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Abstract 

In this paper, we develop a new approach for automated georeferencing of a raster image to a 

vector road network. Our approach improves existing solutions by: (1) eliminating the same 

scene constraint between an image and the vector road network; (2) requiring no pre-knowledge 

of the image’s placement in the vector road network; (3) necessitating only a few points from the 

image; (4) tolerating point location distortion, missing points, and spurious points; (5) providing 

high performance and scalability. Our key contribution relies on the use of the topology of point 

patterns, which we call topological point pattern (TPP) analysis, along with a set of 

corresponding matching algorithms, to automatically link image and vector data sets. The biggest 

advantage of TPP is its flexibility to capture the spatial information of any portion of a point set. 

The TPP matching algorithms can identify control point pairs between an image and a vector 

road network by systematically searching the vector road network. The automated scheme is 

very efficient and highly scalable.  

 

Keywords: Automated georeferencing, Image registration, Topological point pattern matching, 

Similarity transformation 

1. Introduction 

In order to exploit the full benefit of geospatial information from multiple data sources, it is 

essential to integrate a variety of datasets in a consistent and precise way. One important research 

area in the GIS data integration literature is georeferencing.  Georeferencing involves correctly 

aligning a raster image with a map coordinate system. In this paper, we focus on image to vector 

automated georeferencing.    

If a raster image does not contain correct positional information, or if the information is not 

available, we need to align it to a spatially referenced vector dataset such as a road network. 

Georeferencing now is a standard feature of GIS software. The typical georeferencing process 

includes the following steps: (1) identifying a set of control point pairs (CPPs) that link locations 

on a raster image with corresponding locations in a correctly positioned vector dataset; (2) 

calculating a transformation function from the raster image to the vector map based on CPPs; (3) 

transforming and resampling the image. Steps (2) and (3) normally are implemented by software. 

Step (1) is mainly a manual process.  It requires the user to have substantial knowledge about the 

geographical location of the raster image in order to manually establish CPPs. This process is 

time consuming, error prone, and sometimes impossible because raster images usually are 

transformed, rotated and scaled, and the vector maps may be too big to navigate without a priori 

information about the images’ location. For example, Fig. 1 is a satellite image that covers a 

small, unknown area in the City of Dallas, TX. Fig. 2 is the road network of the City of Dallas 

which has more than 58,000 road segments. It is difficult, if not impossible, to manually identify 

CPPs between them without a priori information about the image’s approximate location.  

There is a plethora of legacy raster images available and new raster images are generated at an 

accelerating rate. In order to overcome the limitations of the manual georeferencing method and 
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meet the growing need, it is essential to develop automated georeferencing methods that do not 

rely on users to carry out key steps, such as finding and establishing control point pairs. 

                   

Fig. 1: A satellite image from Google map       Fig. 2: Road network of the City of Dallas, TX                   

There has been little progress in the area of automated georeferencing between a raster image 

and a vector road network. The existing studies mostly focus on aligning different datasets of the 

same scene (for example, Chen, 2005). Assuming the datasets are of the same geographical area 

effectively limits the size of the searching space and hence helps reduce the problem complexity. 

However, it significantly confines the scope of georeferencing and hinders the general 

applicability of the automated solution. To the best of our knowledge, no automated solution has 

been developed to address the georeferencing problem between a raster image and a very large 

vector road network, such as in Fig. 1 and Fig. 2.  

In this paper, we develop a new approach for automated georeferencing from a raster image to 

a vector network under a similarity transformation. Our solution addresses the following issues:  

(1) eliminates the same scene constraint between an image and the vector road network; 

(2) requires no pre-knowledge of the image’s placement in the vector road network; 

(3) necessitates the use of only a few points from the image;  

(4) tolerates point location distortion, missing points, and spurious points;  

(5) provides high performance and scalability. 

Our key contribution is a unique point pattern-based methodology, which we refer to as 

topological point pattern (TPP) analysis, and a corresponding set of matching algorithms. The 

biggest advantage of TPP is its flexibility to capture the unique spatial information of any portion 
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of a point set. The TPP matching algorithms identify control point pairs between an image and a 

vector road network by systematically searching the vector road network for corresponding 

patterns of network intersections between the image and the network. The automated scheme is 

very efficient and highly scalable.  

