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ABSTRACT: We present a new methodology for concisely encoding a map’s topological 
structure based on an order-theoretic characterization of planar graphs.  We describe how to 
implicitly store and recover a map’s topological connectivity information by folding information 
about the edge structure of its embedded line-segment graph into new numerical topology-based 
coordinates chosen for the graph’s vertices.  We examine properties of our alternative geometric 
realization and show how to build cartograms by systematically altering our topological 
coordinates to modify the regions’ relative areas.  
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Introduction 

The goal of this paper is to bring some recent results in combinatorial geometric graph theory to 
the attention of computer mappers and GIS algorithm developers.   Some key mathematical 
concepts that we will use are abstract graphs, graph drawing, planar graphs, and plane graphs.  
An abstract graph G(V,E) consists of two finite sets V and E.  The set V = {v1, v2, . . . , vn} 
consists of n elements called vertices, and the second set E = {e1, e2, . . . , ek}  consists of k 
elements, each of which is a pair of the aforementioned vertices:  es = {v1s, v2s}, for s = 1, 2, . . . , k.  
The vertices v1, and v2s are called the endpoints of es.  The vertex-pair elements of the second set 
E are called edges.  An abstract graph is not a drawing of labeled points representing vertices and 
curved or straight, crossing or non-crossing lines linking those pairs of points that represent pairs 
of vertices that are edges, although such a drawing is frequently used to communicate the makeup 
of the vertex and edge sets.  Such a drawn depiction of an abstract graph is called a graph 
drawing.  If all edges are depicted as straight line segments that do not cross each other, then the 
drawing will be called a proper graph drawing.  An abstract graph may have many different 
proper graph drawings; or it may have none.  A planar graph is an abstract graph for which there 
exists some proper graph drawing.  A planar graph realization is the actual drawing itself.  The 
drawing is also called a plane graph or a planar graph embedding in 2.  The so-called 
primitives or basic building blocks of our embedded plane graph maps will be points or graph 
vertices (0-D elements), straight line segments or graph edges (1-D elements), and connected 
(polygonal shaped) components (2-D elements) of the set complement of the graph in the plane. 
When we refer to a map’s topology, we are referring to the adjacency and connectivity relations 
among the map’s labeled primitive 0-D, 1-D, and 2-D elements (points, line segments, and 
polygonal regions).  The abstract graph alone accounts for the 0-D through 1-D topology.  The 
way a drawn graph separates the plane gives us the remaining topological relations. 
When we refer to a map’s geometry, we are referring to the actual positioning or location within 
the map’s plane coordinate frame of the labeled points or vertices and the labeled segments or 
edges.  Geometry refers to a specific graph drawing, and not to the underlying abstract graph. 



Schnyder’s Key Constructions and Results 

In the late 1980s, Walter Schnyder discovered many beautiful and unexpected properties of 
realizations of planar graphs that will provide the basis for our exposition here.  One of 
Schnyder’s key discoveries was how to construct a proper graph drawing for a planar abstract 
graph from just the graph’s edge/vertex structure.   We summarize some of Schnyder’s key 
findings and new approaches, starting with some basic definitions.   
 
   A triangular graph is a maximal plane graph on a set of n vertices in the plane having 
exactly three of the n vertices in its convex hull.  A triangular graph is a triangulation of the n 
vertices; and a triangular graph always has [2n – 5] interior triangles and [3n – 6] edges.   

 

   
 

Figure 1.  A plane graph and a triangular graph containing it 

   
Every plane graph may be systematically extended to a triangular graph. One such systematic 
extension for a plane graph can be built, for example, from the graph alone with only three new 
hull vertices by first constructing a constrained Delaunay triangulation of the graph’s convex 
hull and then placing that triangulation in a large containing triangle, as illustrated in Fig. 1.  

 
A normal angle labeling of a triangular graph is an assignment of a number from the set 
{1,2,3} to each of the [6n – 15] angles of the interior triangles such that two conditions hold: 

 
[Normal labeling condition for triangles]  Every triangle contains all three different labels 
with “2” following “1”, and “3” following “2” in clockwise order in each triangle.  
[Normal labeling condition for interior vertices]   At every interior vertex, there is a single 
non-empty sequence of “1” labels, followed in clockwise order by one non-empty sequence of 
“2” labels, followed in clockwise order by one non-empty sequence of “3” labels. 

