Evaluating different Cartographic Design Variants for visually communicating Route Efficiency

Stefan Fuest*, Susanne Grüner, Mark Vollrath and Monika Sester

stefan.fuest@ikg.uni-hannover.de
Motivation

- Increasing traffic volume leads to consequences like congestion, air pollution, noise and accidents (negative effects on the environment)
- Important to develop effective approaches for better distributing the road traffic
 - Avoid heavily affected areas and thus protect citizens and environment
- Many route decisions are made based on maps provided by routing applications
- But: Drivers tend to prefer individually beneficial or familiar routes [2]

Research Idea:

- Nudge users towards a less selfish decision in favor of the environment
- Cartographic visualization helps communicating routes and traffic situations more intuitively
- Test effectiveness of different cartographic methods for visually communicating route efficiency
Influencing driver’s route choice

► Transportation planning perspective [1, 7]
 ▪ Traveler information systems (variable message signs)
 ▪ Algorithms for efficiently distributing drivers (limit number of vehicles that pass along road)

► Our approach: Visually communicating route efficiency based on digital, cartographic representations
 ▪ Users evaluate the traffic situation themselves
Current Routing Services - Visualization

Directions from "HERE Maps": wego.here.com
Visual variables in cartography

<table>
<thead>
<tr>
<th>Points</th>
<th>Lines</th>
<th>Areas</th>
<th>Best to show</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>possible, but too weird to show</td>
<td>cartogram</td>
<td>qualitative differences</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Hue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Intensity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual variables according to Bertin [6]
User study
Objective and Hypotheses

► Test suitability of different cartographic design variants for communicating route efficiency in terms of traffic density
 ▪ Focus on potential for influencing route choice behavior

► Recommend a longer, but temporarily less congested route to the map-reader
 ▪ Contributes best to a more even distribution of traffic -> benefits the whole traffic system

► Communication of route efficiency using cartographic design variants is expected to affect route choice behavior

► Different design variants contribute to a varying extent to the map-reader’s ability to assess a traffic situation and the efficiency of route options.

► Map-reader is expected to intuitively choose the route that is visually communicated as most efficient
Study design

► Within-subject design

► Measure participants’ route choices

► 18 routing scenarios within 18 different German cities of comparable size

► For each routing scenario one map without any modification (→ 18 baseline maps)

► 18 modified maps for the same routing scenarios
 ▪ 6 design variants (color hue, distortion, length distortion, spacing, size and symbols)
 ▪ 3 levels of intensity for modification (weak, medium, strong)
 ▪ Each design variant represented once using each level of intensity

→ 36 maps (conditions) in total
Baseline maps vs. Modified maps

Baseline map

Modified map using symbols
Design variants of visual variables

- **Color hue**
- **Size**
- **Length distortion**
- **Distortion**
- **Spacing**
- **Symbols**
Visual metaphors

<table>
<thead>
<tr>
<th>Design variant</th>
<th>Visual metaphor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low traffic density</td>
<td>High traffic density</td>
</tr>
<tr>
<td>color hue</td>
<td>Green color hue</td>
</tr>
<tr>
<td>spacing</td>
<td>Short gaps between dashes</td>
</tr>
<tr>
<td>size</td>
<td>Wide line (much capacity)</td>
</tr>
<tr>
<td>symbols</td>
<td>Small amount (car symbols)</td>
</tr>
<tr>
<td>length distortion</td>
<td>Visually shorter route</td>
</tr>
<tr>
<td>distortion</td>
<td>Simplified line</td>
</tr>
</tbody>
</table>
Calculation of graphical differences

\[
\begin{align*}
 r &= \frac{\text{dens}(s)}{\varnothing\text{dens}(s)} \\
 s &= \text{road segment} \\
 \text{dens}(s) &= \text{observed traffic density} \\
 \varnothing\text{dens}(s) &= \text{average traffic density}
\end{align*}
\]

