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ABSTRACT: This paper describes a workflow for automating the extraction of elevation-
derived channels using freely available open source tools with parallel computing support, and 
demonstrates the effectiveness of procedures in various terrain conditions within the 
conterminous United States. Drainage networks are extracted from the U. S. Geological Survey 
(USGS) 1/3 arc-second 3D Elevation Program (3DEP) elevation data having a nominal cell size 
of 10 meters (m). This research demonstrates the utility of open source tools with parallel 
computing support for filling depressions in 30 HUC8 subbasins distributed across humid, dry 
and transitional climate regions in terrain conditions exhibiting a range of differing slopes. 
Special attention is given to low slope terrain, where network connectivity is preserved by 
generating synthetic stream channels through lake and waterbody polygons.  Conflation analysis 
compares the extracted streams with a 24K NHD flowline network, and shows that similarities 
are highest for 2nd and higher order tributaries. 
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Introduction 
Hydrographic data is an important component of topographic mapping that supports 
many applications including hydrologic modeling and forecasting, flood inundation 
mapping, landslide mapping, habitat mapping, river restoration, and geomorphologic 
change analysis. For more details, Poppenga et al. (2013) review several of these 
applications. Maidment (2015) describes a framework for the National Flood 
Interoperability Experiment that integrates topographic and hydrographic data to support 
hydrologic forecasting systems for the United States. Hydrographic and other data that 
are used in applications must be both accurate and current to obtain reliable results. 
Geoprocessing methods to validate and improve hydrographic data using current, high 
resolution elevation data, including light detection and ranging (lidar) point cloud data 
and derived products,  are being developed and tested (Poppenga et al., 2013; 
Stanislawski et al., 2015a). These techniques require extensive data processing to apply 
over large areas. For example, data processing for the United States requires over 200 
terabytes of storage space for lidar data alone. Although recent technology and 
cyberinfrastructure advances are furnishing the capacity to acquire, store and process 
large volumes of geospatial data, workflows that automate geoprocessing methods to 
improve hydrographic flow network data have not been fully realized.  
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Automated methods to extract surface water drainage networks from elevation data can 
assist initial capture and update of hydrographic data (O’Callaghan and Mark 1984; 
Jenson and Dominigue, 1988; Tarboton, Bras, and Rodriguez-Iturbe, 1991; Montgomery 
and Foufoula-Georgiou, 1993; Maidment, 2002; Anderson, 2012; Passalacqua, Belmont, 
and Foufoula-Georgiou, 2012, Poppenga et al., 2013). Software tools such as ArcGIS® 
Spatial Analyst Tools, Geographic Resources Analysis Support System (GRASS), 
LandSerf, System for Automated Geoscientific Analysis (SAGA), and Terrain Analysis 
Using Digital Elevation Models (TauDEM) can help automate the extraction of surface 
water drainage networks from elevation data, along with furnishing other capabilities. 
Using these tools within a Windows® operating system on a desktop computer to process 
large, high resolution digital elevation models (DEMs) can be tedious and time 
consuming, and may be impractical depending on DEM size and resolution.  

Gong and Xie (2009) decomposed DEM data into watersheds and simultaneously 
extracted drainage networks for multiple watersheds using a collection of computers 
running Windows® and ArcGIS®. In this case, simultaneous distributed computing 
enhanced computational efficiency compared to serial processing methods (Gong and 
Xie, 2009). Stanislawski et al. (2015b) tested simultaneous extraction of drainage 
networks for multiple watersheds using ArcGIS® Server on a Linux cluster. However, the 
Windows® emulation employed for ArcGIS® could not handle multiple processing 
threads, and this strategy did not enhance performance or data throughput (Stanislawski 
et al., 2015b). Consequently, the drainage network extraction workflow employed by 
Stanislawski et al. (2015b) was translated to open source and TauDEM geoprocessing 
functions and implemented on a Linux high-performance computing cluster to 
substantially enhance performance (Stanislawski et al., 2016).  

