s  , then 

     v
dx
dt

dy
dtL

L L2 2 2 ( ) ( )           (3.3) 

 Maintaining Curvature In order to preserve the shape of projected region， the curvature 

radius of the central line L must be equal to the instantaneous curvature radius of its 
projection ( )t  in the projection plane, that is: 

    ( ) ( )
( )

d x

ds

d y

ds t
L L

2

2
2

2

2
2

2

1 


          （3.4） 

    Combining formulas (3.3) and (3.4), the equations of the ground track projection can 
be solved as: 
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Therefore, the projection of the central line L of each side-look region is  

x 

y 

Figure 2 Projection of ground track line 
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Calculation of )(tvL and )(t  

    Figure 3 shows the vectors of the satellite’s movement. Suppose the velocity vector of 
the satellite is  zyxtV 


,,)(  , then the secant vector which is vertical to the groundtrack 

circle is:  

        yxxyxzzxzyyzVrU 


 ,,                         (3.7) 

 

 Assuming the scanning vector is  321 ,, wwww   and the angle between the 

scanning vector w


 and satellite vector r


 is , then: 
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
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then 











 U

U
r

r
ww







  sincos
 

=  














 U

rV
zyx

zyx
w




  sin
,,

cos
222

                           (3.8) 

where 

        222 sincos rRrw
  ，                               (3.9) 

The condition rR
sin  is required, so: 
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According to the formulas above, the vector LR


 can be defined as: 

         kwzjwyiwxwrRL


321                        (3.14) 

         kwzjwyiwxwrRL








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321                        (3.15) 

         kwzjwyiwxwrRL


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321                        (3.16) 

According to equations 3.7 through 3.12, we have: 

  2
3

2
2

2
1

2 )( wwwtvL    
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Denoting  321 ,,)( wzwywxRtT LL 




 , then the secant vector which is vertical to 

the central line of the side-looking region at the time instant t  is  
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then 
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 Calculation of the integrals  fdv
t

L cos)(
0
 ,  fdv

t
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0
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    According to formula 3.7, we know that: 

       ftvx LL cos)( ， ftvy LL sin)( ，
)(

)(

t

tv
f L


  

Given the appropriate formulas for the calculation of )(tvL and )(t  above, and the given 

initial conditions )}0(),0(),0({ fyx LL , then the differential equations above can be 
integrated numerically. However, it is computationally expensive to carry out these 
integrations many times, and since these integrals have been found to be very smooth 
functions of time, they can be conveniently and accurately replaced by their harmonic 
series as: 
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where 2P  is the orbital period, 
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Using the Runge-Kutta algorithm (Butcher, 2003) and the calculations leading to 
instantaneous )(tvL and )(t , all the coefficients above can be determined. A 
computational example is given later in the paper.  

The Space Oblique Conic Projection Formula 

In this section, we present the derivation of the map projection approximately in the 
manner it was developed and the formula will be deduced based on the projection 
formula of the central line of side-glance region already presented. Since the satellite 
orbit is oblique to the equator generally, the transformation at the equator is needed in 
order to use the static conformal conic projection formula expediently. 

4.1 Transformation at the Equator  

 

Let the ground track of a SLR satellite be the new equator, then the obliquity between the 
equator and the satellite orbit is i  (Figure 4). According to Snyder (1977and Yang 
(1989), if the coordinates ),(  of a latitude and longitude position are known, then the 
coordinates ),(   of new latitude and longitude are: 
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The new latitude and longitude can be solved using iteration. Conversely, if the 
transformed latitude and longitude ),(    are known, then the original latitude and 
longitude ),(   can be solved by: 
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Detailed formulation of the space oblique conic projection  

    With reference to figure 5, we consider the projection of all sensed points within a 
finite region on the reference ellipsoid, centered on the ground track onto the map plane. 
This problem is approached using the simple notion that very small displacements are 

Equator 

Figure 4 Transformed equator 

i 

New equator 
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made on the ellipsoid from a locally very-nearly straight line. Accordingly, displacements 
near the ground track from nearby points might be well-approximated by displacements 
near the equator of an oblique conic projection (where the oblique equator is locally 
tangent to the ground track). The resulting map projection (based on this approximation) 
is developed such that conformality and length preservation are rigorous satisfied only 
along the ground track, but the approximation remains accurate within several hundred 
kilometers of the satellite ground track. 

