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1 Introduction 

Scale is one of the fundamental topics that differentiate geography from other disciplines. 
However, the handling of scale is a longstanding challenge in spatial analysis, as analyses 
conducted at different spatial scales may create different results. The importance of scale 
in spatial analysis has been epitomized in the well-known Modifiable Areal Unit Problem 
(MAUP) (Openshaw, 1983). Ideally, spatial data should be analyzed at the scale where 
spatial processes become evident, are best understood and/or where spatial relationships 
are maximized. However, most spatial analyses and modelling are conducted at a 
pragmatic scale or the scale where data is collected, which may miss critical spatial 
processes and relationships concealed at other scales. With the advent of the Big Data 
era, the increasing availability of geospatial data collected at different resolutions poses 
new challenges for multi-scale data fusion and analysis. 

In GIS, space is conventionally represented in “flat layers” and most spatial analysis tools 
operate at a single scale. Multi-scale analysis tends to treat scale as a variable and analyze 
the variation of spatial metrics computed at different scales (Behrens et al., 2019; Lam et 
al., 2018). Some spatial analysis methods use an adaptive kernel bandwidth or search 
radius to detect spatial patterns and relations at multiple scales (Ester et al., 1996; 
Fotheringham et al., 2017; Kulldorff, 1997; Van Kerm, 2003). However, existing multi-
scale analysis methods cannot fully reveal hierarchical structures and nested relations 
among spatial processes at diverging scales. The solution to this challenge requires a 
modelling framework that can seamlessly integrate space and scale to represent spatial 
patterns or relations varying in both location and scale. 

To address the challenges of multi-scale analysis, Qiang et al. (2014) developed a 
Triangle Model (TM) and extended it into a Pyramid Model (PM) which integrates spatial 
location and spatial scale in a true 3D space (Qiang et al., 2018; Qiang & Van de Weghe, 
2019)). The PM has been applied to multi-scale analysis of wetland fragmentation (Qiang 
& Van de Weghe, 2019), point pattern analysis (Qiang et al., 2022), and land cover 
classification (Carlson, 2021). These studies demonstrate that the PM seamlessly 
integrates space and scale in a 3D environment that supports simultaneous monitoring 
and assessment of spatial patterns across a range of scales. To date, the developed 
analytical tools primarily focus on exploratory analysis. In the 2022 AutoCarto 



conference, we will present experiments of implementing inferential methods in the PM 
to detect and quantify multi-scale spatial patterns and relations.  

2 Method 

The Pyramid Model 

The Pyramid Model (PM) extends the Triangle Model (TM) to a 3D framework for multi-
scale spatial data. In the PM, each point represents a spatial unit in geographic space 
(Figure 1). The horizontal position (x, y) of the point represents the spatial location of the 
unit (e.g. centroid). The vertical position (z) indicates the scale of the unit. As an example, 
a raster can be represented as a 3D point lattice in a PM, where a point located at (x, y, z) 
represents a z×z focal window centered at (x, y). Each point is attributed with a spatial 
metric (e.g., focal statistics, point density or Moran’s I) computed in the focal window 
defined by (x, y, z), and the spatial metric can be denoted as f(x, y, z). In such a way, the 
spatial metric f(x, y, z) computed in all different locations and at different scales are 
represented in a linked structure in the PM. In addition to regularized raster space, the 
PM can be built in other configurations to represent spatial data in various tessellations 
(hexagons, Voronoi polygons and irregular polygons). In these cases, the (x, y, z) 
coordinates in the 3D space can be defined differently to meet specific analytical 
purposes. In this research, we will implement 1) inferential point pattern analysis, 2) 
spatial autocorrelation and 2) regression analysis in the PM. All three examples are 
configured in raster space. 

 

Figure 1: The Pyramid Model (PM) (Qiang et al., 2022). 

