A Geospatial Analysis of Animal Movement: Why Did the Elephant Cross the Zambezi?

Present by Molly Azami on behalf of the Victoria Falls Elephant Project
Contents

• The Victoria Falls Elephant Project
• Transboundary Issues
• Analysis of Elephant Movement
• Continuing the work
• Acknowledgements & References
• Questions
The Victoria Falls Elephant Project

works with:

• Connected Conservation (CC)
• The Victoria Falls Wildlife Trust (VFWT)
• Zimbabwe Parks and Wildlife Management Authority
• Zambezi Elephant Welfare Conservation Trust
Project Area of Interest

The project is within the Kavango-Zambezi Transfrontier Conservation Area (KAZA), in the part around the town of Victoria Falls, Zimbabwe.
Project Concerns

Rogue bull behavior concerns:
- Crops raiding
- Property damage
- Intimidating or causing harm to humans

Elephant welfare concerns
- Eating garbage
- Bathing and drinking at the water treatment facilities
- becoming victims of poachers.
The Project team works to mitigate conflict between the human population and elephants while promoting coexistence by:

- Monitoring bull elephants who are not associated with a family group through:
 - Field observation
 - GPS collaring
 - A citizen reporting program
- Coordinating with local farmers and government officials
- Conducting education and awareness programs
- Actively being involved in mitigation efforts:
 - Consultants to planners to advise how new developments can keep local of elephant populations in mind
 - For bulls causing damage, disruptive darting and chili pepper treatment.
Contents

• The Victoria Falls Elephant Project
 • Transboundary Issues
 • Analysis of GPS Collar Data
 • Continuing the work
 • Acknowledgements & References
 • Questions
Transboundary Issues

The Zambezi River

Forming the border between Zimbabwe and Zambia

Zambia

Livingstone

Victoria Falls

Zimbabwe
Transboundary

- The elephants’ range is primarily in Zimbabwe.

- The elephants that are collard had been identified as problem elephants.

- These problem elephants regularly cross international borders.
“As noted by Linsey (2017) 76% of Africa’s elephants are in populations which cross at least one international boundary. This has wide ranging implications for elephant co-management. In the KAZA there are five countries attempting to co-manage elephants’ population and the historical non harmonized policies may get even more complicated when we add the increase in human population and urbanization.” (Karidozo 2021)
Contents

• The Victoria Falls Elephant Project
• Transboundary Issues
• Analysis of GPS Collar Data
• Continuing the work
• Acknowledgements & References
• Questions
Early Data Issues

- Date/time format sometimes inconsistent between files
- Tens of thousands of duplicate records
- Inconsistency numbers of columns
- Some data came with column labels, some did not
- Several months of missing data between 2017 and present for some bulls
- Inconsistent time intervals
One of the first processes I ran was turning GPS points into tracks that maintain attributes.
GPS Points to Lines

Python

1. Cleaned and standardized GPS Collar Data
2. Filter one Bull number
3. Read in as dataframe
4. Multiply = (bull number + 100) * 1 mil
5. Create List = range from 0 to 1/2 length of dataframe
6. List = List of duplicate numbers from 1 to 1/2 length of dataframe
7. List = List * multiplier
8. Create and populate Group 1 column with list from 1 and
9. Create and populate Group 2 column with list from 0 and

ArcGIS Pro

1. One bull collar data with Group IDs
2. Add XY Point Data
3. Coordinate Table to Point
4. Write to CSV

Python

1. GeoJSON lines
2. Read in as dataframe
3. Select where Group 1 is not null
4. Points to lines on Group 1
5. Merge Group 1 lines and Group 2 lines
6. Sort by group#
7. Export to GeoJSON

ArcGIS Pro

1. GeoJSON lines with start/end times
2. GeoJSON to Features
3. Write to GeoJSON
4. Control list = min(Group 2) to max(Group 1)
5. FOR EACH value in control list:
 - From the points match the value to group 1
 - SET the first value to start time for line
 - SET the second to end time for line
 - THEN process group2 [repeat above]
Analysis

Talking a closer look at one area of the river we can see patterns emerge.

The waypoints were mostly captured in 15-minute intervals, but through cleaning of bad data, the length of the line can represent much longer times.

