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ABSTRACT: Cartographers and human geographers have long relied on data sources which, 

for reasons of confidentiality, aggregate information to administrative units such as census tracts.  
The borders of these administrative units sometimes correspond to the jurisdictional boundaries 
of towns and counties, but most often they follow visible features of the landscape like streets, 
rivers, or coastlines.  Because disaggregated data is rarely available the internal structure of these 
administrative units are poorly understood.  These micro-scale patterns have important 
methodological and theoretical implications for cartography.  This paper develops methods to 
explore the microstructure of the urban environment using a unique probability-based sample of 
streets in the American city of Chicago, Illinois. We examine six aspects of the urban 
environment having to do with visible signs of disorder, the use of public space, and vehicular 
traffic.  We find that most aspects of the urban environment vary substantially over very small 
distances.  The spatial autocorrelation of the studied aspects of the urban environment seems to 
have a characteristic range of 2-3 blocks- that is beyond two or three blocks streets bear little 
resemblance to their neighbors.   These findings suggest a poor correspondence between the scale 
of census administrative units (like tracts) and the structure of the urban environment.  These 
findings also raise important questions about the fidelity of maps based on administrative units. 

 

Introduction 
Choropleth maps are commonly used to communicate the geographical distribution of 
statistical information such as population density, average household income, or the 
median year of building construction.  Choropleth maps show statistical variation among 
enumeration units.  In general, there are two types of choropleth maps: classed choropleth 
maps divide enumeration units into a set of discrete categories (classes) based on their 
values.  Each class is associated with both a range of values and a color on the map.  
Unclassed choropleth maps assign a range of colors to the enumeration units’ range of 
values.  In all but their most esoteric forms choropleth maps show only the mean or some 
other measure of central tendency for each enumeration unit.  These measures of central 
tendency can communicate important information about variation between enumeration 
units, however, they mask variation within enumeration units. 

Variation between enumeration units can be understood through the framework of 
“composition” and “configuration” (Boots 2003).  Where composition refers to the 
overall distribution of the means (or other values) for the set of enumeration units and 
configuration refers to the arrangements of those values in space.  Accurate 
representation of  both the composition and configuration of the data requires balance. 
Fidelity to the composition of the data may require a choropleth map with many classes 
however, as the number of categories increases the configuration of the data can become 
obscured.  To allow readers to understand the configuration, or patterns present in the 
data, it may be necessary to constrain the number of classes on the map.  Downward 
pressure on the number of categories creates intra-class variation in maps, each class on 
the map may represent a wide range of values and therefore may mask variation among 
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enumeration units.  Stewart and Kenneley (2011) propose addressing the problem of 
intra-class variation by using “Illuminated” maps, that use the third dimension to 
represent intra-class variation.    

This paper explores a different problem, intra-enumeration district variation.  Whether 
classed or unclassed, choropleth maps present statistical summaries for enumeration 
units.  Enumeration units are used to statistically summarize the things that occur or 
reside inside of them – households, people, businesses, crime, etc.  Typically, information 
about the things internal to the census units is unavailable, individuals or events are 
aggregated into a single district-level statistic.  The utility of enumeration district level 
statistics depends, in large part, upon the internal composition of the elements being 
summarized.  For example, consider an enumeration unit with 1000 residents, 500 of 
whom earn, on average, $15,000/year ($\sigma = $7500$) and the other half earn, on 
average $85,000 a year ( $\sigma=$20000$).  This enumeration unit might have a median 
income around $40,000 and a mean income around $50,000 (figure 1, solid line is the 
mean, dashed line is the median).  These measures of central tendency describe the living 
conditions of very few actual residents of the enumeration district.  The value presented 

on the map is a poor representation of the living conditions of the residents of the area, 
most earn much more or much less than the tract-level mean. 

FIGURE 1:  Income distribution within a hypothetical census tract.  Mean indicated by solid line, median 
by the dashed line.  Measures of central tendency, like the mean, are poor descriptors of this tract’s 

population.  

