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Introduction 

Flood hazards are one of America’s most frequent and expensive natural hazards. The 
average economic loss brought by floods in the United States per year is estimated at 
around $6 billion (Sarmiento & Miller, 2006). Thus, to reduce potential economic loss, 
evaluating flood exposure and tracking its trend over time is of significance. Novel 
socioeconomic data have been utilized in flood exposure research (Ho et al., 2018; 
Khajehei et al., 2020) and it becomes feasible to monitor the change in vulnerable 
population groups. Previous studies (Qiang, 2019; Qiang et al., 2017) have presented 
national assessments of population flood exposure at the county level in the United 
States and analyzed socioeconomic disparities associated with the exposure. To monitor 
the temporal change in flood exposure and the disparities, this study aims to analyze the 
changes in flood exposure in the contiguous United States (CONUS) from both spatial 
and temporal scales. This study tries to answer the following research questions: 1) how 
responsive are local communities to flood hazards and how is the responsiveness related 
to socioeconomic conditions? 2) what is the temporal change in urban flood exposure 
from 2001 to 2016 and how the changes are related to socioeconomic conditions? 3) 
what are socioeconomic disparities between people living in and out of flood zones, and 
have disparities changed between 2001 and 2016? 

Method 

Data acquisition and processing 

Three types of data were collected in this study: flood maps, land use data, and 
socioeconomic data. First, flood maps were acquired from FEMA Flood Map Service 
Center in 2019 (https://msc.fema.gov/portal). Counties that have a local conflict in flood 
zone delineation or have fewer areas covered by flood maps were excluded from the 
dataset, resulting in the coverage of 2385 counties within the CONUS (76.7% of all 
counties in the CONUS). Second, land use data used in this study is the U.S. Geological 
Survey (USGS) National Land Cover Database (NLCD) dataset, which was retrieved 
from the Multi-Resolution Land Characteristics (MRLC) Consortium 
(https://www.mrlc.gov/). Four developed land cover classes in NLCD datasets were 
extracted, reclassified, and mosaiced as urban development areas. The urban growth 
was calculated by subtracting developed lands from the previous year to the latter year, 

https://msc.fema.gov/portal
https://www.mrlc.gov/


while unchanged lands and urban shrinkages were omitted. The developed land 
represents population distribution and will be used in dasymetric population mapping to 
estimate population exposure to flooding hazards. Third, socioeconomic data from the 
2000 and 2010 U.S. census and 2006, 2011, and 2016 American Community Surveys 
(ACS) were collected using the National Historical Geographic Information System 
(NHGIS) platform (https://www.nhgis.org/). Examples of socioeconomic variables 
include population below poverty level, unemployed, and without insurance. 

Spatiotemporal analysis of flood exposure 

Four analyses are carried out. First, the proportion of urban areas in flood zones to total 
urban areas (𝑈𝑈𝑖𝑖) and the proportion of total land in flood zones to total areas (𝐿𝐿) are 
calculated at the county level. 𝐷𝐷𝑖𝑖 is the difference between 𝑈𝑈𝑖𝑖 and 𝐿𝐿, indicating the 
deviation of flood exposure from the expected value. 

𝑈𝑈𝑖𝑖 =  
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖
𝑇𝑇𝑓𝑓𝑇𝑇𝑈𝑈𝑓𝑓 𝑢𝑢𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑓𝑓𝑈𝑈𝑈𝑈𝑓𝑓 𝑖𝑖𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖

 

𝐿𝐿 =  
𝐿𝐿𝑈𝑈𝑈𝑈𝑓𝑓 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧

𝑇𝑇𝑓𝑓𝑇𝑇𝑈𝑈𝑓𝑓 𝑓𝑓𝑈𝑈𝑈𝑈𝑓𝑓
 

𝐷𝐷𝑖𝑖 =  𝑈𝑈𝑖𝑖 − 𝐿𝐿 

A positive 𝐷𝐷 implies that people are more responsive to flooding hazards and restrict 
urban development in flood zones, and vice versa. Thus, the spatial variation of 𝐷𝐷 can 
help understand the responsiveness to flood hazards. Choropleth maps of 𝐷𝐷 in 2001, 
2006, 2011, and 2016 are made in Figure 1(a) – (d). Regression analysis is conducted to 
analyze the relations between 𝐷𝐷 and socioeconomic variables. 

