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ABSTRACT: Throughout the short history of the digital geospatial sciences, human and natural
phenomena have been modeled to develop a better understanding of complex situations. Each attempt at
modeling has captured a small facet of a complex situation and created a simple representation of the
interaction of forces within the complex structure. These models attempt to first identify commonly
occurring associations and relationships between known features and then apply these associations to
known objects and situations. If all the associations and relationships used within each of these models
could be collected and captured as an assemblage of logical predicates, then, ultimately an approximation
of a complex environment would result. We propose doing this as an extended form of an ontological
data structure and applying the resulting network to existing cartographic feature content. The basic
premise of this research is that existing geospatial databases can be augmented with additional feature
content using a formal ontological database containing a extensive relationship network stored in the form
of a predefined set of feature associations and their probable spatial relationships.

Ontologies are commonly used in the information technology realm to explicitly define a set of objects,
concepts, or situations within a subject domain. However, ontologies usually define only what could
exist, not what actually exists or what might possibly exist. Ontologies are developed with the ultimate
intent of being used in some form of inference engine as a predictive tool. However, to be a truly viable
predictive tool a bit more detail must be included in an ontological data structure. For a formal and
explicit ontology of human and natural geographies to be a viable tool for the prediction of existence, it
must provide more detail than just an itemization of a domain’s class structure. Ontologies must provide
some indication of the likelihood of existence — not everything that could exist; but everything that might
exist and some indication of the possibility that each object would exist in a certain region or situation.

As an extension of our past work with geographical taxonomies, we are developing an extended
geographic relationship network of cultural and natural features/objects. It is taking the form of a set of
logical axioms — each axiom describing a specific association between two objects. In addition to the
definition of an association each axiom also contains a probability factor for the occurrence of this
association, a specific spatial or aspatial relationship describing this association, and a spatial probability
factor.
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Introduction

Traditional methods of geospatial database production employ either the exploitation of existing sources
of geospatial feature content or manual/automated digitizing of feature content from imagery. Both
methods have limitations on the quantity of feature content that can be obtained. Feature content of
existing geospatial databases is limited by the database specifications used to capture the data —
specifications often designed for purposes other then visual simulation. In digitizing operations,
economic feasibility and the question of whether the required level of detail is resolvable from the
available aerial photography both dictate the feature content that will be available. Considering the
current high levels of detail that are often demanded, alternative means for rapid and economical
population of extremely high levels of feature detail are essential to keep abreast of ever increasing
customer expectations.



The basic premise of this line of research is that there exist a wealth of untapped feature content that can
be derived from existing geospatial databases — additional feature content that could be used to augment
the existing feature data content used in current GIS systems. Waldo Tobler proposed the “1* Law of
Geography” with the statement, "Everything is related to everything else, but nearby things are more
related than distant things™ [Tobler, 1970]. This bold statement has been the under-pinning premise of
modern geographic information science (G1Sci) and most forms of spatial analysis. By applying Tobler’s
“1% Law of Geography” to the GIS database production process, it should be possible to significantly
increase the feature content of existing feature databases.

Geographic information technology is a means for documenting the location and existence of natural and
cultural features that ultimately appear in real-time simulation databases. We move about our
environment and chronicle the existence of all sorts of objects. This is the gist of the data collection
phase of the geographic information process. Then, using a variety of data analysis methods, we attempt
to relate objects to other objects. This we call spatial modeling, and in effect is a form of after-the-fact
relationship definition. This approach may be adequate for the modeling of simple systems and concepts.
However, when modeling a complex adaptive system, for instance a natural or cultural landscape, we
often finds this approach tends to return simplistic, and reductionist representations of more complex real-
world situations.

However, if we were to approach this problem from a predictive perspective and define the relationships
before the fact; it would then be possible, to a certain degree of probability, to predict the existence of
new features - based purely on what is archived in geospatial databases. To do this, though, we must first
create a definition of all the possible associations, spatial relationships, and their probability of existence,
within a natural or complex system; this would generate a broad-based semantic knowledge database
describing all those possible situations and objects that could occur within a system. This would
ultimately manifest itself as a massive network of axioms that would describe the potential complex
phenomena and situations within a system.