This paper is organized as follows. In Section 2, we will briefly review previous works in 

related areas. In Section 3, we discuss our general strategies to solve the automated 

georeferencing problem. The key algorithms and methods are introduced in Section 4, including 

TPP and its matching algorithms, as well as transformation verification. In Section 5, we present 

results of several experiments to demonstrate the feasibility, accuracy, efficiency and scalability 

of our approach. Section 6 concludes the paper.  

2. Related works 

Research related to image georeferencing can be divided into two main groups: image to 

vector georeferencing, and image to image registration. 

2.1 Image to vector georeferencing 

Depending on the input data, there are two types of image to vector georeferencing. The first 

type assumes there exists a transformation function between the two datasets. The automated 

solutions to this problem are limited to datasets of the same scene (Hild and Fritsch 1998). If 

both an image and a vector map can be properly represented by two sets of point patterns, then 

point pattern matching (PPM) algorithms can be used to find CPPs. Various PPM algorithms 

have been studied (Li 1992, Chang 1997, Cheng 1996). However, they typically assume point 

sets are about the same size and none of the existing matching algorithms can address all of the 

issues, including translation, rotation, scaling, and point data distortion, at the same time without 

significant limitations in either the complexity or size of the problem. 

In the second type of image to vector map georeferencing, a practical transformation function 

does not exist between image and vector datasets.  One such application is image and map 

conflation in which a slightly offset image or map is to be overlaid and aligned to a vector map. 

The automated conflation algorithms are studied in Chen (2005), Filin and Doytsher (2000), and 

Yuan and Tao (1999).  

2.2 Image to image registration 

Image to image registration is the process of overlaying multiple images of the same scene 

taken at different times, from different viewpoints, or by different sensors (Brown 1992). For an 

extensive review on image to image registration methods, readers are referred to Zitova’s 2003 

survey paper. There is a connection between image to image registration and image to vector 

georeferencing: if both images can be georeferenced to a common vector map, then the image to 

image registration problem can be reduced to the image to vector georeferencing problem.  

3. System model 

In this section, we discuss our general strategies to address the key issues raised in previous 

sections. We assume the use of road intersections for georeferencing since in both raster images 

and vector maps road intersection points are usually well defined, plentiful, and relatively easy to 

identify. The first step in georeferencing requires the extraction of the points from the image and 

vector data sets. The second step requires the identification of a set of CPPs linking raster points 

to corresponding vector points. The transformation function to convert the raster data set’s 
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positioning to that of the vector data set is then derived based upon the CPPs.  In conventional 

georeferencing, the point extraction and the CPP identification are specified by users manually.  

3.1 Automated point extraction  

Points from an image can be extracted through image processing. For a road network, the 

extraction process involves two steps. In the first step, roads are extracted. In general, roads in a 

raster image have well-defined geometrical properties and are extracted as line segments. There 

are a wide variety of image processing algorithms available for road extraction depending on 

image resolution, image condition, and noise (Fortier et al 2000). In the second step, intersection 

points are calculated as intersections of multiple extracted roads.  

Extracting all roads from a raster image can be difficult if the graphical features of interest are 

blocked, split, or obscured by other spatial objects such as trees, buildings, cars, etc., thus 

producing noisy information. Obviously, it is unrealistic to expect all intersection points to be 

found immaculately. Therefore any schemes assuming the same set of intersection points to be 

extracted from a raster image and a vector map are impractical. 

It is much easier for extraction algorithms to focus only on the quality of the extracted 

intersection points. Most algorithms have thresholds available to control the quality of point 

extraction and filter out questionable points. Based on this fact, our proposed scheme is designed 

to use only “a few good intersection points” from a raster image. The number of points required 

from an image is not based on its size and the good points are used to manage point errors in 

other points. Consequently, our scheme can use any reasonably good intersection point 

extraction algorithm by setting their thresholds properly, for example, the algorithms discussed 

in Chiang et al (2005), Heipke (1997), and Sebok et al (1981).  

3.2 Automated georeferencing 

Automated georeferencing uses point pattern matching (PPM) algorithms to establish CPPs. 

