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Introduction 

Uncertainty is inherent within geospatial data. Knowing the levels of uncertainty and its patterns 
of variation across a region of interest is vital for correct analysis and decision making. 
Quantification and communication of uncertainty is important to establish reliability and 
confidence in the analysis. The work outlined in this paper evaluates attribute uncertainty present 
at two levels of wetlands classification.  

Uncertainty visualization techniques have typically displayed both the data and uncertainty using 
visual variables (Kinkeldey et al., 2014). Embedding uncertainty within the visualization rather 
displaying them separately has been found to facilitate decision making (Leitner & Buttenfield, 
2000; Aerts et al., 2003). Several user studies have analyzed the effectiveness of different visual 
variables for uncertainty visualization (Leitner & Buttenfield, 2000; Drecki, 2002; MacEachren 
et al., 2012). Fuzziness and color value have been rated as logical and effective visual variables. 
Confusion matrices are an established method of quantifying and visualizing attribute 
uncertainty from misclassification. This technique is most commonly used in remote sensing to 
quantify misclassification rates. This work merges confusion matrices with visual variables to 
display attribute uncertainty spatially. 

Wetlands provide a variety of functions and support ecosystem processes such as wildlife habitat 
preservation, water purification, flood control, and carbon storage (Millennium Ecosystem 
Assessment, 2005). However, they are under stress of degradation and destruction due to 
multiple human and natural factors (McCauley, Jenkins, Quintana-Ascencio, 2013; Tiner, 2005). 
Between 1780 and 1980, the United States lost 53% of its original wetlands (Dahl, 1990). 
Research on the uncertainty of wetland classification is important for understanding how 
wetlands are defined and delineated spatially, as well as reliably identifying attribute errors 
arising from temporal changes. 

Wetlands are defined as areas where the ground is saturated with water for varying periods of the 
year. This definition includes marshes, swamps, bogs, and fens and influences the types of 
animal and vegetation communities living within the area (Cowardin et al., 2005). Hydrologic, 
geomorphologic, chemical, and biological factors influence how a wetland system is classified. 
The National Wetlands Inventory (NWI), created by the US Fish and Wildlife Service (FWS), 
maintains the largest database of wetlands in the United States using a Cowardin classification 
method (Dvorett et al., 2012). The classification includes five main wetland systems: palustrine, 



riverine, lacustrine, marine, and estuarine (Cowardin et al., 2005). This classification is 
appropriate for tracking wetland loss over time; however, it does not allow for the assessment of 
how well a wetland can perform ecological functions such as water purification or storage. (EPA, 
2002; Smith et. al., 2013). A hydrogeomorphic (HGM) classification system is a commonly used 
alternative to analyze wetland functionality (Brinson, 1993; EPA, 2002). The HGM classes 
reflect wetlands, terrain, and soil characteristics: riverine, depression, slope, organic soil flat, 
mineral soil flat, estuarine fringe, and lacustrine fringe (Smith et. al., 2013). This research will 
compare the Cowardin (referred to for brevity as NWI) and HGM classification systems to 
quantify uncertainties present at two attribute resolutions and within different landscape types.  

Methods 

The main study area in inland Louisiana covers 2,000 square miles (1.28 million acres) 
(Figure 1A). This area includes ten parishes, the city of Baton Rouge, the Mississippi River, and 
Lake Maurepas. According to the NWI classification, three wetland types are found within this 
area: 566,902 acres of palustrine (44.3%), 217,458 acres of riverine (17.0%), and 68,720 acres 
(5.4%) of lacustrine wetlands. Covering nearly 67% of the study area, wetlands clearly dominate, 
underscoring the need for reliable attribution of wetlands. 

 

Two smaller subsets were chosen to focus on different landscape types in the study area. The 
blue outlined subset (Figure 1B) contains False River, an oxbow lake, in the western section as 
well as the Mississippi River in the eastern portion. This area has complex topography resulting 



from a Mississippi River meander. Land use patterns around the oxbow indicate shared access to 
fresh water, likely to support agriculture. The purple outlined subset (Figure 1C) is located east 
of Baton Rouge and is centered over the settlement of Denham Springs including areas of urban-
rural interface.  

 

The data sources for this project are outlined in Table 1. The analysis compares attribute 
uncertainty (misclassification) for NWI and HGM wetlands classes. Through this analysis, NWI 
data will be treated as the validation dataset. For the initial pass, we examined a coarse attribute 
resolution, binary distinction between wetlands and non-wetlands. In the second pass, we 
analyzed attributes at a finer resolution, looking at lacustrine, riverine, and palustrine wetlands. 
Both the HGM and NWI systems include lacustrine and riverine classifications. They are defined 
by adjacency to a lake (lacustrine) or a river (riverine) with each landform providing the main 
input of water into the wetland (Smith et. al., 2013). HGM does not have a palustrine (vegetated 
wetlands) class but does have additional classes based on topography such as depressions and 
mineral flats. In order to compare the two classification methods, the HGM is simplified: 
wetlands that are not lacustrine or riverine are considered to be “palustrine”.  