Further, because natural and cultural features and situations are regional in nature each axiom could be
attributed with a variable defining a unique regional or situational setting. For instance, in the case of the
street light class, there is a higher incidence of this class of feature in an urban and suburban setting than
in a rural setting. In the mature urban setting, where much of the electrical infrastructure is underground,
there would often be a one-to-one association of an underground access panel to each street light object.
This association would normally not be present in the rural setting since rural electric infrastructure is
most often overhead. In the case of the suburban setting, this association may or may not apply since the
electrical infrastructure could be overhead or underground.

Associations and relationships of this sort are easily captured in the form of logical axioms with coupled
levels of probability. If these axioms were to be saved as a consolidated knowledge base, the result
would be an interconnected network of associations and relationships. There is a possibility when a
database of this sort is applied to existing geospatial data, the location of new feature content will result —
feature content that could be used to augment visual displays.

The questions we wish to explore are: Is it possible to collect commonly occurring associations and
relationships and then use them to predict additional feature content for use in the preparation of real-time
simulation databases? Using existing sources of vector feature data as a starting point, is it possible to
logically augment that data based on probabilistic predictions? And finally, is it possible to create
provisional feature databases from imagery, and then using probabilistic prediction techniques, logically
augment the image-derived feature data to a more photo-realistic level of detail?



Background

Today, the creation of real-time simulation databases is nothing more than an exercise in multi-source
data fusion. In its simplest form this process involves obtaining data from a variety of disparate sources,
conditioning the data, registering the data to a common ground plane, harmonizing the disparate data to
remove duplicate features, and ultimately post-processing the data into a form suitable for ingestion in an
image generation system. The ultimate level of feature detail is therefore limited by the combined feature
content of the various sources used in the data fusion process.

The current state-of-the-art of data fusion technology exists primarily as low-level object refinement, so
called Level 1 data fusion. This involves combining disparate data “to obtain the most reliable and
accurate estimate of an entity’s position, velocity, attributes and characteristics” [Hall, 2004].
Essentially, this is the same type of processing performed in simulation database generation — the
capturing of object locations and attributes. Hall further states that “Level 2 and Level 3 data fusion
(situation refinement and threat refinement) are currently dominated by knowledge-based methods. ...and
these areas are relatively immature”. Hall goes on to say, “only very primitive cognitive models exist to
replicate the human performance of these functions” [Hall, 2001].

Previous research into the application of rule-based processing have shown, through the use of processes
incorporating contextual content, it is possible to augment existing geospatial feature content with
significant meaningful feature detail [Bitters, 2005].

The Nature of the Problem. Social network analysis is a process for the mapping and measuring of
relationships and flows between people, groups, organizations, animals, computers or other
information/knowledge processing entities. The nodes in the network are the people, object or groups
while the links show relationships or flows between the nodes. Social network analysis provides a means
for both visual and mathematical analysis of the relationships between different groups or entities. This
research effort attempts to apply the basic principles of social networking to the preparation and
augmentation of future GIS databases with a particular emphasis on real-time simulation databases.

The significance of this research effort is that it could:

e Develop processes and capabilities to produce probabilistic knowledge base of the feature content
in natural and cultural landscapes.

e Demonstrate the power of probabilistic ontologies as a tool in modeling complex adaptive
systems.

e Demonstrate the power of probabilistic ontologies to serve as a knowledge base for inference in a
variety of subject domains.

e Demonstrate a common data structure to store logical descriptions of complex networks.