Due to the complex nature of the matching problem, PPM algorithms typically assume the two 

point sets are about the same scene, i.e., symmetric georeferencing. The problem is, even with 

symmetric georeferencing, it is infeasible to assume point sets have the same size since 

extracting all points correctly from an image is not an easy task. Furthermore, most of the image 

to road network georeferencing is asymmetric, in which the raster image covers only a part of the 

area of the road network.   

Any practically useful automated georeferencing scheme must address the above limitations 

effectively. Since developing a perfect point extraction algorithm is extremely difficult, if not 

impossible, we focus on how to remove the limitations on the point pattern matching algorithms 

so that point sets don’t have to be the same size. If this is possible, we can greatly simplify the 

point extraction process and solve the asymmetric georeferencing problem simultaneously.  This 

is also very important to the speed and scalability of the automated scheme since we no longer 

require the use of all points contained in the image. The solution we will discuss in Section 4 is a 

special case of point pattern matching, called topological point pattern (TPP) analysis, in which 

we rely on the correspondence between scaled distances and angles between pairs of points in 

the image and vector networks. 

Due to the possibility of image distortion and misidentification by point extraction 

algorithms, points extracted from images may contain errors. It is very unlikely that point 

patterns will match exactly. Therefore, without point error tolerance, it is quite possible that good 

CPPs may be missed. However, with too much tolerance on point errors, it is possible to mistake 
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bad CPPs as good CPPs. The solution is to evaluate the performance of the transformation to 

filter out bad CPPs. This is done through CPP and transformation verification, which is the 

second key component of our process. 

3.3 Automated scheme 

According to the above discussions, the proposed automated georeferencing scheme consists 

of the following key steps. The underlying algorithms are discussed in Section 4. Our 

contribution lies in the topological point pattern and matching algorithms. 

1. extract intersection points from the vector road network and calculate TPPs (a one-time task) 
2. select intersection points from a raster image  and calculate TPPs 
3. use matching algorithms to compare image TPPs with vector TPPs to find candidate CPPs 
4. verify CPPs and transformations 
5. transform and resample the raster image 

4. Algorithms 

4.1 Definitions 

The goal of georeferencing is to find the right transformation from a raster image to a vector 

road network. In this paper, we assume the transformation function is a similarity transformation. 

A similarity transformation is defined by ( , , , )ST A B C D= or ( , , , )x ys t tθ  as 

 
cos( ) sin( )

sin( ) cos( )

i i i i i x

i i i i i y

x A x B y C s x s y t

y B x A y D s x s y t

θ θ

θ θ

′ = + + = + +

′ = − + + = − + +
 

where s is the scale change (same in x and y directions), θ is the rotation angle measured 
counter-clockwise from the x-axis, xt is the translation in x direction, and yt is the translation in y 

direction. The similarity transformation of point p is denoted by ( , ) ( )i ip x y ST p′ ′ ′= = . CPPs are 

used to solve for A, B, C, and D.  

Let ( ){ }niyxvV iii ,,1, …===  be a point set and ),( jiij vvdistd =  be the distance between 

points iv  and jv , for point Vvi ∈ , we define ( )ivn  to be a point in V that is the nearest point to iv  

and ( , ( ))i i id dist v n v= . 

4.2 Topological point pattern algorithm 

All the conventional automated georeferencing methods define one point pattern for a raster 

image and one for a vector map. Such point patterns are only suitable for matching an image 

with a vector map in whole, but are not effective for asymmetric georeferencing. Another big 

disadvantage is the scalability problem: as the sizes of images and vector maps grow, so does the 

size of the point patterns. To overcome these limitations and, more importantly, to support 

automated asymmetric georeferencing, we propose a new point pattern that is flexible, efficient, 

and scalable, i.e., the topological point pattern (TPP).  

A TPP is defined based on a special point, called an anchor point. As a matter of fact, a TPP 

represents a unique view of the point set from its anchor point. Every point in a point set V can 

be an anchor point and hence have its corresponding TPP. Therefore, the TPP for V is not just 

one point pattern, but instead, a set of n TPPs, i.e.,  
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{ }( ) ( ) |i itpp V tpp v for v V= ∈  

where ( )tpp V  is the TPP for point set V and ( )itpp v  is the TPP for anchor point iv . 