Second, the proportion of urban growth in flood zones to total urban growth (𝑈𝑈𝑈𝑈𝑖𝑖) is 
calculated in three time periods: 2001-2006, 2006-2011,2011-2016. The temporal trend 
of 𝑈𝑈𝑈𝑈𝑖𝑖 is analyzed at the county level. An increasing 𝑈𝑈𝑈𝑈𝑖𝑖 indicates an increasing 
exposure ratio in newly developed urban, and a decreasing 𝑈𝑈𝑈𝑈𝑖𝑖 indicates the opposite. 

𝑈𝑈𝑈𝑈𝑖𝑖 =  
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑔𝑔𝑈𝑈𝑓𝑓𝑔𝑔𝑇𝑇ℎ 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑈𝑈𝑧𝑧𝑇𝑇𝑔𝑔𝑧𝑧𝑧𝑧𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 (𝑖𝑖 + 5) 𝑈𝑈𝑈𝑈𝑓𝑓 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖

𝑇𝑇𝑓𝑓𝑇𝑇𝑈𝑈𝑓𝑓 𝑢𝑢𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑔𝑔𝑈𝑈𝑓𝑓𝑔𝑔𝑇𝑇ℎ 𝑈𝑈𝑧𝑧𝑇𝑇𝑔𝑔𝑧𝑧𝑧𝑧𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 (𝑖𝑖 + 5) 𝑈𝑈𝑈𝑈𝑓𝑓 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖

=  
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 (𝑖𝑖 + 5) −  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑖𝑖𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 (𝑖𝑖 + 5) −  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑖𝑖𝑈𝑈 𝑦𝑦𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖 
 

Bivariate color maps are made between 𝐷𝐷𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑖𝑖 to analyze the proneness of urban 
growth in flood zones from 2001 to 2006, 2006 to 2011, and 2011 to 2016 (Figure 2 (a) 
– (c)). Univariate regression will be applied to analyze relations between 𝑈𝑈𝑈𝑈𝑖𝑖 and local 
socioeconomic variables in 2001, 2006, and 2011. The regression analyses will attempt 
to explain the underlying factors that caused the spatial variation of 𝑈𝑈𝑈𝑈𝑖𝑖. 

Third, the differences between the ratios of disadvantaged population groups living in 
and out of flood zone (𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑) are compared using the following equation. Considering 
the uneven distribution of population in each county, it is arbitrary to calculate 𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑 
using the product of the population of the whole county and the area ratio of flood 

https://www.nhgis.org/


zones. Thus, the number of disadvantaged populations is first estimated at the census 
tract level (fine-scale) and later aggregated at the county level to avoid biases. The 
expected value of 𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑 is 0, indicating socioeconomic conditions in and out of flood 
zones are the same or similar. Deviations from 0 indicate socioeconomic disparities. 

𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑,   𝑖𝑖 =  
𝐷𝐷𝑖𝑖𝑧𝑧𝑈𝑈𝑓𝑓𝐷𝐷.𝑝𝑝𝑓𝑓𝑝𝑝𝑢𝑢𝑓𝑓𝑈𝑈𝑇𝑇𝑖𝑖𝑓𝑓𝑈𝑈 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑌𝑌𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖
𝑇𝑇𝑓𝑓𝑇𝑇𝑈𝑈𝑓𝑓 𝑝𝑝𝑓𝑓𝑝𝑝𝑢𝑢𝑓𝑓𝑈𝑈𝑇𝑇𝑖𝑖𝑓𝑓𝑈𝑈 𝑖𝑖𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑌𝑌𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖

−  
𝐷𝐷𝑖𝑖𝑧𝑧𝑈𝑈𝑓𝑓𝐷𝐷. 𝑝𝑝𝑓𝑓𝑝𝑝𝑢𝑢𝑓𝑓𝑈𝑈𝑇𝑇𝑖𝑖𝑓𝑓𝑈𝑈 𝑓𝑓𝑢𝑢𝑇𝑇𝑧𝑧𝑖𝑖𝑓𝑓𝑧𝑧 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑌𝑌𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖
𝑇𝑇𝑓𝑓𝑇𝑇𝑈𝑈𝑓𝑓 𝑝𝑝𝑓𝑓𝑝𝑝𝑢𝑢𝑓𝑓𝑈𝑈𝑇𝑇𝑖𝑖𝑓𝑓𝑈𝑈 𝑓𝑓𝑢𝑢𝑇𝑇𝑧𝑧𝑖𝑖𝑓𝑓𝑧𝑧 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑓𝑓𝑈𝑈𝑧𝑧𝑧𝑧 𝑖𝑖𝑈𝑈 𝑌𝑌𝑧𝑧𝑈𝑈𝑈𝑈 𝑖𝑖