 

    
Figure 2.  Criteria for an angle labeling to be normal and a normal labeling of the triangular graph 

 



Schnyder showed by an inductive argument that normal labelings are always possible for any 
triangular graph.  He also showed that the three extreme or hull vertices of the triangular graph 
each have only one label assigned to all angles at the vertex; and that one extreme vertex has 
all angle labels equal to “1”, followed in clockwise order by the extreme vertex with only angle 
labels equal to “2”, followed in clockwise order by the third extreme vertex having only angle 
labels equal to “3”.   We say that the extreme vertex whose angles all have the label “i” is the 
extreme vertex associated with the label “i”. 
 
Property 1 (Schnyder, 1989).  Every triangular graph has a normal labeling of its angles. 
 
Although the normal labeling is not necessarily unique, each normal labeling of angles gives 
rise to a unique edge labeling of all edges having at least one interior vertex as an end point.  
Such an induced edge labeling has the same three labels as the normal angle labeling. 
 
Every interior edge of a triangular graph 
participates in two triangles and four angles.  
Since there are only 3 different labels, at least 
one label must appear twice among the four 
labels associated with an interior edge.  If our 
angle labeling is normal, it turns out that there 
are only three possibilities for the combinations 
of the four angle labels that appear adjacent to an 
edge in a normal labeling of a triangular graph.  
On the right-hand side of Fig. 3, we see the 
possible angle labels for a “1-edge” or edge of 
type 1 (the blue edge shown with two associated “1” labels), a “2-edge” or edge of type 2 (the 
yellow edge shown with two associated “2” labels), and a “3-edge” or edge of type 3 (the red 
edge shown with two associated “3” labels), respectively.  

 
Property 2 (Schnyder, 1989).  The normal labeling of angles induces a directed-edge labeling 
on the same 3 labels, where the direction of the edge is toward the vertex with duplicate labels. 

 
Conversely, an appropriate directed-edge labeling 
gives rise to a normal angle labeling:  if we start with a 
directed edge labeling of a triangular graph that 
satisfies the two conditions: (1) at any interior vertex 
there are exactly three out-directed edges, one of each 
different type 1, 2, and 3, appearing in clockwise 
order; and (2) for {i, j, k} = {1, 2, 3}, all in-directed 
edges of type i come into the vertex in question 
between the out-directed edges of the other two types, 
j and k, as shown in Fig. 4, then the directed edge 
labeling induces a unique normal angle labeling of the 
triangular graph. 
 
Property 3.  Every internal vertex has out-degree 
three, and all three different edge labels each occur 
once on the three out-directed edges. 
 
The set of all directed edges that have the same label, 
say label “i”, together with all of the (n – 3) interior vertices plus the one extreme vertex 

Figure 3.  Impossible (left) and possible   
(right) angle labelings around an edge 

Figure 4.  At each interior vertex 
there are exactly three out-edges 



associated with the label “i”, together form a graph that is a tree or directed acyclic graph 
(DAG) connecting all interior vertices to the root that is the extreme vertex associated with “i”.  
If we ignore the three hull or extreme edges of the triangular graph, then we see that the graph 
edges are partitioned into three disjoint tree edge sets.  Every interior edge belongs to exactly 
one of the three trees Ti associated with edge label “i”.  We summarize this result in the 
following property noted by Schnyder and illustrated in Fig. 4. 

 
Property 4.  For any edge label i, the set of edges with that label form a tree Ti linking all 
interior vertices to the hull vertex corresponding to that label. 

 
 

   

 
Figure 4.  A normal labeling induces a partition of the directed edges into 3 trees 

 
One important property of a tree is that, for any two vertices of the tree, there always exists a 
unique path between them.  In particular, for any interior vertex v, there is always exactly one 
i-path made up of i-edges of Ti from v to the extreme vertex associated with the label “i”. 
 
For any interior vertex v, the three paths (one from each tree Ti as illustrated in Fig. 5 by the 
thick dashed polylines) linking v to the three hull vertices separate or partition the space of the 
triangular graph into three regions, each region being made up of some subset of all of the 
interior triangles. 

