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Introduction 

Flows of people, commodities and information form spatial networks in which a node 
represents a location or area, and an edge represents flows between a pair of locations. 
Understanding the patterns of connections between locations is essential for identifying 
the vulnerabilities of locations and the complex system. Various indices such as degree, 
betweenness and closeness centrality (Freeman 1977), entropy (Li et al. 2008, Koylu 
and Guo 2013), clustering coefficient (Saramäki et al. 2007), GINI coefficient (Lin, 
Dang, and Konar 2014) have been used to assess network characteristics in complex 
systems. However, these measures are often inadequate to identify vulnerabilities in 
spatial networks because there are often multiple types or categories of interactions 
between each pair of locations (Kivelä et al. 2014). For example, state-to-state food 
flows include several different types of food such as cereal grains and livestock. A state 
that is important for sustaining a connected supply-chain network for a certain type of 
food such as cereal grains may be insignificant for the distribution of another type of 
food such as meat and livestock. In this study, we model the food flows between Freight 
Analysis Framework (FAF) regions in the U.S. as a multilayer spatial network in which 
layers represent seven different types of food. We adopt a series of network measures to 
identify network characteristics and potential vulnerabilities of locations in the food 
network using the multilayer network approach. By calculating the Kendall’s Tau 
coefficients, we perform two evaluations to identify the level of similarity between (1) 
the different layers (food flow category) for each measure; and (2) each pair of network 
measures for each layer.  

Case Study and Data 

Food supply and security have been under threat by global catastrophes as a result of 
climate change, natural disasters, drought and wars (Godfray et al. 2010, Dilley and 
Boudreau 2001). The 2020 coronavirus crisis have already shown the potential impact 
of pandemic spread on global economies, and food supply-chain network. It is critical to 
improve the measurement of food security and vulnerability to solve the lack of 
sufficient dietary energy and achieve a more equitable access to food products (Barrett 
2010). Previous work in food security used network metrics such as high clustering of 
key nodes distribution (Lin, Dang, and Konar 2014), node betweenness (Ercsey-Ravasz 
et al. 2012), and attack measures (Holme et al. 2002) to reveal insights about food 
supply-chain, while they failed to consider shifting vulnerabilities based on different 
types of food.  
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In this study, we used food flow data in the US from 2007 to 2012, which is generated 
by the Commodity Flow Survey (CFS) and modelled the food flows as a multilayer 
network of multiple food 
categories: (1) live animal/fish, 
(2) cereal grains, (3) other 
agriculture products, (4) animal 
feed (5) meat/seafood, (6) 
milled grain products and (7) 
other foodstuffs. To illustrate 
the data, we first transformed 
the raw flows into modularity 
flows and then employed 
multivariate clustering (Guo 
2009) and visualized the seven 
categories of food flows on top 
of the percentage of within 
flows to all flows (Figure 1). 
Within flow percentages of 
most regions are lower than 
20%, which is a consequence of 
regional and global food trade 
connections. Generally, FAF 
regions where the economy is 
dominated by agriculture (e.g., 
MidWest) tend to have higher 
within flow percentage values. 
Flows with red colors are more 
dominant on cereal grains 
(SCTG2), while flows with blue 
colors are more dominant on 
other agriculture products 
(SCTG3) and animal feed 
(SCTG4). While the 
multivariate clustering reveals 
distinct flow patterns for each 
category, distinguishing 
locational characteristics 
require overlaying of flows with 
network characteristics.  

Method 

We adopted the following network measures to assess the network characteristics of 
locations (FAF regions): total flow, within flow, netflow ratio, GINI Coefficient, 
betweenness centrality and entropy. Netflow ratio is the division of the difference 
between inflow and outflow by the summation of the inflow and outflow. GINI 
coefficient is a measurement for equality, where the index varies from 0 to 1 or equality 

 

Figure 1: The multivariate clustering of food flows by 
category (>50% of all flows). The choropleth map 
shows the percentage of within flows for FAF regions.  

 



to inequality (Lin, Dang, and Konar 2014). Betweenness centrality measures the 
number of shortest paths between pairs of nodes (locations) and illustrates importance 
of nodes in connecting other nodes together (Freeman 1977). We calculate weighted 
betweenness centrality by minimizing the sum of the weights of the edges that each path 
passess through. Entropy illustrates the variation of flow connections and volumes for a 
location, and can provide important insights about the structure of the network and the 
characteristic of the location (Li et al. 2008). Entropy value ranges between 0 and 1. 
The entropy value is measured by the following equation: 

𝐸𝐸𝑖𝑖 =  −�
𝑥𝑥𝑖𝑖𝑖𝑖 ∗ log (𝑥𝑥𝑖𝑖𝑖𝑖)

log (𝑗𝑗 − 1)

𝑗𝑗

𝑖𝑖=1

 

where E is the entropy of location i, j is the total number of connection in the network 
that location i has, 𝑥𝑥𝑖𝑖𝑖𝑖 is the proportion of volume between i and current connected 
location in total volume that i has. The total number of non-zero connections node i has 
is j-1 (possible outcomes). If the flow volumes are equally distributed across those j-1 
number of connections, we would have this maximum entropy value. We normalize the 
entropy by N to scale it to be between 0 and 1. A small entropy value is usually 
generated when a location is connected to only a few locations or even a single location. 
In addition, when a location has large deviation of volume on its connections, entropy 
tends to be smaller. On the other hand, a large entropy value indicates that a location 
connects to other locations in about equal volume, which is interpreted as disordered 
and unpredictable. By calculating the Kendall’s tau coefficients (Sen 1968), we 
performed two evaluations to identify the level of similarity (1) between different layers 
(food flow category) for each measure; and (2) between each pair of network measures 
for each layer. Kendall’s Tau is a measure of ordinal association between a pair of 
variables. The measure varies from –1 to 1 and reveals the correspondence between two 
rankings. 