Typical methods for extracting drainage networks from elevation data involve filling pits 
in the elevation model, deriving flow direction and flow accumulation surfaces, defining 
a minimum contributing area threshold that forms a linear drainage feature, and 
extracting the drainage network (O’Callaghan and Mark, 1984; Jenson and Dominigue, 
1988; Tarboton, Bras, and Rodriguez-Iturbe, 1991; Montgomery and Foufoula-Georgiou, 
1993; Maidment, 2002; Gong and Xie, 2009; Passalacqua, Belmont, and Foufoula-
Georgiou, 2012). Filling pits or depressions is a challenging problem for hydrologic 
applications (Band, 1999; Hutchinson and Gallant, 1999; Wang and Liu, 2006; Poppenga 
et al., 2010; Zhu et al., 2013). Improperly filling pits can extract networks that are 
disconnected because some or all features are not extracted in one or more filled areas, or 
networks may include overly straight and parallel features within the filled depressions.   

This paper discusses an automated geoprocessing workflow that uses a high performance 
computing environment to improve the United States National Hydrography Dataset 
(NHD). Specialized techniques to identify, classify and fill depressions in terrain data are 
used to extract connected networks in various conditions within the conterminous United 
States. As in Stanislawski et al. (2016), the automated workflow is implemented through 
a high-performance Linux cluster to extract drainage networks from the U. S. Geological 
Survey (USGS) 1/3 arc-second 3D Elevation Program (3DEP) elevation data which has a 
nominal cell size of 10 meters (m). Extracting networks from this publicly available 
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product yields faster results of sufficient quality to support cartographic production and 
additional research refinements.  

Methods 
High-resolution (HR) NHD within the conterminous United States is a multi-scale dataset 
comprised of hydrographic data from the best available data contributed from source 
scales of 1:24,000 (24K) and larger (Stanislawski et al., 2015b; Stanislawski et al., 2016). 
Consequently, the HR NHD must be generalized for 24K or smaller scale displays. The 
NHD is subdivided and distributed in watershed units. There are 18 two-digit region 
watersheds, and 202 four-digit subregion, and 2,119 eight-digit subbasin watersheds in 
the conterminous United States (Figure 1).  To automate generalization of the HR NHD, 
elevation-derived 24K natural drainage density patterns are extracted for eight-digit 
Hydrologic Unit Code (HUC8) subbasin watersheds. Target densities for pruning the HR 
NHD to 24K and smaller scales are ultimately derived from the extracted 24K drainage 
patterns (Stanislawski, 2009).  

 

Figure 1. At left, two-digit region (labeled) and four-digit subregion watersheds of the National 
Hydrography Dataset within the conterminous United States. At right, two-digit region (labeled) and eight-
digit subbasin watersheds are shown. 

Natural drainage density patterns at 24K are extracted from 1/3 arc-second 3DEP DEM 
data through weighted flow accumulation (WFA) modelling. Weights for the model are 
based on runoff data (McCabe and Markstrom, 2007; McCabe and Wolock, 2008) 
adjusted for terrain slope, soil permeability, soil depth, ground water, and vegetation 
cover. Geomorphology conditions are estimated at resolutions of 5 kilometers (km) for 
runoff, nominally 10 m for slope, and 1 km for soil depth, soil permeability, ground 
water, and vegetative cover. For more details see Stanislawski et al. (2012). 

The total amount of vector drainage lines that are extracted from each HUC8 watershed 
through the WFA model is controlled by parameters derived from the initial version of 
24K hydrographic flow line data. In many areas, the initial 24K version of hydrographic 
data has compilation inconsistencies that do not reflect natural drainage density patterns 
caused by geomorphologic conditions, and therefore the initial 24K version is not a 
suitable reference pattern for 24K content. However, the 24K version is the best available 
synoptic estimate for the amount of hydrographic content that should be displayed at 24K 
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within each watershed. Consequently, four parameters are derived from the 24K version 
for each HUC8 subbasin: (1) total km and (2) total number of natural flow line network 
features, (3) minimum length of first-order, primarily ephemeral stream tributaries, and 
(4) polygonal areas that are devoid of 24K flow line features. These parameters along 
with the associated WFA model control the concentration and distribution of linear 
drainage features that are extracted from the elevation data for any subbasin. 

The first step of the extraction algorithm fills spurious depressions that may obstruct 
continuous downhill flow over the surface. Spurious depressions are relatively small 
anomalous depressions in the elevation data. Pit removal algorithms will generally fill 
these areas adequately. Of concern are other large relatively flat depressions caused by 
waterbodies such as, ponds, lakes, dry lakes, streams, or possibly flood plains spanning 
valley bottoms. Filling these features can cause the process to omit drainage line 
extraction within these features creating improper disconnected networks (Figure 2a). 
Also a problem is the generation of parallel drainage lines in these large flat areas where 
the filling process forms one or more adjacent tilted planes (Figure 2b). An accurate set 
of waterbodies could be overlaid to skip the filling process in the waterbodies, but 
drainage lines would still be needed in the waterbodies and other flat areas in order to 
complete and fully connect the network.  