High Traffic Density = inefficient

Low Traffic Density = efficient

\[
r < 1
\]

\[
r > 1
\]
Levels of intensity for modification

- **a) weak**
 - Subtle use of visual variables
 - Visualized differences in traffic density reduced

- **b) medium**
 - Based on original traffic density distribution

- **c) strong**
 - Distinct use of visual variables
 - Visualized differences increased
Participants

- 151 participants (80 females, 70 males, 1 diverse; $M = 26.20$, $SD = 6.49$)
- Online experiment
- German residents
- 91.1% own a driver’s license, but the majority of the participants (35.8%) drive less than once a week
Procedure

Task 1

- Participant made a route choice decision for each map right after shortly observing it.

- For the decision between route A and B, we used a slider, providing five steps:
 1) Definitely A, 2) Rather A, 3) No preference, 4) Rather B, and 5) Definitely B.
Procedure

Task 2

- Presented the baseline and modified visualizations for the same city side by side
 - “How did the relation between the routes change?”

- Assign characteristics to the visually recommended route
 - faster, more direct, shorter, more comfortable to drive, more fluent to drive or none of this
Results
Route choice

<table>
<thead>
<tr>
<th>Design variant</th>
<th>Intensity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weak</td>
<td>medium</td>
<td>strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>base.</td>
<td>mod.</td>
<td>z</td>
<td>p</td>
<td>r</td>
<td>base.</td>
<td>mod.</td>
<td>z</td>
<td>p</td>
<td>r</td>
<td>base.</td>
<td>mod.</td>
</tr>
<tr>
<td>color hue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.03</td>
<td>2.97</td>
<td>-7.4</td>
<td>.0*</td>
<td>.43</td>
<td>2.6</td>
<td>3.11</td>
<td>-4.22</td>
<td>.0*</td>
<td>.24</td>
<td>2.16</td>
<td>2.91</td>
</tr>
<tr>
<td>distortion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.87</td>
<td>4.03</td>
<td>-1.96</td>
<td>.05</td>
<td>.11</td>
<td>3.29</td>
<td>3.71</td>
<td>-3.88</td>
<td>.0*</td>
<td>.22</td>
<td>2.15</td>
<td>3.8</td>
</tr>
<tr>
<td>length distortion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.95</td>
<td>3.52</td>
<td>-4.7</td>
<td>.0*</td>
<td>.27</td>
<td>1.97</td>
<td>3.71</td>
<td>-9.71</td>
<td>.0*</td>
<td>.56</td>
<td>1.81</td>
<td>3.66</td>
</tr>
<tr>
<td>spacing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.30</td>
<td>3.23</td>
<td>-0.92</td>
<td>.36</td>
<td>.05</td>
<td>1.82</td>
<td>2.25</td>
<td>-4.09</td>
<td>.0*</td>
<td>.24</td>
<td>2.66</td>
<td>3.22</td>
</tr>
<tr>
<td>size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.38</td>
<td>3.42</td>
<td>-0.38</td>
<td>.7</td>
<td>.02</td>
<td>2.42</td>
<td>2.56</td>
<td>-1.64</td>
<td>.1</td>
<td>.09</td>
<td>1.98</td>
<td>2.28</td>
</tr>
<tr>
<td>symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.77</td>
<td>3.34</td>
<td>-4.96</td>
<td>.0*</td>
<td>.29</td>
<td>2.6</td>
<td>3.62</td>
<td>-7.05</td>
<td>.0*</td>
<td>.41</td>
<td>2.59</td>
<td>4.11</td>
</tr>
</tbody>
</table>

small effect $0.1 \leq r < 0.3$ **medium effect** $0.3 \leq r < 0.5$ **large effect** $r \geq 0.5$
Route choice

Willingness to decide for the *recommended* route in modified visualizations, $n = 151$. Higher difference value = higher willingness.
Decision Time

