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Scale Specific Sinuosity 

Many geographic features have been observed to possess fractal characteristics. Unlike 

mathematical fractals that are self-similar across all scales, however, geographic 

features often exhibit different degrees of complexity at different scales of analysis 

(Buttenfield 1989). For this reason, standard metrics such as sinuosity and fractal 

dimension that describe shape complexity using a single numerical value cannot fully 

capture the fractal nature of geographic objects. 

Recently, a scale-specific sinuosity (S3) metric was proposed to capture the degree of 

complexity inherent to a geographic feature at a particular scale (Stanislawski et al, 

2019). Derived from the Richardson plot, the S3 metric is defined as the ratio of 

reduction in observed log feature length to increase in log stride length (unit of 

measurement), where feature length and stride length are taken as surrogates for 

complexity (i.e., sinuosity) and scale, respectively. Because the S3 metric is scale-

specific, it produces different values depending on the chosen stride length interval. 

Typically, an S3 distribution is computed across a series of stride length intervals to 

describe morphometric complexity across a range of scales. 

Derivation of the S3 metric is driven by a need to characterize stream sinuosity at 

various scales in differing terrain types. Models of sinuous flow patterns predict 

meanders of different sizes, preferred wavelengths and wavelength variance depending 

on slope and resistivity conditions (Lazarus and Constantine 2013). Terrain derivatives 

are also widely acknowledged to be scale-sensitive, and this calls for sinuosity metrics 

that are closely coupled to the scale of measurement. The conventional metric for bend 

geometry is sinuosity, commonly defined as the ratio of the path length of a stream 

channel to the straight-line distance between channel endpoints. This effectively 

summarizes bend geometry at a single scale. The capability to quantify sinuosity across 

a range of scales affords opportunities to examine sinuosity at a deeper level, offering 

advanced insights into relationships between stream channel geometry and changing 

hydrologic characteristics (discharge, erosion, aquifer replenishment, etc.). 
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Analytical applications of scale-specific sinuosity require a metric of difference 

between two S3 distributions. For example, analysis of temporal change in river bend 

geometry entails comparison of S3 distributions measured at two or more points in time. 

Similarly, classification of linear features requires a way to quantify the difference in S3 

distributions between any pair of features, or between a single feature and a class 

prototype. Difference metrics form the basis for clustering algorithms as well as 

ordination methods such as principal components analysis.  

Here, a modified earth mover’s distance metric (𝑑𝐸𝑀𝐷∗) is proposed for use in analyzing 

the difference between two S3 distributions. The proposed metric is a variation on the 

standard earth mover’s distance (𝑑𝐸𝑀𝐷) between probability distributions that accounts 

for differences in both probabilities 𝑝(𝑥) and values 𝑥 (Rubner et al. 1998). As 

illustrated in Figure 1, 𝑑𝐸𝑀𝐷 is defined as the minimum cost of transforming one 

distribution into the other by moving mass around, where movement cost equals mass 

times distance. In the case of a probability distribution, “mass” refers to the probability 

density and “distance” is the difference between values in the two distributions. 

 

Figure 1: Illustration of earth mover’s distance (𝑑𝐸𝑀𝐷). To transform the left (green) 

distribution into the right (orange) distribution, one unit of mass at (a) is moved one 

unit of distance to (a´) and two units of mass at (b) are moved two units of distance to 

(b´) for a total cost of 1 + 4 = 5. 

Adaption to S3 distributions is motivated by the need to account for differences in both 

degree and scale of sinuosity (Figure 2). For example, curves (b) and (c) in figure 2 

differ in degree but not scale of sinuosity, whereas curves (c) and (d) differ in scale but 

not degree. Here the “scale” of sinuosity is synonymous with the sizes of bends, so that 

the bend sizes ranging from small (Figure 2c) to medium (Figure 2d) and large (Figure 

2e) correspond to scales that may be described as “fine,” “medium” and “coarse”.  By 

analogy with 𝑑𝐸𝑀𝐷, “mass” refers to the degree of sinuosity and “distance” is the 

difference between scales of the two distributions.  