 
Figure 5.  For every vertex v, the paths to the 3 corners 3-partition the region 



If, for example, for every interior vertex v, we count the number of triangles in each of its three 
regions, and then we divide each of the three counts by the total number of triangles [2n – 5], 
we wind up with, for every vertex v, three non-negative rational numbers whose sum is always 
equal to 1.  In our example in Fig. 5, we have n = 13, [2n – 5] = 21, and vertex v is associated 
with 7/21, 1111/21, and 3/21, representing the fraction of triangles in the three regions opposite 
the extreme vertices labeled (and colored) “1”, “22”, and “3”, respectively. 
 
The three resulting triangle-count-fractions look like barycentric coordinates in that they sum 
to 1 and are all between 0 and 1.  If we use triangle-count-fractions as actual barycentric 
coordinate locations for the vertices in our directed-edge-labeled triangular graph, we can 
construct new graph drawings of our abstract triangular graph with an amazing property: 
 
Theorem (Schnyder, 1989)  If we take any three non-collinear points p1, p2, and p3 in the 
plane, and if we relocate every vertex v from our directed-edge-labeled triangular graph to a 
new position so that its triple of triangle-count-fractions are the actual barycentric coordinates 
with respect to p1, p2, and p3, then the drawing that we obtain by connecting with straight line 
segments every pair of vertices that constituted an edge in our original triangular graph will be 
a proper graph drawing of our triangular graph.   
 
It turns out that triangle-count-fractions are not the only numerical values that can serve as 
barycentric coordinates for proper graph drawings.  In fact, any probability measure that we 
can apply to the set of all regions that arise from all possible vertex 3-partitions will produce 
barycentric coordinates for a realization of our triangular graph with a proper graph drawing. 
 
Probability Measures on Directed-Edge-Labeled Triangular Graphs 

Suppose we start with a directed-edge-labeled triangular graph G(V,E).  For each interior 
vertex v, the three paths p1(v), p2(v), and p3(v) from v to the three hull vertices labeled “1”, 
“2”, and “3”, respectively, divide the space of the triangular graph into three closed regions 
R1(v), R2(v), and R3(v), whose pairwise overlap Ri(v)∩Rj(v) = pk(v), is one of the three paths.    
Consider the family A of all regions arising as partition regions: A = {Ri(v) | v∈V, i = 1,2,3}.  
We say that µ is a probability measure on these region sets if µ is a function, µ : A → [0,1], 
satisfying: 
  µ(R1(v)) + µ(R2(v)) + µ(R3(v)) = 1 for all interior vertices v.  (1) 
  If, for some i, v, and w, Ri(v) ⊂ Ri(w), then µ(Ri(v)) < µ(Ri(w)).  (2) 
 
The first condition of the definition is called the “additivity-to-1 condition,” and it makes our 
measure a probability measure.  The second condition is called the “monotone condition.”  
Every probability measure associated with the sets generated by the 3-partitions provides new 
generalized barycentric coordinates for the vertices, where each vertex v is associated with the 
triple of values (µ(R1(v)), µ(R2(v)), µ(R3(v))).  If we re-locate the vertices as if the new 
generalized barycentric coordinates were actual barycentric coordinates (for any triple of non-
collinear points), then the straight line segments connecting every pair of vertices that 
correspond to an edge will not cross each other and will produce a proper graph drawing of the 
original abstract triangular graph.  The triangle-count-fractions are just one example of a valid 
barycentric-coordinate-generating probability measure.  There are many others. 
 
One simple probability measure that would extend and generalize the triangle-count-fraction 
measure would be to give the different [2n – 5] triangles different weights that nevertheless 
still sum to 1 (instead of simply giving each triangle the same weight of 1/[2n – 5]).  Since 



every region Ri(v) is composed of whole triangles, any probability measure that we define on 
the individual triangles can be easily extended by additivity to the 3-partition regions Ri(v). 
 