    Assuming zero Doppler effect, when the satellite flies at instant t , the geometric 
relation of the conformal conic projection that is tangent to the central line of the side-
looking region is shown as in figure 6, and the angle between the direction of satellite 
flight  and the x axis is: 
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In figure 5, rotating the instantaneous Cartesian geometry 11Ayx  to an angle , we have: 
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According to Wu, et.al. (1989), taking any point A on the ground track as the origin point 
and the direction of a satellite track as the 1x  axis we can create a dynamic Cartesian 
system, as shown in figure 6. Suppose ),(  B  is arbitrary point in the side-look region, 
then the conformal conic projection corresponding to the new equator is: 


U

C
f  )( ，                 (4.5) 

 sin1 x ，  cos01 y           (4.6) 

1y  

  

Figure 5 Geometry of the space oblique conic 
projection  
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Figure 6 Conformal conic projection 
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where: 00   Rctg ，  00URctgC  ， 0sin  ， 





 


24


tgU ，

R

s0
0   

R is the earth’s radius, 0s  is the distance from the central line side-look region to the 

ground track. 

    Folding the coordinate system 22 Ayx  with xoy  together, for any point B in the side-
look region, its projection coordinates in the xoy  system are: 

    sin)cos(cos 0

0

ddfdvx
t

L                           (4.7) 

    cos)sin()0(sin 00

0

ddyfdvy
t

L                    (4.8) 

where 

     t = the orbital time since the start； 

    )(tvL the instantaneous velocity of the point A on the central line of the side-look 
region corresponding to the earth at the time instant t ;  

    )(t =the instantaneous curvature radius at point A  on the central line; 

    



d
v

f
t

L
0 )(

)(
；                                             (4.9) 

    U

C
d  ；  00URctgC  ； 00  Rctgd ；                     (4.10) 

    





 


24


tgU ； 






 


24

0
0


tgU ；                         (4.11) 

    0sin  ；
R

s0
0  ( 0s is the distance from A  to the groundtrack at time t )； 

      ；                                                   (4.12) 

Latitude )(t and longitude )(t of side-looking point B  at time t  

    Assuming a side-look point is ),( B along the satellite orbit at the instant t --that is the 

beam points to ),( B --then the geographic coordinate of the corresponding point 0B  on 
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the central line of side-look region is ))(),(( 00 tt  . With reference to figure 7, assuming 

zero Doppler effect, ),( B  and ),( 000 B  are located in the plane which is determined 

by the unit normal vector n


and the pulse vector w


, that is, the identity equation is 
satisfied: 

        0)()(  tRnwtF


       (5.1) 

where 

0RRR


 =      kRRjRRiRR zzyyxx


000   

(the vector from ),( 000 B to ),( B ), 

 coscosRRx  ， 000 coscos RRx  ， 

 sincosRRy  ， 000 sincos RRy  ， 

sinRRz  ， 00 sinRRz  ； 

rRkwjwiww zyx

  ， 

xRxRw xx   coscos ， 

yRyRw yy   sincos ， zRzRw zz  sin ； 

 kjin
  sinsincoscoscos  ； 

Substituting the vectors above into equation 5.1, we have 

       00 coscoscoscossinsincos   yz  

     +   00 sincossincoscoscossin   zx  

     +   0sinsinsincoscoscos   xy =0                  (5.2) 

Similarly, formula 5.2 is also true for the transformation of geographic coordinates  ,  

and 00 ,  . 

    According to Snyder (1977) and assuming zero Doppler effect, 20 2 Pt  ，
Rs00   are known. Substituting 0,   and 0  into equation 5.2, the relation of  at 

 

r
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n
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Figure 7 Displacement  

of the satellite side-look point 
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time t  can be solved. Then substituting 00 ,   and  ,  into equation 4.1 respectively, 

00 ,  and  ,  can be computed using iterative methods.  

Inverse transformation 

Selecting the initial latitude and longitude   )(0 tL  ,   )(0 tL   for any time t , and 

substituting  0  and  0  into equations 4.7 and 4.8, then the corresponding coordinates 
   00 , yx in the SOC can be obtained. Constructing the iterative formula: 

  
 

 

 

 

   

   
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 





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
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
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
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











































k

k
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kk

k

k

k

k

yy

xx

yy

xx
1

1

1










                 (6.1) 

The matrix of partial derivatives can also be obtained from equations 4.7 and 4.8. The 
coordinates    kk yx ,  of SOC for the thk  step can be obtained by substituting    kk  ,  
into equations 4.7 and 4.8. )(),( tt   can be obtained with a relatively small numbers of 
iterations, 4 or 5 steps generally, according to equation 6.1.  

Projection distortion analysis  
   Taking partial derivatives of equations 4.7 and 4.8 yields: 

     









 





























cossincos 0dd
dxx L       

     









 





























sincossin 0dd
dyy L       

To compact the notation, we make use of the symbol "," t   whenever the identical 
equation for   or t  results by simply replacing   by   or t .  