Let iv V∈  be the anchor point. For the simplicity of discussion, assume ( ) ii vvn ′=  is unique. 

For each point Vv j ∈ , j i≠ , define 
ij

ij

i

d
r

d
=  and let 0 2ijθ π≤ <  be the angle from vector i iv v ′

����

 to 

vector i jv v
����

 in counter-clockwise direction. Set 0iir =  and 0iiθ = , then ( )itpp v  is defined by 

( ){ }( ) ,i j j j jtpp v v x y v V′ ′ ′= = ∈    where  cos( )j ij ijx r θ′ =  and sin( )j ij ijy r θ′ =  

In the other words, ( )itpp v  is the point set V in a new coordinate system whose origin point is iv , 

x-axis coincides with vector i iv v ′

����

, and unit distance is id . Fig. 3b shows the TPP for 1v  in V. 

       

               Fig. 3a Extracted point set V                                            Fig. 3b TPP example: 1( )tpp v  

 Since each ( )itpp v of ( )tpp V includes all points of V, a matching for ( )itpp v is also a matching 

for V. It is also very easy to derive the point pattern for points in any surrounding area of point iv  

using ( )itpp v . For example, the following subset of ( )itpp v , 

{ }( , ) ( cos( ), sin( )) ( )i ij rj ij ij ij itpp v d r r r d tpp vθ θ= ≤ ⊆  

is a point pattern for only those points that are within the distance of d from iv . The local point 

pattern information captured by the definition of ( )itpp v  provides the foundation for automating 

the asymmetric georeferencing problem. To georeference an image to a vector map V, we only 

need to find the right iv  and d and use the points specified by ( , )itpp v d . In fact, we can view 

each point set as being covered by many small ( , )tpp v d . This is very difficult to achieve in 

conventional point patterns. 

Another feature of TPP is that we can sort all points in ( )itpp v based on their polar 

coordinates ( , )ir θ  according to ( , ) ( , ) ( ) ( & )i i j j i j i j i jr r if r r or r rθ θ θ θ< = <≺ . Then, any two 

sorted TPPs and their subsets can be matched quickly. More importantly, this order is very 

efficient for confining point matching within a region and avoiding unnecessary point 

comparisons. For example, we can effectively limit the georeferencing region to a specific area 

around a point v by only using the first m points in ( )tpp v . Since solving a similarity 

transformation requires only a few CPPs and the sorted TPPs allow points to be matched in a 

small region, there is no need for our scheme to use all the points in a raster image for 
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georeferencing. In fact, even when image size increases, the number of points needed from the 

image can remain the same. This explains why our proposed scheme is highly scalable.  

4.3 Matching algorithm 

Let R and V be the set of extracted points from a raster image and a vector road network 

respectively. The matching algorithm searches for candidates of CPPs between R and V. Each 

candidate set of CPPs is called a candidate matching (CM). We will first describe the basic 

matching algorithm and then discuss its improvements.  

Algorithm: basic algorithm for finding candidate CPPs 

Input: R for a raster image and V for a vector road network 

Output: CCM: collection of CMs 
1.  SET CCM to be an empty set; 

2.  select an anchor point r R∈ such that n(r) in R also is r’s nearest neighbor in the image  

3.  compute tpp(r) in R and sort it based on the polar coordinates 

4.  FOR each point v in V DO 

5.     compute tpp(v) in V and sort it based on the polar coordinates 

6.  ENDFOR 

7.  FOR each v in V DO 

8.      IF ( ) ( )tpp r tpp v⊆  THEN 

9.             SET acm to be the set of matching point pairs between ( )tpp r and ( )tpp v  

10.            IF (there are enough point pairs in acm) THEN 

11.                    add acm to CCM 

12.             ENDIF 

13.    ENDIF 

14. ENDFOR 

15. return CCM 

In the above algorithm, we assume there are two intersection points in R that are both nearest 

in R and in the original image. This is because if r in R and v in V form a correct CPP then for 

( )tpp r to match a subset of ( )tpp v they must use the same unit distance. Due to space limitations 

for this paper, we will not discuss how to modify the algorithm to drop this assumption.  