The key to the proof that the probability measures provide generalized barycentric coordinates 
for a proper graph drawing lies in the following observation:  If the vertex pair {v,w} is an 
edge in the directed-edge-labeled triangular 
graph G(V,E), then µ(Ri(v)) ≠ µ(Ri(w)) for 
all i in {1,2,3}.  In other words, if two vertices 
are adjacent in the triangular graph as they are 
in Fig. 6, then none of the three generalized 
barycentric coordinates assigned to v can 
equal the corresponding generalized 
barycentric coordinate assigned to w.  The 
fact that the regions (R2(v) – R2(w)) and   
(R3(v) – R3(w)) can neither be empty nor 
have measure zero assures that the second 
and third barycentric coordinates of v are 
greater than the corresponding coordinates of 
w.  By the additivity-to-1 property, the first 
barycentric coordinate of v must be strictly 
less than the first barycentric coordinate of w. 
 
We now formally define discrete barycentric 
coordinates (DBCs) for all vertices of a given directed-edge-labeled triangular graph (DELTG) 
G(V,E) in terms of some given probability measure (PM) µ applied to the three regions R1(v), 
R2(v), and R3(v), of the DELTG 3-partition at v for each vertex v.  The DBCs for each vertex v 
of DELTG G(V,E) with respect to the PM µ are the numbers of the triple (µ(R1(v)), µ(R2(v)), 
µ(R3(v))).  These three numbers always sum to 1.  If we interpret the triple as actual 
barycentric coordinates for a new placement of each vertex v for all v∈V with respect to any 3 
non-collinear anchor points p1, p2, and p3, we may place the points and simultaneously be able 
to realize all of the edges of E as straight line segments in a proper graph drawing.    

 
It is worth pointing out that our particular applications for Schnyder’s theory involving maps 
and mapping are seeking to go from one placement of features to a different placement of 
features while preserving topological structure.  We will see in the section on cartograms one 
situation in which a purposeful repositioning of features may be carried out.  We will also 
show in a later section that merely by repositioning vertices according to discrete barycentric 
coordinates, we have actually implicitly encoded all of the edge information of our triangular 
graph.  This rather amazing result is yet another justification for our labeling our coordinates 
“topological.”  Who would have suspected that telling where to place the vertices could also 
simultaneously serve to uniquely specify one and only one compatible edge structure? 

 
It is perhaps also worth noting that Schnyder’s original work was not focused on repositioning 
graph features, but rather on finding some good legitimate placement (a construction) for the 
features, working only from the abstract graph G(V,E) itself and from non-constructive proofs 
of the existence of realizations.  Although our exposition here uses proper graph drawings to 
highlight many of our ideas, Schnyder was able to utilize properties on the abstract graph level 
that are equivalent to our drawing-dependent notions of normal angle labelings and directed-
edge labelings.   

 

Figure 6.  Endpoints of an edge have no 
 common barycentric coordinates 

 



Before we proceed further with our exposition on generating new kinds of barycentric 
coordinates, let us review briefly how barycentric coordinates come into play in more 
traditional settings. 
 

Relation of Cartesian Coordinates to Barycentric Coordinates 

Cartesian coordinates are used more than barycentric coordinates, but the two have some 
similarities that are useful.  
 
Cartesian coordinates (x,y) permit every point p in the plane to be uniquely represented by two 
real numbers x and y, where x is the horizontal distance of the point from the vertical y-axis 
(negative, if p is to the left), and y is the vertical distance of the point p from the horizontal x-
axis (y is negative if p is below the x-axis).  The left-hand side of Fig. 7 illustrates that points 
belonging to a vertical line all have the same x coordinate, and all points lying on the same 
horizontal line all share the same y coordinate. 
 
    

     Cartesian coordinate frame                    Barycentric coordinate frame 

    
 

Figure 7.  Lines of a constant coordinate value 

 
 
 
Barycentric coordinates (α1, α2, α3) permit every point p in a given triangle ∆p1p2p3 to be 
uniquely represented by three real numbers α1, α2, and α3, where α1 is a weighted distance of 
the point p from the line p2p3, α2 is a weighted distance of the point p from the line p1p3, and 
α3 is a weighted distance of the point p from the line p1p2. The weights in the three cases are 
proportional to the length of the side in question.  The right-hand side of Fig. 7 shows that 
points belonging to a line parallel to p2p3 all have the same α1 coordinate, that all points 
belonging to a line parallel to p1p3 have the same α2 coordinate; and that points belonging to a 
line parallel to p1p2 all have the same α3 coordinate. 
 