Semantic Web Technologies

Semantic web technology is a software capability that allows the meaning of and associations between
information elements to be known and stored for subsequent use in a variety of web-based and traditional
software systems [Berners-Lee, 2001]. Unlike traditional software technology, where subject matter
expertise must be “hard-wired” into software applications, in semantic technology, domain knowledge,
vocabularies, rules, and meanings are stored separately from data, content files, and application code
[Pollock, 2004]. In semantic web technology a separate knowledge model is essential — a knowledge
model describing those parts of the world to be used by software applications. The world is represented
through a precise definition of how each domain object is associated with other domain objects.
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Figure 1. The Ontology Spectrum: showing the relative semantic level of various forms of ontological
data structures (after Deconta 2003).

An ontology is a formal knowledge model in the form of a representation of a set of concepts within a
domain of discourse and the relationships between those concepts. Ontologies can take the form of word
lists, thesauri, taxonomies, and various other forms of high level conceptual models. One form of
ontology is the taxonomy. It is one of the simplest forms of a knowledge model used in semantic web
technologies. In taxonomies, relationships are implicitly defined by a hierarchical structure. The
hierarchical structure establishes a "parent-child" relationship between domain concepts. These “parent-
child” relationships are often based on functional or visual characteristics. Therefore, the structure itself
becomes a means to identify the nature of basic functional relationships within a domain. Because of the
hierarchical nature of all taxonomies, some concepts are often grouped under more then one category.

Spatial Associations. A spatial association is any commonly occurring co-existence between two
objects. If you live in the suburbs, merely walking outside the front door will reveal some of these more
subtle spatial associations. The existence of the obligatory flowering tree in the front yard is a prime
example of an association - one mandated by many municipality building codes. In most modern
American subdivisions, each residence will have one. A mailbox — most every residential dwelling will
have one. On the edge of the right-of-way notice the utility access box — if there is public water for each
residence, there will probably be a water valve in the utility box. These are all examples of commonly
occurring associations — the features that spatial data mining techniques search for in the development of
spatial association rules.

Spatial Relationships. A primary function of a geographic information system is determining those
factors that dictate the location, distance and proximity between features; for example, the distance
separating hazardous waste disposal sites from hospitals, schools, or housing developments is an example
of a spatial relationship. Spatial relationships are attributes defining either absolute and/or relative
locations of two or more objects. Spatial relationships can be in the form of distances and proximities



between objects, direction of an object from other objects, relative movement of objects, or topological
relations of two or more objects (inside, outside, intersecting, etc.). Traditional geographic information
science (GISci) is concerned with a limited set of spatial relationship such as Equal, Disjoint, Intersects,
Touch, Overlap, Cross, Within, and Contains. However, as can be seen in Table 1, there are significantly
more spatial relationships in common use than the few traditionally used in GISci.

Table 1. Commonly Used Spatial Relationships

Spatial Term | Spatial relationship

above Write your name above the line.
across The house is across the street.
against She leans against the tree.

ahead of The truck is ahead of the car.
along The river bank is along the river.
among He is standing among the trees.
around The fence is around the yard.
behind The shed is behind the house.
below Write your name below the line.
beneath He sat beneath the tree.

beside The girl is standing beside the boy.
between She is between two trees.

from He came from the house.

in front of The mail box is in front of the house.
inside He is inside the house.

nearby There is a tree nearby the house.
off His hat is off.

out of He came out of the house.
through She went through the door.
toward She is walking toward the house.
under He is hiding under the table.
within Please mark only within the circle.

Topological Relationships. Topology is the mathematics of connectivity and adjacency. Topological
relationships are the most common relationship found in spatial databases. In GIS, topological
relationships are used to describe spatial relationships between points, lines and areas — point connectivity
between line segments at nodes (connectivity) and what exists on each side of line segments (adjacency).
Topology is a powerful tool for the determination of relative spatial positions. However, topological
relationships are not the only relations that exist to describe common relation among geographic features.

Functional Relationships.  Functional relationships are spatial properties describing commonly
occurring associations that exist between features — connections and interactions that exist in the real
world. Functional relationships not only include the obvious; for instance, the existence of a highway
intersection at the location where two highways cross; but also include the more subtle situations like the
existence of paired traffic control devices (stoplights, stop signs, or yield signs) located at most highway
intersect.