The internal dynamics of enumeration units affects the fidelity of maps to the variables 
and the places they describe.  However, these internal dynamics are not typically 
disclosed by statistical agencies.  Since disaggregated social statistics are seldom made 
available at a spatial resolution that would allow examination of the composition and 
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configuration of enumeration zones, little is known about the “ground truth” of 
choropleth maps based on census data.1   

Concerns about the fidelity of enumeration level summaries to the real world are often 
dismissed through reference to the ecological fallacy.   The ecological fallacy is a logical 
fallacy, developed by Robinson (1950).  The essence of the fallacy is assuming that the 
properties of a population at one level of aggregation apply at other levels of aggregation.  
One should not attribute the characteristics of an enumeration zone (like a tract) to the 
residents of the zone because such attribution constitutes a logical fallacy.  In 
cartographic practice, the magnitude of the ecological fallacy is related to the magnitude 
of variation in the characteristic of the persons, events, or buildings that occur within the 
enumeration district.  For example, if only the lower income group in figure 1 resided in 
the tract, the tract level mean of $15,000 would be a reasonable description of the tract.   

Whereas the internal composition of enumeration units relates to the ecological fallacy, 
the internal configuration values raises questions about the design of the zones used to 
report census information.   It is perhaps an overstatement to say that little is known 
about variation within census tracts.  The US Census Bureau publishes detailed cross 
tabulations for many variables.  These cross tabulations provide substantial insight into 
the composition of tracts but shed little light on the arrangement (configuration) of 
groups within tracts.  Both the composition and configuration of census tracts are poorly 
understood and have important implications for both the ground truth of maps and design 
of zones used in choropleth maps.   

There is some evidence that important social indicators are highly variable at the sub-
tract scale.  In 1985, 1989 and 1993, the American Housing Survey did a special analysis 
of one percent of the dwelling units in the core urban sample.  This one percent sample 
was selected as seeds for “micro-neighborhoods.”  For each household in the one percent 
sample, its ten nearest neighbors were also interviewed, forming a micro neighborhood of 
proximal households.  These highly clustered samples provide a picture of micro-
neighborhood composition.   Hardman and Ioanniedes (2004) examined these micro-
neighborhoods and found that the coefficient of variation on household income was .87 
and .85 in 1985 and 1993, respectively.  For example, in 1985, across all micro-
neighborhoods, the mean income was $29,755 and the standard deviation was $25,937.  
In earlier work Ioanniedes (2002) established that these AHS micro-neighborhoods were 
a nationally representative sample.  The AHS data contains little geographic information 
(other than the MSA of the micro-neighborhood).  Nonetheless, the data provide  
evidence of significant intra-tract variability in both the composition and configuration.    

This paper exploits a unique data source collected from a random sample of census tracts 
in the Chicago region in the mid-1990s.  This data source provides block-face level 
information about the built and social environment in Chicago and allows us to examine 

                                                           
1The U.S. Census Bureau does provide the Public Use Microdata Sample (PUMS), which contains detailed 
data on individuals.  However, the corresponding enumeration areas are home to at least 100,000 people as 
opposed to census tracts that represent approximately 4,000 residents.  
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intra-tract heterogeneity.  We explore the micro scale spatial structure of six variables  
including: 

 Amount of trash visible on the block face (ordinal scale):  Presence of trash is 
coded in six levels: none (12.5% of observations), very light (36.5%), light 
(25.1%), moderate (15.4%), heavy (5.8%), and very heavy (3.8%).   

 People visible on the block face (yes/no): The presence of people on the street is a 
dichotomy.  Just over half of streets (53.2%) did not have people visible, 46.3% 
had people visible.   

 Beer bottles visible on the block face (yes/no):  The presence of empty beer 
bottles on the street is coded as a dichotomy.   24.6% of streets had visible empty 
beer containers and 74.1% did not.   

