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ABSTRACT: Demographic datasets are aggregated over areas to protect privacy. To study 
micro-scale demographic processes, those datasets have to be collected over temporally 
consistent small areas. However, the availability of such data is limited. That is, the demographic 
data is either aggregated over large geographical areas (i.e., counties), or collected over small 
population-derived census units that are temporally inconsistent (i.e., census tracts). 

Areal interpolation methods transfer the variable of interest from source zones to target zones. 
The methods can be used in temporal demographic applications to create temporally consistent 
population estimates over small areas by transferring population values from the areal units of 
one census year (i.e., source zones) to the units of another census year (i.e., target zones).  

 In this research, spatial refinement is incorporated into areal interpolation methods to enhance 
their population interpolation accuracy. Moreover, one method called Enhanced Expectation 
Maximization (EEM) is introduced. Areal interpolation methods -- with and without spatial 
refinement – are used to estimate total population values from census tracts in 1990 to census 
tract boundaries in 2010 in Mecklenburg County, North Carolina. Based on validation results, 
EEM is the most accurate method to create temporally consistent population estimates for the 
1990-2010 period in the study area. 
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Introduction  
Data enumerated over areal units is common in applications such as demographic 
analyses or health related studies where the protection of privacy is a priority. The spatial 
or temporal incompatibility of reporting units determined by different sources (agencies, 
authorities) is a common issue in such applications. For example, demographic data 
collected over school districts cannot be analyzed in conjunction with those from block 
groups because the boundaries do not coincide. This issue is aggravated when 
demographic data collected for different points in time are to be used to characterize fine 
resolution processes relevant to demographic, economic or health-related changes. In 
such applications, the analyst requires that the data for the different points in time 
enumerated within temporally compatible (i.e., identical) fine-resolution units. 
Unfortunately, data with such characteristics is very limited, in particular for finer 
resolution units.  

U.S. Census data are published at different aggregation levels. Those data that are 
released for smaller units (e.g., statistical geographies such as census tracts) are often not 
temporally consistent because their boundaries are sensitive to population changes. In 
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contrast, coarser resolution units (e.g., legal geographies such as counties) are usually 
temporally consistent over time but do not allow studying fine scale population 
processes. 

The resulting inconsistency of small census geographies over time impedes the 
effectiveness of studying fine resolution temporal changes of demographic attributes. 
Studies to date relied on highly aggregated data, created minimum comparable areas to 
maintain consistency (e.g., Barufi et al., 2012) or used areal interpolation (e.g., Gregory, 
2002). The use of highly aggregated data or minimum comparable areas compromise the 
granularity of the data, whereas areally interpolated estimates can be error-prone if the 
underlying assumptions of the utilized areal interpolation methods are not fulfilled. 

Areal interpolation transfers the variable of interest from source zones to target zones and 
represents the default solution often implemented in temporal applications (e.g., Gregory, 
2002; Schroeder, 2007; Logan et al., 2014). In such applications, source populations in 
one census year (enumerated within source zones) are estimated within enumeration 
boundaries from the target census completed in a different year (target zones). Therefore 
to preserve granularity, the finest resolution enumerated areas in one census year can be 
set as the target boundaries, and the demographic attributes of other census years are 
transferred (i.e., re-allocated) to these target zones.  

However, areal interpolation methods rely on assumptions, and if these assumptions are 
not met, the errors of the resulting demographic estimates can be very high. Therefore, 
recent studies have begun to explore various advanced approaches to make areal 
interpolation methods for temporal analysis more robust (e.g., Schroeder and Van Riper, 
2013; Logan et al., 2014; Buttenfield et al., 2015; Ruther et al., 2015; Zoraghein et al., 
2016). As demonstrated in some of these studies, the incorporation of spatial refinement 
through dasymetric modeling is a strategy that has led to more accurate population 
estimates in those research efforts.  

