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ABSTRACT: An increasing amount of multi-temporal land use and built-up land datasets will be 
made available in the near future. However, little research has been done regarding the 
spatiotemporal uncertainty of these datasets. Publicly available cadastral parcel data including 
temporal information about construction dates of structures may be a useful source of reference 
data for spatiotemporal accuracy assessment, especially when parcel records are integrated with 
building footprints to create a spatially refined reference dataset. In this work we discuss the 
suitability of such an approach for establishing protocols for future spatiotemporal validation of 
multi-temporal built-up land data, exemplified by the novel Global Human Settlement Layer 
(GHSL), which assesses human presence on the planet on a global scale based on automatic 
classification of multi-temporal remote sensing data for a temporal extent from 1975 to 2014. 
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Introduction 
The Global Human Settlement Layer (GHSL) project aims to map built-up land based on 
the integration of remotely sensed image data and census data (Pesaresi et al., 2015). In 
Pesaresi et al., (2013) the GHSL information production workflow was tested for a large 
set of sensors in the spatial resolution range of 0.5-10m. These sensors may perform very 
well in detection of built-up areas but are typically constrained regarding data access, 
processing and redistribution rights which makes the scientific use of the derived 
products difficult or unsustainable. Moreover, they are typically available only for more 
recent years, and acquired in rather scattered ways for arbitrary points in time, which 
makes these data difficult to use for uniform and systematic extrapolation of global, 
regional or even national trends. 
 
In order to mitigate some of these issues, the GHSL system was ported in the open 
remote sensing data domain and tested with global collections of image data records 
collected by the Landsat satellite platform in the past 40 years (Pesaresi et al., 2016). The 
GHSL is available as seamless global mosaic at high spatial resolution (approx. 38m) and 
for various epochs (1975, 1990, 2000, 2014, see Figure 1 1). This new dataset offers 
promising opportunities for population projections, disaster management and risk 
assessment (Freire et al., 2015; Freire et al., 2016), as well as for analysing and modelling 
urban dynamics and land use change. 
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a  b  

Figure 1: (a) GHSL built-up land identified for four time periods from 1975 to 2014 and (b) corresponding 
satellite image acquired in 2015 (Source: ESRI) for a subset of Boulder County (Colorado). 

However, before such novel data products can be made available to the research 
community, an extensive quality assessment is required. Such assessments are difficult to 
realize due to the lack of reliable reference data particularly for earlier time periods and 
in less developed regions. In this paper we present and discuss a novel approach that can 
be applied to develop protocols for consistent future evaluation of multi-temporal spatial 
data on built-up land such as GHSL or developed land cover classes (e.g., in the National 
Landcover Database in the U.S.) using publicly available parcel (cadastral) data 
integrated with building footprints. 
 
The aim of this study is to examine the suitability of such integrated data as reference 
data in accuracy assessments of fine-scale multi-temporal built-up land layers derived 
from automatic classification of satellite data. Possible spatial mismatches between data 
sources, which can be caused by positional uncertainty in the reference data, geometric 
inaccuracy of the imagery used to create the built-up land layers, aggregation and mixed 
pixel effects in the raster data or shifts of raster cells during resampling and projection 
processes, are addressed through a sensitivity analysis of the assessment results. In this 
sensitivity analysis, systematic offsets between reference data and the built-up data are 
incorporated and accuracy metrics are computed for each of these shifts. In the case of 
GHSL, a quality assessment protocol should be capable to separate the thematic and 
spatial components of overall errors, since the objective of GHSL is to report on the 
amount of built-up area within an administrative unit in order to support the monitoring 
of implementation of international frameworks and not to produce topographic maps.  

This study focuses on feasibility of the proposed approach; consequently, the outcomes 
are not statistically representative quality measures for GHSL products but merely are 
intended to demonstrate the potential use of the integrated data products to establish 
effective evaluation frameworks and to show the sensitivity involved in such a 
comparison. Selection of the study areas is driven by the availability of the reference 
data. Even though these study areas are in the U.S., such an evaluation process can be 
extremely useful to shed light on the quality of such products in different contexts and 
represents a basis for further improvement of the multi-temporal built-up land layer. 

