
Methods for Improving and Updating the Knowledge of a Generalization System
Anne Ruas, Aurélie Dyevre, Cécile Duchêne, Patrick Taillandier

Laboratoire COGIT – IGN France
2 avenue Pasteur

94165 Saint Mandé - FRANCE
anne.ruas@ign.fr, cecile.duchene@ign.fr; patrick.taillandier@ign.fr

33 1 43 98 84 32 – fax : 3 1 43 98 81 85

Abstract: In this paper we present a method to improve and to update the knowledge used for
the automation of the generalization of buildings based on agent paradigm. We propose to
store 1/ each building decision, 2/ the reason why the decision was taken (the conflicts) 3/ the
result of each algorithm (an improvement or not) and 4/ the successful process chain within
all trials. At the end, the processes of all buildings are compared in order to identify the
weakness (for example the case where a specific algorithm is often used but never succeeds).
When a deficiency is identified we introduce new rules and we study the effect of this change
on the efficiency of the process. It can be used either to improve existing knowledge or to
introduce new rules associate to the use of a new measure or a new algorithm. The first study
has been made on building independent generalization to set the learning methodology. We
wish now to apply it on more complex cases such as contextual generalization which still
needs knowledge improvement.

Keywords: Generalization, Learning techniques, Agent paradigm

1. Improving the automation of generalisation process

The complexity of the generalization process is well known in GIS community. However for
20 years, important progress has been made thanks to the intense use of physical models and
artificial intelligence techniques. As a result for small scale changes– called graphic
generalization- the automation is successful. When generalization is equivalent to a space
distortion–a set of displacements and object emphasizing – some robust solutions already
exist. These methods, based on strength computation, use known solving methods such as the
finite elements (Hojholt 2000) or the least square method (Sester 2000, Harrie and Sarjakoski
2002) to adequately move and stretch the objects according to size and distance constraints.
However for larger scale changes, non continuous operations such as object removal or
aggregation are required. For such generalizations, a single and recursive method does not yet
exist. So we have to apply a set of different algorithms one after the other, and it is not
possible to foresee the sequence of the appropriate algorithms. As a consequence the
remaining difficulty is in the automation of the choice of appropriate algorithms during the
process (how to generalize?). To do so, two types of solving methods exist: one is mainly
based on random choice of operation and evaluation by means of a cost function and the other
is based on knowledge to choose the appropriate operation at each step and on an evaluation
to assess each choice:
• for the stochastic processes – using simulated annealing or genetic algorithms (Ware et al

2003)-, a very large number of operations are tried and the convergence towards a good
solution strongly depends on the function of evaluation that computes the quality of each
proposed solution,

1

• for the knowledge based processes (see section 2.1) the convergence towards a good
solution strongly depends on the quality of the procedural knowledge to choose the
appropriate algorithm according to the properties of local situation.

Both types of solving process are based on knowledge and evaluation. This knowledge
ensures or limits the convergence towards a good solution. To describe the quality of the
convergence two criteria are fundamental: the efficiency and the effectiveness. We can say
that a generalization system is performing if it converges quickly to a good solution (figure 1).

Generalization
System

Geographic
data

Generalized
data

Knowledge to acquire
user needs

Knowledge to converge
quickly to a good solution

Knowledge to
evaluate the quality

Generalization
System

Geographic
data

Generalized
data

Knowledge to acquire
user needs

Knowledge to converge
quickly to a good solution

Knowledge to
evaluate the quality

Figure 1. Knowledge to converge to generalized data

Classically speaking, knowledge is based on reasoning and experiments. The reasoning gives
hypothesis (by deduction) assessed and improved by experiences and reversely experiences
give rules (by induction) formalized and improved by means on reasoning. The aim of this
research is to propose methods in order to improve the knowledge contains in a generalization
system by means of experiments. In section 2 we present the generalization system we are
using and the previous research work related to knowledge in the field of generalization. In
section 3 we present our learning techniques approach and in section 4 we present our first
results.

2. Context of our research

2.1. From Multi Agent System Paradigm to Clarity
An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through effectors (Russell and Norvig, 2003). An agent can be
thought of as an object that has a goal and acts autonomously in order to reach this goal
thanks to capacities of perception, deliberation, action, and possibly communication with
other agents (Weiss 1999, 32).

