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Abstract: In this paper we present a method to improve and to update the knowledge used for 
the automation of the generalization of buildings based on agent paradigm. We propose to 
store 1/ each building decision, 2/ the reason why the decision was taken (the conflicts) 3/ the 
result of each algorithm (an improvement or not) and 4/ the successful process chain within 
all trials. At the end, the processes of all buildings are compared in order to identify the 
weakness (for example the case where a specific algorithm is often used but never succeeds). 
When a deficiency is identified we introduce new rules and we study the effect of this change 
on the efficiency of the process. It can be used either to improve existing knowledge or to 
introduce new rules associate to the use of a new measure or a new algorithm. The first study 
has been made on building independent generalization to set the learning methodology. We 
wish now to apply it on more complex cases such as contextual generalization which still 
needs knowledge improvement.  
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1. Improving the automation of generalisation process 
 
The complexity of the generalization process is well known in GIS community. However for 
20 years, important progress has been made thanks to the intense use of physical models and 
artificial intelligence techniques. As a result for small scale changes– called graphic 
generalization- the automation is successful. When generalization is equivalent to a space 
distortion–a set of displacements and object emphasizing – some robust solutions already 
exist. These methods, based on strength computation, use known solving methods such as the 
finite elements (Hojholt 2000) or the least square method (Sester 2000, Harrie and Sarjakoski 
2002) to adequately move and stretch the objects according to size and distance constraints.   
However for larger scale changes, non continuous operations such as object removal or 
aggregation are required. For such generalizations, a single and recursive method does not yet 
exist. So we have to apply a set of different algorithms one after the other, and it is not 
possible to foresee the sequence of the appropriate algorithms. As a consequence the 
remaining difficulty is in the automation of the choice of appropriate algorithms during the 
process (how to generalize?). To do so, two types of solving methods exist: one is mainly 
based on random choice of operation and evaluation by means of a cost function and the other 
is based on knowledge to choose the appropriate operation at each step and on an evaluation 
to assess each choice:  
• for the stochastic processes – using simulated annealing or genetic algorithms (Ware et al 

2003)-, a very large number of operations are tried and the convergence towards a good 
solution strongly depends on the function of evaluation that computes the quality of each 
proposed solution, 
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• for the knowledge based processes (see section 2.1) the convergence towards a good 
solution strongly depends on the quality of the procedural knowledge to choose the 
appropriate algorithm according to the properties of local situation.  

 
Both types of solving process are based on knowledge and evaluation. This knowledge 
ensures or limits the convergence towards a good solution. To describe the quality of the 
convergence two criteria are fundamental: the efficiency and the effectiveness. We can say 
that a generalization system is performing if it converges quickly to a good solution (figure 1).  
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Figure 1.  Knowledge to converge to generalized data 

Classically speaking, knowledge is based on reasoning and experiments. The reasoning gives 
hypothesis (by deduction) assessed and improved by experiences and reversely experiences 
give rules (by induction) formalized and improved by means on reasoning. The aim of this 
research is to propose methods in order to improve the knowledge contains in a generalization 
system by means of experiments. In section 2 we present the generalization system we are 
using and the previous research work related to knowledge in the field of generalization. In 
section 3 we present our learning techniques approach and in section 4 we present our first 
results.   
 
2. Context of our research  
 
2.1. From Multi Agent System Paradigm to Clarity  
An agent is anything that can be viewed as perceiving its environment through sensors and 
acting upon that environment through effectors (Russell and Norvig, 2003). An agent can be 
thought of as an object that has a goal and acts autonomously in order to reach this goal 
thanks to capacities of perception, deliberation, action, and possibly communication with 
other agents (Weiss 1999, 32).  

Our proposal in 1998 is to model geographical objects as agents. Each agent is able to 
perceive and evaluate its current state, and to choose and apply to itself generalisation 
algorithms to improve this state (Ruas 1999). The cartographic agents (such as a building 
object, a road object) have the goal to generalise themselves (individually and all together) in 
the most successful way. In this model, the specifications (such as the minimum size or the 
minimum distance) are represented by means of constraints. These constraints guide each 
object for its own generalization. Group constraints (such as density) are linked to group 
objects named meso objects. A meso object is composed of objects. It generalizes itself by 
means of contextual operations (such as object removal) and is guided in its decision by its 
own constraints (Ruas 1999). 