    (1) Calculation of each partial derivative of Lx  and Ly  

    Because Lx  and Ly  are functions of time t ,   0
















LLLL yyxx

 

     )(cos)( tftv
t

x
L

L 



，  )(sin)( tftv
t

y
L

L 



                                        

    (2) d partials  
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    From equations 4.10 and 4.11: 



  








 





 24
sec

2
2

1U

Cd
， t,                     

    (3)   and   partials 

    From equations 4.3 and 4.12:  













， 
















x

y

yx

x











22

2

， t,                     

    (4)  ,  partials 

    From equation 4.1:  

    
ttt

t
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



















1

2sincoscossinsinsincoscossec
P

P
iii tt  

    )1(sincoscossec
1

2














P

P
it  

    (5)  ,  partials for t  

   From equations 4.1 and 5.2: 

   
     

ttt

tt

iitgii

itgdtdiP

dt

d



22

32
2

cossinsec)sinsin1)(sinsinsincos(cos

sinsin1coscossincossec2




  

   

   
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dtdiiiP
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d


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




 

The projection formula  

Ratio of meridian 

     
 22

2
2

3
2

12 2




dM

dtdFdtEdE
m




   
2

2
2

31 2

M

ddtFddtEE  
                         
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Ratio of latitude 

   
 22

3
2

3
2

22 )(2




dr

dtdFdtEdE
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Angular distortion 

The tangent of the angle between latitude and longitude is: 
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The distortion of azimuth angle after projection is: 

 


ddttgMHMrtgH

S
ctg

22
31 

                       

where 
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Example Application  
In order to get a space oblique conic projection, we take the imaging system of SEASAT 
as an example. SEASAT was launched on 27 June 1978  into a nearly circular 800 km 
orbit with an inclination of 108°, and operated for 105 days until 10 October 1978. The 
coordinates of SOC and its inverse can be calculated by SAR simulating data. With 
reference to Leberl (1981), the relevant parameters of SEASAT are: satellite orbital 
period 1002 P minutes; satellite orbit is a circle; obliquity angle of the orbital plane  

plane 108i ; 0.0 ; 0.0 ; orbital height H = 800km; The bandwidth of side- 

 

Figure 8: Geometry of the side-look strip 

looking strip kmD 100 ( Figure 8); view angles 9.161  to 1.232  ( figure 9); and 

distance from the central line to the groundtrack kms 2920  . Suppose the initial moment 

of satellite movement is at the descending node, selecting 00  t ， 00  ; Using an 

earth radius of mR 0.6378160 .  

According to the data noted above, the pitch angle can be solved as 
9.200  Hs , 

the average angular velocity of satellite 062832.06.3/2 2  Pn   radian/min, the 

transformation latitude of the central line of side-look region 
623.200  Rs , the 

eccentric anomaly tnE   at the instant t , the rotation angle of the earth te  . 

    Regarding of the rotation of the earth, the coordinates of satellite can be obtained 
according to equations 3.9 through 3.14: 

       
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              (8.1) 

According to equations 3.17 through 3.30, we have: 

B  
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Figure 9 Angle of view 
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           +         23312 wxwzwzwxwy    

           +         }21213 wywxwywxwz                   (8.3) 

    According to equations 3.21 through 3.23: 
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Substituting the result above into equations 4.6 and 4.7: 
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where the expressions of  ,,, 0dd  are equations 4.6 and  4.9-4.11. 

9. Conclusion 
In order to satisfy the demands of cartography from side-looking radar imagery, the space 
map projection problem of side-looking radar image has been examined in this paper. 
The space oblique conic projection has been specifically designed for this kind of 
imagery. The geometric model and the imaging process have been simulated, by 
conceiving that there is a cone that is tangent to the central line of the side-look region 
instantaneously. According to the space geometric relations of the satellite orbit, earth 
rotation and the space oblique conic, the sub-point projection of the central line of the 
side-look region has been developed, and the formula for the SOC has been derived. The 
research contributions here include the equatorial transformation, the SOC projection, the 
inverse transformation and a distortion analysis. As an example, image data for the 
SEASAT satellite has been used to establish the framework for SOC, and the coordinates 
of SOC has been calculated. 

A new method of space map projection has been proposed. Space map projections 
already established are the Space Oblique Mercator, the space azimuth projection based 
on the tangent plane as the projection plane and the space cylinder projection based on 
the cylinder’ surface as the projection plane. In this paper, we establish a space projection 
based on a cone as the projection plane, the SOC. The formula of SOC has been derived, 
adding a new space map projection model to the theory of space map projection. 

Lastly, a more suitable dynamical mathematical foundation was established for the image 
data of satellite-based side-looking radar. We hope that this direct projection is of value 
for cartography based on remote sensing and for the precise rectification of side-looking 
radar imagery, both past and future. 
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