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ABSTRACT: Digital Elevation Models (DEMs) are available with increasingly fine resolution. 

Many projects require some type of terrain generalization. Terrain must be visually clear and also 

integrate with other data (potentially generated at other resolutions). This project explores spatial 

filtering of DEM data drawn from various landscape types for the purpose of visual display. As 

data are gradually smoothed, the resolution can be assumed to change, but its rate of resolution 

change is unknown. This study iteratively filters DEM data in four study areas.  After about 20 

filtering iterations, the terrain data does not continue to drastically change and elevation values 

approach a state of homogenization   
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Introduction 

Terrain is one of the most frequently included data layers in GIS spatial analysis. It is 

commonly used as an element for base mapping to represent macro-scale landforms. 

Terrain also is an important data layer for analytic purposes. It can be used to model 

runoff and stream flow, to predict sediment deposition, and for modeling habitat. Terrain 

derivatives, such as slope, curvature, and aspect, can support climate predictive models 

that use local and global orographic characteristics. Digital terrain also can be applied to 

anthropogenic development, such as cases of identifying acceptable building sites and 

identifying road construction through a landscape.  

The terrain requirements for such projects range from geographic footprints that span 

several hundred square meters to the entire globe, and from fine to coarse resolution. For 

the largest scale projects, finer resolution elevation data are often needed, which requires 

airborne or field collection, often in the form of LiDAR. Many uses require coarser 

resolution than what is originally collected in available data. To accommodate the need 

for coarser resolution, digital terrain is generalized to improve processing times and data 

integration, and to facilitate human perception of data patterns. 

“Generalization refers to any modification of detail in spatial information. It can involve 

reduction of geometric detail, classification to modify attribute details, or exaggeration to 

systematically introduce details as in smoothing, interpolation, or filtering” (Buttenfield 

and Mark, 1991). Data generalization is a common practice in the fields of GIS and 

cartography. Several controls on generalization include data purpose, data complexity, 

and scale reduction (Slocum et al., 2009; Robinson and Sale, 1969). 

Several raster generalization methods have been identified and include spatial filtering, 

resampling, interpolation, and heuristic methods. All of these methods involve altering 
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resolution explicitly (as in resampling and interpolation) or implicitly (as in filtering and 

heuristic methods). Implicit resolution changes produce a grid that maintains the source 

X, Y cell size while making the elevation attributes coarser and more simplified by 

reducing detail. It is important to generalize to appropriate resolutions and maintain data 

consistency.  

This study examines how raster data are altered through implicit resolution change via 

iterative (repetitive) spatial filtering, and analyzes the rate of data change (resolution, 

terrain roughness) and how this varies across landscape types. This will be measured by 

examining changes in z-values, autocorrelation, and fractal dimension. Eight 7.5-minute 

quadrangles of 1/9-arc-second digital elevation data from flat and rugged landscapes in 

humid areas of the United States repeatedly are filtered through a focal mean process, and 

the change in the variation of the data is evaluated for each iteration through several 

metrics. Some background descriptions of the data and techniques used for this study are 

presented, followed by a discussion of results. 

Background 

The National Elevation Dataset 

Data utilized in this project are part of the National Elevation Dataset (NED), a fine 

resolution, seamless, national coverage product developed by the U. S. Geologic Survey 

(USGS) (Gesch, 2007; Gesch et al., 2002). The NED project began in the 1970’s and was 

designed to have a 30-meter spatial resolution. As time passed, the NED was refined to 

1/3-, 1-, and 2-arc-second resolutions (or about 10-, 30-, and 60-meter resolutions, 

respectively).  In 1999, full U.S. coverage of 1-arc-second data was completed and in 

2002, 1/3-arc-second (about 10m) resolution began construction to conform to vertical 

and horizontal accuracy standards (U.S. Geological Survey, 1999). The datasets were 

derived from photogrammetric and Digital Line Graphic (DLG) interpolations methods 

and are now edited for hydrological enforcement rules to improve data integration 

(Osborn et al., 2001). The NED currently is being updated to 1/9-arc-second (about 3m) 

resolution but is not yet available for the entire conterminous United States (Gesch et al., 

2002). 1/9-arc-second data are derived by LiDAR and IFSAR remote sensing methods 

which, because of the finer resolution, are not hydrologically enforced. 