This idea has been first implemented by Ruas on a prototype named Stratège at the COGIT 
laboratory (1997; 1998). It has been recoded and enriched during the AGENT European 
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Project onto Lamps2 GIS (Barrault et al 2001). A first version was proposed by laser-scan in 
2001 at the end of the project. Then – with the help of a consortium of European National 
Mapping Agency named MAGNET – Laser-Scan Ltd proposed an improved version named 
ClarityTM. Study is on going at the IGN-France through a production project to adapt the 
system to the production of 1: 50 000 scale map form the IGN-France BDTopo © (see figure 
2). 

 
Figure 2. Automated generalization at 1: 50 000 on small data set  

More details can be found in (Ruas and Duchêne 2006) which focus on the principles of the 
agent engine and includes the enrichment proposed by Duchêne (2004) during her PhD.  

2.2. Previous work on Knowledge acquisition in the field of generalization 
A good way to ensure the relevance of the knowledge used in a system is to collect the 
necessary knowledge from experts of the domain. However, collecting knowledge from 
experts and formalizing it in a way that is usable by the system is problematic. This is 
classically identified in Artificial Intelligence as "the knowledge acquisition bottleneck", and 
this bottleneck has proved to be existing in the domain of generalization too (Rieger and 
Coulson 1993; Weibel et al. 1995; Kilpeläinen 2000). 
To overcome this bottleneck, many works have tried to use supervised machine learning in 
order to build rules from examples, be it for generalization (Weibel et al. 1995; Mustière 
2001), data enrichment (Plazanet et al. 1998; Sester 1998) or system calibration (Hubert and 
Ruas 2003). These works show that the use of supervised learning seems to be interesting for 
those purposes, but they also exhibit two main difficulties related to it. The first difficulty, 
identified for example in (Mustière and Ruas 2004), is related to methodology: no machine 
learning algorithm is "magic" in itself, and the most important part of the work is to formalize 
what is to be learnt and under which form. The second difficulty, namely pointed out in 
(Mustière 2001; Ruas and Holzapfel 2003), is practical: collecting the examples is always 
long and fastidious, because it requires to use several systems that are not interrelated: for 
instance, a GIS to choose the examples, a paper with screen captures labeled with object 
identifiers to collect the assessment of the experts on each example, an Excel file to 
summarize the experts assessments, and a machine learning software to induce rules. 
(Mustière and Ruas 2004) recommend that GIS should provide integrated environments to 
perform the tasks of expert knowledge acquisition and analysis. They identify the following 
needed functionalities: 
− easy creation and instantiation of example data sets extracted from existing geo data bases, 
− easy creation and instantiation of an expert knowledge data base to collect the expert's 

assessments on presented examples, 
− generation of interfaces that populate the examples, ask the questions to the experts and 

collect their answers, 
− choice of a machine learning method among several classical methods provided, and easy 

enrichment of the library of machine learning methods, 
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− triggering of the chosen machine learning method on assessed examples, 
− visualisation of the results of learning in order to be able to validate or invalidate each 

learnt piece of knowledge. 
(Duchêne et al 2005) presented a prototype – named MAACOL – based on these very 
principles and that is used to acquire expert knowledge. It has been used to normalize the 
properties of building. The paper presents the calibration of the measure of wall straightness 
regularity for buildings to illustrate the learning method.  
 
Here, we propose another approach to improve the procedural knowledge based on 
experiments: we propose first to trace the generalization of a large set of objects and then to 
analyze these processes in order to detect the repetitive errors that could be avoid.     
 
3. Our Learning Approach  
 
3.1. What is learnt? Why?  
In the system, an agent generalizes itself by means of rules that depend on the constraints 
violation. We commonly say that an agent has a life cycle during which it applies to itself a set 
of generalization operations in order to reach a perfect state (if possible) or at least a good 
one. During one cycle, an agent evaluates itself one time to find a set of alternative solutions 
to generalize itself (‘plans for self generalization’) and then another time to validate or not 
each solution tried. If its state is not better, it does not validate this solution and tries another 
one (see figure 3). When one solution is validated, if the state is perfect its generalization is 
finished, if not it carries on its generalization. 
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Figure 3. Simplified view on the generalization process of each agent 

An agent that generalizes itself searches for its ideal sequence of generalization. The sequence 
changes according to the agent characteristic (for a building its size, its shape, its squareness) 
and its goal (the constraints on size, shape, orientation it should respect). The knowledge 
contained in the system is used to propose to the agent the best search tree. As the proposals 
depend on the agents’ characteristics and goals, all agents of the same type do not have the 
same tree. The tree is computed on the fly during the process.  
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In figure 4, when an agent is at a specific node (a state with a certain level of happiness) the 
plans returns a list of ordered plans (in figure 4 the list is (algo1, algo2, algo3)). As the search 
strategy is the depth first, the agent next action in figure 4 is to first try the solution ‘algo1’.  
 