Logical Relationships. Functional relationships are usually defined using a logical statement in the form
of a logical relationship. Logical relationships describe dependencies — conditions that may exist that can
dictate the existence of another object, a situation, or an event - based on the existence of some known
object, situation, or event. Logical relationships are often described using the “if-then”, “and-or”, or
“not” conditional statements.



Plausibility and the Relationship Situation. Current GISci is based on the assumption that we can
inventory geographic features and then from this inventory predict the existence of other objects,
situations and events. However, the real-world is a network of complex interacting factors. It is an over-
simplification to think that the complex nature of any social, economic, or natural environment can be
adequately defined using only a narrow set of logical and functional relationships. The real-world can not
be adequately described merely by using a set of “if-then” relationships.  Because some level of
uncertainty is always present, when modeling the real-world, this uncertainty factor must be incorporated
as an integral factor of the “if-then” computational process.

Ontologies as Semantic Knowledge Bases. In information technology “Ontologies communicate a
common understanding of a domain, declare explicit semantics, make expressive statements, and support
sharing of information” [Lacy, 2005]. In the future semantic web, ontologies will provide authoritative
descriptions of a domain — descriptions of both objects and the way objects interact with each other. This
will serve as the knowledge base for all advanced processing on the World Wide Web.

However, the standard ontological form used to describe natural and cultural objects is inadequate,
especially when ontologies are employed in any predictive function. Merely defining a set of classes,
with definitions, and hierarchical relationships provides only a superficial representation of knowledge
within a domain — a representation that is adequate only in very basic data mining operations. However,
if ontologies are to be an effective definition of domain knowledge for complex systems and networks,
then the complex nature of the system must be incorporated into the ontology - not merely as a definition
of nodes and links within a complex network, but as an effective predictive tool — a tool that represents all
the uncertainties inherent in a particular complex environment.

Most forms of data analysis are based on a certain level of uncertainty. Therefore, it is essential that some
measure of probability be built into classes and attributes of classes within the typical ontology. In a
geographical ontology, a more appropriate way to describe natural and cultural features would be to
expand the traditional ontological form to include weighted probabilities for all relationships,
associations, and characteristics. In this way, the ontology would not only define absolute existence; it
would define the probability that an object might exist within a defined environment. In this way, it
would then be possible to later infer the plausibility of existence. For this to be possible though, qualified
causal relations, dependencies, and interdependencies must be included as an integral element of all data
components of an ontology. These must be in the form of explicit values and states of probability.

OWL/RDF. The Resource Description Framework (RDF) is a family of specifications and a general
method for modeling information [Manola, 2004]. RDF offers a standardized semantic network data
model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and
the Web Ontology Language (OWL). RDF and its related technologies are currently used extensively as
a means to document domains of computer science. OWL is a family of languages for storing ontologies.
Designed for information processing, OWL was developed to be read and understood by semantic web
applications. With a larger vocabulary and stronger syntax than that of RDF, OWL allows interpretation
and processing by a wide variety of computer applications. Both RDF and OWL are expressed using
Extensible Markup Language (XML).

Relationship Networks. In social network analysis, associations and relationships are viewed in terms of
nodes and links. Nodes are the individual actors/objects within the networks, and links are the
associations and relationships between the actors/objects. Social networks have been used to characterize
complex sets of associations and relationships between members of various types of social systems
[Brandes, 2005].



An extensive geographical ontological data structure exists that identifies 18,000 classes of natural and
cultural objects that commonly appear in the real world [Bitters, 2007]. Expanding this ontology to
include detailed spatial relations, associations, and probabilities would create an advanced logical network
of knowledge — a relationship network - for use in automated image analysis, intelligence analysis, and
for geospatial production in general.

Stored as an ontological data structure in OWL/RDF format, this relationship network would provide a
means to describe and store many of the complexities of both natural and cultural geographies. Using this
network of knowledge as a means for the representation of uncertainty, within a logical inference engine
(classical, Bayesian, Dempster-Shafer, or some future form of logical inference engine) it would be
possible to determine probable existence of additional detail — in other words - to extract information and
conclusions that would otherwise be missed using more conventional logic tools.