The matching between ( )tpp r and ( )tpp v is based on their sorted lists. When comparing 

( , ) ( )i ip r tpp rθ= ∈ with ( , ) ( )j jq r tpp vθ= ∈ , due to point distortion in image and extraction error, 

it is unlikely that p and q will match exactly even though (p, q) is a correct CPP. Therefore, we 

define that p and q are matched and they form a CPP if i jr r r− ≤ ∆ and i jθ θ θ− ≤ ∆ . r∆  and 

θ∆ are predefined thresholds for error tolerance. If there are multiple points in V that match p, 

the algorithm selects the closet q to form a CPP with p.  

The performance of the basic matching algorithm can be improved in several ways. First, we 

could use all the extracted points in the basic matching, but this is inefficient and unnecessary. 

To avoid coincidental mismatching, we need sufficient points in R; on the other hand, we need 

no more than what is necessary to verify CPPs. This means that, even if the size of the image 

gets bigger, the number of points in R does not have to grow proportionately. For the same 

reason we do not have to use all the points in ( )tpp v ; using ( , )tpp v d  with proper d will be 

sufficient. By keeping the size of ( )tpp r and ( )tpp v stable, the total computation time for the 

matching algorithm is stabilized and, therefore, the algorithm is highly scalable. Another factor 

affecting the number of points required for matching is the tolerance on point errors. We need to 
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control the percentage of unmatched points due to errors under a threshold. In our experiments, 

using 7 to 14 points from an image is quite sufficient.  

For asymmetric georeferencing, the complexity of the matching algorithm is dominated by the 

size of V. For the basic algorithm, the complexity for computing all ( )tpp v in V is 2( log )O N N  

and the complexity of matching ( )tpp r with all ( )tpp v is ( log )O N N , whereN V= . If the 

vector road network is fixed, ( )tpp v only needs to be pre-computed once. Therefore, Lines 4 

through 6 in the algorithm can be skipped. This is typical when different images are 

georeferenced against the same vector map repetitively. If we limit ( , )tpp v d  to only include the 

nearest m points of v, where m is constant and big enough for ( , )tpp v d to cover all points in R, 

then the complexity of matching is reduced to O(N).  

4.5 Verification algorithm  

The output of the basic matching algorithm contains all candidate sets for CPPs. The 

question is which set is correct. The verification algorithm verifies the quality of each set of 

CPPs by measuring the performance of the ST derived from it. For a correct set of CPPs, its ST 

function should map each intersection point in R to an intersection point in V. Although this is 

only a necessary condition, if R consists of sufficient points, the chance of each point being 

coincidentally mapped to a mismatched point is negligible. Therefore, if a set of CPPs produces 

a close matching between intersection points, then it is considered to be correct. 

Let { }( , ) ,i i i iCM r v r R v V= ∈ ∈  be a candidate matching found by the above matching 

algorithm and denote ( )i iv CM r= . For a similarity transformation ST, ( )iST r  is the transformed 

point. The pair-wise residual error for point ir  under a CM and a ST is defined by the distance 

between iv  and ( )iST r , i.e., ( , , ) ( ( ), ( ))i i iCM ST r dist CM r ST rε = . The total error under CM and 

ST is defined to be the root mean square (RMS) of all pair-wise residual errors, i.e.,  

2

( , )

1
( , ) ( , , )

i i

i

r v CM

CM ST CM ST r
CM

ε ε
∈

= ∑  

We define the matching error of CM to be the minimum RMS under the optimal ST, i.e., 

 ( ) min ( , )
ST

CM CM STε ε=  

We denote the optimal ST by ( )optST CM . For each CM, both ( )CMε  and ( )optST CM can be 

solved using the least squares method (Press 1992). The verification algorithm is as follows. 

Algorithm: verification algorithm 

Input: CCM: a collection of CMs 

Output: the best CM and its optimal ST 
1. FOR each CM in CCM  DO  

2.        calculate ( )CMε and ( )optST CM  

3. ENDFOR 

4. Find CM ′ such that ( ) min ( )
CM CCM

CM CMε ε
∈

′ =  

5. return CM ′ and ( ')optST CM  

Finally if ( ')optST CM  is good, ( )CMε ′ should be very small. By combining the matching 

algorithm with verification algorithm, our proposed automated scheme can find the set of correct 
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control point pairs as well as the similarity transformation to align the raster image to the vector 

road networks. This completes the process of automated georeferencing.  