Comparing scale to resolution 

With access to finer resolution datasets, a question arises, specifically which DEM 

resolution is appropriate for integrating existing vector datasets at a given mapping scale?  

Kimerling (2011) offers an equation to determine the appropriate DEM cell size (in 

ground units) for a given mapping scale, constrained by display pixel density. The output 

is designated for computer screen display. Alternatively, Tobler (1988) poses a similar 

mathematical formula that calculates the detectable resolution, the smallest object on the 

map that is expected to be identifiable at a given scale. The goal is to determine an 

appropriate resolution for integration between two datasets. 

Although these formulas can be useful in suggesting appropriate scales in which data 

should be used, they do not completely answer the question of DEM resolution. Both 
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“solutions” assume homogeneous data characteristics, which is rarely true. Additionally, 

terrain resolution must be adequate (i.e., not appear too sharp or blurry) while also 

integrating vertically with other data layers (e.g., hydrography, road networks) (Imhof, 

2007). Depending on landscape characteristics (aridity, terrain roughness, etc.), different 

resolution data may be required. 

Methods of terrain generalization 

Common GIS techniques used to generalize terrain include spatial filtering, interpolation, 

and heuristic methods (structure recognition) (Weibel, 1992). All four methods have been 

researched extensively (e.g., Usery et al., 2004; Burrough and McDonnell, 1998; Brassel 

and Weibel, 1988) for cartographic display and analytical needs.  

Weibel (1992) reviews several methods of terrain generalization. Spatial filtering 

commonly is used for minor scale reductions or for low-relief terrain. Spatial filtering 

redefines a cell value by performing a statistical transformation, commonly through 

calculation of focal mean elevation. Filtering methods include selective filtering, 

resampling, and global filtering. Selective filtering is useful for transitional terrain (mixed 

low-to-high relief), and in removing minor details while preserving important landscape 

features. Resampling can be effective for larger scale reductions or more rugged terrain; 

however, if the scale reduction is too great, resampling can ruin derived topological 

relations. Global filtering can be effective for minor scale reductions or for flat terrain 

because it smooths the data. Interpolation creates a surface from structure points (spot 

heights and benchmarks) that are extracted from finer resolution data. Heuristic 

generalization extracts a hierarchy of ridges and valleys, and interpolates the terrain 

based on these extracted features.  

Each terrain generalization method is useful in its own way but all have pitfalls. Spatial 

filtering generalizes raster data gradually by focusing on a small focal neighborhood. If 

the focal window is too large, small features will be overpowered by global 

characteristics. Filtering preserves derived topology but only can be used for small scale 

changes; it also reduces local maxima and increases local minima. Resampling can 

generalize terrain aggressively but can easily corrupt derived topology. This can be 

problematic for spatial analysis, where topology and accuracy are paramount. 

Interpolation can preserve critical features and convert raster terrain into a triangulated 

irregular network (TIN). Data reduction through TINs greatly improves processing time 

and reduces file size, but can create artifacts within the data from the triangulation 

process. Heuristic methods are not commonly used for model generalization because of 

the intrinsic nature that the generalizations are not occurring within a statistical threshold 

(Weibel, 1992); however, generalization of structure lines can improve graphic clarity of 

a terrain by emphasizing specific features. It was noted at the outset that best practice 

advises against generalization of hillshades, emphasizing the importance of filtering the 

underlying terrain and reproducing the hillshade for display at smaller scales. 

Methodology 

Study areas 
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This project will examine progressively filtered data for four study areas in two 

physiographic settings (Figure 1).  Landscape characteristics have been defined in terms 

of three terrain roughness characteristics and eight surface hydrographic characteristics) 

(Stanislawski et al., in press).  Classifying these factors defines seven landscape types; 

this project will examine two of these landscape types including humid-rugged and 

humid-flat terrain.  The four study areas were chosen with an extent of a USGS 7.5-

minute quadrangle because some artifacts still exist within the NED from the original 

DLG compilation of the DEMs.  Study areas include North Carolina and Louisiana (flat 

terrain), and West Virginia and Vermont (rugged terrain). For consistency, two side-by-

side quads were chosen in each study area, producing eight study sites (Figure 2). 