Methodology

The following processes are necessary to create a usable association’s ontology of natural and cultural
objects:

Identify object namespace.

Define spatial relationship classes.

Design ontological data structure

Develop association database

Develop/acquire rudimentary inference engine.
Test inference engine.

Initially, the process of creating an ontology of associations and their spatial relationships is an effort in
observation — observing features in the real-world and recording those commonly-occurring associations
that exist. It also involves consulting references to identify associations that have been documented in
past research. The process also includes the capture of local, national, and international laws, ordinances,
rules, and common practices that affect the placement of features on the Earth’s surface. The information
obtained from each of these research efforts must finally be reviewed by subject matter experts to insure
the validity of the observed associations, spatial relations and probabilities.

Object Namespace. In a formal ontological data structure, associations and spatial relations are defined
using a controlled vocabulary to insure a consistent and unambiguous semantic is employed. For a
project of this nature to be a feasible undertaking, a comprehensive object namespace must be available to
allow the use of standard feature class naming. The Visual Objects Taxonomy (VOT) [Bitters, 2007] was
chosen because it contains a hierarchical data structure of over 18,000 named and defined natural and
cultural features. It was developed as a standardized data structure for use in the creation of visual
databases for use in visual simulation. The VOT data structure is an ideal candidate for this project
because it is currently being translated into a set of formal OWL/RDF ontologies and will soon be
available for general public use.

Spatial Relationship Class Definition. Prior to the design of a formal ontological data structure it was
essential to define a set of spatial relationship classes — a set of relationship classes that could be used to
describe a wide selection of common place spatial relations. It would serve as a means to store a
comprehensive set of functional relations describing probable interactions of natural and cultural features
to each other. These spatial relations, in conjunction with their respective associations would then serve
as a mechanism to attach quantifiable values to each association statement.



Table 2. Defined spatial relationship classes.

Basic Relationship Containment Relationship
srLocationOf( ) srOutOf( )

srFrom( ) srContains( )
srToward() srWithin()

Over/Under Relationship | srPartOf()

srAbove() srSurround()

srBelow() srPartialSurround( )
srOnTop() srAmong( )

srBeneath() srConsistsOf()

srOver() srinside( )

srUnder() srOutside()

srOff() Orientation Relationship
sron( ) srOrientation( )
Adjacency Relationship srParallel()
srAdjacent() srParallelOutside( )
srAcrossFrom( ) srParallelWithin()
srBetween() srParallelPartial Within( )
srAlong() srPerpendicular()
srAlongside() srPerpendicularOutside( )
srSide() srPerpendicularWithin()
srRightSide() srFacing()

srLeftSide() Intersection Relationship
srAround() srintersects( )
srAttached( ) srTouches( )
srBackSide( ) srOverlaps( )

srBehind( ) srThrough()

srFront( ) srCrosses( )

srAhead() Surface Relationship
srinFront() srOnGround()
srAgainst( ) srAboveGround( )
srFacing( ) srUnderGround( )
Proximity Relationship Network Relationship
srNear() srBranchOf()

srFar() srTributaryOf( )
Containment Relationship | srTraverses()
srCongruent() srinterconnecting( )
srConnectedTo() Cluster Relationship
srConnectWith() srCluster()
srDetached() srClusterRandom()
srHasPart( ) srClusterLinear( )
srOutOf( ) srClusterNonRandom( )

Ontology Design. The explicit definition of a feature association and their spatial relations must at a
minimum include the following critical elements of information:

A reference object

An associated object

An association probability

A spatial relationship

A relationship probability

A regional delimiter

A temporal delimiter (optional)

An explicit logic statement (optional)



The Reference Object is the object for which an association or relationship is being defined. It is
identified using an explicit reference to a unique and defined feature class — a class previously defined in
an existing ontology.