5. Experiments and discussion 

In this section, we describe the experiments conducted upon the satellite image of Fig. 1 and 

the vector road network of Fig. 2 and present example results from the automated georeferencing 

algorithms. We use the City of Dallas, TX as our study area because it represents a very large 

urban area for testing the feasibility and performance of our approach. The satellite image is 

saved from a screen snapshot of Google maps in JPG format. It is intentionally rotated, translated, 

and scaled. And we do not have its actual location in the city. The vector dataset used in the 

experiment is a road network file for the City of Dallas in ESRI shapefile format.  

In our experimental system, the algorithms are implemented in VBA for ArcObjects and C++, 

running in ESRI ArcGIS Desktop 8.3 or above. The hardware used for all the experiments is a 

DELL PC with Pentium IV 3.0GHz processor, 1G memory, and windows XP professional.  

The TPPs for the vector road network need only be computed once and are then used 

repeatedly for georeferencing any image in the region covered by the network. To obtain these 

vector TPPs, we wrote a VBA application to automatically extract a total of 24,522 intersection 

points from the road network of the City of Dallas (Fig. 5). We then pre-computed TPPs for nine 

point subsets of various sizes; it took 247 seconds and 767 seconds to pre-compute the TPPs for 

the point sets of 5,029 and 10,008 points respectively, for example.  

For the satellite image we used two sets of arbitrarily chosen points: one with six intersection 

points plus one fake point, and the other with twelve intersection points plus two fake points, as 

shown in Fig. 4 and Fig. 6. We then used the pre-computed TPPs for the eighteen experiments. 

The matching and verification time for each experiment is listed in Table 1. Most of the 

experiments only take a few seconds to complete matching and verification. The total RMS error 

is 8.466 for the cases of 14 image points, and 7.064 for the cases of 7 image points. The 

georeferencing results for 7 image points are shown in Fig. 7.  

To summarize, the results of our experiments have shown that the proposed automated 

georeferencing scheme is very efficient and accurate in identifying the correct CPPs and 

producing good georeferencing results. The scheme has achieved all the goals stated in Section 1.  

6. Conclusions and future work 

In this paper, we proposed a new scheme to solve the automated georeferencing problem 

under a similarity transformation. The proposed scheme dramatically improves the speed and 

reliability of georeferencing and can align a raster image with a vector road network without any 

priori knowledge of the image’s location. Our approach relies upon topological point pattern 

(TPP) matching. It effectively solves the automated asymmetric georeferencing problem and 

reduces the number of points required to be extracted from the raster image. It is highly scalable, 

and robust in handling the errors in extracted points through the combination of a matching and a 

verification algorithm. The experimental results confirm the efficiency and scalability of the new 

scheme with large datasets.  

In the future, we plan to continue to improve and extend the proposed solution by addressing 

the automated georeferencing problem under affine transformation, by incorporating automated 

point selection from the image, and by exploring the general robustness of the system relative to 

such issues as image resolution.  
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Fig. 4: 7 selected image points.          Fig. 5: Dallas street intersections.               Fig. 6: 14 selected image points. 

1 circled in yellow is false.        (24522 points)          2 circled in yellow are false. 

 
Number of intersection points in the road network Matching and 

verification 
time (seconds) 

518 
points 

1506 
points 

2508 
points 

5029 
points 

7511 
points 

10008 
points 

15150 
points 

20004 
points 

24522 
points 

7 

Points 
0.188 0.609 1.109 2.328 3.531 4.674 7.391 11.125 11.982 

P
o
in
ts
 n
u
m
b
e
r 

in
 t
h
e
 i
m
a
g
e
 

14 

points 
0.234 0.75 1.344 2.797 4.219 6.234 9.031 11.609 13.078 

Table 1: Execution time for matching and verification with respect to different point sizes  

 

Fig. 7: Georeferencing result for 7 image point tests. Total RMS error is 7.064.  1 false point is filtered out.  
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