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS
User Community
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Method 
Data and study area 
Open data policy makes cadastral, tax assessment and occasionally building data 
increasingly available to the public – often in GIS-compatible format – for many regions 
in the U.S. and other countries. Parcel data usually contain rich attribute information 
related to the type of land use, characteristics of the structure and the year when a 
structure in a parcel has been established (built year). This allows the creation of 
snapshots of built-up parceled land for any point in time. Building data are becoming 
increasingly available and are used in this study to spatially refine the snapshots of built-
up parceled land. This refinement is expected to be especially effective in rural areas 
where parcel units can have large areal extents and are expected to overestimate built-up 
land if they remain unrefined. Some administrative regions in the U.S. provide these 
valuable data publicly and are used as study areas (Figure 2 for some examples).  

 
Figure 2: Study areas in the U.S. where parcel records including built year information and building 
footprint data are publicly available. 

 
Integration of parcel records and building footprint data 
Cadastral parcel boundaries are typically acquired using terrestrial or GNSS-based land 
surveying methods. Building footprints are often derived from LiDAR measurements or 
digitized based on aerial imagery. In order to create spatially refined parcel information, 
parcel data and building footprints have to be spatially integrated by establishing 
topological relationships between parcel and building objects such as containment. This 
is a challenging task due to different data acquisition methods and specific geometric and 
topological characteristics of the data as well as possible n:m relationships between 
building and parcel objects. In this work different vector data integration methods based 
on spatial joins are evaluated. During the data integration, parcel information (e.g., built 
year) is appended to the building feature(s) contained in the parcel, and for parcels that 
contain one or more building objects, area statistics are appended to the parcel object. 
According to Butenuth et al., (2007), the establishment of semantic relationships between 
spatial objects consists of two steps: a) data matching and b) data linking. Here, data 
matching is performed by spatially joining parcel and corresponding building objects 
based on geometrical and topological criteria. Data linking is performed implicitly during 
the spatial join: The unique identifier and other attributes of the matched object are 
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transferred to the attribute table of the target object and allows to retrieve associated 
objects within a GIS or other database environments. When the relationships between 
parcels and contained buildings are modeled, the choice of an efficient, accurate, and 
robust spatial join method is crucial. Three promising bidirectional spatial join methods 
were implemented and compared for a subset of Boulder County (Colorado) that contains 
both urban and rural areas, where parcel sizes and building densities are expected to vary, 
significantly. These methods are: 

a. Spatially join buildings and parcels based on containment of building centroids in 
parcel polygons. 

b. Spatially join buildings and parcels based on the majority of the overlapping area 
between the parcel and building polygons. 

c. Spatially join buildings and parcels based on “complete containment” and 
“completely within” criterion. 
 

Based on the established relationships between parcels and building objects, the built 
year information from the parcel is transferred to the building. In addition to that, the 
summarized area of the buildings joined to a parcel is computed and appended to the 
parcel and building objects. The ratio of summarized building areas in relation to the 
parcel area r is used to evaluate the performance of the spatial join method. A join is 
considered correct if the aggregated area of k buildings associated with a parcel does not 
exceed the area 𝐴!"#$%& of the parcel itself: 

𝑟 =   
𝐴!"#$%#&'  !!

!

𝐴!"#$%&
  ≤ 1 

The centroid-based method and area majority-based method show similar robustness to 
geometric and topologic inconsistencies between the two datasets and relatively low 
maximum omission errors (Table 1). The maximum omission errors are estimated using 
the number of parcels that overlap with a building object which represents the maximum 
number of parcels that potentially can be joined to a building. The complete containment-
method does not consider buildings that also overlap with adjacent parcels which leads to 
a high rate of correct joins but results in a high maximum omission error.  

Table 1: Evaluation results of selected methods to spatially join parcels and building objects for a subset of 
Boulder County (CO). 

