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Introduction  

The ongoing COVID-19 pandemic highlights the tremendous impact of infectious 

disease on people’s lives and welfare and the need to develop rigorous theories and 

tools to understand and mitigate the disease’s spreading. The rate of spread is a crucial 

indicator of the extent of the potential damage the disease may cause. The rates vary 

across space and in time. However, few studies have paid attention to the estimation and 

understanding of local transmissibility. From a geographical perspective, measuring 

local transmission rates and understanding contributing factors to the change of these 

rates over time are important research topics.  

Aiming to measure the place- and time-specific rate of transmissibility, we choose to 

adopt the effective reproductive number (𝑅𝑒) which is a metric to measure the time-

specific transmissibility of an infectious disease while it is ongoing (Codeço et al., 

2018; Farrington & Whitaker, 2003; Towers et al., 2014). The general concept of 

reproductive number in infectious disease research refers to the average number of 

secondary infections generated by an infectious case when an epidemic is ongoing. Due 

to geographical variations in susceptibility, social dynamics, mobility patterns, control 

policy, and the dynamic changes of them over time, the transmission rate of the 

epidemic varies by location and time. Whereas reproduction numbers of Covid-19 for 

many cities, regions, and countries have been extensively investigated and discussed 

(Bryant & Elofsson, 2020; Chen, 2020; Flaxman et al., 2020; Korolev, 2021; Arroyo-

Marioli et al., 2021; Linka et al., 2020; Wilasang et al., 2021), little attention has been 

paid to the estimation of 𝑅𝑒 at a fine spatial and temporal granularity. A bottleneck 

problem is the lack of practical estimation methods of effective reproductive numbers. 

A useful estimation method of 𝑅𝑒 should be time- and place-specific.  

Many studies have investigated the impact of human mobility, risk attitudes, and 

government policies on the spread of Covid-19 (Bryant & Elofsson, 2020; Caserotti et 

al., 2021; Flaxman et al., 2020b; Kraemer et al., 2020; Li et al., 2021; Zhou et al., 

2020). Most of them examined the relationship with a single factor, such as human 

mobility and its impact on Covid-19 (Bryant & Elofsson, 2020), government policy and 

its impact on Covid-19 (Flaxman et al., 2020c), or at best two factors, such as the effect 

of human mobility and control measures on Covid-19 (Kraemer et al., 2020; Li et al., 

2021). However, the interactions among these contributing factors and their impacts on 
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the spread of the Covid-19 pandemic are more intricate. Thus, a comprehensive 

examination is in demand. 

Therefore, the objective of this study is twofold. First, it presents a generally applicable 

𝑅𝑒 estimation modeling framework to obtain 𝑅𝑒 values for any specific place and time 

during an epidemic, as long as regularly reported case data are available. Second, it 

examines the relationship between the 𝑅𝑒 and a set of context factors including local 

human mobility and Covid intervention policy conditions.  

Methods 

The study develops a modeling framework and algorithm to estimate the space-time-

specific effective reproduction numbers based on daily cases. A place-specific model is 

calibrated for each county in the United States to calculate time-specific (e.g. daily or 

weekly) 𝑅𝑒 values based on daily cumulative circumstances in that county. The method 

is presented with a case study using daily county-level case data in the United States in 

2020 and 2021. Then the spatiotemporal datasets of 𝑅𝑒 values are coupled with data of 

context factors in corresponding spatial and temporal units.  

After calibrating the 𝑅𝑒 dataset, the study applies several machine learning and spatial 

analysis techniques to investigate the relationships between transmissibility rates and 

selected context factors such as human mobility changes. Among the modeling 

techniques applied in the study, the geographically weighted regression (GWR) is used 

to investigate the changing relationship in space, while exponential regression modeling 

is applied to establish county-specific models to examine the relationships from the 

temporal perspective. 

Estimate place-time-specific effective reproduction numbers (𝑹𝒆) 

We develop a modeling framework to compute 𝑅𝑡,𝑚
𝑒  (effective R value at time t in place 

m) from daily reported cases. In our experiment, the county level is chosen because this 

is the finest spatial level where daily Covid-19 case data have been made available. The 

modeling framework first establishes the mathematical relationship between the time-

series values of 𝑅𝑡,𝑚
𝑒  and the growth rates 𝜆𝑡,𝑚. Then based on the reported cumulative 

cases, it constructs the time series of active cases 𝐼𝑡,𝑚 which can be used to calculate 

time-series growth rates 𝜆𝑡,𝑚. Finally, the time series of 𝑅𝑡,𝑚
𝑒  for each county can be 

derived from 𝜆𝑡,𝑚. The outline of the 𝑅𝑡,𝑚
𝑒  estimation model is illustrated in Figure 1. 

 

Figure 1. Logical steps in the space-time 𝑅𝑡,𝑚
𝑒  estimation algorithm 
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Spatiotemporal analysis 

The pubic health literature has identified many contributing factors for the propagation 

of Covid-19, including human mobility patterns, government interventions, public risk 

perception, vaccination coverage, and many others. The effects of these context factors 

on the spread of the disease are nonstationary (Cazelles et al., 2005), meaning that the 

disease-context_factor associations vary across space and time. Therefore, findings 

drawn from a single place and time are not generalizable to other conditions. Analytical 

methods for modeling spatial-temporal nonstationarity in geographic relationships is 

essential. From the spatial perspective, we use the GWR model which takes non-

stationary variables into consideration and models the local relationships between these 

context factors and the local 𝑅𝑒. From the temporal perspective, an exponential 

regression model is applied to explore the impact of context variables on the changes of 

𝑅𝑒. 