 

Figure 2: Curves with differing degrees and scales of sinuosity. (a) no sinuosity, (b) 

low sinuosity at a fine scale, (c) high sinuosity at a fine scale, (d) high sinuosity at a 

medium scale, (e) high sinuosity at a coarse scale, (f) corresponding S3 distributions. 



Deficiency in Common Metrics 

Let {𝜎1, 𝜎2, … , 𝜎𝑛} denote the centers of the 𝑛 distinct scale intervals used for 

measurement and let 𝑠𝑎𝑖 and 𝑠𝑏𝑖 denote the S3 values indicating the degree of sinuosity 

at the ith scale interval for two features 𝑎 and 𝑏 respectively. First, let us see why a 

simple difference metric such as the Manhattan distance will not work. The Manhattan 

distance between the S3 distributions of two features a and b can be defined as follows: 

𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(a, b) = ∑|𝑠𝑎𝑖 − 𝑠𝑏𝑖|

𝑛

𝑖=1

 

Now consider features (c), (d) and (e) in Figure 2 and their corresponding S3 

distributions. All three features have approximately the same total degree of sinuosity 

but at different scales. It is clear that (c) is more similar to (d) than to (e), so we should 

resolve that: 

𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(c, d) < 𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(c, e)      (𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡) 

Figure 3 shows the actual differences between the S3 distributions of these curves. The 

Manhattan distances are equal to the area of the shaded regions in the figure. Although 

the desired result is technically achieved due to some overlap between the S3 

distributions of (c) and (d), the difference is small. It is possible to construct an example 

where the Manhattan distances are exactly equal, but such examples are difficult to 

visualize graphically because of the wide tails of most S3 distributions. In any case, for 

practical purposes we can say that: 

𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(c, d) ≅ 𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(c, e)       (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡) 

The problem is that the Manhattan distance compares S3 values at each scale 

independently and does not consider the proximity of the scales at which peak values 

occur in the S3 distributions being compared. The same problem exists for most 

distance metrics, and it is this problem that the Earth Mover’s Distance iss designed to 

address. 

   

Figure 3: Differences between S3 distributions of curves shown in Figure 2. Left: 

difference between curves (c) and (d); right: difference between curves (c) and (e).   

  



Triangle Inequality  

Modification of 𝑑𝐸𝑀𝐷 is required because unlike probability distributions, S3 

distributions are not constrained to have equal total mass. The total mass of an S3 

distribution for a given feature is proportional to the log of the total sinuosity of that 

feature (Stanislawski et al, 2019), where total sinuosity is the sum of S3 values across 

all scales. Since we wish to compare features with different total sinuosity, the constant 

total mass assumption cannot be met. A natural modification is to allow mass to be 

removed from the larger distribution to equalize their total masses, with a fixed removal 

cost (𝑐𝑟) applied per unit mass removed. Let us refer to this metric as 𝑑𝐸𝑀𝐷′. 

Unfortunately, 𝑑𝐸𝑀𝐷′ will break the triangle inequality. The triangle inequality is a 

fundamental mathematical property of all mathematical metrics and requires that the 

direct distance between two data observations a and c cannot be larger than the distance 

through an intermediate observation b: 

𝑑(𝑎, 𝑐) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) 

A problem arises with the “triangle” formed between the S3 distributions of a straight 

line and two curves with equal sinuosity but at different scales. Consider again curves 

(a), (c) and (e) in Figure 2, reproduced in Figure 4 with relevant quantities illustrated.  

