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ABSTRACT: Landscape mapping is an important activity leading to the generation of 
various geospatial products in support of sustainable land use planning and 
environmental management. A variety of pattern recognition techniques have been 
identified to automate this process from remote sensor imagery. Support vector machines 
(SVM) as a group of relatively novel statistical learning algorithms have demonstrated 
their robustness in mapping homogeneous and heterogeneous landscape types from 
remote sensor imagery. In this paper, we review the status and potential challenges in the 
implementation of SVM for landscape mapping. The paper is organized into two major 
parts. The first part reviews the research status of using SVM for landscape mapping 
from remote sensor imagery, focusing on some comparative studies that demonstrated the 
effectiveness of SVM over other conventional classifiers. We identify several areas for 
additional research, which are mostly related to appropriate treatments of some 
parametric and non-parametric factors in order to achieve improved mapping accuracies 
particularly for heterogeneous landscape types and for large datasets. Then, we 
implement the support vector machine technique to map various land cover types from a 
remote sensor image covering an urban area, and demonstrate the robustness of this 
geospatial technique for mapping heterogeneous landscapes.  

KEYWORDS: Landscape mapping, geospatial analysis, support vector machines, 
heterogeneous landscape types, urban environment 

Introduction 

Landscapes provide the living space and resources for human beings. Physically, a 
landscape is a hybrid scene that is composed of a mosaic of heterogeneous land use and 
land cover types that are shaped by human activities and ecological processes (Alberti, 
2008). Landscape mapping is an important activity that can generate various geospatial 
products in support of sustainable land use planning and environmental management.  

Landscape mapping aims to inventory various landscape elements that are commonly 
described in an aggregated way, as land cover classes. Remote sensor data have been 
used to map land cover types through digital image classification techniques. While 
conventional classifiers (e.g., maximum likelihood) have been widely used, they 
generally work well with medium-resolution images and in relatively homogeneous areas 
rather than highly heterogeneous areas (Jensen, 2005). A variety of machine learning and 
pattern recognition techniques have been developed to improve land cover mapping in 
heterogeneous areas, and support vector machines (SVM) are found to outperform most 
of the conventional classifiers (Huang et al., 2002; Keuchel et al., 2003; Kavzoglu and 
Colkesen, 2009; Su and Huang, 2009). Moreover, SVMs were found to even outperform 
some novel pattern recognition methods, such as neutral networks (Huang et al., 2002; 
Foody and Mathur, 2004 a, 2004b). Nevertheless, there are some parametric and non-
parametric factors that can affect the performance of SVM, and there is a need to 
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investigate them so that SVM could be used with improved performance (Yang, 2011).  

In this paper, we examine the utilities of support vector machines (SVM) as a 
promising pattern recognition technique for landscape mapping particular for 
heterogeneous areas. It is organized into two major parts, beginning with a brief 
introduction of some basic knowledge on SVM and a review on the research status and 
possible challenges of using SVM for landscape mapping. The review focuses on some 
comparative studies that demonstrated the effectiveness of SVM over other conventional 
classifiers. Based on the review, we further discuss several areas that need additional 
research in order to improve SVM classification accuracies and reduce computational 
burdens, which are mostly related to appropriate treatments of some parametric and non-
parametric factors. The second part of the paper discusses our implementation of SVM to 
map various land cover types from a remote sensor image covering an urban area, 
demonstrating the robustness of this type of pattern recognition technique for mapping 
heterogeneous landscapes. 

Support Vector Machines 

Basics 

Support vector machines (SVM) are a group of relatively novel statistical learning 
algorithms that have not been extensive exploited in the geospatial science community. 
Their basic idea is to construct separating hyperplanes between classes in feature space 
through the use of support vectors which are lying at the edges of class domains. SVM 
seek the optimal hyperplane that can separate classes from each other with the maximum 
margin (Vapnik, 1995).  