The study reported here is constrained by data availability because 1/9-arc-second data 

are not yet available for the entire United States. The intention in this research is to use 

three benchmark DEMs (bDEMs) at 1/9-, 1/3-, and 1-arc-second resolution, providing an 

available resolution range of about 10x. The study will filter the 1/9-arc-second bDEM. 

The generalized versions will be referred to as test DEMs (tDEMs).  

 

Data processing 

Figure 1: Eight study 

sites were chosen for 

this project including 

four in flat areas and 

four in rugged areas.

 

Figure 2: The eight study sites 

chosen for this project are 

grouped into two categories of 

flat and rugged terrain. Each of 

these categories has two study 

areas to evaluate similarity 

within the classification. Each 

study area contains two study 

sites with extents of a USGS 

7.5-minute quad boundary.
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A 3x3 mean focal window was used to smooth and filter the 1/9-arc-second bDEM. The 

filtered tDEM was then input to subsequent filtering routines, continuing through 100 

iterations. Preliminary experimentation indicated that within 100 iterations, the DEMs 

approach homogeneity (elevation values flatten as the filtering approaches equilibrium).  

Structure analysis (terrain roughness and complexity) 

Mean and standard deviation statistics were calculated within each 3x3 focal window. A 

geostatistical analysis also was conducted by examining the spatial autocorrelation of cell 

values within the 3x3-cell focal window to which the filter is being applied. These 

measures were aggregated over the entire study area for each iteration to define terrain 

roughness and to identify changing global homogenization of the DEM. Moran’s I 

measures how similar a cell is to its defined neighbors (in this instance, queens-

contiguity). The autocorrelation also was calculated and averaged at the focal-window 

scale because the metric is scale dependent (Griffith 1987). A global Moran’s I would 

usually be higher in magnitude because of the extremely large sample sizes of values, and 

more difficult to identify changes.  

Because this study has a cartographic display driver (i.e., the generation of hillshades), a 

shaded relief hillshade data layer was rendered from each filter iteration. Layers were 

then reclassified into illuminated (class 1) areas or non-illuminated (class 2) areas for 

simplicity. Reclassified hillshades were then processed using FragStats 4.0 (McGarigal et 

al., 2012) to determine the number of patches within each class and the class fractal 

dimension.  

Fractal dimension was computed as a perimeter-to-area ratio (Mandelbrot, 1982). One 

would expect that, as a DEM is filtered, the number of patches should decrease as areas 

are homogenized; the complexity of these patches should also decrease because detail is 

being removed through the filtering process. Fractal dimension determines how the 

complexity of the data is being changed though each filter iteration.  

Results  

The focal mean of all eight study sites differs greatly, depending on the average elevation 

for each location. All focal means decrease only slightly through filter iterations, but 

remain similar to the focal mean of the original 1/9-arc-second bDEM. The change in 

focal standard deviation (Figure 3) shows similar trends in all study areas. All study areas 

display trend slopes that level off at about 20 iterations. Logarithmic trend lines were 

fitted to all graphs, and have slopes that vary from -0.011 ln(x) to -0.014 ln(x) in three of 

the study regions. An exception is the North Carolina study site with a slope of -0.007 

ln(x). Graphs additionally were compared to the coarser resolution bDEMs (Table 1), 

which, in all cases, were greater than any values encountered in any of the tDEMs.  

Focal Moran’s I graphs (Figure 4) demonstrate that all study sites stop exhibiting large 

jumps in autocorrelation after about 10 iterations. The maximum focal Moran’s I values 

also level out at about 0.3 for all study sites. Exponential trend lines were fit to the curves 

to examine the graph lines. The rugged study areas had slopes that increase at a slower 

rate, which range from x
0.009

 to x
0.029

 compared to flat study areas that increase at rates of 
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x
0.007

 to x
0.0003

. Again, the graphs were compared to 3x3 focal Moran’s I values generated 

from the coarser resolution bDEMs. In all cases, the Moran’s I values from the coarse-

resolution bDEMs were lower than any of the values present in the tDEMs; however, as 

resolution became coarser, the focal Moran’s I values continued to decrease; this trend 

was opposite than what was observed through filter iterations. 