Our proposal in 1998 is to model geographical objects as agents. Each agent is able to
perceive and evaluate its current state, and to choose and apply to itself generalisation
algorithms to improve this state (Ruas 1999). The cartographic agents (such as a building
object, a road object) have the goal to generalise themselves (individually and all together) in
the most successful way. In this model, the specifications (such as the minimum size or the
minimum distance) are represented by means of constraints. These constraints guide each
object for its own generalization. Group constraints (such as density) are linked to group
objects named meso objects. A meso object is composed of objects. It generalizes itself by
means of contextual operations (such as object removal) and is guided in its decision by its
own constraints (Ruas 1999).

This idea has been first implemented by Ruas on a prototype named Stratège at the COGIT
laboratory (1997; 1998). It has been recoded and enriched during the AGENT European

2

Project onto Lamps2 GIS (Barrault et al 2001). A first version was proposed by laser-scan in
2001 at the end of the project. Then – with the help of a consortium of European National
Mapping Agency named MAGNET – Laser-Scan Ltd proposed an improved version named
ClarityTM. Study is on going at the IGN-France through a production project to adapt the
system to the production of 1: 50 000 scale map form the IGN-France BDTopo © (see figure
2).

Figure 2. Automated generalization at 1: 50 000 on small data set

More details can be found in (Ruas and Duchêne 2006) which focus on the principles of the
agent engine and includes the enrichment proposed by Duchêne (2004) during her PhD.

2.2. Previous work on Knowledge acquisition in the field of generalization
A good way to ensure the relevance of the knowledge used in a system is to collect the
necessary knowledge from experts of the domain. However, collecting knowledge from
experts and formalizing it in a way that is usable by the system is problematic. This is
classically identified in Artificial Intelligence as "the knowledge acquisition bottleneck", and
this bottleneck has proved to be existing in the domain of generalization too (Rieger and
Coulson 1993; Weibel et al. 1995; Kilpeläinen 2000).
To overcome this bottleneck, many works have tried to use supervised machine learning in
order to build rules from examples, be it for generalization (Weibel et al. 1995; Mustière
2001), data enrichment (Plazanet et al. 1998; Sester 1998) or system calibration (Hubert and
Ruas 2003). These works show that the use of supervised learning seems to be interesting for
those purposes, but they also exhibit two main difficulties related to it. The first difficulty,
identified for example in (Mustière and Ruas 2004), is related to methodology: no machine
learning algorithm is "magic" in itself, and the most important part of the work is to formalize
what is to be learnt and under which form. The second difficulty, namely pointed out in
(Mustière 2001; Ruas and Holzapfel 2003), is practical: collecting the examples is always
long and fastidious, because it requires to use several systems that are not interrelated: for
instance, a GIS to choose the examples, a paper with screen captures labeled with object
identifiers to collect the assessment of the experts on each example, an Excel file to
summarize the experts assessments, and a machine learning software to induce rules.
(Mustière and Ruas 2004) recommend that GIS should provide integrated environments to
perform the tasks of expert knowledge acquisition and analysis. They identify the following
needed functionalities:
− easy creation and instantiation of example data sets extracted from existing geo data bases,
− easy creation and instantiation of an expert knowledge data base to collect the expert's

assessments on presented examples,
− generation of interfaces that populate the examples, ask the questions to the experts and

collect their answers,
− choice of a machine learning method among several classical methods provided, and easy

enrichment of the library of machine learning methods,

3

− triggering of the chosen machine learning method on assessed examples,
− visualisation of the results of learning in order to be able to validate or invalidate each

learnt piece of knowledge.
(Duchêne et al 2005) presented a prototype – named MAACOL – based on these very
principles and that is used to acquire expert knowledge. It has been used to normalize the
properties of building. The paper presents the calibration of the measure of wall straightness
regularity for buildings to illustrate the learning method.

Here, we propose another approach to improve the procedural knowledge based on
experiments: we propose first to trace the generalization of a large set of objects and then to
analyze these processes in order to detect the repetitive errors that could be avoid.