Spatial join method Maximum number of 
parcels potentially to 

be joined 

Spatially 
joined 
parcels 

Correctly 
joined 

parcels (r≤1) 

Maximum 
Omission 
error[%] 

Correctly 
joined rate 

[%] 

A: building centroid-based 1585 1367 1290 13.8 94.4 

B: area majority 1585 1362 1292 14.1 94.9 

C: complete containment 1585 1085 1083 31.5 99.8 
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The centroid-based joining method requires less computational power than the area 
majority method, since object matching is accomplished by a simple point-in-polygon 
query. For this reason and given the large amount of data to be integrated if several 
counties are included, the centroid-based joining method is chosen to transfer built-year 
information from parcel objects (Figure 3a) to building objects. The building objects with 
built-year information transferred from the parcel objects represent spatially refined 
temporal snapshots of built-up land (Figure 3b). In addition to the statistics in Table 1, 
further evaluation of the spatial join is performed by obtaining the number of buildings 
that are joined to parcels that do not have built-year information, and parcels with built-
year information that were not joined to any building. This cross-comparison of the two 
independent data products allows to assess the completeness and reliability of the 
integrated data product, and provides important information about thematic uncertainty in 
the reference data introduced by the data integration process. 

a     b   
Figure 3: (a) Parcel-based reference data (vector), (b) parcel-based reference data refined by building 
footprints f or a subset of Boulder County (Colorado). 

 

Creation of reference surfaces 
Since GHSL data is available as raster data at a spatial resolution of approximately 38m, 
a raster-based accuracy assessment is straight-forward. Therefore, the building objects 
containing built year information are used to generate GHSL-compatible raster data. 
Here, compatibility includes the following aspects: 

The built year information is converted and encoded to match the temporal categories 
in GHSL (2: land not built-up, 3: land built-up from 2000-2014, 4: 1990-2000, 5: 1975-
1990, and 6: <1975). For simplification purposes, GHSL epochs are treated as global 
temporal thresholds. In fact, the built-up area for a given epoch in GHSL is derived from 
an image collection acquired within a certain time frame (for example, the built-up area 
for epoch 1990 is based on images gathered between 1985-1995).   

The same definition of the abstract class built-up land as used in the GHSL is applied 
here for pixel value assignment. According to Pesaresi et al. (2016), a pixel is considered 
to be built-up if at least one structure detected by the GHSL classification method 
overlaps the pixel area. To identify overlaps between building objects and GHSL raster 
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cells, the building objects are rasterized to an intermediate spatial resolution of 2m using 
the GHSL-matched built-year class as raster value and it will be examined whether any of 
these cells intersect with the GHSL raster cell extents. The resolution of 2m is considered 
a good trade-off between maintaining characteristic building outline features and a 
feasible computational effort.  

The intermediate raster dataset is then aggregated (resampled) to the GHSL cell extents, 
creating a GHSL compatible reference surface called GHSLref  thus maintaining the 
spatial resolution and registration properties of GHSL. If a raster cell in GHSLref  
contains at least one 2m resolution cell encoded as built-up land, the GHSLref  cell will be 
classified as built-up and the oldest built-up category that occurs inside will be used for 
cell assignment, otherwise it will be assigned as not built-up. Figure 4 shows the 
converted 38m resolution reference surfaces based on parcel data only (Figure 4a) and 
spatially integrated  parcels and building footprints (Figure 4b) both encoded with GHSL 
temporal categories. 

a  d b  
Figure 4: (a) parcel-based reference dataset and (b) spatially refined reference dataset both rasterized and 
resampled to GHSL resolution for a subset of Boulder County (Colorado). 

Assessment of agreement between reference data and built-up land layers 
The agreement between GHSL built-up land and the created reference surfaces is 
evaluated based on created confusion matrices which allow the derivation of various 
accuracy metrics (Fielding and Bell, 1997) for different time periods and each of the 
study areas. Each GHSL time span is evaluated cumulatively in order to characterize 
agreement behavior over time. These metrics can be used to quantify the classification 
accuracy of GHSL data for each time span assuming the reference data reflect built-up 
land with high accuracy, and provide rich material for discussion and interpretation. To 
evaluate the effect of the spatial refinement of parcel units using building footprints, both 
parcel-based and building-based reference surfaces are used (as shown in Figure 4).  

The described method to create parcel-based and building-based reference surfaces is 
illustrated in Figure 5. 
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Figure 5: Workflow for parcel-based and building-based agreement assessment for GHSL built-up areas. 