A straight line represents the slowest path between two points.

In another study I look the speed of the straight-line path.
The study aims to analyze many aspects of the physical environment to determine:
1. What draws the elephants to the Zambia side?
2. Why do they use specific crossing areas?

Aspects that have been observed in the field:
• Seasonal travel
• The soils on the Zambia side are richer so the grasses stay longer through the dry season
• There are more fruit trees on the Zambia side
• Rainfall is greater on the Zambia side – reason for leaving in the wet season

Observations from looking at the data in a GIS
• Slope of the terrain is a factor
Analysis

20 Bull Elephant tracks (Sept 2017 through July 2022) Layered over 3D Terrain with Z x3

Zambia

Victoria Falls

Zimbabwe
Analysis

3D Terrain with Z x3

Zambia

Victoria Falls

Zimbabwe
Analysis
Analysis
Analysis
Analysis

Hot Spot analysis of 20 bull elephant GPS points clipped to within a 150 km of the Zambezi

- DEM
 - 1380 ft
 - 453 ft

- Crossing Points

- Hot spots along the Zambezi:
 - Cold Spot with 99% Confidence
 - Cold Spot with 95% Confidence
 - Cold Spot with 90% Confidence
 - Not Significant
 - Hot Spot with 90% Confidence
 - Hot Spot with 95% Confidence
 - Hot Spot with 99% Confidence
Analysis

Hot Spot analysis of 20 bull elephant GPS points clipped to within a 150 km of the Zambezi
Results/Conclusion of terrain study

- Extracted Point values from the DEM for all 20 elephant points (442, 963 total)
- Using 5 categories of Slope from the UN Food and Agriculture Organization:
 - Gentle: < 5 %
 - Slight Rise: 5 to 10%
 - Moderate Rise: 10 to 25%
 - Steep: > 25%
Analysis

Results/Conclusion of terrain study

<table>
<thead>
<tr>
<th>Slope Category</th>
<th>Count of GPS Points</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat to Gentle: < 5 %</td>
<td>315,126</td>
<td>71.18%</td>
</tr>
<tr>
<td>Slight Rise: 5 to 10%</td>
<td>114,945</td>
<td>25.96%</td>
</tr>
<tr>
<td>Moderate Rise: 10 to 25%</td>
<td>12,514</td>
<td>2.82%</td>
</tr>
<tr>
<td>Steep: > 25%</td>
<td>108</td>
<td>0.02%</td>
</tr>
</tbody>
</table>

Only 3% of all bull points were found on slopes higher than 10%
Results/Conclusion of terrain study

Through studying bull elephant tracks in and around the Zambezi river in relation to slope and elevation it was observed that:

• The slope of the land is an important factor in elephants path choice
• They seem to utilize ravines and gullies
Contents

• The Victoria Falls Elephant Project
• Transboundary Issues
• Analysis of GPS Collar Data
 • Continuing the work
• Acknowledgements & References
• Questions
Continuing the Work

It has been observed that bull elephants move more at night, and it is believed the reason is because it is cooler. This could also be the reason for favoring ravines and gullies.

1. Take a closer look at diurnal patterns in conjunction with seasonal behaviors
2. Common path analysis in the ravine areas and areas of cooled temperatures
3. Strengthen local observations of soils fertility and more attractive vegetation with high detailed LULC and soil maps of the area
4. Expand the study beyond the Zambezi river border area for terrain analysis, and particularly look at the Botswana border as well.
Contents

• The Victoria Falls Elephant Project
• Transboundary Issues
• Analysis of GPS Collar Data
• Continuing the work

• Acknowledgements & References
• Questions
Acknowledgements

• The Victoria Falls Elephant Project Team:
 • Dr. Ferrell (Loki) Osborn, Connected Conservation
 • Malvern Karidozo, Connected Conservation
 • Dr. Marguerite Madden, Center for Geospatial Research, UGA
 • Dr. Andrea Presotto, University of Salisbury
 • Dr. William Langbauer, Bridgewater State University
 • Kate Markham, Center for Geospatial Research, UGA

• Connected Conservation and Victoria Falls Wildlife Trust for providing data, and ground knowledge
References

QUESTIONS?