Dasymetric modeling is a spatial analytical method that incorporates ancillary data into 
areal interpolation approaches correlated to the population outcome. It depicts 
quantitative areal data using boundaries that divide the mapped area into zones of relative 
homogeneity in population density with the purpose of more accurately portraying the 
underlying statistical surface (Eicher and Brewer, 2001). Dasymetric modeling relies on 
two types of ancillary data: limiting and related variables. The former constrains the 
study area to inhabitable regions and exhibits a binary relationship with the population 
distribution, while the latter can have more complex relationships with the population 
distribution to cap or amplify density estimates at a finer spatial resolution (Leyk et al., 
2013). Researchers have used various ancillary data – including land cover, road 
networks and address points – to model the population distribution reliably (e.g., Reibel 
and Bufalino, 2005; Mennis and Hultgren, 2006; Reibel and Agrawal, 2007; Tapp, 2010).  

Areal interpolation methods use population density and area calculations as input. It can 
be hypothesized that if these methods are applied to spatially refined sub-areas of source 
and target zones that are actually inhabited (as compared to unrefined enumeration units 
that can contain uninhabited land), the area and population density calculations will be 
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more precise and realistic. Thus, areal interpolation coupled with spatial (dasymetric) 
refinement will most likely lead to more accurate population estimates for target zones. 
The spatially refined sub-areas are delineated by ancillary variables used for dasymetric 
modeling.  

In this research, two different spatial refinement strategies are tested to interpolate 
population values from census tracts in 1990 (source zones) to the census tract 
boundaries in 2010 (target zones), with the objective of constructing population estimates 
over consistent units from 1990 to 2010 in Mecklenburg County, North Carolina. In 
previous research efforts, the National Land Cover Database (NLCD) has been used 
successfully as an ancillary variable for spatial refinement (e.g., Reibel and Agrawal, 
2007; Buttenfield et al., 2015; Ruther et al., 2015). In this research, residential parcels, 
which have been found to be promising in such analyses (Zoraghein et al., 2016), are 
used as the ancillary variable to refine census units.  

The first spatial refinement strategy identifies only those sub-areas of source and target 
zones that are delineated as populated based on the geometric footprints of residential 
parcels, which are thus used as the limiting ancillary variable. 

The second spatial refinement employs a novel combination of limiting and related 
ancillary variables for more effective dasymetric refinement prior to temporal 
interpolation. Different housing types of residential parcels have different population 
density values. For example, single-family parcels are less populated than condos and this 
diversity in population density should be incorporated into the spatial refinement step. 
Thus, the housing type of residential parcels is employed as a related ancillary variable in 
this research in order to create more accurate depictions of the population distribution. 

Background 
Areal Interpolation  
Areal interpolation can be applied to apportion population estimates from enumeration 
units for one time period into units created for another time period to achieve temporally 
consistent enumeration units (Schroeder, 2007; Schroeder and Van Riper, 2013). Several 
areal interpolation methods have been developed to date, including Areal Weighting 
(AW) (Goodchild and Lam, 1980; Lam, 1983), Target Count Weighting (TCW) (a term 
introduced by Schroeder (2007) after the method presented by Howenstine (1993) and 
Mugglin and Carlin (1998)), Pycnophylactic Modeling (PM) (Tobler, 1979), and Target 
Density Weighting (TDW) (Schroeder, 2007). These methods are described briefly 
below. 

AW  
The AW method estimates the variable of interest in target zone boundaries based on the 
overlapping area between source and target zones (i.e., intersections or “atoms”). An 
underlying assumption is that the variable of interest is uniformly distributed within a 
source zone: 
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where 𝐴𝑟𝑒𝑎!"  is the area of the atom created by the overlap between source zone s and 
target zone t, 𝐴𝑟𝑒𝑎! is the source zone area, 𝑦! is the variable of interest for the source 
zone and 𝑦!" is the variable of interest for the atom. The variable of interest for target 
zone t is then simply derived by aggregating the calculated values of all the atoms within 
it. 

TDW 
Schroeder (2007) introduced TDW as an areal interpolation method appropriate for 
temporal analysis of census data. TDW makes two assumptions. First, within a source 
zone, the spatial distribution of the variable of interest Y among atoms is assumed to be 
proportionally the same as the distribution of an ancillary variable Z (Schroeder, 2007). 
The second assumption states that the density of Z in any atom equals the density of Z in 
the corresponding target zone:  

𝑧!"
𝐴𝑟𝑒𝑎!"