Results 
Parcel-based versus building-based assessment of agreement 
In a first comparative assessment the accuracy metrics for (overall) cumulative built-up 
areas in each epoch are computed using both parcel-based and building-based reference 
surfaces for Boulder County (Colorado), which has a rural area coverage of 88.25% 
according to U.S. Census 2010 Urban/Rural Classification. As can be seen in Table 2, 
using the spatially refined, building-based reference surface, Kappa, NMI, PCC and 
Producer’s Accuracy, and Omission error indicate increased agreement compared to 
parcel-based reference data. One main reason can be found in the overestimation of built-
up land in rural areas where parcel units can be very large but only small portions of the 
parcel area are actually built-up. Thus the integration of parcel and building data appears 
to create more realistic reference surfaces, especially for rural regions.  

Table 2: Agreement metrics for comparing GHSL with the two reference surfaces for Boulder County 
(Colorado). Highlighted are accuracy metrics that improved by using spatially refined reference data. 

Reference data type 
GHSL 
class 

Producer's 
Accuracy 

User's 
Accuracy Kappa NMI PCC 

Omission 
error (%) 

Comission 
error (%) 

Parcel-based 
not 

built-up 0.996 0.686 0.190 0.079 0.701 0.415 31.434 

Parcel-based <2015 0.158 0.954 0.190 0.079 0.701 84.205 4.619 

Parcel-based ≤2000 0.150 0.846 0.178 0.058 0.727 85.024 15.366 

Parcel-based ≤1990 0.132 0.766 0.163 0.047 0.772 86.837 23.404 

Parcel-based <1975 0.069 0.742 0.099 0.027 0.826 93.055 25.767 

Refined by buildings 
not 

built-up 0.980 0.965 0.400 0.170 0.947 2.025 3.480 

Refined by buildings <2015 0.369 0.505 0.400 0.170 0.947 63.058 49.452 

Refined by buildings ≤2000 0.375 0.493 0.401 0.174 0.951 62.456 50.660 

Refined by buildings ≤1990 0.378 0.515 0.415 0.188 0.959 62.236 48.537 

Refined by buildings <1975 0.249 0.586 0.338 0.139 0.973 75.111 41.431 
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Assessing agreement in rural and urban regions 
Using the spatially refined reference data, agreement assessment is conducted for all 
administrative unit areas separately for urban and rural regions which are defined based 
on the U.S. census 2010 percentage of urban and rural land area per county estimate. 
Each county is divided into regions of mostly urban and rural character using a threshold 
of 50% coverage of urban land area per county. The preliminary agreement metrics in 
Figure 7 and Figure 7 demonstrate how agreement between built-up land layers and 
reference data could be assessed for different points in time, and show interesting 
differences for urban and rural regions regarding ranges and tendencies of the agreement 
metrics over time in the study areas as a totality covering different geographic settings. 

 
Figure 6: Temporal behavior of PCC and Kappa index for GHSL total built-up areas (using building-based 
reference data) in urban and rural regions of the different study areas. 

 
Figure 7: Temporal behavior of Producer's and User's accuracy for GHSL total built-up areas (using 
building-based reference data) in urban and rural regions of the different study areas. 

 

Sensitivity Analysis 
Important components of uncertainty in remotely sensed data and derived products 
include positional and thematic uncertainty. Furthermore, uncertainty in the reference 
data itself needs to be taken into account. Positional inaccuracy in the reference data may 
be introduced by the data acquisition method, such as digitization of building footprints 
from scanned maps or geometric distortions in aerial photography used for digitization. 
The satellite imagery used to create GHSL built-up land layers may suffer from 
displacements due to inaccurate image registration and may introduce positional 
inaccuracy. These aspects can cause positional discrepancies between reference data and 
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target data which may bias the assessment of agreement. To quantify the sensitivity of 
agreement metrics to potential positional discrepancies, in this study systematic offsets 
between the two datasets are simulated and the behavior of the agreement metrics will be 
observed. 