GWR model 

GWR is an extension of ordinary least squares regression (OLS) by allowing the 

relationships between the independent and dependent variables to vary over space 

(Brunsdon et al., 1996). The model can be expressed mathematically by Equation (1) 

regression.  

𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑘
𝑘

+ 𝜀𝑖   (1)  

where 𝑦𝑖 is the observation of the dependent variable in 𝑖th location, 𝑥𝑖𝑘 is the 

observation of the 𝑘th independent variable in 𝑖th location, 𝜀𝑖 is the error term, 𝛽𝑖𝑘 is the 

coefficient to be estimated for the respective independent 𝑥𝑖 at location k. What makes 

GWR special is the localized relationship. Instead of generating global coefficients for 

respective variables, a GWR model allows the coefficients to be specific to a location 𝑖 
(e.g. county i). Therefore, this study applied GWR to examine the spatially varying 

relationship between 𝑅0
𝑒  and socioeconomic and demographic characteristics of local 

areas at any timestamp t.  

Exponential regression method 

The exponential regression model and a few other machine learning techniques have 

been applied to understand how human behavioral and policy factors in a specific place 

affect the change of 𝑅𝑡
𝑒 over time.  The exponential relationship is expressed in 

Equation (2). Here 𝑅𝑡
𝑒 is scaled from the baseline 𝑅0

𝑒 in County m and evolves with 

changes in human mobility patterns, intervention policies, risk perception, vaccine rate, 

and mutations of the virus.  

 

𝑅𝑚,𝑡
𝑒 = 𝑅𝑚,0

𝑒 𝑒∑ 𝛼𝑚,𝑖∗𝑥𝑚,𝑖
𝑛
𝑖=1        (2)  

where 𝑅𝑚,𝑡
𝑒  is the effective reproduction number at time t in place (e.g. county) m. 𝑥𝑚,𝑖 

is the indicator variable for context factor i (𝑖 ∈ 1, … , 𝑛) and 𝛼𝑚,𝑖 is the coefficient for 

the variable. Note that each local place, a county in the case study, is modeled locally. 

Thus, the final result is a set of local exponential regression models, one for each 

county. The same strategy is used for all the other four techniques. 



Results 

Following the proposed Covid-19 effective reproduction number estimation framework, 

the study creates a spatiotemporal dataset of time-series 𝑅𝑒 in the United States. In this 

case study, the spatial granularity is county level and the temporal scale is daily, while 

the estimation framework is generally applicable to other spatial and temporal scales. 

Figure 2 shows a snapshot of the produced spatiotemporal dataset of Covid-19 𝑅𝑒 in 

U.S. counties. This will help the local government monitor county-wide infection status 

and trends and understand what sort of messages or policies are most effective.  

 

Figure 2. Estimated 𝑅𝑒 of Covid-19 in the United States across counties on May 1st, 2020 

An exponential regression models are constructed for each county separately. As an 

example, Table 1 shows the results for Los Angeles County. The results for other 

countries have a similar overall pattern, although specific values of coefficients differ. 

The study finds that 𝑅𝑒 exhibits a positive association with the changes in human 

mobility targeting location categories of retail and recreation, grocery and pharmacy, 

and transit stations. It also finds a negative association with changes in human mobility 

of visiting parks. In addition, the vaccination rate and the proportion of removed cases 

in a place are found to be negatively correlated with 𝑅𝑒. Furthermore, facial covering 

regulations and gathering restrictions have a positive effect on reducing transmissibility.  

County 𝑅0 Retail Park Transit 

Stations 

Facial 

Covering 

Vaccine 

Rate 

Removed 

Cases 

Delta 

variant 

𝑅2 

Los 

Angeles 

County 

4.5 0.008 -0.003 0.005 -0.263 -0.034 -0.037 1.708 0.853 

 

Table 1. The results of the exponential regression model for Los Angeles County 

 



The GWR model is applied to analyze the relationship between local geographic 

characteristics and the 𝑅𝑒  at t0 which is the time when the pandemic was first 

announced in the United States. Figure 3 shows the spatially varying relationships 

between 𝑅𝑒 and the context variables. Generally speaking, the results suggest that at the 

beginning of the pandemic in the United States, 𝑅𝑒 exhibits a positive relationship with 

the proportion of male population, the percentage of votes for Republicans, and the air 

quality index of PM 2.5, while showing a negative association with the share of the 

elderly population (65 years and older). However, the significance and specific 

association of each variable vary across space.  

 

 

Figure 3. GWR results: local coefficients of selected independent variables 

Discussion and Conclusion 

The study presents an 𝑅𝑒 estimation framework to obtain effective productive number 

(Re) of Covid-19 and produces a spatiotemporal dataset of Re at the county level in the 

United States. Moreover, the study investigates the relationship between the 

spatiotemporal dynamics of Re with local human behavior factors. It was found that 𝑅𝑒 

is positively associated with human mobility (except mobility in parks) and the 

existence of Delta variant, and it is negatively associated with government intervention 

policies, mobility in parks, and depletion of the susceptibles. The level of impact by 

each factor varies geographically and differs by Covid-19 variants.  

(a) Percentage of elderly 

population (b) Male population 

(c) PM 2.5 
(d) Percentage of votes 

for Republicans 



The scientific contributions are multifold.  First, the 𝑅𝑒 estimation framework is 

generally applicable to any part of the world at any spatial scale of which regularly 

reported time-series case data are available. This will allow researchers and 

policymakers to examine spatially and temporal changing 𝑅𝑒 patterns so as to identify 

high-risk areas in space and time. Second, by modeling the relationship between Re and 

local human behavior factors, people can use the model to better understand the 

effectiveness of various intervention policies. 
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