=
𝑧!

𝐴𝑟𝑒𝑎!
 

 

where 𝑧!" and 𝑧!  indicate the ancillary variable Z for atom st and target tract t, 
respectively; and 𝐴𝑟𝑒𝑎!"  and 𝐴𝑟𝑒𝑎! are the corresponding areas. The variable of interest 
for target zone t (𝑦!) is calculated as follows: 
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(𝐴𝑟𝑒𝑎!"  𝐴𝑟𝑒𝑎!  
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where 𝑦!"  is the variable of interest for atom st, and 𝑦! is the variable of interest for 
source zone s. The term τ is a target zone index, independent of t, defined for each target 
zone intersecting source zone s. As Equation 3 suggests, 𝑦!" is calculated based on the 
proportional distribution of the ancillary variable Z among atoms, and 𝑦! is determined 
by aggregating all 𝑦!" values intersecting the target tract. 

PM 
The PM method assumes the existence of a smooth density function and incorporates the 
densities of adjacent zones. The density function must be pycnophylactic, i.e., volume-
preserving: it must reproduce the original value of a source zone if applied to it (Tobler, 
1979).  
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To interpolate population estimates from source zones to target zones, first a grid is 
superimposed on the study area. Then, population density per cell is calculated, and cell 
values per source zone are aggregated and compared to the original value to maintain the 
pycnophylactic property. This process is iterated until a stopping criteria is fulfilled. 
Finally, the last cell values are aggregated to target zone boundaries. 

Study Area and Data 
The study area is Mecklenburg County, North Carolina, which includes both urban areas 
of Charlotte at the center of the county and large rural areas at its margins. The county 
exhibited rapid population growth over time (Figure 1). 

Figure 1: Temporal changes of population in Mecklenburg County (data from U.S. Census) 

 

The required data for this research are divided into the primary and ancillary datasets. 
The primary datasets include census data. For this research, census tracts (i.e., source and 
target zones) and census blocks (for validation) of Mecklenburg County from the 
decennial censuses in 1990 and 2010 were used. The census boundaries and population 
values for 2010 were downloaded from the TIGER products 
(https://www.census.gov/cgi-bin/geo/shapefiles2010/main) and American FactFinder 
(http://factfinder.census.gov/faces/nav/jsf/pages/download_center.xhtml) data portals as 
parts of the Census website, respectively. The historic census boundaries and population 
data for 1990 were accessed through National Historical Geographic Information System 
(NHGIS) website (https://www.nhgis.org). The ancillary dataset for the study area 
includes residential parcels and was accessed through the County website. 

Area values are one of the main elements in all the methods. Therefore, it is important to 
have the projection systems of all the datasets transformed to a projection system that 
preserves area. Thus, USA Contiguous Albers Equal Area Conic was used as the 
projected coordinate system in the analyses.  

Method 
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Spatially Refine Enumeration Units prior to Areal Interpolation  
The first spatial refinement uses residential parcels as a limiting ancillary variable. The 
parcel type attribute is used to determine residential vs. non-residential parcels. The built-
year attribute – which records the built year of the main structure within each parcel – is 
used to delineate residential parcels built before 1990 and those built before 2010.  This 
allows the ancillary data to better align with the two censuses that provide the source and 
target zones. 

The spatial refinement in AW modifies its underlying assumption as follows: population 
is homogenously distributed within the residential area of a source zone, and no 
population is assigned to non-residential parts.  

Refined TDW uses residential areas within both source and target zones. Thus, all TDW 
assumptions related to population distribution within source and target zones as well as 
atoms are applied to the residential land within these zones. Accordingly, all zone areas 
in TDW equations (i.e., Areast and Areat) are replaced by and refined to residential areas.  

Kim and Yao (2010) proposed the spatially refined PM for non-temporal small area 
estimation. The method creates smooth surfaces dependent on the neighborhood of each 
cell, and is defined over refined areas, thus allowing more precise depiction of populated 
areas and neighborhood relations. It uses the same iterative process as the unrefined PM. 
However, instead of dividing the population of each source zone by the number of all 
cells within it, the method divides the zone population by the number of all cells 
comprising the residential part within it. After the pycnophylactic iterative process 
reaches a stable surface, all cells that have an assigned population count in each target 
zone are aggregated to compute target zone estimates. 