A buffer of 100m was applied to NHD rivers and lakes, and then overlaid with the hydric soils 
data. Areas adjacent to rivers (i.e., within the buffer) with hydric, predominately hydric, and 
partially hydric soils were classed as riverine. Areas adjacent to lakes with hydric, predominately 
hydric, and partially hydric soils were classed as lacustrine. The remaining areas of hydric, 
predominately hydric, and partially hydric soils that were not adjacent to either rivers or lakes 
were classed as palustrine. Areas with either non-hydric or predominately non-hydric soils were 
considered non-wetlands. The NWI data included open water in its wetland classification while 
the HGM did not. As a consequence, open water was removed from the NWI data to prevent a 
large number of pixels being classified as false negatives.  

Uncertainty analysis was undertaken using confusion matrices, comparing HGM (test) data with 
NWI (validation) data to identify areas and types of misclassification at coarse and finer attribute 
resolutions. Pixels that are classified the same in both datasets are treated as true positives or true 
negatives, and all other pixels are treated as false. Figure 2 shows a confusion template to explain 
the methodology. The first column (red) shows false negatives (wetlands in NWI but not in 
HGM) for all categories while the top row (yellow) shows false positives (wetlands in HGM but 
not in NWI). The diagonal (orange) shows cells that agree on the presence/absence of wetlands 
in both data sets as well as on the type. The six gray cells indicate misclassification at the finer 



attribute level (wetland type) but agreement on the presence of wetlands (so no misclassification 
at coarser attribute resolution). Percentage values in the Results section report the proportion of 
pixels in each of the sixteen cases for the full area or for the subset areas, respectively.  

 

 

This symbology was developed using HSV rather than RGB color palettes to consistently control 
hue, value, and saturation. The cells are color-coded, with hue (blue, green, purple) referring to 
wetland type. Differences in hue allow for easy identification of various classes and do not 
connote order or importance. Value and saturation are used to easily distinguish among false 
positives, false negatives, and true positives. Low value and bright saturation annotate false 
negatives while high value and pale saturation annotate false positives. The false negatives are 
highlighted more than false positives as the NWI classification is considered the validation 
dataset (i.e., ground truth). False positives are the least prominent to imply less confidence in the 
HGM as it is created from multiple datasets each with their own uncertainty. Medium value and 
bright saturation indicate true positives where NWI and HGM classifications agree. The 
symbology emphasizes true positives as they are areas of higher certainty. The graphic facilitates 
interpretation and offers visual logic in viewing a large study area with a complex multi-scale 
pattern of attribute uncertainty.  

 

Results 

Results for the second pass with two attribute resolutions are discussed here. Figure 3 shows the 
confusion matrix and a map of attribute uncertainty for the entire study area. The large number 
of very small wetlands creates a finely textured uncertainty surface, and palustrine wetlands 
appear to dominate. The HGM misclassified 14.7% of palustrine wetlands as non-wetland. The 
gray cells report areas misclassified at the finer attribute resolution, showing that palustrine 
wetlands were the most frequently misclassed with 0.6% and 0.1% being classed as riverine and 
lacustrine respectively.  



 

  

 

Additionally, the HGM was sensitive towards palustrine wetlands, classifying 4.6% of the study 
area as palustrine rather than non-wetland. This is highlighted in the Denham Springs subset 
(Figure 4) where 7.2% of the subset area was classified as palustrine by the HGM but are 
considered to have no wetlands by NWI. Figure 4 also shows a large dark purple area in the 
southeast corner which, after viewing areal imagery, appears to be a square man-made lake. This 
area is classified as a lacustrine wetland by NWI but not a wetland by HGM. While NWI was 
treated as the validation dataset and ground truth, there are errors within the dataset that 
contribute to the overall uncertainty surface.  



 

 

 

Figure 5 shows the area around False River with interesting implications of temporal change in 
wetlands. The NWI data was collected in the 1970s and 1980s with a small portion collected in 
the 2010s, but the HGM was compiled from more recent data. The central area of Figure 5 lies 
between False River and the Mississippi River. The land nearest to the oxbow shows land use 
patterns that indicate agriculture, and those areas are classed as palustrine in the NWI dataset; but 
the HGM considers those areas to have no wetlands. This could be an example of wetland loss 
due to agricultural expansion especially since protective legislation (Swampbuster Bill, 1985) 
was not yet introduced when the NWI data was collected here. 



 

 

 
 

Discussion and Prospects 

This paper reports on an innovative method to visualize attribute uncertainty at two levels of 
resolution within a confusion matrix, using visual variables to distinguish among true and false, 
positive and negative wetlands classifications. In ongoing research, we are developing a pyramid 
data framework that highlights uncertainty variations across multiple spatial and temporal 
resolutions. The framework permits localized searching across the uncertainty surfaces described 
here, as for example focal spatial and temporal misclassifications. Upon completion, the tool will 
be made available as an open-source software tool. This tool could benefit land managers in 



focusing attention on areas of high uncertainty, and to quantify the degree to which further 
analysis is warranted. Additionally, this framework could support data collection updates in areas 
of higher uncertainty. Additionally, we are examining a second study area, and extending 
uncertainty analyses with a direct method for temporal classification.   
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