We must preserve the following inequality: 

𝑑𝐸𝑀𝐷′(𝑐, 𝑒) ≤ 𝑑𝐸𝑀𝐷′(𝑐, 𝑎) + 𝑑𝐸𝑀𝐷′(𝑎, 𝑒) 

Let 𝑚𝑐 = 𝑚𝑒 be the masses (i.e. total sinuosity) of S3 distributions (c) and (e), and let 

𝛿𝜎 be the difference between the scales of sinuosity of these two distributions. Then we 

have the following: 

𝑑𝐸𝑀𝐷′(𝑐, 𝑒) = 𝑚𝑐 × 𝛿𝜎 

𝑑𝐸𝑀𝐷′(𝑐, 𝑎) = 𝑚𝑐 × 𝑐𝑟 

𝑑𝐸𝑀𝐷′(𝑎, 𝑒) = 𝑚𝑐 × 𝑐𝑟 

If 𝛿𝜎 > 2𝑐𝑟 then 𝑑𝐸𝑀𝐷′(𝑐, 𝑒) > 𝑑𝐸𝑀𝐷′(𝑐, 𝑎) + 𝑑𝐸𝑀𝐷′(𝑎, 𝑒) and the triangle inequality 

will be broken. 

  

Figure 4: S3 distributions of curves (a), (c) and (e) from Figure 2 with quantities 

required to compute 𝑑𝐸𝑀𝐷′: 𝑚𝑐
 is the mass of the S3 distribution for feature c, 𝑚𝑒

 is the 

mass of the S3 distribution for feature e, and 𝛿𝜎 is the (average) difference in the scales 

of sinuosity for the two S3 distributions. 

  



Modified Earth Mover’s Distance for S3 Distributions  

To solve this problem, it is necessary and sufficient to ensure that the cost of moving 

mass never exceeds twice the cost of removing mass. This leads to the modified Earth 

Mover’s Distance (𝑑𝐸𝑀𝐷∗), defined as the minimum cost of transforming one 

distribution into the other by either moving or removing mass, with a fixed removal cost 

(𝑐𝑟) per unit mass removed and movement cost equal to mass times distance but capped 

at a maximum of 2 × 𝑐𝑟.  

It will be noticed that the removal cost 𝑐𝑟 influences the resulting metric. This defines 

the relative importance of differences in degree vs. scale of sinuosity. The higher the 

value of 𝑐𝑟 the greater the importance of degree of sinuosity relative to scale of 

sinuosity. Since movement cost is capped at 2 × 𝑐𝑟, the parameter 𝑐𝑟 also defines the 

limit of scale difference considered in assessing similarity. If two curves have equal 

sinuosity at scales separated by greater than a factor 𝑐𝑟 then the difference between 

them will be measured as equivalent to the difference between one of the curves and a 

straight line. For example, the meanders of Figure 2e are 15x as wide as Figure 2c. 

Since scales of the S3 distribution are defined logarithmically, setting 𝑐𝑟 = log (15) 

would indicate that the curve in Figure 2e is considered as different from Figure 2c as it 

is from a straight line.   

Implementation 

The proposed metric is implemented using the transportation cost minimization 

algorithm min_cost_flow in the NetworkX Python package (Hagbert et al. 2008). The 

problem is structured by establishing a network with supply and demand nodes 

corresponding to the scale intervals in each distribution. The min_cost_flow algorithm 

requires that movement costs be integer values; this is achieved by multiplying all costs 

by a sufficiently large number (e.g., 10,000) to achieve the desired resolution on the 

scale axis and then rounding to the nearest integer. Empirical analysis shows 

computation time to scale up as a function of the square of the size of the input S3 

distributions.  

Application 

The authors stress that the present study forms an initial test and evaluation of the 

proposed metric. The 𝑑𝐸𝑀𝐷∗ metric is being used to classify stream features across the 

USA by morphometry. Data consists of 50 stream segments ranging from 37km to 

206km in length derived from the National Hydrography Dataset from across the 

conterminous United States (Stanislawski et al. 2018). First, stream segments are 

divided into 10km to 20km reaches by splitting features at locations that maximize 

𝑑𝐸𝑀𝐷∗ between adjacent reaches. Reaches are classified using a variant of the k-means 

clustering algorithm with the 𝑑𝐸𝑀𝐷∗ metric serving as the distance function. The same 

process is being carried out with other distance metrics, and results will be compared 

through visual examination and analysis of percent variance explained by each 

clustering solution.  

Disclaimer:  
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