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Introduction 

Artificial neural networks excel at analysing and transforming images and other raster 

fields. We apply U-nets, a type of convolutional neural network (Ronneberger et al., 2015) 

to cartographic generalization problems. We discuss three applications to derive 

generalized terrain representations from geospatial raster data (Guilbert et al., 2014). In the 

first application, we create generalized shaded relief; the neural network directly derives 

shaded relief images from digital elevation models. In the second application, we create 

generalized contour lines; the neural network generalizes the digital elevation model source 

to an intermediate elevation model, and generalized vector contour lines are derived from 

this intermediated elevation model with a contouring algorithm. In the third application, we 

create generalized coastlines with a neural network from a raster field that encodes the 

occurrence of surface water. The network produces a black-and-white coastline image, 

attuned to the continental landmasses and islands, which are then delineated as vector lines. 

We observe that high-quality reference data is required for training neural networks, and 

identify two complementary approaches to control the amount of generalization with neural 

networks that apply to the three described applications. 

Neural Networks for Generalized Relief Shading 

Neural networks successfully replicate the generation of hand-drawn shaded relief (Jenny et 

al., 2021). The neural networks are trained with (a) manual shaded relief images and (b) 

terrain models of the same area. The neural networks are able to generate shaded relief that 

closely resembles hand-drawn shaded relief art. The neural networks follow essential 

design principles of manual relief shading, such as removing unnecessary terrain details, 

locally adjusting the illumination direction, accentuating high peaks with aerial perspective, 

and emphasizing large landforms. 



There are two complementary generalization methods for relief shading with neural 

networks. To illustrate the two methods we use Eduard, an application that computes 

shaded relief images with the described neural networks (https://eduard.earth). The first 

method trains a set of neural networks with elevation models with different cell sizes. After 

training, the cartographer selects a neural network that generates a shading with the desired 

level of details (Figure 1 top). The second method uses a single neural network, but the 

elevation model is down-sampled and filtered. Notably, the neural networks are able to 

retain important edges in down-sampled and filtered elevation models, while discarding 

irrelevant details (Figure 1 bottom). 

 

Figure 1: Adjusting the level of generalization by applying neural networks trained with 

reference elevation models with different cell sizes (top) and down-sampling and filtering 

input elevation models (bottom). Grossglockner, Austrian alps (top) and Zugdidi, Georgia 

(bottom). Relief shading with Eduard, an application for relief shading with neural 

networks (https://eduard.earth). 

Neural Networks for Generalized Contour Lines 

Our technique for generalizing contour lines uses a neural network that first transforms an 

excessively detailed ungeneralized elevation model to a generalized model. From the 

generalized elevation model, contour lines in vector format are then derived with a standard 

contouring algorithm. The neural networks are trained with generalized digital elevation 

models interpolated from (a) hand-generalized contour lines and (b) ungeneralized 

elevation models of the same area. We use contour lines of Russian topographic maps at 

1:200,000, 1:500,000 and 1:1,000,000 scales drawn manually by the national mapping 

https://eduard.earth/
https://eduard.earth/


agency Rosreestr and its Soviet predecessor GUGK, as well as manually drawn contour 

lines from the Swiss World Atlas (2010) at a scale of 1:15 million. Elevation models are 

first interpolated from the contour lines, and then used to train the neural networks. Our 

experiments indicate that the neural networks can learn to generalize in accordance with 

established design principles and accentuate the representation of key landforms (Figure 2). 

 

Figure 2: Contour lines derived from ungeneralized elevation model (left) and an elevation 

generalized with a neural network (right). 

Neural Networks for Generalized Coastlines 

We extract generalized coastlines from Global Surface Water, a raster dataset encoding the 

occurrence of surface water between 1984 and 2020 (Pekel et al., 2016). A first neural 

network is trained to convert the Global Surface Water raster dataset to black-and-white 

coastline imagery delineating continental landmasses and islands, which is then converted 

to vector coastlines (Figure 3). 

The U-net for extracting generalized coastlines from Global Surface Water was trained with 

(a) recently revised generalized coastlines of the rasterized Natural Earth dataset at a scale 

of approximately 1:7.5 million (Kelso and Patterson, 2009) and (b) the Global Surface 

Water raster dataset. 

Our method differs from recent machine learning techniques for the generalization of 

vector features, which typically necessitate an initial conversion of vector line features to 

raster data, then generalize the raster data with machine learning, and finally convert from 

raster back to vector format. Examples include work by Sester et al. (2018), Feng (2019), 

Touya et al. (2019a), Courtial et al. (2020), and Du et al. (2021). The required double 

conversion from vector to raster and raster to vector introduces a loss of information, often 

resulting in the appearance of fictitious or discontinuous features or other issues, as 

discussed by Touya et al. (2019b) and Courtial et al. (2020). Our approach avoids the initial 

conversion from vector to raster, as we directly extract a raster image with generalized 

coastlines from the Global Surface Water raster dataset. 



 

Figure 3: Global Surface Water dataset (top) and generalized coastlines extracted with a 

neural network (bottom). 

Conclusion 

In our experiments with the three described applications, we found that high-quality 

generalized reference data is vital for training successful neural networks. The reference 

data needs to be consistently generalized and geometrically align with the ungeneralized 

data (such as elevation or water occurrence data). If the reference data does not meet these 

requirements–for example, when a reference shaded relief shows non-existing or misplaced 

terrain features–the network “gets confused” during training as it receives contradicting 

information and produces inconsistent results when asked to generalize a dataset after 

training. In our case, we spent considerable time and efforts preparing high-quality 

reference data. For relief shading, we use manual shaded relief images of the Swiss 

topographic map series at various scales, for creating generalized contour lines, we use 

manually generalized Russian and Swiss contour lines, and for creating generalized 

coastlines, we use manually generalized and recently revised coastlines of the Natural Earth 

dataset.  

Figure 1 demonstrates two complementary methods for generalizing shaded relief with 

neural networks. Networks can either be trained with reference data at different 

generalization levels, or the resolution of input data can be adjusted when trained networks 



are applied to create generalized representations. It is interesting to observe that these two 

complementary methods apply to all three applications presented. That is, the amount of 

generalization in shaded relief, contour lines and coastlines can be adjusted by (1) selecting 

a particular neural network from a set of networks trained with different reference data, or 

(2) resampling the resolution of the input data, such as the cell size of an elevation model or 

surface water occurrence raster in our examples. 
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