 

Then, the earliest and latest years (i.e., 2001 and 2016) are selected to calculate the 
long-term change in the proportion of the disadvantaged population in flood zones 
(𝐷𝐷′𝑑𝑑𝑖𝑖𝑑𝑑,   2001−2016) using the equation below. Local clusters of 𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑,   2001 and 𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑,   2016 
will be analyzed by the Getis-Ord Gi* statistics. The comparison between 
𝐷𝐷′𝑑𝑑𝑖𝑖𝑑𝑑,   2001−2016 and 𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑,   2001 will be used to explain changes in socioeconomic 
disparities. 

𝐷𝐷′𝑑𝑑𝑖𝑖𝑑𝑑,   2001−2016 = 𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑,   2016 −  𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑,   2001 

Preliminary Results 

As this work is still in progress, only preliminary results from the first two research 
questions are discussed. Figure 1 (a) shows the spatial distribution of responsiveness to 
flood exposure in 2001. As there are too few changes in 𝐷𝐷𝑖𝑖 between 2001 and 2006, 
2011, and 2016, only differences between 2001 and the latter years are visualized 
(Figure 1 (b) – (d)). Most counties with negative 𝐷𝐷2001 locate near rivers and coastal 
areas, such as Gulf Coast and lower East Coast, while the inland regions in the east have 
a higher value of 𝐷𝐷2001. The differences in Figure 1 (b) – (d) show an overall increasing 
trend in 𝐷𝐷𝑖𝑖 in the latter years, whereas coastal areas in the east and southern boarders 
show a decreasing pattern. 



 

Figure 1. (a) The difference between the proportion of urban land in flood zones and the 
proportion of total land in flood zones in 2001 (𝐷𝐷2001) (b) 𝐷𝐷2006 − 𝐷𝐷2001 (c) 𝐷𝐷2011 −
𝐷𝐷2001 (d) 𝐷𝐷2016 − 𝐷𝐷2001 

Figure 2 compared the local responsiveness to floods with the developing trend of urban 
growth in flood zones. Most counties in the Atlantic coastal plain have a high 𝑈𝑈𝑈𝑈𝑖𝑖 and 
low 𝐷𝐷𝑖𝑖, indicating the trend of increasing urban development in flood zones while 
people living in these places are not responsive to flood hazards. There are a few 
exceptions with high responsiveness, such as areas near Miami (Florida), New Orleans 
(Lousiana), and Houston (Texas). The purple cluster (high responsive and fast urban 
growth in flood zones) in the northeast US is decreasing to blue (high responsiveness 
and slow urban growth in flood zones) over time. In the west, counties tend to have a 
deeper color over time, turning from light blue to purple, representing an increasing 
𝑈𝑈𝑈𝑈𝑖𝑖. 



 

Figure 2. Bivariate color maps between flood responsiveness (𝐷𝐷𝑖𝑖) and the proneness of 
urban growth in flood zones (𝑈𝑈𝑈𝑈𝑖𝑖) in (a) 2001, (b) 2006, (c) 2011 

Discussion and Conclusion 

The comparison of 𝐷𝐷𝑖𝑖 (Figure 1) shows that the proportion of urban lands in flood zones 
to total urban lands is slightly increasing in CONUS over the 2001 – 2016 period. The 
bivariate color maps (Figure 2) show the trend of increasing urban lands in flood zones 
in the southeast while other places, such as inland northeast regions, avoid further 
development in flood-prone areas. In future studies, socioeconomic factors will be 
associated with these changes. The impact on the vulnerable population to flood hazards 
will be analyzed and the environmental justice issue will be addressed. 

The outcomes of this study reveal mitigation and responsiveness to flooding hazards 
and social-environmental justice related to the exposure. The understanding of flood 
exposure over time and its driving factors will be enhanced by this study, which calls 
for policy-making at the federal level to be adjusted and help disadvantaged populations 
accordingly. 
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