3. Our Learning Approach

3.1. What is learnt? Why?
In the system, an agent generalizes itself by means of rules that depend on the constraints
violation. We commonly say that an agent has a life cycle during which it applies to itself a set
of generalization operations in order to reach a perfect state (if possible) or at least a good
one. During one cycle, an agent evaluates itself one time to find a set of alternative solutions
to generalize itself (‘plans for self generalization’) and then another time to validate or not
each solution tried. If its state is not better, it does not validate this solution and tries another
one (see figure 3). When one solution is validated, if the state is perfect its generalization is
finished, if not it carries on its generalization.

1- Characterizes and evaluates itself

2- Ask for plans for self generalization

3- Chooses the best remaining plan
and applies it

4- Re-evaluates itself

Valid Non valid

Activation of an agent

Deactivation of the agent

Perfect state or a good one or the best founded

The generalization carries on
The system tries to find a better state ..

Intermediate State validation

1- Characterizes and evaluates itself

2- Ask for plans for self generalization

3- Chooses the best remaining plan
and applies it

4- Re-evaluates itself

Valid Non valid

Activation of an agent

Deactivation of the agent

Perfect state or a good one or the best founded

The generalization carries on
The system tries to find a better state ..

Intermediate State validation

Figure 3. Simplified view on the generalization process of each agent

An agent that generalizes itself searches for its ideal sequence of generalization. The sequence
changes according to the agent characteristic (for a building its size, its shape, its squareness)
and its goal (the constraints on size, shape, orientation it should respect). The knowledge
contained in the system is used to propose to the agent the best search tree. As the proposals
depend on the agents’ characteristics and goals, all agents of the same type do not have the
same tree. The tree is computed on the fly during the process.

4

In figure 4, when an agent is at a specific node (a state with a certain level of happiness) the
plans returns a list of ordered plans (in figure 4 the list is (algo1, algo2, algo3)). As the search
strategy is the depth first, the agent next action in figure 4 is to first try the solution ‘algo1’.

A node = agent build.43 at the current state s2
with a certain level of Satisfaction = λ2 (λ2 > λ1)
with an order list of proposed plans (algo1; algo2; algo3)

Algo1 Algo2 Algo3

agent build.43 at the previous state s1,
Satisfaction = λ1

A node = agent build.43 at the current state s2
with a certain level of Satisfaction = λ2 (λ2 > λ1)
with an order list of proposed plans (algo1; algo2; algo3)

Algo1 Algo2 Algo3

agent build.43 at the previous state s1,
Satisfaction = λ1

Figure 4. An agent search tree

“The depth-first search always expands the deepest node in the current fringe of the search
tree. The search proceeds immediately to the deepest level of the search tree, where the nodes
have no successors. As those nodes are expanded, they are dropped from the fringe, so that
the such backs up to the next shallowest node that still has unexplored successors (Russell &
Norvig, 2003, 75)”. The process stops as soon as the agent reaches a good level of happiness
(its satisfaction). If the requirement is very high, the agent never stops: it tries its entire tree,
even if the best solutions are supposed to be the first solution tested.
In order to avoid long and useless trials, during the AGENT project, Nicolas Regnauld
(Regnauld 2001) proposed to use the Hill-Climbing mechanism in order optimize the search.
Whereas the depth-first search strategy can explore all branches of a tree to obtain the
required minimum value, the Hill Climbing expends a branch only if the state is as good as
the best previous recorded state. “The Hill Climbing search algorithm is simply a loop that
continually moves in the direction of increasing value – that is uphill. It terminates when it
reaches a peak where no neighbour has a higher value” (Russell & Norvig, 2003,111).
Figure 5 illustrates the search tree of a building. It first applied an algorithm of ‘dilation’
which improved its state (from S= 5 to S = 5.94). Then it tried a ‘Squaring’ which has not
been validated because it did not improve its state. It tried a ‘Simplification’ which improved
its state (from S = 5.94 to S=8.58). As the state was not yet perfect, the building tried a
‘Squaring’ that allows it to reach a perfect state (S = 10). This building reached a perfect state
by means of a sequence of 3 algorithms (dilation, simplification and squaring) whereas it tried
4 algorithms, only one trial was unnecessary.

