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Introduction  

The authors are collaborating with the United States Geological Survey (USGS) to 
extensively explore, compare, and integrate geomorphometric mapping methods for 
semi-automated mapping of areal extents of mesoscale landforms that people tend to 
recognize in the field and on topographic maps. Currently, USGS topographic maps 
explicitly represent landforms simplistically as point features retrieved from the 
Geographic Names Information System (GNIS) database. Previous work on a GEOBIA 
based methodology for extracting unique areal extents for landforms did not yield 
satisfying results (Arundel and Sinha, 2018). Now, the USGS is extensively testing 
machine learning methods for a wide variety of topographic mapping tasks.  

In parallel, the authors are evaluating a few popular general purpose landform mapping 
algorithms for mesoscale landform mapping. Gruber et al. (2017) compared several 
such methods for soil mapping. That inspired Hassan’s (2020) master’s thesis which 
was conceived to compare Wood’s (1996) geomorphometric features, Jasiewicz and 
Stepinski’s (2013) geomorphons, and Weiss’ (2001) topographic position index (TPI) 
methods for automated mapping of three broad landform categories: non-linear 
eminence (e.g., mount, hill, butte), linear eminence (e.g., ridge), and linear depressions 
(e.g., valley, gorge, ravine). The research discovered substantial susceptibility to 
parameter values and surprisingly low geometric and semantic correspondence between 
the methods.  

Building on Hassan’s work, a more systematic assessment of methods deemed suitable 
for mapping only non-linear eminences is underway. In this short paper, key findings 
are provided from an in-depth analysis of Wood’s (1996) geomorphometric features and 
Jasiewicz and Stepinski’s (2013) geomorphons for automatically identifying the apexes 
of visually salient non-linear eminences. If found viable, the method(s) can i) enhance 
peak records in topographic gazetteer databases (e.g., GNIS), and ii) help validate 
region growing and machine-learning algorithms for extracting areal extents of non-
linear eminences.  
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Methodology 

i) Methods: Wood’s (1996) method constructs a local surface represented as a 
bivariate quadratic polynomial function for each elevation raster cell to classify 
each cell into one of six morphometric classes: peak, pit, pass, ridge, channel and 
planar. Jasiewicz and Stepinski’s (2013) geomorphons are extracted based on 
line-of-sight analysis in eight directions around a cell, and depending on 
geomorphon shape, each cell is assigned one of ten classes: flat, peak, ridge, 
shoulder, spur, slope, hollow, 
footslope, valley and pit.  

ii) Parameter values: For each 
method, Table 1 lists the 
parameters and corresponding 
values, and the total number of 
parameterized model runs needed 
for each study area.  

iii) Study Areas. As in Hassan (2020) 
DEM rasters of 10-meter 
resolution were analyzed for two 
similar mountainous areas in the 
White Mountains (New 
Hampshire) and the Great Smoky 
Mountains (North Carolina and 
Tennessee border) and a third 
starkly different study area in the 
arid Colorado Plateau (New 
Mexico) to enable comparison of 
results between both similar and 
dissimilar physiographic regions. 

iv) Visual analysis. Every combination of parameters for a study area yielded a 
separate raster map layer, which was overlaid on terrain hillshade, contour lines, 
and topographic basemaps. Although map overlay based visual assessment is 
subjective, panning across study areas is the best and only way to get a holistic 
perception of the quality of results. This must be first step, therefore. 

v) Confusion matrices. Visual analysis helped narrow down the list of viable model 
runs, which were then compared in pairs using the familiar confusion matrix 
analysis. The percentage areal overlap between identical (diagonal cells) and 
different (off-diagonal cells) feature types was used to determine the quantitative 
impact of parameters on the percentage of peak cells.  

vi) GNIS Summit feature proximity analysis. GNIS Summit features represent the 
apexes of a subset of topographically salient non-linear eminences. Distance from 
GNIS Summit features to the nearest extracted peak and summit polygons was 
measured using the ArcGIS Pro Near function for external semantic validation.  

vii) Workflow automation. The r.param.scale and r.geomorphon functions in GRASS 
GIS (accessed via  QGIS software) were used, respectively, to get outputs from 
the morphometric and geomorphons methods. The entire workflow from running 
models via QGIS to spatial analysis and creation of summary tables has been fully 
automated with Python scripts. Visual analysis of output rasters was done with 
ArcGIS Pro GIS software. 

