

CroScalar: A Multi-Scale Modeling Framework for Spatio-Temporal Data

Yi Qiang¹, Barbara P. Buttenfield², Jinwen Xu¹

1. University of South Florida, School of Geosciences

2. University of Colorado – Boulder, Department of Geography

CroScalar: A Multi-Scale Modeling Framework for Spatio-Temporal Data

- Multi-Scale Temporal Analysis (Triangle Model)
- Multi-Scale for Spatial Analysis (Pyramid Model)
- Higher-Dimensional Models for Spatio-Temporal Analyses (CroScalar)

The project is supported by the NSF Methodology, Measurement & Statistics (MMS) Program (Award No. 1853866).

Triangular Model: Mapping Time Intervals in a 2D Space

- Time interval is an extent in time, which is usually represented as linear interval in a 1D linear space
- The linear model is inefficient for data visualization and analysis.
- Alternatively, time intervals can be represented as points in a 2D space

Triangular Model: Mapping Time Intervals in a 2D Space

- Time interval is an extent in time, which is usually represented as linear interval in a 1D linear space
- The linear model is inefficient for data visualization and analysis.
- Alternatively, time intervals can be represented as points in a 2D space

Y. Qiang and N. Van de Weghe, "Re-Arranging Space, Time and Scales in GIS: Alternative Models for Multi-Scale Spatio-Temporal Modeling and Analyses," *ISPRS International Journal of Geo-Information*, vol. 8, no. 2, p. 72, Feb. 2019, doi: <u>10.3390/ijgi8020072</u>.

Distance Measurement in 3D terrain

Surface-Adjusted Distance Measurement

Transects in a study area in Nebraska

Measurement residuals in 9-meter intervals

Transects in a study area in Nebraska

Triangle Models of residuals at different intervals

Transects in a study area in Nebraska

Residual of Transect 1 at 10m resolution DEM

WeiAv BiLin BiQuad BiCub TIN NN

Transects in a study area in Nebraska

Pyramid Model

- Pyramid Model (PM): Multi-scale representation for 2D spatial data
- Similar concept as Image Pyramid
- Integrating the scale dimension (z) with the spatial (x,y) dimension

Pyramid Model

Each node (voxel) represent a specific cell in the tessellation in the base layer

Scale Issue in Point Pattern Analysis

Quadrat density

Multi-Scale Quadrat Density in PM

Global Peaks of Quadrat Density

Global density peaks at different scales

Global density peaks viewed from different angles

Isosurface of Quadrat Density

High density (99th percentile) voxels across scales

Voxels of density at the 99th percentile

Global Peaks and Isosurface of Kernel Density

Linking global peaks of kernel density at different scales

Global density peaks viewed from different angles

Local Peaks

Local peaks detected at different scales

Local density peaks viewed from different angles

Isosurface of Kernel Density

High density (99th percentile) voxels across scales

Voxels of density at the 99th percentile

Land Cover Change Analysis

Land cover change detection and modeling are scale-dependent

Wetland fragmentation is a driving factor of land loss

Multi-Scale Modeling of Land Loss

Multi-Scale Modeling of Land Loss

CroScalar: A Multi-Institution Collaboration

Yi Qiang, Assistant Professor University of South Florida

Barbara (babs) Buttenfield, Emeritus Professor University of Colorado - Boulder

Nodari Sitchinava, Associate Professor University of Hawaii - Manoa

Jinwen Xu (PhD candidate) University of South Florida

Georgios (George) Charisoulis (PhD candidate) University of Colorado - Boulder

Kate Carlson (MA, graduated in 2021) University of Colorado - Boulder

Katie Tyler (MA, graduated in 2022) University of Colorado – Boulder

Reference

Y. Qiang, B. Buttenfield, and J. Xu, "Analyzing multi-scale spatial point patterns in a pyramid modeling framework," *Cartography and Geographic Information Science*, pp. 1–14, Apr. 2022, doi: <u>10.1080/15230406.2022.2048419</u>.

Y. Qiang, B. P. Buttenfield, and M. B. Joseph, "How to Measure Distance on a Digital Terrain Surface and Why it Matters in Geographical Analysis," *Geographical Analysis*, vol. 53, no. 3, pp. 588–622, 2021, doi: <u>10.1111/gean.12255</u>.

Qiang, Y. and Van de Weghe, N. (2019) "Re-Arranging Space, Time and Scales in GIS: Alternative Models for Multi-Scale Spatio-Temporal Modeling and Analyses", *ISPRS International Journal of Geo-Information*. vol: 8(2). DOI:10.3390/ijgi8020072

Funding Source

This article is based on work supported by the NSF Methodology, Measurement & Statistics (MMS) Program (Award No. 1853866).

NSF

Website: <u>https://croscalar.github.io</u>