Enhance Refinement by the Incorporation of Housing Characteristics 
While the first spatial refinement strategy uses only the geometric footprints of residential 
parcels as a limiting ancillary variable, the association between population and ancillary 
variables is not necessarily a binary relationship. Ancillary data can also reduce or 
amplify the likelihood of the presence of population and the resulting estimates of 
population density. This type of association is addressed by the related ancillary variable 
approach in dasymetric refinement. Expectation Maximization (EM) uses an iterative 
process to optimize population density weights for different conditions defined by the 
ancillary data, thereby offering an appropriate framework for implementing the second 
spatial refinement.  

The EM algorithm provides a robust framework for model fitting and maximum 
likelihood estimation in settings of incomplete data. Its name, coined by Dempster et al. 
(1977) refers to the two steps that comprise each iteration of the algorithm. First, the 
expectation (E) step “completes” the data by computing the conditional expectation for 
missing data, given a set of observed data and estimated model parameters. The 
maximization (M) step then fits the model, estimating model parameters by maximum 
likelihood given the “complete” data from the E step. A feedback loop between E and M 
steps is established and repeated until convergence (Schroeder and Van Riper, 2013). 
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Flowerdew and Green (1994) demonstrated how the EM algorithm can be applied in 
areal interpolation applications. In this research, EM is used to calculate the population 
density weight for each control zone. Here, a control zone is defined by all residential 
parcels that have the same housing type. This is justified by the fact that different housing 
characteristics can be related to varying population densities, and this variation should be 
reflected and incorporated.  

In the E step, the algorithm estimates the values of 𝑦!", i.e., the population counts for the 
intersections between source zone s and control zone c.  

𝑦!" = 𝑦!
!!!!"
!!!!"!

     

where 𝑦! is the population count of source zone s, 𝜆! is the estimated density of control 
zone c, 𝐴!" is the area of the region of intersection between s and c, and k is a second 
control zone index, independent of c to reflect all control zones intersecting s. The first E 
step is essentially similar to AW and assumes equal weights for all housing types. Then, 
the M step re-estimates all 𝜆! values using the equation below. 

  𝜆! =
!!"!
!!

           

The estimates of 𝜆! from the M step are used to estimate 𝑦!" in the next E step. This 
iterative process is carried out until a convergence criterion is fulfilled. Here, the criterion 
is met when the maximum absolute difference between the density values (i.e., 𝜆! values) 
from the last two runs is lower than 0.001. At that point, the final 𝑦!" values are used to 
calculate the population count for target zone t.  

EM assumes that the population density is constant within one control zone. However, 
this assumption can become problematic. If the residential parcels of the same type that 
form a control zone are diverse in area, the assumption of constant population density for 
the whole control zone is often not realistic. This research introduces Enhanced EM 
(EEM) as its primary focus to address this issue. EEM first identifies the three control 
zones that represent the highest variability in the areas of their underlying parcels and the 
three control zones that have the highest number of parcels. It then categorizes each of 
the selected control zones (housing types) to four new, more homogeneous control sub-
zones based on area quantiles. For example, instead of using only one multi-family type 
residential control zone in the algorithm, four sub-classes of that type are included in 
EEM based on the area quartiles.  By doing so for all selected housing types, the number 
of control zones in the study area increases from 12 to 30. The remaining steps of EEM 
are the same as in EM, described above. 

