A Web-based Geographic Framework to Detect and Visualize Space-time Clusters of COVID-19

Yu Lan & Eric Delmelle University of North Carolina at Charlotte Department of Geography and Earth Science

. . .

Globally, as of 5:52pm CEST, 26 October 2022, there have been 625,740,449 confirmed cases of COVID-19, including 6,563,667 deaths, reported to WHO. As of 26 October 2022, a total of 12,830,378,906 vaccine doses have been administered.

Ivanković et al. (2021)

WHO Coronavirus (COVID-

UPDATED BOOSTERS AVAILABLE NOW · People 12 and older can now get an updated COVID-19 booster. It offers the most

Testing & Treatment 🗸

up-to-date protection against COVID-19 and the Omicron variant. Find a booster near you

Vaccines 🗸

NC COVID-19 » Dashboard

Home About COVID-19 V

North Carolina COVID-19 Dashboard

Dashboard V

North Carolina has relied on science, timely data, and key metrics to guide its pandemic response. Because no one metric captures everything, we use a combination of metrics to guide our approach. The most important of these are below.

As trends rise and fall, you can choose to add layers of protection to mitigate your risk. <u>Get tips on layering protection</u>.

Summary	Hospitalizations
<u>Vaccinations</u>	Outbreaks
Bernet Maria	

All COVID-19 Dashboards

Info/Guidance 🗸

GOV/COVID19 NC.GOV

En Español

Space-time Cluster Detection Methods in COVID-19 studies

Space-time scan statistic

• US (Desjardins et al. 2020), Brazil (Gomes et al., 2020), Hong Kong (Kan et al., 2021), Bangladesh (Masrur et al., 2020), Spain (Rosillo et al., 2021), and so on.

Local Indicators of Spatial Association (LISA) & Getis-Ord Gi* statistic

• Finland(Siljander et al. 2022)

Space-time cluster detection: web-based solutions

Kolak et al. (2021)

<section-header>

Limited use of space-time detection methods

Limited visualization

Limited time representation

Our solution: an automatically, daily updated COVID-19 surveillance system (US COVID-19 YuTu) use the prospective space-time scan statistics and LISA

at the county level in the continental US

objectives of this system

- to implement automatic space-time clustering detection
- to generate novel visual features of space-time clustering
- a tight coupling system that incorporates daily data updated and components for the objective one and two

Data

- JHU CSSE COVID-19 Data
- January 22nd, 2020 ~ current
- at the county level
- 7-day moving average of daily new cases
- 2019 Community Survey 5-year estimates
- the 2020 TIGER/Line shapefiles for boundaries

	Α	В	С	D	E	F	G	Н	I	J	K	L	М	XU	XV	XW
1	UID	iso2	iso3	code3	FIPS	Admin2	Province_	Country_F	Lat	Long_	Combinec	1/22/2020	1/23/2020		10/16/2021	10/17/2021
2	84001001	US	USA	840	1001	Autauga	Alabama	US	32.53953	-86.6441	Autauga, /	0	0		9893	9901
3	84001003	US	USA	840	1003	Baldwin	Alabama	US	30.72775	-87.7221	Baldwin, A	0	0		37069	37087
4	84001005	US	USA	840	1005	Barbour	Alabama	US	31.86826	-85.3871	Barbour, A	0	0		3554	3556
5	84001007	US	USA	840	1007	Bibb	Alabama	US	32.99642	-87.1251	Bibb, Alab	0	0		4216	4217
6	84001009	US	USA	840	1009	Blount	Alabama	US	33.98211	-86.5679	Blount, Al	0	0		10094	10102
7	84001011	US	USA	840	1011	Bullock	Alabama	US	32.10031	-85.7127	Bullock, A	0	0		1517	1517
8	84001013	US	USA	840	1013	Butler	Alabama	US	31.753	-86.6806	Butler, Ala	0	0		3247	3248
9	84001015	US	USA	840	1015	Calhoun	Alabama	US	33.77484	-85.8263	Calhoun, /	0	0		22142	22159
10	84001017	US	USA	840	1017	Chambers	Alabama	US	32.9136	-85.3907	Chambers	0	0		5559	5560
11	84001019	US	USA	840	1019	Cherokee	Alabama	US	34.17806	-85.6064	Cherokee	0	0		2999	3000

Framework

Analysis module- Space-time scan statistics

Hypothesis

H0: the probability of being a case within a cylinder Z (a) is same to the probability of being a case outside this cylinder(b). Ha: the alternative hypothesis is that the probability of being a case within a cylinder
Z is larger than the probability of being a case outside this cylinder (a > b).

Space-time scan statistics cont.

Formulas

• The expected number of cases (µ) $\mu = p \times \frac{N}{P}$

with p the population in the cylinder, N the total number of cases within the cylinder Z, and P the total population within the study area.

• The maximum likelihood ration to identify space-time clusters is defined as:

$$\frac{L(Z)}{L_0} = \frac{\left(\frac{n_Z}{\mu(Z)}\right)^{n_Z} \left(\frac{N-n_Z}{N-\mu(Z)}\right)^{N-n_Z}}{\left(\frac{N}{\mu(T)}\right)^N}$$

where L(Z) is the likelihood function for the cylinder Z, and L_0 is the likelihood for the null hypothesis H0, n_Z is the number of cases in the cylinder Z, $\mu(Z)$ is the number of expected cases in cylinder Z, and $\mu(T)$ is the total number of expected cases within all time periods in the study area.