 

 

 

As one output of the FragStats 4.0 processing, the total number of patches was calculated 

for each filter iteration. Patches were defined as a cluster of cells within a hillshade that 

was either more or less than 50% illuminated. In all cases, the number of patches 

decreased exponentially through increasing filter iterations. Table 2 compares the start 

and end counts of patches for each study site, as well as patch counts for coarser 

resolution bDEMs. In all flat study areas, the total number of patches in the tDEMs was 

Figure 3:  Focal Standard 

Deviation (y-axis) trends of all 

eight study sites though filter 

iterations (x-axis). Trends within 

paired quads for each study area 

are most similar.  The exception 

here is the Vermont study sites, 

which is likely due to 

transitioning terrain roughness 

from mountainous to flat areas 

(See Figure 2). 

Table 1: The focal Standard Deviations and Moran’s I values of the coarser resolution bDEMs. 
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equal to coarsest resolution bDEM. This condition frequently was met before 30 

iterations. Only one of the study sites (Richford, VT) in the rugged study areas met this 

condition, which occurred at the 90th filtering iteration.  

 

 

Table 2: The count of patches for the tDEMs and bDEMs 

 

The changes in fractal dimension through filter iterations are more complex than other 

statistical measurements (Figure 5). In the flat study areas, patches homogenize into only 

one class before the 100th filter iteration and thus a fractal dimension could not be 

computed for the other class. Overall, the rugged study areas consistently have more 

complex patch shapes than flat study areas. The trends on all the graphs display 

fluctuations, which likely is due to cells changing classes through the filter process; 

however, the continual fluctuation is unexpected and results were anticipated to be much 

Figure 4:  Focal Moran’s I (y-

axis) trends of all eight study sites 

though filter iterations (x-axis). 

Trends are similar through all 

study sites, but the flat study areas 

have a faster change rate. 
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more like that of Jay Peak, VT, which is the only site that continually decreases in patch 

complexity. 

 

Due to noise in the fractal dimensions, it is difficult to confirm similarity to coarser 

resolution bDEMs (Table 3). When the bDEM fractal dimensions intersect the tDEM 

values, it occurs after many filter iterations and the tDEM trends often intersect the 

bDEM values several times. The only outlying study site that does not intersect bDEM 

fractal dimension value is Jay Peak, VT, which has a greater fractal dimension than any 

other study site. In the flat study areas, 3 of 4 study sites have class 2 fractal dimension 

trends that level off at a value of 1.003 after 20 iterations. This is because these sites have 

homogenized into 1-class landscapes by this point.  

Table 3: Fractal Dimensions of hillshade classes derived from coarser resoluion bDEMs.  Class 1 is cells 

that are greater than 50% illuminated and class 2 is cells that are less than 50% illuminated. 

 
 

Figure 5:  Fractal Dimension (y-

axis) trends of all eight study sites 

though filter iterations (x-axis). 

Class 1 represents cells that would 

be illuminated in the analytical 

hillshade and class 2 represents 

cells that would not be illuminated. 
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Discussion 

Several controls on generalization include data purpose, data complexity, and scale 

reduction.  The generalization control of data purpose for this project was to generate an 

appropriate cartographic display (hillshade).  This was evaluated by examining how data 

complexity changed through iterative spatial filtering to help identify a set of guidelines 

for displaying hillshades at a given scale.  Because terrain characteristics are unique for 

just about every mapping project, this study evaluated the data complexity in four study 

areas, utilizing eight study sites.  Two study areas were in rugged locations and the 

remaining two were in flat locations to examine how terrain roughness affects the 

generalization process. 

The changes in focal mean across filtering iterations show promising results and are 

expected to deviate minimally from mean of the 1/9-arc-second bDEM. These changes 

will reflect the increasing local minimum and decreasing local maximum because of the 

smoothing process. If the focal mean changes too much, this would also be reflected in 

the visual output of the analytical hillshade. The purpose of iterative filtering is to 

gradually smooth the terrain without making drastic changes to the landscape. 

The focal standard deviations show expected results. The standard deviation should 

gradually decrease as the nine focal cells are homogenized. In all cases, after about 10–20 

filter iterations, the trends stabilize. This implies that further iterations would not simplify 

the terrain. The difference in standard deviations between the flat and rugged study areas 

likely is due to the terrain roughness characteristics and would closely be linked to the 

reasoning of why the focal means are so dissimilar. Because rugged study sites have a 

greater elevation range, the standard deviations will be greater. The fitted trend line [with 

a slope of -0.007 ln(x)] for North Carolina again is related to the small range of elevation 

values. 