GENERALIZATION

Squaring

S=5.0

S=5.94

S=5.94 S=8.58

S=10

Squaring Simplification

Dilation

Best state
(Perfect)

Search Tree

GENERALIZATION

Squaring

S=5.0

S=5.94

S=5.94 S=8.58

S=10

Squaring Simplification

Dilation

Best state
(Perfect)

Search Tree

Figure 5. A building search tree

5

What is learnt, why ?
The aim of our research is to improve the knowledge used by the agents to generalized
themselves (task 2 in figure 3) in order to improve the efficiency of the generalization, i.e. to
avoid as much as possible useless trials. If we refer to the agent search tree, we want the
knowledge to propose the best algorithm in the first order. In figure 5 it would mean at the
second step to try Simplification before Squaring to directly converge to a good state.

3.2. How to learn?

Several learning techniques exist. In our case, we already have knowledge built from
reasoning and previous experiences (in particular tests to tune the algorithm order). We want
to improve this knowledge in order to reach a higher level of automation. Two learning
techniques can be used, Explanation based learning and Reinforcement based learning:
• Explanation based learning (ELB) is a method for extracting general rules from individual

observations. In our system that would mean that we would perform several
generalisations and detect cases of choices of algorithm that give good result. We add
these rules to the agents’ knowledge base so instead of using its knowledge base, it first
applies these new rules. If the agent is in a situation described in the new rules, it applies
the proposed algorithm in order to reach a good state in a quicker way. Case based
reasoning is a specific case of ELB based on analogy. Instead of generating new rules
generated by induction from examples, it consists in adding successful sequences. Then
during the generalisation you compute a degree of similarity between the agents to
generalise and these successful cases. If an agent looks like a recorded case, it will use a
recorded sequence instead of its own generalisation engine.

• Reinforcement learning consists in awarding good decisions and to give negative rewards
for bad decisions. In such a case, the good knowledge (the appropriate rules) is reinforced
whereas the bad one is minimized. The Q-Learning (Watkins 1989) is often used to perform
learning by reinforcement.

The reinforcement based learning is the most adequate because we do not wish to extend the
rule base but to improve it. On the other way round, ELB is easier to begin with because it
does not need to remodel the system as you just add new rules on top of the existing ones. For
our first study we used ELB techniques but we will try reinforcement techniques in a near
future.

Exploration, Analysis and Exploitation:
Whatever the learning techniques, we distinguish three learning phases:
• The exploration phase consists in making lots of generalization trials using the initial

knowledge. The agents generalise themselves, creating their own search trees as the one
presented in figure 5. During this step there is no knowledge improvement. All decisions
are stored including the characteristic of the agent and the result of the application of each
algorithm: the success (the algorithm improved the state of an agent) or the failure (the
algorithm did not improve the state of the agent.).

• The analysis phase consists in generating new rules from the statistical analysis of the
exploration phase. The new rules are expressed in a symbolic and readable manner, so
they are checked by experts for validation.

• The exploitation phase consists in testing if these new rules improve or not the
convergence of the system. To do so, generalisation process is performed twice on new
objects: the first time with the initial rules, the second one with the new rules. If the
convergence is better and faster, the new rules are confirmed. As a consequence we need
to compute indicators of efficiency and effectiveness to compare both rule bases.

6

3.3. First testing the method on well known cases
Our objective is to first elaborate a learning process on simple and well known cases and to
extend this learning process on more complex generalisation cases. Thus we have chosen to
generalize independent buildings and we will extend the method to urban blocks which are
more complex because they require contextual algorithms such as object removal and
displacement that are very time consuming.
The buildings are generalized on ClarityTM using the agent engine and the building knowledge
based. This generalisation is normally very good because it has intensively been studied
during the AGENT project and after the project by the Jenny Trevisan at IGN-France and
Nicolas Regnauld at the Ordnance Survey. The test is also used to check if this knowledge is
as good as we thought.

