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Introduction  

The COVID-19 pandemic has had a powerful and lasting impact on human mobility 
globally and across American communities. Previous geospatial research has 

investigated the effect of socio-demographic and economic determinants on COVID-19 
and human mobility (Franch-Pardo et al., 2020). Most of the research efforts were 
aimed at analysis of the coronavirus spread (Huang et al., 2021; Sugg et al., 2021), 

decease modelling (Agbehadji et al., 2020) and assessment of non-pharmaceutical 
intervention effectiveness (Askitas et al., 2021). While important, these investigations 

had limitations. First, they relied heavily on just one data set to make inferences. And 
secondly, they assessed only a very brief observation period (typically, a few months 
before and after the start of the pandemic). 

The data sets utilized in geographical analysis of movement and COVID-19 are 
complex and heterogeneous. They come from a variety of sources, including Global 

Positioning Systems (GPS), call detailed records (CDR), Bluetooth, internet-of-things 
sensors, smartphone applications and other location-aware technologies (Buckee et al., 
2020). Because the data is usually processed by different companies that rely on privacy 

guarding algorithms, raw measurements are aggregated which may result in biases 
originating from modifiable areal unit problem (Fotheringham and Wong, 1991), 

scaling problem and spatial misalignment (Gotway and Young, 2002), and ecological 
fallacy (Piantadosi et al., 1988). Since mobility data and metrics come in a variety of 
forms and units, they tend to provide only an approximation to the actual human 

mobility and are hard to compare to one another. The assessment of such complex 
multi-source data is problematic, therefore research frameworks of mobility must 

provide a more balanced analytical approach to account for discrepancies and 
deficiencies of data. In this short paper, we motivate this necessity with an illustrative 
example from California that assesses mobility indices obtained from two different 

sources and demonstrate spatial and temporal variability in captured  patterns. 

Two widely used mobility data sets, Apple Mobility Trend Reports (AMTR) and 

Google Community Mobility Reports (GCMR), collected over two and a half years 
between 2020 and 2022, are assessed and compared to one another in terms of their 
spatial and temporal coverage and distribution. These two data sources have been used 

in multiple geographical analyses that investigated mobility during the pandemic, both 
separately and in combination with one another (Sulyok and Walker, 2020; Cot et al., 
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2021; Hadjidemetriou et al., 2020). Thus, characterizing variability in these mobility 
data sets would highlight the importance of multi-source flexible visual analytics for 
contextualizing human mobility during the pandemic and through different waves of 

COVID-19.  

Method 

Exploratory Visual Analysis 

In contrast to some earlier research, this short paper assesses two and a half years of 

mobility data (January/February 2020 - April/May 2022) from Apple and Google. This 
allows to ascertain regional mobility trends in California (as a case study) in relation to 
the spread of different virus variants (e.g. Alpha, Delta, Omicron) and the associated 

shifts in mobility at the county level. We assess the data using two visual displays 
presented in Noi et al. (2021): recency and consistency map and line-path scatter plot. 

Both visual displays utilize Local Moran’s I (Anselin, 1995) to capture local clusters 
(hotspots and coldspots) in California. 

Recency and consistency map provides a spatial view of the study area, where the 

recency of a spatial cluster is mapped onto color intensity, such that low intensity 
red/blue corresponds to the less recent hotspot/coldspot behavior and high intensity 

red/blue corresponds to the most recent hotspot/coldspot behavior. The consistency of 
the hotspot/coldspot is mapped onto the size of the centroid marker and is measured as 
the number of times (weeks) the county was classified as statistically significant 

hotspot/coldspot. The recency and consistency map provides a quick at-glance overview 
of the spatial and temporal patterns captured in data. In particular, four types of 
behavior are easily discovered: recent and consistent hotspots/coldspots, recent and 

inconsistent hotspots/coldspots, non-recent and inconsistent hotspots/coldspots, and 
non-recent and consistent hotspots/coldspots. These four types of behavior are various 

extremes of the spectra, there are many different combinations in between as we will 
demonstrate. 

The line-path scatter plot provides an aspatial representation for individual counties 

over time. And in particular, it maps the weeks (temporal aspect) on the x-axis, and the 
consistency is mapped onto y-axis. Thus, the succession of cumulative consistency is 

converted into line segments and mapped into individual county paths. This allows to 
easily ascertain the temporal trends in spatial autocorrelation within data. Specifically, if 
the line-path slopes are close to one, the county behavior is most consistent (i.e. the 

county was classified as statistically significant hotspot/coldspot each 
week through the observation period). The counters located in the top left corner of the 

plots indicate the number of derived and statistically significant hotspots, coldspots, and 
flips. The flipping behavior is observed when the county shifts from being a hotspot to 
being a coldspot (or the other way). 

Data 

Apple published Mobility Trend Reports from January 13, 2020 until April 14, 2022. 

The data is available for each country, where Apple Maps is used. For the United States, 
the data is provided daily at the county level and is calculated based on the number of 
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requests for Apple Maps navigation. To preserve privacy of its users, Apple uses 
rotating identifiers and thresholding algorithms. The mobility index is provided relative 
to the baseline volume of navigation requests on January 13, 2020. The temporal 

coverage of data (Figure 1a) appears to have several gaps in May 2020 (Monday, 
Tuesday), March 2021 (Friday) and March 2022 (Monday). For spatial coverage 

(Figure 1a) the lowest number of complete records is in the following counties: Modoc, 
Trinity, Plumas, Sierra and Alpine. These are the least populous counties in CA with 
population well under 20,000, so the gaps in data are likely attributed to privacy-

thresholding algorithms. 