SVM were originally designed as a binary linear classifier, which assumes two 
linearly separable classes to be partitioned. In most cases, the best separable hyperplane 
may not be located exactly between two classes. To account for this, an error item is 
introduced to manipulate the tradeoff between maximizing the separation margin and 
minimizing the count of training samples that locates on the wrong side. SVM are further 
extended to deal with non-linear classification by using a non-linear kernel function to 
replace the inner product of optimal hyperplane. Several commonly used kernel functions 
include linear kernel, polynomial kernel, radial basis function (BRF), and sigmoid kernel 
(Haykin, 1999). Each of these kernel functions is constructed with multiple parameters, 
and how these parameters are setting can influence the performance of a specific support 
vector machine (Yang, 2011).  

Moreover, SVM have been used for multi-class mapping through reducing the multi-
class problem into a set of binary problems so that the basic SVM principles can be still 
applied. Two commonly used strategies for this purpose include one-against-one and one-
against-all (Foody and Mathur, 2004b; Kavzoglu, 2009). The later is generally preferred 
because of its less computational intensity. However, this method can result in 
unbalanced class sizes (Huang et al., 2002).  
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SVM for landscape mapping 

The performance of SVM has been assessed by comparing with other pattern recognizers 
for various landscape types (e.g., Huang et al., 2002; Foody and Mathur, 2006; 
Keramitsoglou et al., 2006; Su and Huang, 2009). Huang et al. (2002) found that SVM 
substantially outperformed maximum likelihood (MLC) or decision tree (DC) in terms of 
classification accuracy and even surpassed multilayer perceptrons (MP) neural networks. 
Su and Huang (2009) implemented SVM and MLC on a Multi-angle Imaging 
SpectroRadiometer (MISR) image to differentiate eight semi-arid vegetation types, and 
found that SVM significantly outperformed MLC. Keramitsoglou et al. (2006) mapped 
various vegetation types using IKONOS data, and compared the performance of SVM 
with radial basis (RBF) neural networks. They found that SVM had strengths in terms of 
classification accuracy and training time. Foody and Mathur (2006) also found that SVM 
can produce a more accurate classification of cultivated landscape types. Dixon and 
Candade (2008) compared SVM, MLC, and backpropagation neural networks (NN) for 
classifying a Landsat scene, and found that SVM and NN performed identically in the 
classification accuracy but SVM was more efficient in the training phase. They also noted 
that SVM can be quite attractive when working with high dimensionality data. This 
seems to be in line with an earlier work conducted by Huang et al. (2002) who found that 
SVM performed better for an image with 7 bands than with 3 bands. The effectiveness of 
SVM for working with high dimensional data classification was also confirmed by 
several other studies (e.g., Bazi and Melgani, 2006; Camps-Valls et al., 2007), indicating 
that they could provide a solution to dealing with the problem of "curse-of-
dimensionality” (Hughes, 1968). Although SVM have demonstrated strengths when 
comparing with other classifiers, their performance can vary across different landscape 
types (Foody and Mathur, 2004 a,b; Keramitsoglou et al., 2006; Su and Huang, 2009).  

The performance of SVM can be affected by both parametric and non-parametric 
factors (Foody and Mathur, 2006; Yang, 2011). Existing studies on SVM classification 
have largely concentrated on either improving classification accuracy on specific 
landscape types or reducing computational burdens, both of which can be manipulated at 
the SVM configuration stage and at the training stage. The inner-product kernel between 
the support vectors in feature space and in input space largely determines the separability 
of optimal separable hyperplane (Haykin, 1999). While introducing non-linear kernel 
functions could help deal with complex, non-linear classification, it can also lead to the 
difficulty in choosing the most appropriate kernel type and in the subsequent kernel 
parameterization (Huang et al., 2002; Kavzoglu and Colkesen, 2009; Yang, 2011). Yang 
(2011) conducted an empirical study assessing the performance of several most 
commonly used kernel types, along with their internal parameterization, and found that 
the kernel type and error penalty can substantially affect image classification accuracy. 
Some customized kernels, particularly those incorporating both spatial and spectral 
information, were found to be quite promising when comparing with spectral-based 
kernel types (Camps-Valls et al., 2006, 2007; Plaza, 2009). 