 

Figure 2. (a) Section of drainage network around Nantahala Lake, North Carolina extracted for Upper Little 
Tennessee subbasin (NHD HUC8 06010202) after filling depressions. Network features are not extracted in 
Nantahala Lake (orange boundary) because the filled surface is too flat to generate adequate flow 
accumulation to form drainage lines. (b) Section of drainage network extracted for Eureka-Saline Valleys 
subbasin (NHD HUC8 18090201) in California after filling depressions. Filling depressions in these 
extremely large valleys creates a flat surface causing parallel drainage lines to be extracted. Filled elevation 
data are represented with gray scale where lighter shades indicate higher elevations. 

The key to extracting a fully connected network involves identification and classification 
of depressions and handling of each class of depression. The method used here classifies 
the 1/3 arc-second DEM for a watershed based on a terrain roughness estimate. Mean 
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elevation, minimum elevation, and standard deviation of elevation are recorded for a 
subbasin DEM. In addition, a digital slope surface, recorded as percent rise, is also 
computed for the subbasin. These data are used to identify large flat areas that are 
problematic in the drainage line extraction process. Two considerations are built into the 
process. A rough subbasin has a standard deviation in elevation greater than 77.7 m, 
otherwise the subbasin is defined as non-rough. A large, relatively flat depression is an 
area that is greater than 500 acres where slope values are less than 1/30th of the standard 
deviation of the slope for the subbasin. Threshold values were determined by testing 
procedures on more than 30 subbasins distributed in various conditions in the 
conterminous United States and visually verifying the connectivity of the extracted 
networks. 

For a rough subbasin, NHDPlus version 2 (McKay et al., 2012) hydro-DEM data is 
inserted into the subbasin DEM where the large, relatively flat depressions exist. 
NHDPlus version 2 hydro-DEM data is hydro-conditioned 1 arc-second (nominally 30-m 
cell size) elevation data, which has selected 1:100,000-scale (100K) NHD flowlines and 
waterbody boundaries are burned into the DEM data and HUC12 boundaries 
incorporated as “walls” during hydro-enforcement of the DEM (McKay et al., 2012). 
These steps create the hydro-conditioned DEM. At this point, the rough subbasin DEM 
includes 30-m hydro-conditioned cells that follow 100K hydrography in the flat large 
depressions and nominally 10-m cells everywhere else. The TauDEM pitremove 
algorithm, which uses the standard flooding approach described by Jenson and Domingue 
(1988), is applied to remove spurious depressions in the subbasin DEM. Subsequently if 
the minimum elevation of the filled DEM is not substantially higher (less than or equal to 
100 m) than the minimum of the original DEM, then the filled DEM is used for 
subsequent computations. If the minimum elevation of the filled DEM is substantially 
higher than the original minimum, then the pitremove algorithm is applied to the original 
DEM, not including the large flat areas, and then the 30-m NHDPlus data is added to the 
filled DEM in the flat areas.  

For non-rough subbasin DEMs (standard deviation of elevation < 77.7 m), the pitremove 
algorithm is applied to the entire subbasin DEM. 

After hydro-conditioning of the subbasin DEM is complete, D8 flow directions 
(O’Callaghan and Mark, 1984) and the WFA model are computed. The total km of 
drainage lines to extract for the subbasin (parameter estimated from 24K version of flow 
lines) is expanded to account for pruning of short first order tributaries and simplification 
that will remove the blockiness after drainage lines are extracted. The expanded length is 
converted to the number of cells needed from the flow accumulation dataset that will 
form the required amount of vector drainage lines. The minimum WFA value that 
extracts the required number of cells is determined through an iterative process that 
accounts for drainage lines that may be extracted in the devoid polygons, if any exist. 
Once the minimum WFA value is found, flow accumulation cells greater than the 
minimum are converted to vector lines and simplified. The conversion process computes 
stream order values for the extracted vector network. First order features that are shorter 
than the minimum length, as defined by the input parameters, are pruned.  
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Open Source Tools 
The drainage network extraction process is computationally intensive. Therefore, the 
network extraction step is implemented using portable Python scripts coded with open 
source tools, including the Geospatial Data Abstraction Library (GDAL, http://gdal.org) 
and TauDEM (https://github.com/dtarb/TauDEM). GDAL is deployed on a Linux cluster 
as C/C++/Python programming libraries. TauDEM uses a parallel programming model 
for data decomposition, runtime communication, and parallel input/output. The software 
is deployed on a five-node Linux cluster at the U.S. Geological Survey (USGS). Each 
node has 20 processing cores and 64 gigabytes of shared Random Access Memory 
(RAM). A parallel Lustre file system on a high-speed Infiniband interconnect provides 
rapid access to file storage. Scheduling jobs to simultaneously extract drainage networks 
from multiple subbasins is managed virtually through the Simple Linux Utility for 
Resource Management (SLURM).  