Validation 

The validation of the estimated tract-level results is done using census block statistics. 
After transferring population estimates from source zones to target zones, each 2010 
census tract is linked with an estimated population count in 1990. The next step obtains a 
ground-truth population count for a target zone in 1990. To validate these 1990 estimates 
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in target zones, population counts of census blocks in 1990 are aggregated to the target 
zone boundaries. Therefore, for each method two values for each 2010 census tract are 
derived: the estimated population count based on the utilized interpolation method and 
the measured population based on census blocks for validation. Different error measures 
are calculated such as Mean Absolute Error (MAE), median absolute error, Root Mean 
Square Error (RMSE) and 90% percentile of absolute error. These error measures can be 
compared across methods and expand understanding of the estimation error distribution 
in different aspects, leading to a more comprehensive comparative analysis of the 
performance of the established methods. That is, the MAE and RMSE measures 
demonstrate the overall representative behavior of the estimation error and are sensitive 
to outliers, while the median absolute error and 90% percentile of absolute error can be 
used to describe the upper end of the error distribution and placement of extreme absolute 
error values. 

Results 
Table 1 summarizes four absolute error measures for population estimates in 1990 within 
2010 target zone boundaries. Refined methods are applied only to developed areas of 
source and target zones delineated by residential parcels. In Table 1, the first spatial 
refinement methods are those preceded by “Refined”. EM and Enhanced EM (EEM) 
represent the results derived for the second spatial refinement.  

Figure 2 shows the absolute error maps of the methods. PM maps are not included 
because the accuracy level of PM ranges between those of AW and TDW. Therefore, 
AW represents a better contrast with the more accurate methods and is chosen as the 
benchmark method to show the improvement effect. 

According to Table 1, the effect of the first spatial refinement is consistent for all the 
methods, i.e., all four error measures are lower in the refined implementations of AW, 
TDW and PM. This confirms that the application of areal interpolation methods to only 
residential sub-areas of source and target zones leads to more accurate population 
estimates for target zones. Refined TDW results in the most accurate estimates among the 
methods that use the first spatial refinement. Figure 2 also depicts the superiority of 
Refined TDW over unrefined and other first spatial refinement methods. 

According to both Table 1 and Figure 2, EEM – as the suggested method of this research 
– is the most accurate method, indicating its great potential for temporal areal 
interpolation of population estimates. This demonstrates the effectiveness of utilizing the 
related ancillary data in the form of housing types of residential parcels in decreasing the 
absolute error measures of population estimation. EEM reduces the four measures by 
64%, 68%, 60% and 64%, respectively, relative to AW as the benchmark method and by 
20%, 24%, 14% and 6%, respectively, relative to Refined TDW as the second best 
performing method. 

Moreover, Figure 2 depicts that the effect of spatial refinement in absolute error reduction 
is not constrained to only either urban target tracts or rural tracts. Rather, it shows that the 
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improvement effect can be observed for both the target tracts within the boundary of 
Charlotte and those outside. 

Table 1: Absolute error measures of different areal interpolation methods for 1990 (source zones) to 2010 
(target zones). 

Method MAE Median Absolute Error RMSE 90th Percentile Error 

AW 546 346 832 1477 

Refined AW 326 175 530 916 

TDW 387 255 575 829 

Refined TDW 247 146 382 558 

PM 526 263 824 1395 

Refined PM 332 168 559 899 

EM 432 207 712 1051 

EEM 197 111 329 524 

 

 

Figure 2: Absolute error maps of the areal interpolation methods 
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Discussion 
Among the methods using the first spatial refinement strategy, Refined AW and Refined 
PM use refined areas from only 1990, whereas Refined TDW uses refined areas from 
both 1990 and 2010 by design. Therefore, Refined TDW seems to leverage the changes 
in developed areas over time in an effective way, and consequently demonstrates a more 
pronounced improvement effect of the spatial refinement.   

The baseline EM method inherently uses ancillary data and employs the different 
categories as related ancillary information. However, the error measures of EM are rather 
high, labeling it the least accurate method after AW and PM. One main reason for this 
observation could be the high area variation in the underlying residential parcels forming 
one control zone. EEM applies the EM algorithm on a set of smaller, presumably more 
homogeneous set of control zones. The remarkable improvement effect is observed from 
Table 1 and in comparing the maps in Figure 2.  

Future research will improve EEM and make it more robust by developing an objective 
strategy for choosing the control zones that should be further categorized, expand the 
analyses to more study areas, demographic attributes and time periods, and make a 
detailed comparison between the results of spatial refinement for rural and urban target 
zones.  
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