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Algorithms for On-the-Fly Generalization of Point Data Using Quadtrees
Pia Bereuter and Robert Weibel

ABSTRACT: With a focus on mobile and web mapping, we propose several algorithms
for on-the-fly generalization of point data, such as points of interest (POIs) or large point
collections. In order to achieve real-time performance we use a quadtree. With their hier-
archical structure and progressive levels of detail, indexes of the quadtree family lend
themselves as auxiliary data structures to support algorithms for generalization opera-
tions, including selection, simplification, aggregation, and displacement of point data.
The spatial index can further be used to generate several measures on the relative point
position and proximity of points, neighborhood, clusters, local and global density, etc.
Using the tiles of the tree structure, such measures can be efficiently generated and up-
dated. These measures can then serve to make educated guesses on the density and prox-
imity of points across a series of map scales, and thus enable to control the operation of
the generalization algorithms. An implementation of the proposed algorithms has shown
that thanks to the quadtree index, real-time performance can be achieved even for large
point sets. Furthermore, the quadtree data structure can be extended into a storage struc-
ture, which can be used to store pre-computed generalizations; thus, a desired level of de-
tail can simply be retrieved from storage.

KEYWORDS: mobile and web mapping, on-the-fly generalization, point data generalization,
POI, spatial index, auxiliary data structure, quadtree

Introduction

In comparison to map generalization for paper maps, map generalization for mobile map-
ping and interactive web mapping has a different set of requirements, in particular its
need for on-the-fly generalization and adaptation to user interaction and content. Web or
mobile mapping applications typically display some thematic foreground data — pre-
dominantly in the form of point data such as points of interest (POIs) or large point col-
lections — against the spatial reference provided by some background data (e.g. a topo-
graphic map or orthoimagery). The background data is usually assumed to be static in
content and can thus be rendered by a pre-generalized tile service (OSM-based map ser-
vices, Google Maps, Bing Maps) to provide seamless map interaction. The foreground
data, on the other hand, will vary in content depending on the user’s request. Thus, carto-
graphic generalization of foreground data has to be achieved in real-time, requiring flexi-
ble, on-the-fly generalization algorithms (Weibel and Burghardt, 2008). However, so far
only few algorithms for on-the-fly generalization of point data have been proposed in the
literature. As a quick survey of online mapping applications will easily show, most of
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these applications simply render the foreground point data in an ungeneralized way, po-
tentially resulting in massive overlaps and clutter, depending on the density and distribu-
tion of the point data. Such applications are usually implemented as mash-ups on the ba-
sis of map services such as the ones mentioned above. Of course, since the map service is
interactive, the user has the option to zoom in further until spatial conflicts among the
foreground data disappear. On the other hand, the overview of the overall spatial distribu-
tion will then disappear.

Thus, we believe that on-the-fly generalization of large point data sets is necessary in
web and mobile map services. Such generalization functions should be sufficiently fast to
achieve real-time performance, and they should be flexible in order to adapt to varying
contexts and user requirements.

In this paper, we propose several algorithms that use a quadtree index as an auxiliary data
structure. Using this index structure allows achieving real-time performance for large
point sets. The quadtree also supports the computation of various measures such as local
point density, and allows to implement different generalization operators, including selec-
tion, simplification, aggregation, and point feature displacement. Using these different
generalization operators informed by measures computed from the quadtree, mobile
mapping applications for point data can achieve flexibility and adaptation.

Background and Related Work

Generalization Operators

In classic map generalization different generalization operators are applied to reduce spa-
tial conflicts (McMaster and Shea, 1992). Due to the fact that in most maps geographic
space is not distorted, object-directed approaches are mostly used (Bereuter and Weibel,
2010), where map objects not map space are modified. Space-directed generalization op-
erators, where map space is distorted to improve spatial conflicts and improve map legi-
bility (Bereuter and Weibel, 2010), are also possible in on-the-fly point generalization,
but are not the focus of this paper. In the case of point features four object-directed gen-
eralization operators (Figure 1) are of most interest: selection, simplification and aggre-
gation reduce the number of features represented on the map, while and displacement
moves the map features away from each other to remove overlaps and congestion.
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Figure 1: Overview of point generalization operators; filled points denote displayed points, circles denote
removed or displaced points.
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Each of the above generalization operators has different requirements. However, for all
operators the detection of spatial conflicts is of crucial importance. For selection and ag-
gregation, hierarchical ordering plays a key role, while displacement necessitates region
queries and neighborhood queries. A hierarchical data structure like the quadtree may
help to detect spatial conflicts, as it has inherent spatial hierarchical ordering, and sup-
ports region and neighborhood queries.

Note that generalization operators, which define a particular generalization process con-
ceptually (e.g. aggregation), are implemented by generalization algorithms. For a given
operator, several algorithms are usually possible (McMaster and Shea, 1992).

Related Work

On-the-fly generalization for mobile mapping is typically achieved by relying either on
fast generalization algorithms or on pre-computation and hierarchical data structures (van
Oosterom 2005; van Oosterom and Meijers, 2011; Weibel and Burghardt, 2008). The
first approach commonly has to sacrifice cartographic quality to reduce computational
complexity and achieve speed, while the second, as a consequence of pre-computation,
lacks flexibility.

The first group — fast generalization algorithms — relies on simple but effective algo-
rithms and heuristics. The preference is on rather straightforward generalization operators
such as selection and simplification. For instance, feature selection based on the Radical
Law (Topfer and Pillewizer, 1966) and ordered attributes (Lehto and Sarjakoski 2005), or
applying local priority criteria (Edwardes, et al. 2005).