Since SVM are a type of supervised classifiers by nature, both the size and quality of 
training sample can affect the classification accuracy (Foody and Mathur, 2006). Bazi 
and Melgani (2006) suggested that feature selection can be implemented at three different 
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stages: independent selection by technicians, training sample detection and optimization 
based on the fitness criteria, and signature selection totally embedded in classification. 
The selection of training data should be different by specific classifiers used. For 
statistically based classifiers, training samples should consist of relatively pure pixels, 
and should be identified from homogeneous areas in large fields, which can be applicable 
for a variety of classifiers (Foody and Arora, 1997). A minimum of 10- 30 pixels per class 
per waveband should be used to meet the assumption of normal distribution and be 
representative of the subclass (Foody and Mathur, 2004a,b; Foody and Marthur, 2006). 

Since only the support vectors are actually needed in constructing separate 
hyperplanes for SVM, it may be highly possible to reduce training sample size to a small 
number of the most informative samples that are used to fit the decision hyperplanes. 
Accordingly, there is no need to maintain normal distribution in training samples. Several 
studies have been conducted to identify these critical samples. For example, Foody and 
Marthur (2004a,b, 2006) incorporated ancillary information of soil types and 
geographical boundary pixels of mixed spectral characteristics of two crop types in the 
selection of useful training samples, which dramatically reduced training samples before 
being applied to classification. They also examined the usefulness of applying other 
ancillary information (e.g., landform, moisture, and spatial texture) in targeting support 
vectors. Various techniques have been identified to automatically reduce the training 
sample size and hence help reduce the computational burden for SVM. For example, 
Demir and Ertürk (2009) used a clustering-based k-mean algorithm in training pattern 
selection to remove samples locating at the high density regions or to detect support 
vectors at the clustering centers. With these support vectors obtained from clustering 
preprocessing, the computational load has been substantially reduced, while the 
classification accuracy was much higher than using the full training samples. Other 
techniques to automatically optimize the feature detection or selection include the genetic 
algorithm (GA), the steepest ascent algorithm, the recursive feature elimination technique 
and radius margin bound minimization (Pal and Mather, 2005; Bazi and Melgani 2006; 
Ghoggali et al. 2009; Mukhopadhyay and Maulik, 2009).  

 

Research Methods 

In order to demonstrate the effectiveness of SVM for heterogeneous landscape 
mapping, we implemented SVM to map landscape types in an urban area. In this section, 
we will discuss the specific procedures, including the study site and data acquisition, 
classification scheme design, SVM configuration, and classification and accuracy 
assessment.  

Study site and data acquisition 
The study site covers the entire Gwinnett County, a suburban county located at 

northeastern Atlanta metropolitan area, Georgia, USA (Figure 1). The county has an area 
of about 1,122 square kilometers and its population was 805,321 according to the 2010 
census survey. The majority of topography is relatively flat and has primarily a humid 
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subtropical climate. Gwinnett has been one of America's fastest-growing counties and the 
second most populated county in Georgia. Its landscape is characterized by a mosaic of 
complex land use and land cover types, and therefore Gwinnett is an ideal site to examine 
the effectiveness of SVM for heterogeneous landscape mapping.  

  
Figure 1: Location of the test site. The image used covers the entire area of Gwinnett County.  

A cloud-free Landsat-5 Thematic Mapper (TM) image dated on 19 May 2007 was 
acquired from USGS EROS Data Center, and a subset of this scene covering the entire 
Gwinnett County was actually used in our study. The image has been geometrically 
corrected at the EROS data center, and no further preprocessing was conducted. The 
spatial resolution of this image is 30 m for all six non-thermal infrared bands, and 120 m 
for the thermal band. It was projected into the Universal Transverse Mercator Zone 16N 
with NAD 83 as the horizontal datum. 

Classification scheme and training samples 
We designed a land use/cover classification scheme based on the Anderson scheme 

(Anderson et al., 1976) and our field surveys across the Atlanta metropolitan area. The 
study area covers a mosaic of different land use cover types, and our classification system 
includes ten major categories: high-density urban, low-density urban, barren or fallow 
land, pasture and cropland, grassland, shrub and scrub, evergreen forest, deciduous forest, 
mixed forest, and water (Table 1). 