Test Data 
A set of 30 test HUC8 subbasins distributed in the conterminous United States within 
three different climate regions having various terrain conditions is used to test the 
efficacy of the drainage network extraction methods (Figure 3). Test subbasins range in 
size from 1300 to 7500 square km. Ten subbasins are situated in dry, humid, and 
transitional climate regions. The dry region experiences less than 140 millimeters per 
year (mm/year) of runoff, and the humid region experiences more than 140 mm/year of 
runoff (McCabe and Markstrom, 2007; McCabe and Wolock, 2008). Test subbasins in 
the dry and humid regions are distributed within three terrain slope categories: 0.0 to 1.5, 
1.5 to 7.0, and greater than 7.0 percent rise. The third set of ten subbasins lie in areas 
having conditions that transition between more than one slope or climate category. 

 

Figure 3. Distribution of 30 test subbasins in the conterminous United States displayed over (a) mean 
annual runoff and (b) average slope. 

Similarity Testing 
To validate the quality of the extracted 24K drainage networks, each of the 30 extracted 
networks is compared to the 24K version NHD flowline network for its associated 
subbasin. An automated approach estimates the similarity of the two associated networks 
through the Coefficient of Line Correspondence (CLC) (Stanislawski et al., 2015a). The 
approach automatically identifies the matching and mismatching linear features in the 
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two networks. The CLC metric is computed as the sum of the length of the matching 
lines from both datasets divided by the sum of the length of all lines in both datasets. 
CLC values range from 0.0, indicating no matching features in both datasets, to 1.0, 
indicating all features are matching in both datasets. 

Results 
Visual inspection of extracted drainage networks for the 30 subbasins indicate that all 
networks are well connected in all areas, including the problematic large, flat depression 
areas illustrated in Figure 2. An example is shown in Figure 4a, illustrating how extracted 
network features are fully connected through Nantahala Lake, North Carolina. In this 
case, DEM conditioning includes 30-m hydro-conditioned NHDPlus data in large flat 
depressions and subsequent depression filling through the pitremove algorithm. The 
100K channels burned through the NHDPlus data are sufficient to create channels 
through the flat waterbody areas.  

 

Figure 4. (a) Section of drainage network around Nantahala Lake, North Carolina extracted for Upper Little 
Tennessee subbasin (NHD HUC8 06010202) after including NHDPlus hydro-conditioned elevation data in 
large flat depressions and subsequently filling spurious depressions. Network features are extracted in 
Nantahala Lake (orange boundary). (b) Section of drainage network extracted for Eureka-Saline Valleys 
subbasin (NHD HUC8 18090201) in California after filling depressions except in large flat depression 
areas and then including NHDPlus hydro-conditioned elevation data in large flat depression areas. 
Comparison with Figure 2 shows that this conditioning process does not create unrepresentative parallel 
flow vectors through the large flat depression areas. Filled elevation data are represented with gray scale 
where lighter shades indicate higher elevations. 

Table 1 summarizes the differences in the statistics of the subbasin DEM datasets before 
and after conditioning with NHDPlus data in large depressions and subsequent global 
filling. As highlighted with the yellow-shaded rows in Table 1, about half of the tested 
subbasins have rough terrain requiring a search for large flat depression areas. For the 
Eureka-Saline Valleys subbasin (HUC8 18090201), the difference of the minimum 
elevations before and after conditioning is greater than 100 m; therefore, the NHDPlus 
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data inserted in the large flat depression areas is not reconditioned with the pitremove 
algorithm. As seen in Figure 3b, this step leaves enough relief in the large flat 
depressions to form adequate flow accumulation to extract more sinuous drainage lines in 
the depressions than the parallel lines that were extracted from the globally filled DEM as 
previously shown Figure 2a.  