4. Implementation and first results

4.1. The stored information

During the exploration phase, we created a file which stores: The name of the agent, All its
successive states, each applied algorithm, if the algorithm made a backtracking or not, each
level of satisfaction. This file is used to build the search tree of each building and also to
group common cases together.
In table 1, the line records one building generalisation step. The building has conflicts of size,
granularity and squareness but no concavity conflict. As solving the Size constraint was the
priority, the first algorithm tried was ‘enlarge-to-rectangle’. This algorithm improved the state
of the agent. We also recorded that this trial belonged to the best chain.

Satisfaction (from 0 to 10- excellent)
Size Granu. Square Conc.

Highest
priority

level Algorithm name Success
?

Best
chain

3 1 2 10 Size 1 Enlarge-to-rectangle Yes Yes
Table 1. one step of generalisation

Rules computation
Identical cases are grouped together. Cases are identical if the level of satisfaction of the
constraints are the same. We sort the table 1 by constraint satisfaction and we see if some
algorithms that have a high priority level failed and reversely if some algorithm that have a
low priority level succeeded. In such a case we add new rules on top of the others such as :

 If [satisfaction.constraint(A) =λ1 and satisfaction.constraint(B)= λ2, and…]
 then use algorithmi

In other words, if a building is in a recognised situation related to its level of satisfaction for
its four constraints, it will first use the algorithm proposed by the new rules instead prior to its
the previous rules.

Computation of Efficiency and Effectiveness
To compute the effectiveness, we compute the ratio of buildings that reach a perfect level of
satisfaction (S= 10). To compute the efficacy, we compute the average number of algorithms
tried per building and the average number of useful algorithms per building.

4.2. Results on buildings independent generalization

We distinguish two data sets: one composed of 412 buildings that has been used to detect new
rules for the exploration phase, and another one composed of 165 buildings for the

7

exploitation phase. In the following we give some results, more results can be found in
(Dyevre 2005).

Exploration phase.
We first made an analysis of success and failure in the use of our algorithm to improve the
building satisfaction. We noticed for example that the algorithm that simplify a building to a
rectangle nearly never improve the building state (ratio = 7,25% in table 2).

number_used nb_positive_used Quality Ratio

_polygon_squaring 302 220 72.85%

_polygon_enlarge_to_rectangle 234 195 83.33%

_polygon_simplify 189 142 75.13%

_polygon_scale 286 278 97.20%

_polygon_simplify_to_rectangle 69 5 7.25%

Table 2. Analysis of algorithm efficiency

Then we builtnew rules such as if (x,y,z,t) then use this algorithm where (x,y,z,t) is the vector
of constraint satisfaction for the constraint of size, squareness, concavity and granularity. We
found the following rules:
• If vector of satisfaction = ((6,2,3,10) or (6,2,5,10) or (6,2,10,8) or (6,2,10,10) or (6,4,10,8)

or (6,4,10,10) or (6,7,10,10)) then use ‘polygon-scale’ first
• If vector of satisfaction = ((10,2,10,1) or (10,7,10,1) or (10,7,10,5) or (10,10, 10, 3)) then

use ‘polygon_simplify’ first
• If vector of satisfaction = ((10,4,10,8)) use ‘squaring’ first

Exploitation phase 1: analysis of the initial knowledge

Before beginning introducing the new rules, we first computed the quality of the initial
knowledge. We used the clarity implemented search strategy (the Hill Climbing) which does
not investigate the entire tree but only branches that are better than the last best recorded state.

The data set is composed of 165 buildings:

• 146 building reached a perfect state (S=10), the effectiveness is 88,5%.
• The average number of algorithms per building is 2.63, the average useful number is

1.74, average of algorithms tested after the retained solution: 0.54. The best retained
chain is often the first tested (the left side of the tree)

These numbers show that the initial knowledge is very good.

The capacity of representing the search tree allows to precisely analysing the convergence
case by case. When the level of satisfaction is not perfect (S <10), the buildings try other
solutions to improve themselves as illustrated in figure 6. The hill climbing mechanism in
such a case avoids testing too many solutions. In the following example the building tried 6
algorithms whereas the two first were the best. Without the hill climbing it would have tested
much more cases.
This also illustrates the impact of the computation of the global satisfaction on the speed of
the convergence: the more severe the evaluation function, the better final quality but also the
slower the convergence. Focus on bad results illustrated on table 3 helps to understand the
level of required quality contained in the evaluation function.