Results 

We calculated the pairwise similarity (Kendall’s Tau) between the six measures using 
all food flows (Figure 2). While red hues with increasing darkness represent positive 
rank correlation, blue hues with increasing darkness represent negative correlation 
indicating reverse rank correlation. Lighter colors close to white show smaller 
correlation. Total flow, within flow and GINI produce very similar ranking because 
they are related to the total volume or capacity of the location to produce flows. Entropy 
is slightly correlated with volume measures: total (0.25) and within flow (0.31), 
however, these correlations are not as strong as GINI (0.62, 0.51). On the other hand, 
netflow ratio and betweenness produce distinct results, but in opposite ranking with the 
volume measures and GINI. Overall, entropy produces the most distinct results, which 
we further explore to compare the differences of entropy between different layers.  

 



 

Figure 2: Pairwise Kendall’s Tau coefficients of: Entropy (E), Inflow Entropy (inE), 
Outflow Entropy (outE), Weighted Cluster Coefficient (WCC), Betweenness Centrality 
(bwN), Gini Coefficient (G), Net Flow Ratio (NFR), Total Flow (TF), and Within Flow 
(wiF). 

We calculated the pairwise similarity between the entropy measures of the seven layers 
(Figure 3). Other agriculture products (SCTG3) has relatively strong disagreements with 
other categories. Live animal/fish (SCTG1) is slightly correlated with meat/seafood 
(SCTG5), while cereal grains (SCTG2) is positively correlated with SCTG4 (animal 
feeds). Layers from SCTG4 to SCTG7 have stronger correlations with each other, 
however these correlations do not exceed 0.37. This result itself clearly shows how 
distinct entropy measures are for different network layers. 

 

Figure 3: Pairwise Kendall’s Tau coefficients of entropy measure for the seven layers: 
(1) live animal/fish, (2) cereal grains, (3) other agriculture products, (4) animal feed (5) 
meat/seafood, (6) milled grain products and (7) other foodstuffs.  



Measure Mapping and Interpretation 

It is important to distinguish the measurement of vulnerability in spatial networks into 
the concepts of system vulnerability and location vulnerability. For example, low values 
of entropy indicate that a location is sending and receiving flows from only a few 
locations, while high values of entropy indicates that the location is receiving and 
sending flows from diverse locations with similar volumes. Low values of entropy may 
indicate high vulnerability for a location in the case of disruptions such as natural 
disasters effecting those few connections that the location has. In contrast, while high 
entropy means that at location is self-sufficient and robust, this may pose a potential 
threat to the systems vulnerability because the system becomes highly vulnerable if the 
location has any disruptions in its distribution of flows.  

Figure 4 illustrates the entropy calculate by all flows and other agricultural products. 
These two measure maps illustrate distinct results. While red colors illustrate low 
entropy (higher locational vulnerability), blue colors represent high entropy (lower 
locational but higher system vulnerability. While entropy values of all flows range 
between 0.18 and 0.86, entropy values for SCTG2 are mostly below 0.5 with a few 
values of 0 entropy meaning that those locations have only one connection in the 
network.  

 

Figure 4: Entropy calculated by all flows (Left) and other agricultural products (Right). 

Conclusion and Future Directions 

We conducted two major evaluations: between measures and between layers. We 
discussed how vulnerabilities can differ based on selected measure, layers of a 
multilayer network, and the concepts of locational vulnerability versus system 
vulnerability. For future work, we propose a multilayer and multi-measure ranking 
system that will allow us to systematically evaluate every layer and every measure for 
the identification of vulnerabilities. We further plan to develop an indicator based on the 
average rankings of measures. This would ultimately carry information from each 
measure, which reflects a different characteristic of for the locations and the network. 
While developing such an indicator, we will remove redundant measures (e.g., measures 
that highly correlate with each other) to reduce noise and redundancy. Also, measure 
results are often dependent on the scale of networks. We used FAF regions to identify 
location characteristics, however, we plan to apply our methodology to finer scale data 
sets (e.g., simulated county-to-county flows) and state-to-state food flows. 



Our prelimineray analysis included undirected network measures. We plan to further 
expand our analysis to include directed network measures such as inflow and outflow 
entropy and GINI coefficient. These measures would reveal directional imbalances in 
flows. While network measures provide important insight into potential locational 
vulnerabilities, the interpretation of measure results are limited unless flows are also 
overlayed to illustrate connections for each location. Connections together with 
locational characteristics would help us better understand the complex system and its 
vulnerabilities. We plan to analyze the relationship between food flows and the factors 
such as food production and consumption, population and demographics, and transport 
hubs in our future studies.  
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