CLC values measuring the similarity of all, first order, and higher order features in the 
24K extracted networks and 24K version NHD flowline networks for the 30 subbasins 
are shown in Figure 5. For all features the average, minimum, and maximum CLC values 
are 0.73, 0.50, and 0.85, respectively. So, on average about 73 percent of the extracted 
channels match the NHD flowlines, and in the worst case subbasin, only about 50 percent 
of the features match between the two datasets.  Lower matching (about 0.50 to 0.60) is 
found in the subbasins having average slope less than about 1.5 to 2 degrees. Low slope  

Table 1: Summary statistics of 1/3 arc-second DEM datasets for 30 subbasin watersheds before and after 
adjustments to include NHDPlus data and remove depressions. Yellow rows indicate standard deviation of 
elevation is greater than 77.7 meters. Red cell indicates the difference of the minimums of the adjusted and 
original datasets for the subbasin is greater than 100 meters. 

  Original Elevation Data (meters) 

Elevation Data After Inserting NHDPlus in 
Low Relief Areas (for some subbasins) and 
Removing Depressions (meters) 

Adjusted – Original 
(meters) 

Subbasin Mean 
Standard 

Deviation Minimum Maximum Mean 
Standard 
Deviation Minimum Maximum 

Minimum 
Difference 

Maximum 
Difference 

1100002 171.5 65.3 -1.8 399.4 172.0 64.9 0.0 399.4 1.8 0.0 
2050102 439.8 72.2 249.5 653.6 439.8 72.2 249.8 653.6 0.3 0.0 
2070001 650.6 267.6 160.2 1482.5 650.6 267.6 160.2 1482.5 0.0 0.0 
3060104 211.6 54.7 98.6 556.3 211.6 54.8 100.4 556.3 1.8 0.0 
3110201 41.1 7.8 8.4 96.6 41.2 7.7 8.4 96.6 0.1 0.0 
5100201 393.2 97.1 189.3 1002.7 393.3 97.1 189.9 1002.7 0.6 0.0 
5120203 224.1 39.7 149.3 317.3 224.3 39.6 149.3 317.3 0.0 0.0 
6010202 906.7 244.2 410.3 1700.8 905.6 248.5 -643.4 5380.9 -1053.7 3680.1 
8020201 94.4 5.5 81.7 182.9 94.6 5.4 83.1 182.9 1.5 0.0 
9020109 370.0 59.8 251.9 482.0 370.1 59.8 251.9 482.0 0.0 0.0 

10090204 1602.6 102.8 1337.2 1923.9 1602.6 102.8 1337.2 1923.9 0.0 0.0 
10090210 961.8 78.9 755.9 1263.5 961.8 78.9 755.9 1263.5 0.0 0.0 
10190013 1472.2 103.8 1264.3 1825.4 1472.2 103.8 1264.3 1825.4 0.0 0.0 
10240006 350.8 34.6 268.2 445.6 350.8 34.6 269.0 445.6 0.8 0.0 
10270204 466.9 31.7 384.7 542.4 466.9 31.7 384.7 542.4 0.0 0.0 
10290107 318.2 46.6 214.9 468.6 318.5 46.4 215.3 468.6 0.4 0.0 
11030017 424.5 20.7 361.0 498.2 424.5 20.7 361.2 498.2 0.2 0.0 
11130102 343.3 29.7 265.5 439.7 343.3 29.7 265.5 439.7 0.0 0.0 
12020007 20.1 10.0 0.6 68.7 20.1 10.0 0.6 68.7 0.0 0.0 
12080005 899.1 64.1 766.2 1047.6 899.3 64.2 766.2 1047.6 0.0 0.0 
12090206 487.8 109.9 196.1 697.1 487.8 109.9 196.3 697.1 0.2 0.0 
14060005 1995.2 387.1 1261.8 3102.4 1995.3 387.9 -754.0 6556.7 -2015.9 3454.4 
15010005 959.1 457.1 348.2 2466.3 951.1 480.1 -1038.1 6448.2 -1386.3 3981.9 
17020008 1419.5 503.2 238.5 2720.2 1419.5 503.1 238.5 2720.2 0.0 0.0 
17070307 995.1 241.5 391.0 1808.6 995.1 241.5 391.0 1808.6 0.0 0.0 
17090009 369.9 346.1 18.2 1528.7 370.7 349.3 18.6 5057.1 0.3 3528.4 
18010202 1599.9 216.8 1269.2 2549.7 1599.9 216.8 1269.2 5311.0 0.0 2761.2 
18010212 1079.9 299.6 135.8 2387.0 1079.9 299.6 135.8 2387.0 0.0 0.0 
18040002 196.6 242.9 4.8 1160.4 213.9 337.5 -1163.7 5060.3 -1168.4 3899.9 
18090201 1565.4 656.2 322.5 3525.3 1799.0 422.4 1489.9 6547.5 1167.3 3022.2 