 Cigarette butts visible on the block face (ordinal scale): Cigarette butts visible on 
the street is an ordinal variable coded in four levels:  none (28.6% of block faces), 
“yes, few” (54.7% of block faces), “yes, fair number” (12.6% of block faces), and 
“yes, everywhere” (3.1% of block faces). 

 Amount of traffic visible on the block face (ordinal scale):  The traffic variable is 
coded in six levels: none (35% of observations), very light (26.6%), light (16.1%), 
moderate (13.8%), heavy (5.2%), and very heavy (2.2%).   

 Condition of the street (ordinal scale):  Street condition is coded in five levels: 
under construction (1.5%), very poor (10%),  fair (53.7%), moderately good 
(25.9%), and very good (8.1%).   

These variables represent key aspects of the neighborhood including visible signs of 
disorder, street life, and the built environment.   

 

Data 
The Project on Human Development in Chicago Neighborhoods was a longitudinal study 
of how neighborhoods, families, and schools affect children’s health and development.  A 
large scale Structured Social Observation (SSO) was conducted as part of this study.  
During the summer and fall of 1995 80 neighborhoods in Chicago were systematically 
observed by a 4 person team (a videographer, 2 observers, and a driver) traveling in a 
vehicle at low speed down each street in the sampled neighborhoods.  The data collection 
teams worked 14 hours a day over a 4 month period, observing a total of 23,816 city 
blocks, we refer to the resulting data as the SSO.   

The data analyzed here were collected by the two observers traveling in the vehicle.  As 
the vehicle traveled a street each observer, by looking out of a different side of the 
vehicle, was able to observe a face of a different block.  These observers recorded 
measures describing land use, the condition of streets (e.g. presence of litter), pedestrian 
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and vehicular traffic, and behavior of people visible on the street.   Complete observation 
logs are available for 22,418 block faces.   

These data have not previously been mapped, and we began by creating a procedure to do 
this.  The coded observer logs include tract and block-level census identifiers.  The logs 
indicate the tract and block that was respectively on the left and right side of the vehicle 
as it drove down the street, but they do not identify the street name, the address range of 
the face block or the cross streets at its ends.  To deduce both the street and direction the 
vehicle was traveling we joined the observations logs to the 1990 raw census T.I.G.E.R. 
Line files that define “edges” – the basic building block for all census geographic data 
products.  An edge is a line that can be defined by either visible features on the landscape 
(a street, a river) or invisible features (a county boundary).  For the 1990 census a single 
“all edges” file includes the definition of all streets, tracts, blocks, counties, water bodies, 
etc.  In addition to a geometric description of the coordinates (nodes) defining the edge, 
the file identifies the census geographic units on either side of the edge.  This information 
allows us to merge the SSO observation logs to the raw census data.  In a PostgreSQL 
spatial database we merged the observation logs and the 1990 census edges file by 
creating a common unique identifier that encoded both the census tract and block on the 
left and right of a given edge and whether the observer’s right/left corresponded to the 
right/left in the all edges files.  The end result of the mapping is a file that describes all of 
the streets that were observed in the SSO using two pieces of information.  A single 
“edge” (street centerline) contains information about the block face on its left and right 
side. 

We have analyzed a set of 6 variables selected from the 1995 Chicago SSO.  Figure 2 is a 
map showing the SSO study areas in Chicago and illustrating the sampled streets.   

Methods: 
The overall goal of the methods used is to illustrate the configuration and composition of 
Chicago block faces at both the disaggregate and aggregate level.  Census tract-level 
composition is compared to the disaggregate composition using six variables.  The 
configuration of block face characteristics is examined with two novel visualizations.   
No single method allows the description of both composition and configuration at 
multiple geographic scales.  Therefore, we apply a suite of methods to characterize the 
micro-scale variability in the built and social environment. 
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FIGURE 2:  Streets Sampled by the Project on Human Development in Chicago Neighborhoods 
Structured Social Observation. 