A node = agent build.43 at the current state s2
with a certain level of Satisfaction = λ2  (λ2 > λ1) 
with an order list of proposed plans (algo1; algo2; algo3) 

Algo1 Algo2 Algo3

agent build.43 at the previous state s1, 
Satisfaction = λ1

A node = agent build.43 at the current state s2
with a certain level of Satisfaction = λ2  (λ2 > λ1) 
with an order list of proposed plans (algo1; algo2; algo3) 

Algo1 Algo2 Algo3

agent build.43 at the previous state s1, 
Satisfaction = λ1

 
Figure 4. An agent search tree 

“The depth-first search always expands the deepest node in the current fringe of the search 
tree. The search proceeds immediately to the deepest level of the search tree, where the nodes 
have no successors. As those nodes are expanded, they are dropped from the fringe, so that 
the such backs up to the next shallowest node that still has unexplored successors (Russell & 
Norvig, 2003, 75)”. The process stops as soon as the agent reaches a good level of happiness 
(its satisfaction). If the requirement is very high, the agent never stops: it tries its entire tree, 
even if the best solutions are supposed to be the first solution tested.  
In order to avoid long and useless trials, during the AGENT project, Nicolas Regnauld 
(Regnauld 2001) proposed to use the Hill-Climbing mechanism in order optimize the search. 
Whereas the depth-first search strategy can explore all branches of a tree to obtain the 
required minimum value, the Hill Climbing expends a branch only if the state is as good as 
the best previous recorded state. “The Hill Climbing search algorithm is simply a loop that 
continually moves in the direction of increasing value – that is uphill. It terminates when it 
reaches a peak where no neighbour has a higher value” (Russell & Norvig, 2003,111).  
Figure 5 illustrates the search tree of a building. It first applied an algorithm of ‘dilation’ 
which improved its state (from S= 5 to S = 5.94). Then it tried a ‘Squaring’ which has not 
been validated because it did not improve its state. It tried a ‘Simplification’ which improved 
its state (from S = 5.94 to S=8.58). As the state was not yet perfect, the building tried a 
‘Squaring’ that allows it to reach a perfect state (S = 10). This building reached a perfect state 
by means of a sequence of 3 algorithms (dilation, simplification and squaring) whereas it tried 
4 algorithms, only one trial was unnecessary.  
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Figure 5. A building search tree  
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What is learnt, why ?  
The aim of our research is to improve the knowledge used by the agents to generalized 
themselves (task 2 in figure 3) in order to improve the efficiency of the generalization, i.e. to 
avoid as much as possible useless trials. If we refer to the agent search tree, we want the 
knowledge to propose the best algorithm in the first order. In figure 5 it would mean at the 
second step to try Simplification before Squaring to directly converge to a good state.  
 
3.2. How to learn?  
 
Several learning techniques exist. In our case, we already have knowledge built from 
reasoning and previous experiences (in particular tests to tune the algorithm order). We want 
to improve this knowledge in order to reach a higher level of automation. Two learning 
techniques can be used, Explanation based learning and Reinforcement based learning:   
• Explanation based learning (ELB) is a method for extracting general rules from individual 

observations. In our system that would mean that we would perform several 
generalisations and detect cases of choices of algorithm that give good result. We add 
these rules to the agents’ knowledge base so instead of using its knowledge base, it first 
applies these new rules. If the agent is in a situation described in the new rules, it applies 
the proposed algorithm in order to reach a good state in a quicker way. Case based 
reasoning is a specific case of ELB based on analogy.  Instead of generating new rules 
generated by induction from examples, it consists in adding successful sequences. Then 
during the generalisation you compute a degree of similarity between the agents to 
generalise and these successful cases. If an agent looks like a recorded case, it will use a 
recorded sequence instead of its own generalisation engine.   

• Reinforcement learning consists in awarding good decisions and to give negative rewards 
for bad decisions. In such a case, the good knowledge (the appropriate rules) is reinforced 
whereas the bad one is minimized. The Q-Learning (Watkins 1989) is often used to perform 
learning by reinforcement.   

The reinforcement based learning is the most adequate because we do not wish to extend the 
rule base but to improve it. On the other way round, ELB is easier to begin with because it 
does not need to remodel the system as you just add new rules on top of the existing ones. For 
our first study we used ELB techniques but we will try reinforcement techniques in a near 
future.  
 