Table 1: Parameter list and values for apex mapping. 
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Results 

For illustration purposes, Figures 1 and 2 show the impact of parameter values on the 
quality of peak and summit objects for a strategically selected portion of the Great 
Smoky Mountains study area. For additional comparison purposes, non-linear 
eminences and depressions are also shown. These figures can be the reference for the 
discussion of the findings summarized below. 

i) Study area. Study area choice was not found to matter much for choosing the best 
parameter values based on visual comparisons, suggesting parameter values can 
be stable across varied landscapes for mesoscale non-linear eminence mapping 
However, the overall quality (location and shapes) of extracted peaks or summit 
cells was much better for the Smoky Mountain and White Mountain mountainous 
areas than for the arid and flatter Colorado Plateau’s isolated and smaller non-
linear eminences.  

ii) Window size / search radii. From visual analysis, window size or outer search 
radii is the most important parameter that affects the size and shape of extracted 
features. For extracting morphometric peaks, window sizes smaller than 300 
meters (31x31) produced noisy outputs with too many peak cells, while window 
sizes larger than 400 meters (41x41) produced noticeably few peaks with 
undesirably large and inappropriately located areal patches. Similarly, for the 
geomorphon method, an outer search radius between 300 to 400 meters (with an 
inner search radius of 150 meters) was found optimal for extracting summit cells. 
However, the shape and location of many extracted objects for even the best 
model does not seem satisfactory. 

iii) Slope. For morphometric peaks, only slope thresholds between 5°-10° should be 
used. Results degrade appreciably beyond that narrow range. Geomorphon 
summits are even more susceptible to slope values, with only a slope of 1° found 
to yield acceptable results. 

iv) Curvature. This parameter is of interest only for morphometric peak mapping. 
Values of .001 produced much fewer and unacceptably large areal patches making 
it clear that only curvature values in the vicinity of .0001 are viable. 

v) Confusion matrix analysis. For both methods, analysis of confusion matrices 
(using overall similarity, Kappa, Cramer’s V, and Contingency C measures) for 
model runs with parameter values close to the best parameter values exhibited 
much higher similarity measures than other model pairs confirming the 
identification of optimal range of parameter values from visual analysis. 

vi) GNIS Summit proximity analysis. GNIS Summit feature distances to nearest peak 
and summit polygon were should ideally be within 30 meters, accounting for 
spatial inaccuracy of GNIS feature locations. The best parameter combinations 
that maximized proportion of Summit features at shorter distances corresponded to 
the best models determined from visual analysis only for geomorhon summits, but 
not for morphometric peaks, for which a slope of 20° was found to be best. As 
mentioned earlier, slopes exceeding 10° produce poor quality peaks. However, 
even for the best models, many candidate peaks and summits emerge nearby 
making it quite difficult to decide on a unique corresponding polygon for any 
GNIS Summit feature. 
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Figure 1: Mapping morphometric features for different parameter values for the Great 
Smoky Mountains study area. 
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Figure 2: Mapping geomorphons based summit objects for different parameter values 
for the Great Smoky Mountains study area. 
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Conclusion 

There is a narrow range of parameter values for which cognitively plausible 
morphometric features and geomorphon summits can be extracted as candidates for 
apexes of non-linear eminences. However, the shapes and locations of objects does not 
still match what people would identify as apex regions. Quantitative summaries can be 
misleading and can only be used to confirm findings from visual analysis, but not be 
independently used for decision making. Since the workflow is fully automated, new 
study areas and different parameters can be explored with ease and efficiency. While a 
lot of quantitative data will still be analyzed for the two methods, neither of the 
investigated methods is well-suited for specific geomorphometry. They are unlikely to 
produce objects of high quality and accuracy expected for national scale mapping of 
non-linear eminences. This is in contrary to what is generally assumed about these 
methods, and the main finding of this project. Thus, the next step will be to improve the 
eminence-core method (Sinha and Arundel, 2021) and test other contour-based 
eminence mapping methods available in the literature since they are designed to ensure 
reasonable shapes of extracted apexes and cores of non-linear eminences. 
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