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Motivation

Fine Particulate Matter (PM2.5)

• A complex mixture of extremely small
particles and liquid droplets in the air
with aerosol dynamic diameters equal
to or less than 2.5 micrometers;

• An estimation of 3.1 million premature
deaths occurs globally associated with
PM2.5 exposure every year (Cohen
et al., 2017);

• In the U.S., the disparities in exposure
to PM2.5 and related health outcomes
are known to exist across population
and income groups (Colmer et al.,
2020; Jbaily et al., 2022)
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Motivation

PM2.5 morbidity risks = f (PM2.5 exposure,morbidity statistics)

• Typical studies have been performed based on the limited
ground-based PM2.5 monitoring observations or coarse resolution
PM2.5 images;

• Most of the studies focus on short-term effects of PM2.5 exposure in
limited geographic regions (e.g., cities) mainly because long-term
disease statistics difficult to obtain for large geographic regions.

The goal of this study

• to create a high resolution mapping of PM2.5 concentration maps;

• to explore the long-term PM2.5-morbidity and disparities in the state
of Arizona with 10 years of hospital admission records
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High-resolution mapping of PM2.5

• Statistical models
• Build statistical relationship between PM2.5 ground-truth

measurements, AOD and other relevant variables
• e.g., land use regression, geographically weighted regression
• Advantages: easy to implement
• Limitations: availability of the ground-truth measurements

• Geophyiscal models
• Model the diffusion of chemical compositions in atmospheric

dynamics
• e.g., GEOS-Chem chemical transport model to convert the AOD

components to PM2.5

• Advantages: not directly rely on PM2.5 ground-truth measurements
• Limitations: low spatiotemporal resolution due to the high

computational load and incompleteness of input data source (e.g.,
national emission inventory)
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A machine learning-based geostatistical downscaling
approach

Flowchart of the proposed approach

Liu et al. (2018)
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High-resolution mapping of PM2.5

Machine learning-based regression kriging for downscaling:
ẑ(s)RFRK = FRF [x(s); β̂] + ϵ(s),

where ϵ(s) ∼ GP(µ,Σ)

• Machine learning (random forests) for non-linear relationship
between PM2.5 and covariates

• Kriging for complex spatial effects

• Practical two step regression kriging

Apply the RFRK to refining the coarse-PM2.5dataset:

ẑ1km
RFRK = FRF (z1km

10km, x
1km
ntl , x1km

ndvi , x
1km
ele ; β̂) + ε

Liu et al. (2018)

5/21



High-resolution mapping of PM2.5

GEOS (10km)

GWR (1km, WUSTL)

RFRK (1km, our results)

Liu et al. (2018)
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High-resolution mapping of PM2.5

Accuracy comparison

• Compared with a recently refined PM2.5dataset with 1 km resolution
using geographically weighted regression (GWR)

• 100 cross-validations with 90% of ground-truth as training and the
rest 10% for validation

R2 ME (µg/m3) MAE (µg/m3) RMSE (µg/m3) t-test F -test
Coarse-PM2.5 0.533 2.540 2.749 3.522 0.000∗∗∗ 0.000∗∗∗

GWR-refined-PM2.5 0.600 0.215 1.732 2.299 0.000∗∗∗ 0.000∗∗∗

RFRK 0.720 −0.046 1.309 1.836 / /
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High-resolution mapping of PM2.5

Improved spatial variations (GEOS vs. GWR vs. RFRK):
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PM2.5maps and hospital admission records for Arizona

• State Inpatient Database (SID) from Healthcare Cost Utilization
Project (HCUP)

• Years: 2005-2014
• Record number: 7.7 million
• Zip-code level 9/21



Data Preprocessing

SID data

• Within one year, any patients with the same birth month and year,
sex, race, married status, economic status, insurance type, town of
residence, and zip code of residence are considered as one person.

• The cleaned SID data are classified into groups by sex,
racial/ethnicity group, and diagnoses (ICD-9-CM code):

• Asthma
• Skin cancer
• Chronic respiratory diseases
• Heart diseases
• Cerebrovascular diseases
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Data Preprocessing

PM2.5 exposure estimation

EX =
PMp + PMc × m

12(
1+ m

12
)

• PMp is the average PM2.5 concentration of the year prior to the
year of a patient’s hospitalization

• PMc is the average PM2.5 concentration of the year when the
patient visits the hospital

• m denotes the m-th month of the year when the patient visited the
hospital.

Population data

• Demographic data are retrieved from the US Census Bureau (USCB)
that contain racial and ethnic groups (African American,
non-Hispanic White, Hispanic) and sex (male and female) for each
zip code area in Arizona. 11/21



PM2.5-Morbidity Relative Risks

Disease specific relative risk

RRd (c) =
EPd

c /
(
EPd

c + ENd
c

)
CPd

c0/
(
CPd

c0 + CNd
c0
)

• RRd (c) : PM2.5-Morbidity RR under PM2.5 concentration c

• EPd
c

(
ENd

c

)
: number of persons with positive (negative) outcomes

in exposure group

• CPd
c0

(
CNd

c0

)
: number of persons with positive (negative) outcomes

in control group

• c0 : theoretical-minimum-risk PM2.5 level
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Theoretical-minimum-risk PM2.5 concentrations

An iterative way to find c0 :

RRd (c0) =
EPd

cd0
/
(
EPd

cd0
+ ENd

c ′0

)
CPd

c0/
(
CPd

c0 + CNd
c0

) , where c ′0 = c0 + 0.1

c0 for diseases of interests:

All-cause 3.3µg/m3

Skin cancer 3.8 µg/m3

Asthma 3.7 µg/m3

Heart diseases 3.5 µg/m3

Respiratory diseases 3.6 µg/m3

Cerebrovascular diseases 3.6 µg/m3
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Model PM2.5-Morbidity Relative Risks

Integrated exposure response

RRd (c) =

1+ α
[
1− exp

(
−β (c − c0)

δ
)]

c > c0

1 c ≤ c0

• α, β, and δ are parameters controlling the IER function

• The parameters were provided in GBD 2017 with 95% confidence
interval

Burnett et al. (2014)
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PM2.5-Morbidity RR Functions
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RRs of PM2.5-morbidity across Subpopulation Groups
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RRs of PM2.5-morbidity across Subpopulation Groups
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Summary

• We explored the PM2.5 attributable morbidity risk with high
resolution mapping of PM2.5 concentration and long-term (10 years)
of hospital records in the state of Arizona;

• We modeled the PM2.5-morbidity RR for all-cause, skin cancer,
asthma, and heart disease are logarithmic and for chronic respiratory
and cerebrovascular diseases are polynomial;

• Health disparities of long-term PM2.5 exposure across different
subpopulation groups:

• Female is more vulnerable all-cause, heart and respiratory diseases
• African American has higher risk for all-cause, heart and respiratory

disease
• Hispanic has higher risk skin cancer
• White has higher risks to cerebrovascular diseases
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Limitations and Future Work

• This study only used inpatient data; including more data such as
outpatient, emergency room visits can provide comprehensive views;

• The exposure was only derived from ambient PM2.5 concentrations,
and the method for relative risks was exploratory in nature;

• Uncertainty of data and model was not characterized and analyzed;

• We are working on addressing these issues ...
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