Spatial analysis techniques for qualitative data, like the Chicago SSO, are generally 
underdeveloped (Boots 2003).  The Chicago SSO variables are coded as either ordinal or 
binary.  To facilitate analysis the ordinal variables are conceptualized as representing 
discrete measurements of continuous phenomena.  For example, the variable describing 
the number of cigarette butts on the street has four levels, ranging from “none” to “yes, 
everywhere”, based on the belief that the number of cigarettes butts on a street is in fact a 
continuous variable we compute tract-level means of both the ordinal and binary 
variables from the SSO.     

Composition: Block Face and Tract-level Means 
Composition refers to the distribution of values within a tract, it is not a spatial concept, 
in that we are not concerned where values occur within a tract.  To illustrate composition 
tract level histograms and means are computed for each variable using the block face 
data.  In figure 3 a random sample of 10 tracts is drawn from all tracts that contained at 
least 50 block faces.  Each of the sampled tracts is described using a series of six plots, 
each showing the distribution of the block face data for one variable.  Each subplot 
contains the tract level mean for each variable (figure 3).    

Configuration: Similarity as a function of distance 
Configuration refers to the arrangement of values within a tract.  It is explicitly spatial, 
tracts with similar composition could have very different geographic configurations of 
observed values.  The composition of a tract is related to its boundaries, changing the 
boundaries of a tract can change its composition.  However, the amount of change is 
related to the configuration of block face values.  If block faces with similar values are 
geographically clustered than boundary changes can have a profound impact on 
composition.  On the other hand, if block face values are randomly distributed in space 
changes to the boundaries of tracts will have little impact on composition.  Composition 
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affects the fidelity of choropleth maps to conditions on the ground, configuration speaks 
the possibility of defining enumeration units where the composition is well described by 
a measure of central tendency.   

To measure configuration the characteristics of proximal streets are examined at a variety 
of scales scale profiles.  If Z  is a property of some spatially distributed set of 
observations and observations iZ  and jZ  are separated by some distance h  we can think 

of the spatial autocorrelation at the scale h  as the similarity between iZ  and jZ .  

Classical measures of spatial autocorrelation such as Moran’s I (Anselin 1995) are not 
designed for categorical data.  Some efforts have been made to develop indicators of 
spatial association for categorical data (e.g. Boots 2003, Paez et al 2011) however these 
methods become cumbersome for polychotomous  variables.    

Conceptualizing measures of spatial autocorrelation and questions about the 
configuration of values in space, as questions about similarity simultaneously expands 
and simplifies the concept.  There is broad literature on both the ontology and 
measurement of similarity.  In an influential paper Tversky (1977)  argues that measures 
of similarity should have several properties, among them matching and monotonicity.  
The idea of matching is that as the degree of similarity between two objects corresponds 
to the number of “matching” characteristics.  One can measure agreement on a single 
quantitative dimension, but in the fullest sense of the word similarity should account for 
the degree of agreement among multiple dimensions.  Monotonicity is the idea that as the 
number of matching elements increases the similarity among two objects increases.  
Gower (1971) developed a widely used measure of similarity that satisfies both the 
matching and monotonicity criteria, we have implemented this metric as a measure of 
spatial autocorrelation but due to space constraints we focus on two simple intuitive 
statistical visualizations which relate only to Tversky's matching criterion.  

 

Topological Distance Profiles 

Topological Distance Profiles (TDPs) are a qualitative analogy to the geostatistical 
variogram (Isaaks and Srivastava, 1990).  TDPs are graphs that show the similarity of 
each street segment to its neighbors at various distances, where distance is measured by 
the number of intersections between block faces.  We use the term 1st order neighbors to 
describe block faces that are 1 intersection away from a street, 2nd order neighbors to 
refer to block faces that are two intersections away, and so on up to the 10th order.  The 
2nd order neighbors are not inclusive of the 1st order neighbors (i.e., the 1st and 2nd order 
neighbors are non-overlapping sets).   