Barycentric coordinates provide a unique location to points within a triangle, and, by natural 
extension, to every point in the plane.   Given any three points in the plane p1 = (x1, y1),  p2 = 
(x2, y2), and p3 = (x3, y3), we form linear combinations of the points as follows: 
 

α1p1 + α2p2 + α3p3 = (α1x1 + α2x2 + α3x3, α1y1 + α2y2 + α3y3), 
 

where α1, α2, and α3 are any real numbers. 



 
If the three points p1, p2, and p3 are not collinear, then every point p in the plane may be 
written as some (not necessarily unique) linear combination of the three points.   
 
If, however, we further require that α1 + α2 + α3 = 1, then for any point p, the choice of the α1, 
α2, and α3 will still exist, but the triple of numbers will also be uniquely determined.   
If all of the α1, α2, and α3 are non-negative and add up to 1, then they must also all be less than 
1, and the point α1p1 + α2p2 + α3p3 will lie inside the triangle formed by p1, p2, and p3.   
 

Moreover, for every point p on or inside the triangle, there 
is a unique triple of numbers (α1, α2, α3) that satisfy: 
 
 p = α1p1 + α2p2 + α3p3   (1) 
 1 = α1 + α2 + α3     (2) 
 0 ≤  αi ≤ 1, for i = 1, 2, 3   (3) 
 
The three numbers α1, α2, and α3 that make up this triple 
are called the barycentric coordinates of p with respect to 
p1, p2, and p3.  
 

The values of α1, α2, and α3 are easy to interpret and evaluate:  If {i,j,k}={1,2,3}, and if Ai is 
the area of ∆ppjpk, the inside triangle opposite the vertex pi, then:  
   

        αi = Ai/(Ai+Aj+Ak) =   .      

Thus the αi’s are the relative sizes                                 
of the three interior triangles.  If we drop condition (3) and allow the values of the αi’s to take 
on negative values and values larger than 1, but continue to insist that the αi’s sum to 1, we can 
still uniquely represent any point p in the entire plane (inside, on, or outside the triangle) by 
(α1, α2, α3), and we will call the triple the plane barycentric coordinates of p with respect to 
p1, p2, and p3.  We can now state quite simply a relation between barycentric and Cartesian 
coordinates 
 
Proposition:  There exist three points p1, p2, and p3 in the plane such that the plane barycentric 
coordinates (α1,α2,α3) of any point p with respect to p1, p2, and p3 are related to the Cartesian 
coordinates (x,y) of that same point p by: α1 = x, and  α2 = y. 
 
Proof:  Fig. 9 shows that one 
may choose p1 = (1, 0), and 
p2 = (0, 1), and p3 = (0, 0), so 
that:    α1p1 + α2p2 + α3p3 = 
   α1(1, 0) + α2(0, 1) + α3(0, 0)      
=  (α1, 0) + (0, α2) + (0, 0)  
=  (α1, α2)  
=  (x, y) .   
Thus, α1 = x, and  α2 = y. 

  

Figure 8.  The geometry of 
barycentric coordinates 

Figure 9.  The first two (plane) barycenctric coordinates 
equal the Cartesian coordinates 



The last proposition states that we may simply treat the first two barycentric coordinates as if 
they were Cartesian coordinates if we wish to make some barycentric coordinate graph 
drawing for some choice of 3 non-collinear anchor points.  Suppose we were to take 3 different 
non-collinear points as our anchor points, but keep the same barycentric coordinate values for 
our features, and apply them to the new anchor points.  This would amount to nothing more or 
less than applying an affine transformation of the whole plane that moves the old three points 
to the new three points (and all our features accordingly).  In particular, any affine 
transformation sends lines to lines, parallel lines to parallel lines, intersecting line segments to 
intersecting line segments, and non-intersecting line segments to non-intersecting line 
segments.  Consequently an affine transformation of the plane will always send any proper 
graph drawing to a proper graph drawing.  Therefore, the choice of anchor points for drawing 
our triangular graph will not matter.  Our graph drawing will either be always proper or never 
proper. 
 

