Classification of Remotely Sensed Images using Deep Learning and Multiresolution Analysis

Rizwan Ahmed Ansari*, Rakesh Malhotra*, Krishna Mohan Buddhiraju#
*North Carolina Central University, North Carolina, USA.
#Indian Institute of Technology Bombay, India.
Email: ransari@nccu.edu, Paper ID: 11

AutoCarto 2020
18-20 November 2020
Outline

Introduction
Multiresolution Analysis
Contourlet transform
Methodology
Results and Analysis
Conclusions
Classification

A large number of semantic classification methods utilizing wavelet features have been developed.

Deep learning for semantic classification

However, usage of ridgelet and contourlet is limited in context of deep learning.
Need of Multiresolution analysis

Difficult to analyze information content just from the pixel value

The local changes of the intensity of an image are more important than the gray level intensity of that image

Different resolution levels are suitable for different sizes of objects (Buildings, shopping malls, small houses)

Wavelet based MRA
A sample image (only for illustration)
One level wavelet decomposition
Two level wavelet decomposition
Contourlet transform

Do and Vetterli (2002) grouped the wavelet coefficients to get a sparse image expansion

Double Filter Bank

Laplacian Pyramid

Directional Filter Bank

Expansion is composed of basis images oriented at varying directions in multiple scales, with flexible aspect ratios.

It can effectively capture the smooth contours with only a small number of coefficients
Implementation

(adapted from Do and Vetterli 2002)
Key Steps

By wavelet, ridgelet and contourlet decompositions, the features obtained at multiple scales, a concatenation with the corresponding stage from the contracting part is designed in the U-net.

Contracting part is used to extract the features of subbands.

Every stage in the expansive part includes the up-sampling of the feature map, a concatenation block and a convolution block, which consists of a 3×3 convolution layer, a normalization layer and a rectified linear unit.
Kuwait city image (IRS)
Classified image using traditional U-net
Classified image using proposed MRA based U-net
Performance comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>Pixel Accuracy</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Shallow Water</td>
</tr>
<tr>
<td>Plain U-net</td>
<td>82.86</td>
<td>79.92</td>
</tr>
<tr>
<td>U-net+Wavelet</td>
<td>89.22</td>
<td>98.44</td>
</tr>
<tr>
<td>U-net+Ridgelet</td>
<td>91.31</td>
<td>98.22</td>
</tr>
<tr>
<td>U-net+Contourlet</td>
<td>94.7</td>
<td>98.78</td>
</tr>
</tbody>
</table>
Conclusion

Textural information from different subbands of MRA is extracted at various scales and integrated with U-net layers.

MRA scales help extract different features of the objects to classify an image.

The proposed method exhibits high classification accuracy with better edge continuity.
Key References

Thank You!

ransari@nccu.edu