October 10th, 2022 **The bivariate map**

Analysis module- LISA

Local indicators of spatial association-LISA

For region *i*, the local indicators of spatial association *I_i* defined as:

$$I_{i} = \frac{(n-1)(x_{i} - \bar{x})}{\sum_{j=1}^{n} (x_{j} - \bar{x})^{2}} \sum_{j=1}^{n} w_{ij} (x_{j} - \bar{x})^{2}$$

where x_i is the attribute of the variable of interest (here, the disease rate) in region i, x
is the mean of x_i (i=1..., n), w_{ij} is the spatial weight between regions i and j.

Analysis module- Analysis procedure

Space-time scan statistics

- prospective space-time Poisson discrete scan statistics
- the maximum spatial cluster size as 50% of the population at risk
- the maximum temporal cluster size as 50 days
- SaTScan
- true space-time clusters

LISA

- cases per day
- incidence rate (7-day average cases divided by population)
- Queen contiguity weights
- repeat every day
- pygeoda
- not-true space-time clusters

Visualization module

Visualization module cont.

Visualization module cont. -different scales

Data processing module docker • PostGIS Python • Shell • D3 • Observable GeoDaCenter/ Spatial PostgreSQL • Docker pygeoda pygeoda is a python library for spatial data analysis based on C++ libgeoda DigitalOcean RI 2 62.3 Ϋ3 0 **SaTScan**[™] **O** Observable **DigitalOcean**

Software for the spatial, temporal, and space-time scan statistics

US COVID-19 YuTu: A Daily Surveillance System

http://159.223.164.41/app/

Case study- compare peaks

Peak 1

Peak 3

Peak 4

••••

Case studycompare counties

RR of clusters RR of counties RR>=2 RR>=4 RR>=8

Case studylook at one wave (the third wave)

Discussion and conclusion

space-time cluster detection analysis and visualization

near real-time monitoring

multiple scales

novel visual features

portable to other methods and regions

Future works

need to be evaluated (working on)

setting parameters of analysis methods requires further collaboration with epidemiologists

use other information, like hospitalization rate

References

- Desjardins, M. R., Hohl, A., & Delmelle, E. M. (2020). Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. *Applied* geography, 118, 102202.
- Gomes, D.-S., Andrade, L. A., Ribeiro, C. J. N., Peixoto, M., Lima, S., Duque, A., Cirilo, T. M., Góes, M., Lima, A., & Santos, M. (2020). Risk clusters of COVID-19 transmission in northeastern Brazil: prospective space–time modelling. *Epidemiology & Infection*, 148.
- Hohl, A., Delmelle, E. M., Desjardins, M. R., & Lan, Y. (2020). Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States. *Spatial and spatio-temporal epidemiology*, *34*, 100354.
- Ivanković, D., Barbazza, E., Bos, V., Fernandes, Ó. B., Gilmore, K. J., Jansen, T., Kara, P., Larrain, N., Lu, S., & Meza-Torres, B. (2021). Features constituting actionable COVID-19 dashboards: descriptive assessment and expert appraisal of 158 public web-based COVID-19 dashboards. Journal of medical Internet research, 23(2), e25682.
- Kan, Z., Kwan, M. P., Huang, J., Wong, M. S., & Liu, D. (2021). Comparing the space-time patterns of high-risk areas in different waves of COVID-19 in Hong Kong. *Transactions in GIS*, 25(6), 2982-3001.
- Kolak, M., Li, X., Lin, Q., Wang, R., Menghaney, M., Yang, S., & Anguiano Jr, V. (2021). The US COVID Atlas: A dynamic cyberinfrastructure surveillance system for interactive exploration of the pandemic. *Transactions in GIS*, 25(4), 1741-1765.
- Masrur, A., Yu, M., Luo, W., & Dewan, A. (2020). Space-Time Patterns, Change, and Propagation of COVID-19 Risk Relative to the Intervention Scenarios in Bangladesh. *International Journal of Environmental Research and Public Health*, 17(16), 5911. <u>https://www.mdpi.com/1660-4601/17/16/5911</u>
- Rosillo, N., Del-Águila-Mejía, J., Rojas-Benedicto, A., Guerrero-Vadillo, M., Peñuelas, M., Mazagatos, C., Segú-Tell, J., Ramis, R., & Gómez-Barroso, D. (2021). Real time surveillance of COVID-19 space and time clusters during the summer 2020 in Spain. *BMC Public Health*, 21(1), 961. <u>https://doi.org/10.1186/s12889-021-10961-z</u>
- Siljander, M., Uusitalo, R., Pellikka, P., Isosomppi, S., & Vapalahti, O. (2022). Spatiotemporal clustering patterns and sociodemographic determinants of COVID-19 (SARS-CoV-2) infections in Helsinki, Finland. *Spatial and spatio-temporal epidemiology*, *41*, 100493.

Thank you!

ylan1@uncc.edu