Discrete Barycentric Coordinates 

The values that we compute for our discrete barycentric coordinates arise from some 
combinatorial probability measure µ defined on our 3-partition regions.  Since each interior 
vertex gives rise to 3 regions, and since there are [n – 3] interior vertices, our probability 
measure µ needs only to be defined on [3n – 9] regions and satisfy the “additivity-to-1” and 
monotonicity conditions there.  Here are six candidate probability measures for producing new 
discrete barycentric coordinates while maintaining the same topology: 
 
1. µ(Ri(v)) = [# of ∆s in Ri(v)]/[2n – 5]  
2. µ(Ri(v)) = [# of vertices in Ri(v) – # of vertices on pi+1(v)]/[n – 1] 
3. µ(Ri(v)) = [# of edges in Ri(v) – # of edges on pi+1(v)]/[3n – 6] 
4. µ(Ri(v)) = [# of interior vertices in Ri(v) + ½(# of boundary vertices in Ri(v))]/[n + ½]   
5. µ(Ri(v)) = [Area of Ri(v)]/[Area of the whole triangular graph] 
6. µ(Ri(v)) = [Population of Ri(v)]/[Total population] 
 
In example 6 immediately above, for monotonicity, we must always have strictly smaller 
populations associated with proper subregions.  This is equivalent to requiring that all 
difference regions, such as the two depicted in Fig. 6, must have positive populations. 
 
Note especially that any conversion via any valid µ to barycentric coordinates followed by 
redrawing the graph with vertices in new positions does not change the topological relations of 
the original graph.  If the computation of the new barycentric coordinates only depends on 
topological properties, as it does in examples 1 through 4 above, then using the newly drawn 
graph to once again try to generate new barycentric coordinates will result in the same 
coordinates generated by the first iteration.  Another way of describing that outcome is to say 
that generating new barycentric coordinates is an idempotent operation for the probability 
measures in examples 1 through 4 above.  Applying the operation twice gives the same output 
as applying the operation once. 

Cartograms 

Our ability to now change vertex placements (in a number of different ways using different 
probability measures) while still maintaining map topology is a natural impetus to ask 
ourselves if we can find a measure µ  that generates a specific desired outcome such as being 
able to achieve pre-specified area ratios among map regions.  Such a measure would be ideal 



for building cartograms, maps with areas altered to reflect the size of some variable associated 
with the regions.  Although our search for good measures to accomplish area redistribution 
could start with a specific map and an embedding of that map into a triangular graph, we will 
focus, as did Tobler (2004), instead on how to modify some regular underlying grid to 
accomplish our desired area re-distribution.  
Once we know how to modify the graticule, 
so to speak, we can easily redraw map 
features with respect to their appropriate 
placement within the deformed graticule.   
 
We will build a special triangular grid that 
has the property that its triangle-count-
fraction barycentric coordinates are equal to 
its actual barycentric coordinates.  To begin, 
we first build a nice symmetric directed 
edge-labeled triangular graph, illustrated in 
Fig. 10, for which we can easily count 
triangles in each of the regions Ri(v).  The 
example drawn in Fig. 10, although small in 
complexity, is sufficiently large enough to 
allow us to describe the behavior for 
arbitrarily large symmetric triangular graphs 
with the same shape and structure (see inset 
notes in Fig. 10).  Using the formulas shown 
in Fig. 10, and larger values for n and N,  
we redraw the triangular graph using 
triangle-count-fraction barycentric 
coordinates to produce Fig. 11.  Finally, if 
we superimpose our special grid on a map, 
as shown also in Fig. 11, we may use 
geographic data to populate map regions, 
and hence grid triangles, with probability 
weights corresponding to geographic data 
sizes.  These new weights will provide a 
probability measure as in example 6 of the 
previous section, from which we may 
compute new barycentric coordinates for the 
triangular grid points and consequently for 
map points by their positions within the 
initial and deformed grid. 

 
There are obviously many different ways of 
using other discrete barycentric coordinates 
to redraw a topologically equivalent map.  
We encourage others to experiment with 
these techniques and further explore 
cartogram building with the tools we have outlined.  Instead of examining other applications of 
discrete barycentric coordinates, we finish by highlighting the property that makes them truly 
topological coordinates—they encode the full edge structure of the triangular graph. 