Time for route decision

Difference

-3 -2 -1 0 1 2 3 4 5

-3 -2 -1 0 1 2 3

color hue distortion length distortion spacing size symbols

weak medium strong
Route Characteristics

Evaluation of route characteristics by the participants in percent

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Faster</th>
<th>More direct</th>
<th>Shorter</th>
<th>More convenient</th>
<th>More fluent</th>
<th>None</th>
<th>Other characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>48</td>
<td>5</td>
<td>4</td>
<td>28</td>
<td>40</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Distortion</td>
<td>40</td>
<td>38</td>
<td>17</td>
<td>57</td>
<td>42</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Length distortion</td>
<td>27</td>
<td>50</td>
<td>54</td>
<td>17</td>
<td>11</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Line style</td>
<td>17</td>
<td>9</td>
<td>2</td>
<td>25</td>
<td>40</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Line width</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>16</td>
<td>18</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>Symbols</td>
<td>60</td>
<td>3</td>
<td>4</td>
<td>42</td>
<td>65</td>
<td>19</td>
<td>9</td>
</tr>
</tbody>
</table>

Relations: Route choice * Route characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>color hue</th>
<th>distortion</th>
<th>length distortion</th>
<th>spacing</th>
<th>size</th>
<th>symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36.6</td>
<td>1.8</td>
<td>5.8</td>
<td>18.9</td>
<td>26.7</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>7.9</td>
<td>9.6</td>
<td>15.2</td>
<td>12.3</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>4.4</td>
<td>1.2</td>
<td>4.9</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>2.0</td>
<td>1.0</td>
<td>9.8</td>
<td>11.7</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>11.5</td>
<td>10.1</td>
<td>4.3</td>
<td>8.2</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>28.3</td>
<td>1.2</td>
<td>6.7</td>
<td>15.7</td>
<td>26.2</td>
<td>24.6</td>
</tr>
</tbody>
</table>

Pearson chi-square
Discussion: Effectiveness for influencing route choice

- Significantly different influence of visual variables on route choice – depending on the level of intensity for modification

- Variables *length distortion* or using *symbols* seem to be generally efficient for communicating route efficiency

- Unusual findings for variable *color hue*

- Variables *size* and *spacing* less effective for influencing route choice
 - Incorrect decoding of visual metaphors – used visualization less intuitive
 - Ambiguous interpretation

- Route choice may also depend on additional characteristics of the environment
 - Spatial features close to the route
 - Structure of the route
Discussion: Transferability to Real World Applications

- Visual variables that have been found influential, might be suitable for implementation in a real-world routing service.
- Modified visualizations shown as allocentric representations in situations where a route decision has to be made.
- Active route decisions are primarily made based on allocentric maps.
Next steps

► Extend the approach to using dynamic representations, e.g. animations for clarifying the spatio-temporal changes in route efficiency [3, 5]

► Investigate usefulness of additional efficiency information in form of labels (e.g. expected travel time) or audio information for influencing route choice

► Customize this approach to different environmentally relevant scenarios (e.g. reducing air pollution)

► Integrate approach into a routing service application

► Perform further user studies with a focus on the acceptability and intuitiveness of visual representations [4]

► Provide representative collection of suitable visualization methods for recommending route efficiency in different scenarios
Summary

► Evaluated six different visual variables regarding their effectiveness for influencing route choice

► Our method visualizes route efficiency exemplarily based on the variations in traffic density associated with road segments

► For most of the tested routing scenarios, participants’ route choice has been significantly influenced towards choosing a longer, but temporarily more efficient route

► The willingness to decide for the recommended route increased with a higher intensity of modification

► Possible to influence a map-reader’s route choice towards a temporarily efficient route – using visual variables for communicating route efficiency
References

Thanks a lot for your attention!

For further questions, comments or ideas on my topic, please feel free to contact me!

M.Sc. Stefan Fuest
Institute of Cartography and Geoinformatics
Leibniz University Hannover, Germany

Website: https://www.ikg.uni-hannover.de/en/

Email: stefan.fuest@ikg.uni-hannover.de