8

S=6.05

S=7.82

S=9.29 S=8.82 S=7.82

S=8.12 S=8.82

Search tree

Simplification Squaring

Squaring Simplification Simplify to
rectangle

Best state

GENERALIZATION

Simplify to
rectangle

S=6.05

S=7.82

S=9.29 S=8.82 S=7.82

S=8.12 S=8.82

Search tree

Simplification Squaring

Squaring Simplification Simplify to
rectangle

Best state

GENERALIZATION

Simplify to
rectangle

Figure 6. Illustration of the implemented search strategy

Initial Building Generalised Building Final level of satisfaction

S = 9,28

S = 7,88
The shape is not very well

preserved.

Table 3. Example of non perfect results

Exploitation phase 2: analysis of the initial knowledge:
The new rules have been added to the initial ones. The engine has been slightly adapted.
During step 2 of figure 3, if the building is in one of the situation described in one of these
new rules, it adds the related algorithm on the top of the list computed by the constraints.

The generalisation is triggered on the same 165 buildings, and quality criteria are computed:

• 146 building reached a perfect state (S=10), the effectiveness is 88,5%. The result has
not changed at all.

• The average number of algorithms per building is 2.73 (previously 2.63), the average
useful number is 1.84 (previously 1.74), average of algorithms tested after the retained
solution: 0.54.

These numbers show that the initial knowledge is slightly better than the new proposed one. It
also shows that adding a new algorithm on top of the list of computed one is not an
appropriate method because it slows down the process as the algorithm might be tested twice.

Checking the priority value :
We also tried to randomly change the priority of treatment (see table 1) which define which
constraint should be solved first. When we compute the average number of algorithm per

9

building we obtained results around 3.11, 3.97, 3.88 whereas the default value is 2.63. We
notice that we always obtain worst results than the initial one.
Here again we noticed that the initial knowledge was very well tuned.

5. Conclusion: towards learning agents?
The aim of the research was to propose a learning process to improve the knowledge of a
generalization system. We have chosen to use Explanation Based-Learning approach that
creates new rules form experiments. We decomposed the learning into three steps: an
exploration step that traces the agents self generalization, an analysis step that build rules
from repetitive success cases and an exploitation step that checks the improvement of the
generalization on new cases. In order to set the method, we have chosen to analyze the
knowledge used for building generalization in ClarityTM. This knowledge have been
intensively studied during the AGENT project and after at the IGN-France and at the
Ordnance Survey. We noticed that this knowledge is very good and efficient as the building
agents converge quickly to very good solutions, results that we suspected but that we could
not check very easily before this study.
After Aurelie Dyevre study (2005), Patrick Taillandier, a new COGIT PhD student, started to
extend this method for building block generalization. This case is very critical because it
requires heavy analytical structures such as Delaunay Triangulation. As a consequence each
bad decision dramatically slows down the process (and fills the memory). Two strategies of
learning are investigated. The first is based on case based-reasoning to add a sequence of
successful algorithms that avoids the classical agent engine, the second strategy is based on
reinforcement learning techniques. Learning agents are under study.

To conclude we would insist on the necessity of including learning techniques inside complex
solving methods such as generalization in order to allow the evolution of such system. It is all
the most important today where more and more algorithms are shared through the web. We
should be able to easily adapt knowledge based as soon as new and better algorithms appear.

REFERENCES
Barrault M., N., Regnauld, C. Duchene, K. Haire, C. Baeijs, Y. Demazeau, P. Hardy, W.