The Associated Object is the feature class that is associated with the discrete reference object in an
association statement. It is identified using an explicit reference to a unique and defined feature class — a
class defined in an existing ontology. An example of an association is a house and a land parcel. Houses
are usually built on a parcel of land. (Exception: in some areas of the world houses are built on stilts over
water and have no associated land parcel.)

The Association Probability is a value between 0.01 and 1.0 identifying an objective (sometimes
subjective) evaluation of the likelihood of an association to occur in the real world. Table 3 provides a
list of values and approximate verbal equivalents. As an example, a house is most often associated with a
land parcel. Therefore, a probability of 0.99 would be assigned. (This value could vary based on the
region of the world.)

The Spatial Relationship defines the spatial characteristic of an association. Table 2 provides an
extensive set of classes describing spatial relationship for inanimate, non-sentient features. Each
relationship class can include a variable that further defines the spatial characteristic. As an example the
proper form of the proximity relationship — srNear is srNear(10.0) meaning the reference object and the
association object are within 10.0 meters of each other. Multiple relationships may be defined for each
association where each spatial relationship describes a different spatial aspect of the association. In a
relational database, each relationship would be stored as a separate record. As an example, a house is
usually located on a land parcel - srOn(0.0).

The Relationship Probability is a value between 0.01 and 1.0 identifying an objective (sometimes
subjective) evaluation of the likelihood of a spatial relationship to be valid in the real world. Table 3
provides a list of values and approximate verbal equivalents. As an example, a house is most often on a
land parcel (srOn from Table 3). Therefore, a probability of 0.99 would be assigned. This value could
vary based on the region of the world.

Table 3. Probability/Frequency Qualifiers

Probability | Percentage Descriptor

0.99 100 Always

0.9 90 Usually

0.8 80 Regularly
0.7 70 Often

0.6 60 Frequently
0.5 50 Sometimes
0.4 40 Occasionally
0.3 30 Infrequently
0.2 20 Seldom

0.1 10 Rarely
0.01 00 Never

The Regional Delimiter describes a region or country of the world for which the association and
relationship applies. The visual appearance of a natural or cultural landscape is a region-specific
phenomenon. From an overhead, aerial view, landscapes in different regions often look alike. However,
on the ground, those same locations can often look dramatically different and associations and
relationships will vary accord to local laws, traditions, customs, construction practices, and a variety of
other factors.




An optional Temporal Delimiter is available to record any temporal characteristics that might affect an
association or spatial relationship. As an example, this field might be used to indicate the temporal nature
of on-street parking of automobiles in residential areas.

An optional Explicit Logic Statement can be used to further expand on the spatial relationship. For
example in the case of the mailbox/street association, the srNear(1.0) function could be expanded to
(Width + srNear(1.0) ) to formally state that the mailbox location would be the street width plus 1.0
meters from the street centerline.

Accuracy of Probability Values. Classical and more rigorous forms of inference are dependent on the a
priori assignment of representative probability factors. For an association axiom to be usable in an
inference engine, it must have a probability factor assigned that rates the likelihood of occurrence in any
particular situation. Rarely will these values be objective representations of the actual occurrence of any
particular association or relation. It must be assumed that initial attempts at defining these probability
values will include personal and systematic biases. Tuning these values to remove potential biases will
likely be more time consuming then documenting the initial spatial relationships as axiomatic
expressions.

Spatial Association Definition. Laws, ordinances, common practices, habits, and human nature dictate
most spatial associations on the cultural landscape. In natural environments, spatial associations tend to
appear to be more random. However, this appearance of randomness must not be misconstrued as a lack
of predictable associations. In natural settings, though less distinct, associations do exist and can be
qualified; if not quantified.

Each association could have multiple relationships to describe all possible spatial aspects of the
association as is illustrated in Table 4. Using the single-family residential dwelling (SFRD) and mailbox
as an example the following associations and spatial relationships would describe the typical situation of a
mailbox associated with a detached single-family residence in a suburban setting:

A mailbox would be positioned between the SFRD and the street.