182



 

subbasins may have predominantly swampy, karst, or coastal conditions where man-
made drainage features may be prevalent, and consequently the actual hydrographic 
features may not match very well with extracted natural flow patterns inherent in the 
topography. 

CLC values comparing first order features in associated subbasins range from 0.31 to 
0.73, with an average of 0.59, and CLC values comparing second and higher order 
features range from 0.66 to 0.99, with an average of 0.89. Thus, the majority of 
mismatching is found in the first order features, which largely can be attributed to 
cartographic constraints that limited the initial collection of headwater features (first 
order tributaries) to a minimum length or minimum distance from nearest ridge (U.S. 
EPA and U.S. DOI, 1999). Results corroborate findings by other researchers, who 
suggest that NHD flowlines do not adequately represent headwater features for 
engineering and hydrologic purposes (Colson et al., 2008; Fritz et al., 2013; Caruso, 
2014). Consequently extracted features may help guide or prioritize updating the NHD 
with additional headwater content. 

 

Figure 5.  Coefficient of Line Correspondence (CLC) values estimating the similarity of the 1:24,000-scale 
(24K) elevation-derived network and the 24K version NHD flowline network. CLC values can range from 
0.00 for complete mismatch of all features to 1.00 for perfectly matching line sets. Subbasin CLC values 
are plotted against average elevation slope values. Top chart shows CLC values for all features, bottom left 
chart shows CLC values comparing only first order features in both networks, and bottom right chart shows 
CLC values comparing 2nd and higher order features in both networks. 

The Linux cluster implemented for this research contains 100 processing nodes, which 
allows simultaneous processing of up to 100 subbasins. Tests on the 30 subbasins and 

183



other data demonstrate the capacity to extract networks for about 500 subbasins in about 
16 hours. This level of throughput opens new research possibilities, such as a thorough 
sensitivity analysis and refinement of the weighted flow accumulation and drainage 
network extraction process, and review of the 24K parameter estimation process. 
Furthermore, additional work is needed to validate the location and concentration of 
extracted channels.  

Conclusions 
Hydrographic data is relevant to many if not most mapping and analytical applications; 
and yet it is challenging to process because it is highly sensitive to scale-change and 
because it must be integrated carefully with other data layers such as terrain.  These two 
characteristics mandate advanced processing methods that are labor- and computationally 
intensive, making a national coverage hydrographic dataset expensive to maintain, 
especially in an expansive geographic area such as the conterminous United States. A 
particularly difficult step in data processing involves identifying and filling terrain 
depressions (sinks) that exist in the data but not in the actual landscape. Advances in open 
source software, concurrent processing and high performance computing reduce 
processing costs and time, as well as improve consistency of results.   

The research reported here demonstrates the utility of open source tools with parallel 
computing support for filling depressions in 30 HUC8 subbasins distributed across 
humid, dry and transitional climate regions in terrain conditions exhibiting a range of 
differing slopes. Special attention is given to low slope terrain, where network 
connectivity is preserved by generating synthetic stream channels through lake and 
waterbody polygons.  Conflation analysis compares the extracted streams with a 24K 
NHD flowline network, and shows that similarities are highest for 2nd and higher order 
tributaries.  This result is expected, given that 1st order tributaries in the vector NHD 
database are not always complete.  One goal of extracting stream channels from terrain 
data is to improve existing data stores for 1st order tributaries, in addition to improving 
processing speed and accuracy of recorded data.  Future research will continue to refine 
results, with further examination of processing in subbasins situated in low slope terrain. 
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