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Introduction 

Indoor mapping is an important precondition for indoor cartography (Chen and Clarke 

2019). Recent years have seen a rising demand for indoor maps in fields such as indoor 

navigation, building information management, 3D-GIS, robotics, etc. Traditionally, 

indoor maps are made manually or semi-automatically from images or manual 

measurements. Many emerging techniques can provide useful data for mapping indoor 

scenes, for example, WIFI positioning, LiDAR scanning, and Bluetooth positioning. 

Among these data sources, LiDAR scanners can provide both accurate and rich surface 

information for indoor scenes and their component objects. Portable LiDAR scanners are 

easy to deploy to retrieve data in different kinds of indoor spaces, making them a good 

choice to acquire indoor map information. However, due to the irregular and unordered 

structure of the scans, the difficulty in conflating overlapping and adjacent scans, varying 

point density, and the massive volume of LiDAR data, there is a huge gap between 

LiDAR point cloud data and the use of LiDAR-based 3D models for indoor mapping (Xie 

et al. 2019; Zhang et al. 2019). 

In this study, we first analyzed the information requirements of indoor mapping 

and the characteristics of LiDAR point cloud data. Then two deep learning frameworks 

PointNet (Qi et al. 2017a) and PointNet++ (Qi et al. 2017b) were implemented to 

recognize objects in LiDAR point clouds. PointNet can deal with unordered irregular 

individual points and combine global feature with pointwise features. Based on PointNet, 

PointNet++ considers neighborhood features and incorporates multiscale features for 

segmentation. We trained and evaluated these networks with the open Stanford Large-

scale 3D Indoor Spaces Dataset (S3DIS, Armeni et al. 2017). Then we segmented real-

world data from offices in the UCSB Geography department with the derived networks. 

To meet the demand of multiple levels of detail (LODs) (Chen and Clarke 2019) for 

indoor mapping, we designed a multiscale sampling strategy to sample the original dense 

LiDAR data. Multiscale samples were fed into the network to get segmented results with 

different LODs. Various segmentation results showed the feasibility of methods for 

indoor mapping information extraction.  

The main contributions of this research are to: (i) analyze LiDAR data 

characteristics and indoor mapping information demands; (ii) implement state-of-the-art 

deep learning models for indoor point cloud segmentation; and (iii) design a way to get 

different LODs from a single dense point cloud.  

Methods 

Deep learning methods such as PointNet and PointNet++ consume point cloud data 

directly. Before training and predicting, LiDAR data are rotated and aligned in the same 
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coordinate system (Chen 2018) and joined. In addition, LiDAR data are divided and 

sampled into small 3D blocks according to network configurations. When making 

predictions, data are sampled based on the required LOD. Farthest Point Sampling 

(FPS) was used to sample LiDAR point clouds at different scales, and then to process 

them with neural networks. 

1. PointNet 

The PointNet software library was a pioneer for deep learning using point sets. It 

considers three characteristics of point cloud data, namely unordered, interaction among 

points and invariance under transformations. Its network architecture is shown in Fig.1, 

which includes classification and segmentation networks. In PointNet, several multi-layer 

perceptions are used to get pointwise features. To deal with unordered input, PointNet 

uses a symmetry function MaxPooling to get global features. Then in the segmentation 

network, global features and pointwise features are concatenated for point cloud 

segmentation. Within PointNet, two transform networks are implemented to conduct 

geometric transformations. These transform networks can retain invariance when 

handling point clouds with transformations. 

 

Fig. 1 Network Architecture of PointNet (Adapted from: Qi et al. 2017a) 

2. PointNet++ 

PointNet++ is a deep neural network software library that followed from PointNet, which 

captures local structures and incorporates multiscale features for point cloud 

segmentation. The network architecture of PointNet++ is shown in Fig. 2, which also 

includes classification and segmentation networks. For the segmentation network, it has 

a downsampling part (encoder, on the left) and an upsampling part (decoder, in the upper 

right). The main component in the downsampling part is the set abstraction level 

including sampling layer, grouping layer and density adaptive PointNet layer. The 

sampling layer selects certain numbers of points as the centroids of local regions. The 

grouping layer constructs local regions by finding neighboring points. The density 

adaptive PointNet encodes local regions into features. The upsampling part uses 

interpolation and PointNet to upsample features into the original space and generate per-

point predictions. 



 

Fig. 2 Network Architecture of PointNet++ (Adapted from Qi et al. 2017b) 

Results 

We trained the neural networks in PointNet and PointNet++ with S3DIS dataset. The 

dataset contains 3D scans from Matterport scanners in 6 areas including 271 rooms at 

Stanford University. To prepare the training data, we first split points by room and then 

sampled rooms into blocks with voxels 1m x 1m x 1m. Each point is represented by a 9-

dimensional vector of XYZ, RGB and normalized location as related to the room (from 

0 to 1). The points are labeled as one of 13 categories (ceiling, floor, wall, beam, 

column, window, door, table, chair, sofa, bookcase, board, clutter). At training time, we 

randomly sampled 4096 points in each block from areas 1 to 5 on-the-fly. At test time, 

we tested only on sample points from area 6. The network was trained for 200 epochs. 

The batch size was 24, and the optimizer used was Adam, an adaptive learning rate 

optimization algorithm designed specifically for training deep neural networks (Kingma 

and Ba 2014). 

The accuracy and loss of training and testing processes are shown in Figs. 3 and 

4. As we can see from Fig.3, training accuracy reached above 95% while testing 

accuracy reached around 88%. The evaluation accuracy for all rooms was about 0.7379. 

Fig. 5 shows the distribution of the number of testing areas by accuracy and loss. 

 



 

Fig. 3 Training and Testing Accuracy during Training 

 

Fig. 4 Training and Testing Loss during Training 

 

Fig. 5 Sample Accuracy and Loss Distribution 

Figs. 6 and 7 show some results for the testing data, in which different colors represent 

different object types. We then used the trained model to segment LiDAR data acquired 

in offices at the UCSB Geography department.  



 

Fig. 6 Ground Truth (Left) and Prediction (Right) of an Office 

 

Fig. 7 Sampled True Color Point Cloud and Prediction Label  

Discussion and Conclusion 

Accurate indoor mapping is important for indoor cartography. However, many 

problems exist in collecting interior data and extracting useful structured cartographic 

information. Here, we implemented state-of-art deep learning models to extract indoor 

objects from LiDAR point cloud data. The deep learning models PointNet and 

PointNet++ automatically computed pointwise features by considering neighboring 

points and fusing multiscale features for segmentation. The results using LiDAR data 

from UCSB offices show promising potential for larger-scale applications of indoor 

mapping, say to whole floors and buildings.  Nevertheless, there are several drawbacks 

to these methods. Trained models are only capable of identifying a limited number of 

indoor objects, for example the 13 categories used in this research. LiDAR data needs to 

be sampled for prediction, which limits the spatial accuracy of the extracted objects. In 

prior work, we estimated that a point accuracy of 1mm is necessary for indoor 

cartography (Chen 2018). Finally, large training datasets are needed to train the models. 

Progress with the same method we used has been achieved by Wu et al. (2019), but far 



more research is necessary to achieve fully automated, accurate, and reliable indoor 

mapping. 
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