After the classification scheme was adopted, we carefully selected training samples 
for each of the ten major categories by using several reference sources such as the high-
resolution images from Google Earth and the 2006 National Land Cover Data (NLCD). 
Note that each information class listed in Table 1 may include multiple spectral classes. 
For the information classes with multiple spectral classes, we collected at least one 
training set with 25-35 pixels for each spectral class. Specifically, eight information 
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Table 1: Land-cover classification system, training sample size and reference data size 

No Class name Description 
Training 

sample size 
(in pixels) 

Reference 
sample size 
(in pixels) 

1 High-density 
urban  

More than two-thirds impervious 
surfaces, mainly commercial, 
industrial, institutional facilities with 
large roofs, and public retail 
buildings, large transportation 
facilities 

60 52 

2 Low-density 
urban  

Residential areas with impervious 
surfaces account for lower than two-
thirds of total cover, including 
residential developments, smaller 
urban service buildings, such as 
detached stores and restaurants, state 
highways  

54 84 

3 Barren or 
fallow land  

Urban areas with low percentages of 
constructed materials, vegetation, 
and low level of impervious surfaces, 
including bare soil lands, small 
amount fallow lands, exposed rock, 
mines and quarries 

71 48 

4 Grassland  Herbaceous cover, trees and shrub 
less than 10%. Parks, lawns and golf 
courses. 

55 86 

5 Pasture and 
cropland  

Grazing area, field crops, 
horticulture, and vegetable.  

41 52 

6 Shrub and 
scrub  

Residential and agricultural shrub, 
scrub, orchards, groves, and 
transitional vegetation areas. 

27 47 

7 Evergreen 
forest  

Trees remain green throughout the 
year, wetland evergreen forests 
included, mainly cedar and pine 
trees.  

47 55 

8 Deciduous 
forest  

Trees lose their leaves when the dry 
or cold season, wetland deciduous 
forests included, mainly oak, maple, 
elm, and hickory.  

31 50 

9 Mixed forest  Either evergreen or deciduous trees 
also mixed with shrub and scrub less 
than 10%.  

49 114 

10  Water  Rivers, streams, lakes, reservoirs 125 54 

classes, namely, high-density urban, low-density urban, barren or fallow land, pasture and 
cropland, grassland, evergreen forest, mixed forest, and water, are comprised of training 
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data from multiple spectral classes. For the high density urban class, training samples 
were collected for three spectral classes with one for large roofs and the other two for 
parking lots with various pavement materials. For grassland, training samples were 
collected for two spectral classes with one for golf course with a bright color and the 
other for urban green spaces with low woody cover. Two spectral classes were defined 
for evergreen forest with one for highland evergreen forest and the other for wetland 
evergreen forest. For mixed forest, training samples were collected for two spectral 
classes that are various due to soil types. We calculated the spectral separability for each 
pair of the spectral classes, and finally selected 20 classes for use in the training phase of 
the SVM classification that will be discussed later.  

SVM configuration and classification 
As discussed before, SVM parameter settings can affect the classification 

performance (Huang et al., 2002; Kavzoglu and Colkesen, 2009; Yang, 2011). Among 
them, the kernel type, error penalty, and Gamma term are the three most critical 
parameters. We configured a support vector machine with radial basic function as the 
kernel type, a moderate error penalty value (C=100), and a Gamma term equaling to 
0.143 (Yang, 2011). We used this SVM configuration to classify the Gwinnett subset of 
the 7-band TM imag with the training samples described above. For comparison purpose, 
we also used the same training samples to classify the same image by using the maximum 
likelihood classifier (MLC) that has been widely used. After the implementation of SVM 
and MLC, we combined the 20 spectral classes into 10 information classes prior to the 
accuracy assessment. 

Accuracy assessment 
The accuracy assessment was conducted by using visual interpretation and the error 

matrix approach. The visual interpretation is qualitative by nature, while the error matrix 
approach is a quantitative method that compares the classification map with the ground 
reference information (Congalton, 1998). A total of 498 reference samples were 
generated through the randomly stratified method (Table 2). The identity of each sample 
was determined by the combined use of high spatial resolution data from Google Earth, 
USGS 2006 National Land Cover Data, and our field survey data. Kappa coefficients 
were calculated to quantify the overall and categorical accuracies (Congalton, 1998).  