Mackaness, A. Ruas and R. Weibel. 2001. Integrating multi-agent, object-oriented, and
algorithmic techniques for improved automated map generalization. Proceedings 20th
International Cartographic Conference, Beijing, China, 6-10 August, 2210-2216

Duchêne C. 2004. The CartACom model : a generalisation model for taking relational
constraints into account. 6th ICA Workshop on progress in automated map generalisation,
Leicester, 2004, available on the web site of the ICA commission for generalisation :
http://aci.ign.fr/Leicester/paper/duchene-v2-ICAWorkshop.pdf

Duchêne C., M. Dadou, A. Ruas. 2005, Helping the capture of expert knowledge to support
generalisation - ICA workshop on generalisation and multiple representation, La Corona,
Spain, 2005 http://ica.ign.fr

Dyevre A. 2005. Analyse d’un processus de généralisation cartographique à l’aide d’apprentissage
automatique Master Dissertation. Paris VI University and COGIT Laboratory.

Harrie L. and T. Sarjakoski. 2002. Simultaneous graphic generalization of vector data sets
GeoInformatica ,Vol. 6, N° 3, 233-262

Hojholt P. 2000. Solving Space Conflicts in Map Generalization: Using a Finite Element
Method. Cartography and Geographic Information Science, Vol. 27, No. 1, pp. 65-73.

10

Hubert F. and A. Ruas. 2003. A method based on samples to capture user needs for
generalisation. 5th ICA Workshop on progress in automated map generalisation, Paris,
2003, available on the former web site of the ICA commission for generalisation :
http://www.geo.unizh.ch/ICA/docs/paris2003/papers03.html

Kilpeläinen T. 2000. Knowledge Acquisition for Generalization Rules. Cartography and
Geographic Information Science, vol.27, n°1, 2000, pp.41-50..

Mustière S. 2001. Apprentissage supervisé pour la généralisation cartographique. PhD
Thesis, University of Paris VI, COGIT Laboratory.

Mustière S. and Ruas A. 2004. Vers une réconciliation des experts et des sytèmes In Actes des
7èmes Journées Cassini, Grenoble, France, 2004, p.47-52.

Plazanet C., N. Martini Bigolin and A. Ruas. 1998. Experiments with Learning Techniques
for Spatial Model Enrichment and Line Generalization. GeoInformatica, 2(4), dec. 98,
pp.315-333.

Regnauld N., 2001. Constraint Based Mechanism to Achieve Automatic Generalisation using
agent modelling. Proceedings GIS Research in the UK (GISRUK) 2001, University of
Glamorgan (UK).

Rieger M. & Coulson M. 1993. Consensus or confusion: cartographers’ knowledge of
generalization. Cartographical, vol.30, n°2-3, 1993, pp.69-80.

Ruas A. 1999. Modèle de généralisation de données géographiques à base de contraintes et
d’autonomie. PhD Thesis, University of Marne-la-Vallée, COGIT Laboratory.

Ruas A. and Holzapfel F. 2003. Automatic characterisation of building alignments by means
of expert knowledge. In Proceedings of the 21th International Cartographic Conference,
Durban, 2003, pp. 1604-1616.

Ruas A. and C. Duchêne. 2006. A prototype of Generalisation based on multi agent system
paradigm. In Mackaness, Ruas and Sarjakoski Generalisation of Geographic information:
Models and applications. Elsevier.

Russell S. and P. Norvig . 2003. Artificial Intelligence : A modern Approach. Second Edition.
Prentice Hall.

Sester M. 1998. Interpretation of Spatial Data Bases using Machine Learning Techniques.
Proc. of 8th International Symposium on Spatial Data Handling, Vancouver, pp. 88-97

Sester M., 2000. Generalization Based on Least-squares Adjustment. International Archives
of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B4, Amsterdam, pp. 931-938.

Ware J.M., C.B. Jones, and N. Thomas. 2003. Automated Map Generalization with Multiple
Operators: A Simulated Annealing Approach. International Journal of Geographical
Information Science, 17(8): 743-769.

Watkins C.J. 1989. Models of Delayed Reinforcement Learning. PhD thesis, Psychology
Department, Cambridge university, UK.

Weibel R., S. Keller and T. Reichenbacher. 1995. Overcoming the Knowledge Acquisition
Bottleneck in Map Generalization : the Role of Interactive Systems and Computational
Intelligence. In Proceedings of the 2nd International Conference on Spatial Information
Theory (COSIT'95), p. 139-156.

Weiss G. 1999. Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. The MIT Press.

11

	Methods for Improving and Updating the Knowledge of a Generalization System