 

Figure 10.  A symmetric directed-edge-
labeled triangular graph for which µ will be 

taken to be the triangle-count-fraction 
 

Figure 11.  A transformed triangular graph 
for which triangle-count-fraction coordinates 

actually equal barycentric coordinates 



Edge recovery from discrete barycentric coordinates 

Suppose that you are given some set of discrete barycentric coordinates for a collection of 
vertices.  The fact that they are DBCs means that they came from a probability measure with 
the monotonicity property applied to a directed-edge-labeled triangular graph.  The important 
consequence of that origin is that the triangular graph itself has a 3-tree edge-independent 
decomposition, as we illustrated in Fig. 4.  We describe now how to recover the edges for each 
of those three trees.  Here is what we need to check about barycentric coordinates to see if the 
vertex pair {v, w} corresponds to a type 1 (or blue) edge directed toward w.  There are five 
other equivalent tests we can perform to cover all of the other edge possibilities:  a blue edge 
directed toward v, a yellow edge directed toward v or w, and a red edge directed toward v or 
w. If the vertex pair fails all six tests, then there is no directed edge connecting the two 
vertices.  If the vertex pair passes one of the tests, then we have found the edge (and its color 
and direction).  So, here is the test (based on partial orderings of the barycentric coordinate 
triple): 
 
Suppose v has DBCs equal to (α1, α2, α3) and w has DBCs equal to (β1, β2, β3).  Then a 
necessary condition for {v, w} to be an edge of type 1 (blue) direct toward w (as we can verify 
from Fig. 6) is that all three following strict inequalities must hold: 
 
   α1 < β1     (1) 
   α2 > β2     (2) 
   α3 > β3     (3) 
 
If even one of these inequalities fails to hold, then there can be no directed blue edge from v 
toward w.  Suppose that all the inequalities hold.  Is there some way that {v, w} can still fail to 
be an edge?  Yes.  The blue directed acyclic graph is transitive with respect to those 
inequalities.  So the inequalities would hold if there exists a directed blue path from v to w.  
Therefore we need another test to rule out a non-direct connection from v to w.  The other test 
would look for and rule out any intermediate vertices on the path: 
 
For every other vertex u with barycentric coordinates equal to (γ1, γ2, γ3), it is not the case that: 

 
   α1 < γ1 < β1    (4) 
   α2 > γ2 > β2    (5) 
   α3 > γ3 > β3    (6) 
 
In the language of partial orders on vertices with DBCs, we can define “v <1

* w” to mean that 
conditions (1) – (3) in the preceding paragraph hold, and we say that w “<1

*-covers” v if there 
exists no u such that v <1

* u <1
* w.  In other words, conditions (4) – (6) do not hold for any u. 

 

Some Final Remarks and Conclusions 

GIS users traditionally talk about “building map topology from geometry.”  What they actually 
do is fix both geometry and topology by identifying primitives or fundamental topological 
building blocks and their (new) geometry.  They do this by first finding line intersections and 
polygonal regions from so-called input “spaghetti data,” then by identifying the topological 
primitives either as subsets of the original input geometric entities or as connected components of 
the complement of the original input geometric entities.  Our work does sort of the opposite:  we 
have used a map’s topology to compute a geometry, a placement of the geometric features.  We 



also “rebuilt geometry.”  We started with a geometry, built a topology, then built alternative 
geometries, different placements of the geometric features.  We described ways of finding new 
coordinates for all of the map’s vertices based only on the map’s topology.  Those newly 
calculated coordinates were used to designate where to position or re-position the vertex points 
(and, for that reason, we referred to the new position information as “topological coordinates”).  
We saw that if we connected by straight line segments every newly positioned pair of vertices 
that had been a graph edge of the original topological graph, then we would create a straight-line-
segment realization of the original topological graph.  Some of the tools we used to discover a 
vertex placement were based only on topology and did not use any a priori geometry knowledge.  
Such tools were first used by Schnyder to find a realization of an abstract planar graph. 
 

We chose our title, “Topological coordinates,” to arouse the reader’s curiosity because the title is 
a seeming oxymoron.  Coordinates usually provide a fixed space-regular geometric framework 
such as 2 for anchoring map feature locations, whereas topology usually deals with a relational 
structure among map features that goes beyond any particular location assignment of those 
features in 2 or other 2-D coordinate space.  We hope that the reader has gained a little bit more 
insight into some of the recently discovered interplay between geometry and topology through 
our exposition. 
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