Results and Analyses 

The classification maps from SVM and MLC were visually displayed in Figure 2. 
Both maps were geographically linked with the original remote sensor image, and 
specific land cover categories were further checked. In general, both maps show an 
overall correct land cover classification but misclassified areas or pixels can be clearly 
observed. While the two maps do not show much different large landscape patches, the 
one from SVM shows many scattered, isolated patches being correctly classified. In 
terms of specific classes, grassland and low density urban are classified differently, as 
shown on the two maps (Figure 2). Some grassland patches on the map from SVM were 
misclassified as low density urban class on the other map. And some mixed forest patches 
were classified as low density area, and some small patches of evergreen forests and 

Proceedings - AutoCarto 2012 - Columbus, Ohio, USA - September 16-18, 2012



shrubs were classified as mixed forest. Thus, if the spectral characteristics of a class are 
similar to other classes or if a class is dominated by mixed pixels, SVM clearly 
performed better than MLC. 

 
Figure 2: Visual comparison of the classification maps by SVM and MCL, respectively.  

To further assess the performance of SVM when separating spectrally complex 
landscape categories, several sites were selected for a closer look. Figure 3 illustrates the 
original TM image, high resolution image from Google Earth, the two classified maps 
from SVM and MLC, for each of the three sites. For the two spectrally complex 
categories, namely, low density urban and mixed forest, MLC tended to include more 
neighboring pixels into these classes. MLC also misclassified some evergreen forest 
patches into water, barren land patches into high density urban, and grassland patches 
into low density urban and cropland. Contrastingly, SVM seemed to have done a better 
job in mapping spatially scattered patches. And SVM had correctly classified the 
residential patches on all the three sites and the pasture patches on Site 2.  

For quantitative accuracy assessment, Kappa coefficient and conditional Kappa 
coefficients were calculated and summarized in Table 2. If judging by the overall Kappa 
coefficient, SVM significantly outperformed MLC. As for specific classes, SVM 
significantly surpassed MLS in terms of classification accuracy for most classes, except 
evergreen forest and water. And the largest improvements were with the categories of 
high density urban, low density urban, pasture, and mixed forest, of which the second and 
last classes are most spectrally complex. SVM also showed a moderate improvement for 
grassland. However, SVM and MLC had almost identical classification accuracies for 
several relatively homogenous classes, such as evergreen forest and water.   
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Site 1: 

 
Site 2: 

 
Site 3: 

 

 

Figure 3: Visual comparison at three selected sites: (a) TM Image in false color composite;  (b) High-
resolution image; (c) SVM classification; and (d) MLC classification.  

Table 2: Summary of the image classification accuracies by SVM and MLC, respectively. 

Class Name 
Kappa Coefficient 

(KSVM-KMLC)/ KMLCSupport Vector  
Machines (SVM) 

Maximum Likelihood 
 Classifier (MLC) 

High Density Urban  0.80 0.57 0.40 
Low Density Urban  0.69 0.39 0.77 
Barren/ Fallow Land  0.71 0.80 -0.11 
Grassland  0.70 0.55 0.27 
Pasture   0.81 0.56 0.45 
Shrub/Scrub  0.76 0.69 0.1 
Evergreen Forest  0.94 0.94 0 
Deciduous Forest 0.95 0.88 0.08 
Mixed Forest  0.77 0.55 0.4 
Water    1.00 1.00 0 
Overall Kappa  0.80 0.58 0.38 
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Conclusions 

In this paper, we have reviewed the research status of using support vector machines 
(SVM) for landscape mapping with special attention on heterogeneous landscape types. 
Then, we have implemented this technique to map various land cover types in an urban 
area from a remote sensor image. Our studies further confirm that SVM can significantly 
outperform the maximum likelihood classifier (MLC), the most widely used pattern 
recognition method in the remote sensing community. We found that SVM can 
significantly improve mapping accuracy, particularly for spectrally and spatially complex 
landscape categories.   
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