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Background

Many applications call for the rapid production and update 

of indoor maps.
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Indoor navigation (mapbox) Building information management 

(lodplanner)
Indoor robot 

https://www.therobotreport.com/auton

omous-navigation-design-challenges/

https://www.therobotreport.com/autonomous-navigation-design-challenges/


Introduction

• LiDAR is a popular means for indoor mapping data collecting.

• A huge conversion gap between raw LiDAR point cloud and 3D 

model exists.

• Traditional methods are inaccurate, and often involve human 

control.

• No consistent standards for indoor mapping.

• In this research, we designed a deep learning-based framework to 

extract levels of detail of indoor spaces from raw LiDAR data. 
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The Proposed Framework

• The proposed framework includes:

➢ Neural network model training

➢ Point cloud segmentation

➢ LOD Extraction

• Step 1: Train a neural network for point 

cloud segmentation using labelled data.

• Step 2: Segment an experimental point 

cloud.

• Step 3: Reconstruct 3D LODs from 

segmented point cloud.
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Deep Learning Models

• Neural network models are used in this framework for point 

cloud segmentation.

• Three neural networks were tested in this research:

➢Vanilla PointNet

➢PointNet (Qi et al., 2017a)

➢PointNet++ (Qi et al., 2017b)

• LODs are reconstructed from a segmented point cloud.

• Used Poisson reconstruction (Kazhdan et al., 2006; Kazhdan and 

Hoppe, 2013).
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Vanilla PointNet
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• A simplified PointNet network consists of multilayer perceptrons for 

point cloud segmentation. 

• Used as a baseline for the comparison of different segmentation 

methods.



PointNet
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Qi et al., 2017a

PointNet combines global features and 

local features for per-point classification. 

T-net improves transformation 

invariance.



PointNet++
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Qi et al., 2017b

• PointNet++ follows the 

encoder-decoder structure, and

takes the effects of neighboring 

points and varying point density 

into account, which makes the 

method more robust and 

scalable. 

• Designed for both point cloud 

classification and segmentation.



Experimental Data

• Stanford Large-scale 3D Indoor Spaces Dataset (S3DIS, Armeni et al. 2016) for model 

training.

• 13 semantic categories including structural elements (ceiling, floor, wall, beam, column, 
window and door), common indoor objects (table, chair, sofa, bookcase and board) and 
clutter.
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Raw point cloud of a meeting room Labelled point cloud of a meeting room



UCSB Office Data

• LiDAR point cloud for UCSB Ellison Hall Room 1720.

• Five scans were merged into a point cloud, which includes 5,306,422 data 

points. The same 13 categories as SIDIS.
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Raw point cloud Labelled point cloud



Data Cropping and Subsampling

The Effect of the Sampling Block Size and Stride on Sampled Point Cloud Density: (a): 0.1-m sampling block and 0.05-m stride, (b): 

0.25-m sampling block and 0.125-m stride, (c): 0.5-m sampling block and 0.25-m stride, (d): 1-m sampling block and 0.5-m stride.

(a) (b)

(c) (d)
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Sample (a) Segmentation Results

Segmentation results of region growing, Vanilla PointNet, PointNet and PointNet++ for sampled data (a) with 0.1-m sampling block and 0.05-m stride.

(a) (b)

(c) (d)
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Segmentation Results Evaluation
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Category
Sample (a) Accuracy Sample (b) Accuracy Sample (c) Accuracy Sample (d) Accuracy

VPT PT PT++ VPT PT PT++ VPT PT PT++ VPT PT PT++

Ceiling 80.85% 90.96% 98.82% 81.82% 98.98% 99.05% 82.73% 97.08% 99.50% 83.42% 95.99% 99.75%

Floor 92.56% 99.73% 98.07% 87.12% 99.66% 99.53% 88.88% 99.13% 99.31% 89.52% 98.60% 98.95%