Exploration, Analysis and Exploitation:  
Whatever the learning techniques, we distinguish three learning phases:  
• The exploration phase consists in making lots of generalization trials using the initial 

knowledge. The agents generalise themselves, creating their own search trees as the one 
presented in figure 5. During this step there is no knowledge improvement. All decisions 
are stored including the characteristic of the agent and the result of the application of each 
algorithm: the success (the algorithm improved the state of an agent) or the failure (the 
algorithm did not improve the state of the agent.).  

• The analysis phase consists in generating new rules from the statistical analysis of the 
exploration phase. The new rules are expressed in a symbolic and readable manner, so 
they are checked by experts for validation.  

• The exploitation phase consists in testing if these new rules improve or not the 
convergence of the system. To do so, generalisation process is performed twice on new 
objects: the first time with the initial rules, the second one with the new rules. If the 
convergence is better and faster, the new rules are confirmed. As a consequence we need 
to compute indicators of efficiency and effectiveness to compare both rule bases.  
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3.3. First testing the method on well known cases  
Our objective is to first elaborate a learning process on simple and well known cases and to 
extend this learning process on more complex generalisation cases. Thus we have chosen to 
generalize independent buildings and we will extend the method to urban blocks which are 
more complex because they require contextual algorithms such as object removal and 
displacement that are very time consuming.  
The buildings are generalized on ClarityTM using the agent engine and the building knowledge 
based. This generalisation is normally very good because it has intensively been studied 
during the AGENT project and after the project by the Jenny Trevisan at IGN-France and 
Nicolas Regnauld at the Ordnance Survey. The test is also used to check if this knowledge is 
as good as we thought.  
 
4. Implementation and first results  
 
4.1. The stored information  
 
During the exploration phase, we created a file which stores: The name of the agent, All its 
successive states, each applied algorithm, if the algorithm made a backtracking or not, each 
level of satisfaction. This file is used to build the search tree of each building and also to 
group common cases together.  
In table 1, the line records one building generalisation step. The building has conflicts of size, 
granularity and squareness but no concavity conflict. As solving the Size constraint was the 
priority, the first algorithm tried was ‘enlarge-to-rectangle’. This algorithm improved the state 
of the agent. We also recorded that this trial belonged to the best chain.  
 

Satisfaction (from 0 to 10- excellent) 
Size Granu. Square Conc. 

Highest 
priority 

level Algorithm  name Success
?  

Best 
chain 

3 1 2 10 Size 1 Enlarge-to-rectangle Yes Yes 
Table 1. one step of generalisation 

Rules computation 
Identical cases are grouped together. Cases are identical if the level of satisfaction of the 
constraints are the same. We sort the table 1 by constraint satisfaction and we see if some 
algorithms that have a high priority level failed and reversely if some algorithm that have a 
low priority level succeeded. In such a case we add new rules on top of the others such as : 

 If [satisfaction.constraint(A) =λ1 and satisfaction.constraint(B)= λ2, and…]  
 then use algorithmi

In other words, if a building is in a recognised situation related to its level of satisfaction for 
its four constraints, it will first use the algorithm proposed by the new rules instead prior to its 
the previous rules.  
 
Computation of Efficiency and Effectiveness 
To compute the effectiveness, we compute the ratio of buildings that reach a perfect level of 
satisfaction (S= 10). To compute the efficacy, we compute the average number of algorithms 
tried per building and the average number of useful algorithms per building.  
 
4.2. Results on buildings independent generalization 
 
We distinguish two data sets: one composed of 412 buildings that has been used to detect new 
rules for the exploration phase, and another one composed of 165 buildings for the 
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exploitation phase. In the following we give some results, more results can be found in 
(Dyevre 2005).  
 
Exploration phase.  
We first made an analysis of success and failure in the use of our algorithm to improve the 
building satisfaction. We noticed for example that the algorithm that simplify a building to a 
rectangle nearly never improve the building state (ratio = 7,25% in table 2). 
 

  

  
number_used nb_positive_used Quality Ratio  

_polygon_squaring 302 220 72.85% 

_polygon_enlarge_to_rectangle 234 195 83.33% 

_polygon_simplify 189 142 75.13% 

_polygon_scale 286 278 97.20% 

_polygon_simplify_to_rectangle 69 5 7.25% 

Table 2. Analysis of algorithm efficiency 

Then we builtnew  rules such as if (x,y,z,t) then use this algorithm where (x,y,z,t) is the vector 
of constraint satisfaction for the constraint of size, squareness, concavity and granularity. We 
found the following rules:  
• If vector of satisfaction = ((6,2,3,10) or (6,2,5,10) or (6,2,10,8) or (6,2,10,10) or (6,4,10,8) 

or (6,4,10,10) or (6,7,10,10)) then use ‘polygon-scale’ first 
• If vector of satisfaction = ((10,2,10,1) or (10,7,10,1) or (10,7,10,5) or (10,10, 10, 3)) then 

use ‘polygon_simplify’ first 
• If vector of satisfaction = ((10,4,10,8)) use ‘squaring’ first  
 
Exploitation phase 1: analysis of the initial knowledge  

Before beginning introducing the new rules, we first computed the quality of the initial 
knowledge. We used the clarity implemented search strategy (the Hill Climbing) which does 
not investigate the entire tree but only branches that are better than the last best recorded state.  
 