An unexpected result was the difference in focal standard deviation values of the tDEMs 

compared to the bDEMs. It was expected that comparing these values could lead into 

insights about when a tDEM was most similar to the next coarser resolution bDEM. The 

likely cause that this comparison was not able to be made was focal window was 

measured in cells, opposed to meters. The focal windows for all DEMs were 3x3 cells in 

size. This meant that the focal window was approximately 10x10 meters for the 1/9-arc-

second tDEMs. The 1/3-arc-second bDEM had the same focal window, but was about 

30x30 meters in size. This difference in linear size changes the scale at which the terrain 

(and landforms) is being analyzed and could bias results. Since this same pattern also was 

observed for the Moran’s I comparison, the same explanation can apply. In the future, the 

bDEMs should first be processed and resampled (down-sampled) to have a linear 

resolution of 1/9-arc-second. This may allow for more comparable results since the focal 

windows will be comparing the same areas. 

Although the Moran’s I values in all study areas start at different values, the ending 

autocorrelation values is about 0.3 in all study sites. This is interesting because the results 

appear to not be affected by the landscape characteristics. However, the autocorrelation 

values increase to this level at a slightly faster rate in the flat study areas (about 10 – 20 
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filter iterations) opposed to rugged areas (about 15 – 25 iterations). This implies that flat 

study areas do not need to be filtered as many times to accomplish the same amount of 

generalization compared to more rugged areas. 

It is also curious that the Moran’s I values peak just under 0.3, when 1.0 represents a 

completely homogenous area. This could possibly be happening because spatial 

autocorrelation indices are scale dependent. A global Moran’s I statistic for these study 

areas result in values close to 1.0, regardless of filter iterations. Since the number of cells 

in these study areas is quite large (approximately 4000x4000 for 1/9-arc-second DEMs), 

the autocorrelation results in much higher values. It is likely that after 10–25 filtering 

iterations, all of the 3x3 cell landforms have been homogenized to the point where they 

do not change. In the future, introducing a correlogram to the focal Moran’s I calculations 

could provide more insight on how autocorrelated the study sites are becoming through 

filter iterations. Another way to reduce the scale dependencies of Moran’s I would be by 

examining different sized focal windows. 

The fractal analysis was not as insightful as anticipated. Due to the fluctuations in the 

data, no conclusive interpretations can be extracted. This could be for several reasons. 

First, the terrain derivative that was chosen (analytical hillshade) may not have been as 

appropriate as slope or aspect. Since the hillshade was generated from default settings 

(315° azimuth), landscape features that are aligned to 315° (running NW to SE) would be 

omitted from the shading. Finally, the even binary classification of illumination values 

may have included transitional (flat) zones that added additional noise to the output. 

The variance in the fractal dimension results also is strange. It was promising to see the 

number of patches in flat study areas approach one, causing the fractal dimension to level 

off at 1.0. This implies that these study areas are able to be filtered adequately to meet the 

complexity values of the coarser resolution bDEMs; however, in many cases, this did not 

happen. The anticipated results were expected to be similar to that of Jay Peak, VT. Since 

the expected result occurred here, it adds strength to the possibility that the classification 

scheme used to create the classes simply was not adequate, or may require a unique 

testing scenario for each study site. 

This study has shown that iteratively filtering DEM data with a 3x3 focal mean process 

behaves differently in flat regions compared to rugged regions in terms of rates of data 

change.  Flat regions demonstrate faster rates of change in terms of data complexity with 

increasing filter iterations; however, it is also observed that the data stop changing 

drastically after about 10–20 iterations, regardless of terrain characteristics.  More work 

still is required in relating this information to changes in resolution via comparisons to 

coarser resolution bDEMs (and thus how appropriate filtered data will be for different 

mapping scales).  Additionally, the requirement of data integration still needs to be 

examined.  This can be done by extracting flowlines from the generalized terrain datasets 

and comparing results to benchmark hydrographic data.  This will provide insight into 

how the landscape structure is being altered by the generalization process. 
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