To construct TDPs 1000 streets are randomly selected.  Then for each of these street 
segments we identified all neighboring block faces from the 1st to the 10th order.  We 
calculated the average value at each scale (treating ordinal scales as though they were 
interval).  The smallest scale, the focal street itself, consists of a single block face; as the 
scale increases the number of block faces averaged tends to increase until around the 6th 
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order, then typically decreases due to the irregular nature of the sample (figure 2).  Each 
TDP is composed of many blue lines and a small number of summary red lines (figure 4).  
Blue lines represent sampled street segments and their neighbors.  The position on the 
vertical axis at each order of distance is the average value of a variable for all neighbors 
of the sampled street.   The red lines are the average value of all of the blue lines at each 
order of distance.  Hence, TDPs present central tendency (the red line) and variance (the 
blue lines).   

 

Random Walks 

Whereas the Topological Distance Profiles present the average of a large set of connected 
street segments, random walks represent one possible path through a set of 10 connected 
street segments.  We construct random walks by randomly sampling 300 streets, each of 
which forms the seed for a walk.  The walk progresses randomly but is subject to some 
constraints, a walk cannot visit the block face it visited in the previous two steps.  TDPs 
average over a large area and thus mask the block-to-block variability the random walks 
are meant to illustrate.  

 

Results 
Figure 3 shows the distribution of values and the means for each variable for a sample of 
10 tracts.  Each row in the plot represents a census tract, each column is a variable. 
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FIGURE 3:  Distributions of variables and tract means for six SSO variables.  Each row corresponds to a 
tract, each column a variable. 

 
It is apparent in figure 3 that many tracts have long tailed and/or bimodal distributions.  
For example, the amount of visible trash in a tract varies substantially from street to 
street.  For tract #401 and #818 (top two rows) there is a broad spread around the mean, 
making the mean a poor representation of the amount of trash on a randomly selected 
street.  However, in tracts #1505 and #1607 the mean seems to be a reasonable summary 
of the distribution, with most streets no more than one level on the ordinal scale away 
from the mean.  Reading horizontally across figure 3 it seems some tracts, such as #818 
are characterized by high levels of variability across all variables and others, such as 
#6406, have relatively little variation.   Based on figure 3 (and many other similar 
figures) it is hard to generalize about variance around tract-level measures of central 
tendency.  In some places and for some variables the mean provides a fair picture of tract 
characteristics, in other places it does not.   

Figure 3 focuses strictly on the composition of tracts, the Topological Distance Profiles 
(TDPs, figure 4) and Random Walk Charts (figure 5) aim to characterize the 
configuration of block face variables.  We have not found a  summary statistic that can 
capture the patterns on these visualizations, and therefore we have to interpret the 
patterns as shown in the figures.   
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Figure 4 illustrates the configuration of two variables at the block face level using a 
topological distance profile.  Every blue line represents a sampled street segment, in the 
top plot each sub-plot represents a random sample of street segments that have been 
observed to have “none,” “very light,” “light,” “moderate,” “heavy,” and “very heavy” 
amounts of trash visible.  The position on the vertical axis is the average value on this 
neighborhood characteristic of all of the block faces at each order of distance.   The red 
lines are the average value of the blue lines at each order of distance, hence we are 
presenting a central tendency and a variance around it by distance.   

FIGURE 4: Topological Distance Profiles (TDPs); amount of trash on the block face (top) and amount of 
vehicular traffic (bottom).  Each panel on the top and bottom plots correspond to block faces with different 
levels of trash and traffic, respectively.  Vertical axis in each plot corresponds to the average value for the 
neighbors of each street at each scale.  Red line shows the overall average.  See text for a full description.      