The data set is composed of 165 buildings:  

• 146 building reached a perfect state (S=10), the effectiveness is 88,5%.  
• The average number of algorithms per building is 2.63, the average useful number is 

1.74, average of algorithms tested after the retained solution: 0.54. The best retained 
chain is often the first tested (the left side of the tree) 

These numbers show that the initial knowledge is very good.  
 
The capacity of representing the search tree allows to precisely analysing the convergence 
case by case. When the level of satisfaction is not perfect (S <10), the buildings try other 
solutions to improve themselves as illustrated in figure 6. The hill climbing mechanism in 
such a case avoids testing too many solutions. In the following example the building tried 6 
algorithms whereas the two first were the best. Without the hill climbing it would have tested 
much more cases.  
This also illustrates the impact of the computation of the global satisfaction on the speed of 
the convergence: the more severe the evaluation function, the better final quality but also the 
slower the convergence. Focus on bad results illustrated on table 3 helps to understand the 
level of required quality contained in the evaluation function.  
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Figure 6. Illustration of the implemented search strategy 

 
Initial Building Generalised Building Final level of satisfaction 

  

 
S = 9,28 

 

  

S = 7,88 
The shape is not very well 

preserved.  

Table 3. Example of non perfect results 

Exploitation phase 2: analysis of the initial knowledge:  
The new rules have been added to the initial ones. The engine has been slightly adapted. 
During step 2 of figure 3, if the building is in one of the situation described in one of these 
new rules, it adds the related algorithm on the top of the list computed by the constraints.  
 
The generalisation is triggered on the same 165 buildings, and quality criteria are computed:  

• 146 building reached a perfect state (S=10), the effectiveness is 88,5%. The result has 
not changed at all.  

• The average number of algorithms per building is 2.73 (previously 2.63), the average 
useful number is 1.84 (previously 1.74), average of algorithms tested after the retained 
solution: 0.54.  

These numbers show that the initial knowledge is slightly better than the new proposed one. It 
also shows that adding a new algorithm on top of the list of computed one is not an 
appropriate method because it slows down the process as the algorithm might be tested twice.  
 
Checking the priority value :  
We also tried to randomly change the priority of treatment (see table 1) which define which 
constraint should be solved first. When we compute the average number of algorithm per 
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building we obtained results around 3.11, 3.97, 3.88 whereas the default value is 2.63. We 
notice that we always obtain worst results than the initial one.  
Here again we noticed that the initial knowledge was very well tuned.  
 
5. Conclusion: towards learning agents?  
The aim of the research was to propose a learning process to improve the knowledge of a 
generalization system. We have chosen to use Explanation Based-Learning approach that 
creates new rules form experiments. We decomposed the learning into three steps: an 
exploration step that traces the agents self generalization, an analysis step that build rules 
from repetitive success cases and an exploitation step that checks the improvement of the 
generalization on new cases. In order to set the method, we have chosen to analyze the 
knowledge used for building generalization in ClarityTM. This knowledge have been 
intensively studied during the AGENT project and after at the IGN-France and at the 
Ordnance Survey. We noticed that this knowledge is very good and efficient as the building 
agents converge quickly to very good solutions, results that we suspected but that we could 
not check very easily before this study.  
After Aurelie Dyevre study (2005), Patrick Taillandier, a new COGIT PhD student, started to 
extend this method for building block generalization. This case is very critical because it 
requires heavy analytical structures such as Delaunay Triangulation. As a consequence each 
bad decision dramatically slows down the process (and fills the memory). Two strategies of 
learning are investigated. The first is based on case based-reasoning to add a sequence of 
successful algorithms that avoids the classical agent engine, the second strategy is based on 
reinforcement learning techniques. Learning agents are under study.  
 
To conclude we would insist on the necessity of including learning techniques inside complex 
solving methods such as generalization in order to allow the evolution of such system. It is all 
the most important today where more and more algorithms are shared through the web. We 
should be able to easily adapt knowledge based as soon as new and better algorithms appear.  
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