The Mailbox would face the street.

The Mailbox would be near the street - within 1.0 meters.

If a driveway were present, the mailbox would be within 3.0 meters of the driveway.

If a walkway from the house to road is present the mailbox would be within 1.0 meters of the
walkway.

Table 4 shows a relational database representation of these associations and relationships and their
probabilities. Figure 2 illustrates the same values in OWL/RDF format. Notice that each association can
be expressed as a statement of fact. For example, in a suburban setting a mailbox can be associated with a
SFRD. Further, ~90% of the time the mail box will be present. Three spatial relationships are defined
for the SRFD-mailbox association:

1) The mailbox is between the SRFD and the street.
2) The mailbox is facing the street.
3) The mailbox is near the street (within 1.0 meter).

Secondary and tertiary associations can provide insight into additional spatial relationships. The location
of a driveway or walkway relative to a SFRD will provide added information to further refine positional
information for the mailbox. A driveway or walkway often connects a house to a street. In a suburban
setting, residential mailboxes are often positioned a short distance from these paved surfaces. By
augmenting the primary SFRD/mailbox association with the spatial relation information associated with



secondary and tertiary associations it is often possible to refine the position of features. In the
SFRD/mailbox example in Table 4, if a walkway is present, a mailbox will be within 1.0 meters of the
walkway. If a driveway is present, a mailbox will be within 3 meters of the driveway. This is an example
of networked relationships and how they can sometimes be used to refine inferences and derived spatial
locations.

Table 4. Associations and spatial relationships describing the single-family residential
dwelling (SFRD) and the Residential Mailbox in a suburban setting.

Reference Association | Association
Object Object Probability | Spatial Relationships Probability

SFRD Mailbox 0.9 srBetween(Street) 0.99

srFacing(Street) 0.99
SFRD Street 0.8 srFacing(Street) 0.99

srinFront(Street) 0.99
SFRD Street 0.9 srConnect(Driveway) 0.99
Mailbox Street 0.99 srNear(1.0) 0.99
Mailbox Driveway 0.8 srNear(3.0) 0.99
Mailbox Walkway 0.5 srNear(1.0) 0.99

Often spatial associations and their spatial relationships appear to be intuitively obvious. At the same
time, they are enlightening because they establish a discrete geometric correlation between the location
and orientation of associated objects relative to the reference objects. In the example above, a spatial
connectivity is established between the street and the SFRD via a driveway. These are all significant
photo-identifiable signatures and in the future have the potential to be autonomously identified from
imagery.

Results

Figure 3 shows a graphic representation of the preliminary result of this experiment. The intent was to
determine if, using a limited set of feature associations, it would be possible to predict the location of new
feature content and augment existing geospatial data. Notice that the predicted locations of new feature
content are consistent with possible locations of the representative types of features that were tested.
However, the predicted feature positions are only approximate and do not represent the actual and exact
ground positions of their real-world counterparts. Figure 4 illustrates the method used to compute the
location of each new feature. Associations relating to the single-family residence, the driveway and the
street feature were found in the relationship network. The spatial extent of each association was
determined as follows: The blue area represents the “BETWEEN” spatial relation — the area between the
house and the road. The green area represents the “NEAR” spatial relationship — the area near the
driveway and in front of the house. The red area represents the “NEAR” spatial relationship — the area
near the road and in front of the house. The geometric intersection of all of these selected spatial
relationships is shown in are black and is the area in which the mailbox would probably be located.
Based on this technique, a new mailbox feature could then be added to a database at the centroid of the
geometric intersection.