Figure 4 presents only two of the six variables we examined.  However, they are 
representative of the two types of TDPs we observed.  In both top and bottom of figure 4, 
there is a tendency for curves to flatten out as lags increase, but in the top there is a clear 
relationship between the starting and ending values, which is not as apparent in the 
bottom of the figure.  In the top graph the slope of the curves flattens after two blocks.  
Overall, the amount of trash on a block face (figure 4, top) seems to be associated with 
the amount of trash 10 blocks away–a lower start point corresponds to a lower end point 
10 blocks away, and vice versa.  In contrast the amount of traffic seems to be local, the 
amount of traffic on a block face is associated with the amount of traffic on the street’s 
first and second order neighbors, but after two blocks most curves level off at the same 
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mean regardless of starting level.  There are patterns over small scales but these patterns 
attenuate quickly. 

 
FIGURE 5:  Random walks on the Chicago SSO block faces.  Amount of trash visible (left) and the 

presence of empty beer bottles on the block face (right).  Grey lines represent random walks (n=300) red 
lines are the average each at leg of the journey.  Walks sorted into sub-plots based on the level of each 

variable at the initial (seed) block face. 

 

Figure 5 shows the results of 300 random walks.  Each walk is represented by a light grey 
line in the figure.  The vertical axis represents the value of the trash (left) and beer bottles 
(right) variables, the horizontal axis shows the walk length.  The red line on each plot 
represents the mean of all the walks at each scale, the ribbon (gray region) around the red 
line shows the 95% confidence interval around the mean.   The random walk figures 
show more variability but are in general consistent with the patterns observed in the 
topological distance profiles.   

   
Discussion 
In general, these graphs suggest three trends.  First, we notice that in figures 4 and 5, in 
most sub-plots, the characteristics of streets very quickly level out, on average the 
characteristics of block faces that are 4 intersections away from a focal street tend to be 
similar to those that are 10 blocks away, this effect is most pronounced in figure 4. For 
most variables this flattening occurs after two blocks.    We expect that with a larger 
sample size we might observe a similar signal in the random walks.  This is an interesting 
result and suggest micro-scale structure at scales much smaller than the typical census 
unit. 

The second general trend we observe is that some variables attenuate with distance while 
others do not.  For non-attenuating variables, such as the amount of trash or presence of 
beer bottles, the level achieved after 2-3 blocks is determined by the condition of the 

Proceedings - AutoCarto 2012 - Columbus, Ohio, USA - September 16-18, 2012



initial street.   That is, a street with beer bottles visible is more likely to be near other 
streets with bottles visible, even after many blocks.  On the other hand attenuating 
variables are insensitive to initial conditions.  Traffic is an attenuating variable, the 
amount of traffic on a block face seems to be related to the amount on neighboring block 
faces but only over small distances, after a few blocks the neighbors of a street with light 
traffic are the same as the neighbors of one with very heavy traffic.     Some variables 
have a spatial echo, the attributes of streets persist over distance, for others they do not.   

The third and final observation is that there significant variation in the composition of 
tracts, some tracts have more variance in the SSO observations than others.  While these 
findings are limited to a small set of characteristics and a single city the patterns that 
emerged were quite strong.  In both the compositing and configuration of variables there 
is significant micro-scale heterogeneity.  There seems to be a characteristic scale for the 
variation in visible aspects of block faces in Chicago.  This empirical regularity is 
striking, after a short distance the studied characteristics of the urban environment level-
out.  This “leveling-out” means that changes in the visible aspects of the urban 
environment happen quickly over one or two block and then change little (on average) 
over greater distances.   

Some tracts have compositions that are not well summarized by measures of central 
tendency however, the configuration of block faces values suggests that defining more 
homogenous tracts would be difficult.  Within our limited dataset the configuration of the 
block face data seem to correspond poorly to existing census geographies (though as 
figure 3 shows the problem is more pronounced in some places).   

Unfortunately, SSO’s are quite rare and data like those generated by PHCDN exist in few 
other places.  There is significant variation in observable aspects of the built and social 
environment within census tracts and block groups. While we cannot generalize our 
findings beyond Chicago these results raise concerns about the fidelity of urban 
choropleth maps and are a reminder to remain wary of the ecological fallacy when using 
such maps.  
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