Case Study 1: Multi-Scale Point Pattern Analysis 

Our previous research (Qiang et al., 2022) shows that the PM can analyze continuous 
variation of point density across spatial scales and the nested structure of multi-scale 
patterns (Figure 1). The presented research implements statistical tests of quadrat analysis 
and nearest neighbor distance (NND) in the PM. The experiment includes the following 
steps: (1) a synthesis point set combines simulated point sets in different clustering 
patterns. The simulated point sets represent geographic processes operating at different 
scales. (2) A quadrat count, mean NND and their p-values in comparison with complete 
spatial randomness (CSR) are computed at each point (x, y, z) in a PM. (3) Results are 
presented using 3D visualization tools to examine the metrics in the PM. The goal of the 
experiment is to develop quantitative methods to detect multi-scale point patterns, trends 



and outliers in the PM and associate detected patterns with the underlying processes (the 
simulated clustering patterns). 

 

Figure 2: Representing multi-scale point density in a PM. (a) a synthetic point set in a 2D space. 
(b) point density in different sizes of focal windows. (c) isosurfaces of high-density focal 
windows in PM. 

Case Study 2: Spatial Autocorrelation 

Spatial autocorrelation (SA) may vary at different spatial scales. Current spatial analysis 
tools can only compute and display spatial autocorrelation at a fixed scale (i.e. the extent 
of neighborhood). The PM provides a framework to analyse the variation of spatial 
autocorrelation across spatial scales. Beginning with raster data (e.g., land cover data or 
gridded population density), SA indicators (Moran’s I, Getis-Ord G, and their p-values) 
will be computed in different focal windows, which can be projected to 3D points in a 
PM. The 3D point lattice is then rasterized to volumes, which allows 3D tools to assess 
the continuous variation of SA indicators across scales. The analysis informs and 
highlights in which areas and at what scales local clustering/disperse patterns are 
significant. The unified view of space and spatial scale is expected to unveil the 
hierarchical structure of spatial autocorrelation at multiple scales and identify places and 
scales where spatial processes become prominent. 

Case Study 3: Regression Analysis 

The relationship among spatial variables may vary at different scales. We will implement 
regression analysis in the PM to analyze such relationships at multiple scales. As a notable 
approach to this problem, Multi-scale Geographically Weighted Regression (MGWR) 
selects optimal bandwidths to fit regression models for different variables. Unlike 
MGWR, the PM fits the regression model for spatial variables in different moving 
windows that are represented as 3D points in PM. Figure 3 illustrates a regression analysis 
between two spatial variables (X and Y) in the focal window (x,y,z). The regression 
analysis repeats for all points in the PM and generates different regression coefficients, 
R2 values and p-values for the points. Following rasterization, the point lattice is 
converted to voxels, which allows 3D tools to analyse the variation and hierarchical 
structure of the regression coefficients at different scales. Through this analysis, we can 
analyse the variable relationships in different locations and scales and identify areas and 
scales where the relation is significant.  



 

Figure 3: Representing regression analysis between two variables (X and Y) in PM. 

3 Discussion  

In this research, we implement inferential statistical methods in the PM to analyze multi-
scale spatial patterns and relations. Existing multi-scale analysis methods tend to treat 
space and spatial scale as separate variables, essentially controlling one variable and 
examining the change in the other variable. The PM improves upon the conventional 
representation by integrating space and spatial scale in a 3D environment. In other words, 
the PM combines “snapshots” of spatial metrics at discrete scales in a unified framework 
to represent the continuous variation and nested structures of spatial patterns/relations at 
multiple scales. The three case studies will demonstrate the utility of the PM in searching 
for areas and scales where inferential tools can explore specific spatial processes as they 
emerge or disappear. The research will lay a foundation for developing statistical or 
machine learning methods to detect and associate the metric variation in PM with realistic 
geographic processes. As the issue of scale underlies both spatial and temporal analysis, 
our future work includes integrating the PM and the TM into a higher-dimensional 
framework to support multi-scale spatio-temporal data. 
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