A limited set of associations and relationships have been created in OWL/RDF format. These were used
in a rudimentary inference engine to evaluate the efficacy of the probabilistic feature augmentation
concept. This relationship ontology was applied to a set of local government GIS data for a small
residential subdivision. Street centerlines and building footprints were used in this test case. Cumulative
probability computations were not performed since only a limited set of associations had been entered
into the association ontology. The inference algorithm did however consider a minimum allowable
probability value for selection. New feature content was generated during this effort. However, the
following discrepancies were encountered in the feature predictions:
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<owl:Class rdf:ID="SFRD">
<sAssoc:type>Mailbox
<assocProb>0.9</assocProb>
<sRelate:type>srBetween
<sRAttrib:type>Street</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
<sRelate:type>srFacing
<sRAttrib:type>Street</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
</sAssoc:type>
</owl:Class>

<owl:Class rdf:ID="SFRD">
<sAssoc:type>Street
<assocProb>0.8</assocProb>
<sRelate:type>srFacing
<sRAttrib:type>Street</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
<sRelate:type>srinFront
<sRAttrib:type>Street</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
</sAssoc:type>
</owl:Class>

<owl:Class rdf:ID="SFRD">
<sAssoc:type>Street
<assocProb>0.9</assocProb>

<sRelate:type>srConnect
<sRAttrib:type>Driveway</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
</sAssoc:type>
</owl:Class>

<owl:Class rdf:ID="Mailbox">
<sAssoc:type>Street
<assocProb>0.99</assocProb>
<sRelate:type>srNear
<sRAttrib:type>1.0</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
</sAssoc:type>
<sAssoc:type>Driveway
<assocProb>0.8</assocProb>
<sRelate:type>srNear
<sRAttrib:type>3.0</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
</sAssoc:type>
<sAssoc:type>Walkway
<assocProb>0.5</assocProb>
<sRelate:type>srNear
<sRAttrib:type>1.0</sRAttrib:type>
<sRProb:type>0.99</sRProb:type>
</sRelate:type>
</sAssoc:type>
</owl:Class>

Figure 2. The single-family residential
dwelling mailbox example encoded into
OWL/RDF format.



o More manholes were predicted than actually exist on the ground. A more detailed algorithm is
required for the prediction of locations for this feature class.

o Fewer stop signs were predicted than exist on the ground. Algorithmically determining priority at
intersections is problematic.

e In this locale, not all houses have residential mailboxes. Determining which houses do not have
mailboxes is algorithmically difficult.

Conclusions and Future Research

This preliminary research effort indicates that there is potential for the determination of additional feature
content from existing geospatial databases. With additional study, this approach to spatial database
production has the potential to allow the addition of new feature content to geospatial databases. This
will only be possible after the development of a broad-based ontology of natural and cultural features and
their commonly occurring associations and their spatial relationships. To date, a broad-based OWL/RDF
ontology defining extensive associations and relationships is not yet available. Early prototyping has
shown that the inference of new feature locations from a priori spatial relationship information is
possible. It is possible to predict reasonably accurate ground locations of new feature content. However,
the precise positioning of new feature content based on stored spatial relationships is still problematic and
warrants further study.

Many potential uses exist for spatial relationship networks. The development of spatial databases to
support future very high detail visualization environment would be an ideal candidate for this type of
database production. The deployment of military systems in tactical environments is based on repetitive
exercise — repetitive exercise based on soldiers “training the way they fight”. The rich friendly and
opposing force doctrine provides many of the associational and inter-relation information necessary to
generate a spatial relationships network — a database that could have broad implications in future battle
space prediction. This type of database could also be used in the data fusion process to fill gaps in
intelligence collected and generated from non-persistent surveillance systems. It could also be used as an
automated mentoring tool to train image analysts. The analyst would identify an object on an image and
the software could suggest other features that might be associated with the selected feature. In the
environmental sector, the spatial relationship network could also be used as a tool to model the inherent
intricacy of complex adaptive natural systems.

GIS is concerned with the creation and storage of detailed data describing real-world environments —
environments that are complex adaptive systems. In the past, GIS systems were limited by computing
capabilities and as a result produced and stored simplistic representations of environments. In the future,
with anticipated improvements in computing and display capabilities, it will be possible to portray the
true complexities of cultural and natural environments. Only by harnessing the complex network of
relatedness within real world environments, it will be possible to portray and model these environments in
their actual depth of detail.
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