One crucial point is the aggregation of high-resolution building footprints (2m resolution; 
Figure 8a) to create GHSLref (approx. 38m resolution). To comply with GHSL 
specifications, the baseline agreement assessment described above assumed that a 
GHSLref  pixel is considered as built-up if it overlaps with a building object (i.e., overlap 
threshold >0%, see Figure 8b). To test for stricter rules of overlap (i.e., larger proportions 
of the building have to overlap the pixel area), this threshold is systematically increased 
to up to 20% of the GHSLref  pixel area. This means that GHSLref  pixels which have an 
overlap with building area less than that threshold, are not considered as built-up (Figure 
8c). On the other hand, buildings outside of the pixel area may in reality overlap the pixel 
if the datasets are spatially off-set. To also account for this potential discrepancy, 
building footprints are systematically buffered by up to 40m (approx. one GHSL pixel 
size). GHSLref  pixels that overlap with these buffer areas (>0%) are considered built-up 
(Figure 8d) in the different scenarios. 

a  

c  

b  

d  

Figure 8: (a) Building footprints with built year information from parcel data integration, and reference 
surface GHSLref  based on (b) building footprints and >0% overlap threshold, (c) building footprints and 
>20% overlap, and (d) building footprints buffered by 40m and >0% overlap threshold with buffered area. 

For each of these scenarios a reference surface GHSLref  is created for Boulder County 
(Colorado) and for each resulting surface the assessment of agreement between GHSLref  
and GHSL built-up land is performed for cumulative built-up land in each time span. 
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For each scenario and time span the agreement metrics are shown in Figure 9 and Figure 
10. It can be noted that some agreement metrics show higher degrees of sensitivity than 
others: While Producer’s Accuracy and User’s Accuracy ranges vary from 0.01 to 0.44 
and 0.10 to 0.31, respectively, (Figure 9), Kappa and PCC show lower degrees of 
variation (differences of up to 0.23 and 0.08 between maximum and minimum, 
respectively) (Figure 10). PCC seems to be less sensitive to positional discrepancies 
between reference and test data. Furthermore, Producer’s Accuracy and PCC seem to be 
less sensitive for older time periods, which might be due to decreasing area evaluated in 
older epochs. Sensitivity of Producer’s Accuracy and Kappa seems to be nearly constant 
over time except for the earliest time epoch that show lower values. 

a b      

Figure 9: (a) Results of sensitivity analysis for  Producer's Accuracy, and (b) User’s Accuracy for 
cumulative built-up areas in Boulder County (Colorado). 

a  b  

Figure 10: (a) Results of sensitivity analysis for  PCC and (b) Kappa for cumulative built-up areas in 
Boulder County (Colorado). 

 

Discussion  
This study aims to show how publicly available cadastral and building data can be used 
for effective future spatiotemporal accuracy assessment of built-up land data to shed light 
on the methodological challenges and potential sensitivities in such assessments. In the 
case of the U.S., parcels in rural areas are often very large in relation to the built-up 
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portion and therefore bias the validation results if used as reference data. However, the 
integration with building footprints and the inherent spatial refinement allows to create 
more realistic reference data. Uncertainty in the reference data can be explored by cross-
comparing parcel and building data. The conducted sensitivity analysis allows to quantify 
the sensitivity of the agreement metrics to possible positional discrepancies between 
reference and test data but also to variations of how to define the abstract class “built-up 
land” in remote sensing based classification procedures which also relates to the general 
concept of scale inherent in different data. Future work will focus on these sensitivities 
and more meaningful thresholds that will be employed in future large-scale validation 
analyses.  

The presented preliminary results for the GHSL data show that the integrated 
parcel/building-based agreement assessment approach allows to reveal different degrees 
and tendencies of agreement over time for urban and rural areas. Furthermore, these 
results aim to demonstrate how agreement behaviour and possible ranges of agreement 
metrics over time can be graphically presented. However, they are not representative for 
the global GHSL data product. This approach can be applied to other multi-temporal land 
use / land cover products, such as the National Land Cover Database (NLCD) in the U.S. 

Since the required reference data for this approach (parcel records including built year 
information and building footprints) are increasingly available to the public, the study 
areas can be extended in the near future which allows to assess the accuracy of built-up 
land layers across different geographic settings across the U.S. or internationally, and 
thus makes it possible to associate these places with varying degrees of underlying data 
quality. If applied to a wider set of study areas, this approach could provide a broader 
understanding of the spatial displacement in GHSL built-up area labels. However, further 
work is needed to separate thematic and spatial accuracy components. 

Rural development and features associated with rural and small urban settlements are 
hard to discern from administrative data that tend to be coarse. A fuller understanding on 
the association between finely resolved parcel data or the like and globally-available 
GHSL data hold much promise for data poor regions of the world. 
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