Wall 42.01% 69.50% 30.75% 51.73% 69.71% 24.86% 45.63% 50.02% 19.70% 72.32% 39.85% 28.04%

Column 0.27% 0.00% 0.00% 0.39% 0.00% 0.00% 0.46% 0.00% 0.00% 0.41% 0.00% 0.00%

Window 0.03% 0.03% 15.67% 0.08% 0.07% 15.47% 0.07% 0.50% 5.30% 0.08% 0.06% 1.79%

Door 44.45% 55.92% 94.52% 53.47% 64.53% 96.82% 43.24% 49.23% 91.57% 41.05% 44.42% 80.76%

Table 69.62% 0.75% 42.24% 62.46% 11.33% 54.86% 58.50% 45.50% 67.73% 58.78% 62.49% 65.07%

Chair 50.78% 9.62% 94.84% 47.67% 5.59% 75.42% 46.72% 26.76% 65.47% 45.66% 74.37% 67.40%

Bookcase 45.27% 41.01% 64.18% 42.75% 65.92% 79.12% 38.84% 81.82% 81.74% 35.67% 57.11% 79.13%

Board 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%

Clutter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Total 67.84% 72.47% 80.43% 64.13% 74.53% 76.53% 57.40% 68.80% 70.65% 51.43% 56.64% 60.38%

Kappa 0.5676 0.5248 0.6474 0.5329 0.6266 0.6470 0.4895 0.5998 0.5941 0.4152 0.4750 0.5074

VPT: Vanilla PointNet

PT: PointNet

PT++: PointNet++



Indoor LOD Standard Design: Based on Object Permanence

LOD Objects

0 Wall, ceiling, floor. (Most permanent)

1 LOD0 + column, door, window. (Permanent)

2 LOD1 + table, case, board. (Semi-permanent)

3 LOD2 + chair + clutter (Transient)
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LOD Reconstruction Results

LOD 0

LOD 1
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Manual segmentation + Poisson Reconstruction PointNet++ segmentation + Poisson Reconstruction



LOD Reconstruction Results

LOD 2

LOD 3
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Manual segmentation + Poisson Reconstruction PointNet++ segmentation + Poisson Reconstruction



LOD Accuracy

Model

LOD0 LOD1 LOD2 LOD3

Mean
Standard 

Deviation (m)
Mean (m)

Standard 

Deviation (m)
Mean (m)

Standard 

Deviation (m)
Mean (m)

Standard 

Deviation (m)

Manual segmentation + 

Poisson Reconstruction
0.0284 0.0589 0.0266 0.0493 0.0320 0.0469 0.0327 0.0450

PointNet++ 

segmentation + Poisson 

Reconstruction

0.0315 0.0489 0.0434 0.0581 0.0476 0.0568 0.0482 0.0544
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LODs produced from neural networks achieve competitive accuracy to those from manual modelling.



Discussion

• Point cloud segmentation is critical in the framework. Different
segmentation methods influence following LOD reconstruction 
accuracy.

• The three deep neural network models are much better than region 
growing. PointNet++ performed best in our experiments. 

• Point density also affects segmentation. Higher point density
contributes to overall segmentation accuracy.

• Neural networks failed to identify some objects, especially the board, 
columns and windows. More information such as calibrated intensity, 
reflectance, etc. may be needed. 

• A multiple-step segmentation may help differentiate similar objects. 
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Conclusions
• We designed a framework to generate LODs from raw point cloud. 

• Explored applying state-of-art deep neural network models to segment 
LiDAR point clouds. 

• Segmentation results were aggregated into four levels of detail according to 
our ad hoc indoor cartography standard. 

• Experimental results demonstrate the feasibility of the proposed framework.

• Future studies will consider more efficient segmentation methods, 3D object 
reconstruction from local incomplete point clouds, and experiments on a 
larger building interior

• A long-term goal is a scan-to-model computational workflow, that serves as a 
primary mapping tool for indoor cartography.
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Thank you for your attention!
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