 

a 
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Figure 1: Spatial and temporal data coverage in CA in 2020-2022. (a) – Apple Mobility 
Reports. (b) – Google Mobility Reports. The color values correspond to the percentage 
of complete records per day/county. Darker colors denote higher coverage (more 

complete records), while lighter colors denote lower coverage (less complete records).  

Google started publishing data on February 15, 2020 and the data is still being 

published. The data is broken down by location and is available across the globe. For 
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the United States, the data set is available at the county level and  provides daily 
mobility values. As opposed to the AMTR, Google does not publish a single index. 
Instead, the indices are broken down by the type of destination (e.g. retail and 

recreation; grocery and pharmacy; parks; transit stations; workplaces; residential). The 
mobility indices are calculated as percentage change in the number of visits from the 

day of week during the baseline period (January 3 - February 6, 2020). While all these 
indices have various spatial and temporal distributions as outlined in Noi et al. (2022), 
we selected retail and recreation mobility as it more closely aligns with the AMTR. The 

temporal coverage for Google mobility trends (Figure 1b) appears similar to Apple, 
albeit with a higher degree of complete records. For the spatial coverage (Figure 1b), 

the number of missing values is lowest in Sierra and Alpine counties, followed by 
Modoc, Trinity and Mariposa (second lowest) and Plumas county (third lowest). Once 
again, this grouping of counties corresponds to the population residing in these counties, 

so the gaps can be attributed to privacy-thresholding algorithms (Aktay et al., 2020). 

Results 

Since both Apple and Google reports denote percentage change in mobility from a set 
baseline period, hotspots would denote counties with associated increase in mobility 
located next to other counties with increases in mobility. On the other hand, coldspots 

would denote counties with associated decrease in mobility located next to other 
counties with decrease in mobility. Since local autocorrelation assesses individual 

county values in relation to the sample average, only state trends and patterns can be 
derived. 

 
 

a b 

Figure 2: Recency and consistency map for California in 2020-2022. (a) – Apple 
Mobility Reports. (b) – Google Mobility Reports.  
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The recency and consistency maps for California are provided in Figure 2. Both Apple 
and Google capture the coldspots in the Bay Area: in Alameda, San Francisco, Contra 

Costa, San Mateo, and Marin county. These areas have increased density of IT jobs, and 
they easily switched to working remotely starting from the first weeks of the COVID-19 

pandemic. Working from home significantly reduced human mobility for retail and 
recreation in the Bay Area, thus prompting the counties to exhibit a coldspot behavior. 
The consistency of coldspots derived from Google mobility reports appears to be higher 

across the counties surrounding the Bay Area. The most drastic difference between 
Apple and Google mobility reports appears in Northern California, where Apple misses 

the recent hotspot (in Shasta, Humboldt, Lassen, Modoc, and Siskiyou counties). This 
can be potentially attributed to the large number of attractions in Northern California, 
such as wineries and camp sites in numerous national forests (Shasta-Trinity National 

Forest, Klamath National Forest), lakes (Lake Alhamanor, Eagle Lake, Honey Lake), 
which are not captured well by Apple navigational requests. This inconsistency points 

to selection bias in Apple mobility reports and must be acknowledged. Since the data 
assessed in this paper only looks at the hotspots/coldspots within the state of California, 
the changes in mobility in counties in Southern California are not captured. This is 

expected in assessing local indicators of spatial associations at the regional level: there 
are only 58 counties in California, and the South appears closer in values to sample 

average.   

  

a b 

Figure 3: Line-path scatter plot for California in 2020-2022. (a) – Apple Mobility 

Reports. (b) – Google Mobility Reports.  

The line-path scatter plots are provided in Figure 3. The first thing we notice is that 
Apple mobility metrics peak at consistency of 40 weeks and plateau around week 70 

(second half of May 2021). This indicates that Apple mobility reports fail to capture the 
changes in mobility signal for both Delta and Omicron virus waves. The 

hotspot/coldspot consistency, on the other hand, as was noted earlier, is much higher for 
local clusters derived from Google data, which captures the changes in mobility signal 
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from COVID-19 waves associated with different variants. Furthermore, the line-path 
scatter plot supports our earlier findings on the hotspot behavior. The consistency of 
hotspots in Apple data is at or below 10, with the majority of counties stopping hotspot 

behavior around May 2021. For Google data, we observe a more consistent hotspot 
behavior that goes well into the 2021-2022. 

Discussion and Conclusion 

This short paper demonstrated that the spatial and temporal coverage across multi-
source mobility data is not uniform. Therefore, researchers must be careful about 

making inferences on such data. While both Apple and Google mobility reports provide 
a relatively consistent and complete spatial and temporal coverage for their 

corresponding mobility indices, these data vary in a variety of ways. And specifically, 
local variation in Google data appears to be bicentric with two local clusters: a coldspot 
in Bay Area and a hotspot in Northern California. In contrast, Apple data appears to be 

monocentric only capturing the coldspot within the Bay Area.  

The analysis presented here only considers one scale of analysis: state-level. Thus, only  

local variation is captured. It would be interesting to contrast and compare these indices 
in relation to the national average, which might indicate interesting changes in mobility 
in the Southern California, particularly for San Diego and Los Angeles metro areas as 

noted in Noi et al. (2021). 
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