The second group represents methods that fully rely on pre-computated generalizations
stored in hierarchical data structures. Van Oosterom (2005) and van Oosterom and
Meijers (2011) review and propose several data structures for real-time generalization.
Initial ideas to use quadtrees and hierarchical drainage basins to support generalization
have been proposed by Burghardt et al. (2004) and Edwardes et al. (2005). De Berg et al.
describe an algorithm using a k-d-tree.

What is still missing are methods combining the advantages of both approaches, that is,
real-time algorithms exploiting hierarchical spatial data structures. Also, no algorithm has
been proposed yet that was designed for real-time performance.

Basics of Quadtrees
Useful Properties of Quadtrees

The quadtree is a well known spatial tree data structure and a generic term for a family of
tessellations in which every node has four children (Samet, 1989). It is widely used for
2-D spatial indexing in GIS or in other domains, such as in computer graphics for colli-
sion detection (Moore and Wilhelms, 1988). Most importantly for our case, it has several
properties that make it useful for real-time generalization.
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Useful properties for real-time generalization provided by the quadtree are (Table 1): a
spatial index that speeds up spatial queries; spatial coverage providing information on ex-
istence or absence of geographic features in a specified region and thus enabling esti-
mates on density/distribution; topology of quad neighbors, providing information on local
neighborhood; and recursive hierarchical subdivision of map space, thus adapting to point
density and progressively building up a spatial hierarchy with implicit scale.

Table 1: Properties of quadtrees useful for real-time point generalization

Property Use Generalization operator

Spatial Index Spatial queries Selection, aggregation
Provides estimates on den- . .

Coverage sities and distribution Selection, displacement

Topology Quad neighborhood displacement

Hierarchy Recursive and progressive | All operators
subdivision

Basic Operations on Quadtrees

The basic operations on quadtrees include: insert, delete, get neighbors and query the
quadtree. They form the foundation of the generalization algorithms described below.
Note that in the following, we will focus exclusively on quadtrees for point data. For re-
views of quadtrees and associated algorithms, see Samet (1984) or Samet (1990).

A quadtree for point data can be created by recursively inserting the points in the tree
structure until an empty leaf node is found or otherwise subdividing the tree further. The
order of insertion does not define the shape of the tree, rather it is highly dependent on
the spatial distribution of the inserted point set. For two close points many levels of
partioning may be needed. This can be alleviated by allowing more than one object per
leaf node, creating a variant of the quadtree, a so-called bucket quadtree. Deletion of a
leaf node from the tree also happens by recursively removing all the children of the par-
ent node if they hold less than one point altogether. To find all the points within a specific
range in the quadtree (range query), the intersection of the quadnodes (i.e. nodes of the
quadtree representing a quad) is checked against the query range, and in the case of inter-
section with the quadnodes children recursively. If results of a generalization operator are
stored in the nodes of the quadtree (see “Storage”) the query range may be restricted to a
specified depth inherently representing scale.

Finding neighbor(s) in a quadtree corresponds to finding adjacent leafnodes for each side
and corner of a particular quadnode. An in-depth description of neighbor finding methods
in quadtrees may be found in Samet (1990). Finding neighbors is important for displace-
ment operations in generalization.
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Quadtree-Based Algorithms for Point Data Generalization

General Overview

The basic idea of the quadtree-based generalization approach is to apply generalization
operations to quadtree nodes according to the desired level of detail (LOD), which is
mapped to the depth of a quadtree.

The generic flow of quadtree-based generalization consists of three steps. In a first step
the quadtree is created by inserting the point data and their (optional) attributes. Attrib-
utes such as feature category, rank (e.g. relevance ranking generated in an external appli-
cation), or other measures are assigned to the point data if they are parameters required
by the desired generalization algorithm.

Table 2: Generic flow of quadtree-based generalization, applying a simple “random” selection algorithm.

1 Creation Insert points into the quadtree. (No additional measures or at-
tributes required for random selection algorithm of Step 2.)
2 Generalization a) b) Random selection
algorithm Select one point ran-
domly (black dot)
from all the children
° i e| 1n the current
| e o quadnode.
3 Storage Optional: If the results are used for further zooming, it is rec-
ommended to store the results based on previous LODs.

In the second step, a quadtree-based generalization algorithm returns for each quadnode
the generalized results at the desired LOD. The LOD is mapped to the tree depth (and the
LOD can further be related to map scale). For each visited quadnode at the defined depth
the algorithm is either applied in real-time to all child nodes, or it is retrieved from stored
results from previous, pre-computed runs (see Section “Storage”).

In the third step the results from step 2 are either displayed (display-and-forget), or stored
in the nodes for fast retrieval in subsequent iterative generalization (see “Storage”).

This process is shown in Table 2, using a very simplistic algorithm (for illustration pur-
poses only). After the creation of the quadtree, the operator visits all quadnodes of a de-
sired LOD and randomly selects one point from its subtree. For this particular algorithm,
no attributes need to be assigned to the data points besides their 2-D position.

Quadtree-Based Generalization Algorithms

This section presents different quadtree-based generalization algorithms for the generali-
zation operators — selection, simplification, aggregation, and displacement. First, howev-
er, we briefly review the role of geometrical measures in support of algorithms.
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Measures. Geometrical measures help to inform the operation of generalization algo-
rithms, and parameterize their outcome (Bereuter and Weibel, 2011). Local measures are
derived from each quadnode, such as the number of points stored in the subtree, maxi-
mum depth, size and balancing of the subtree. Global measures are based on the com-
plete dataset, such as total number of stored points, density, or spatial distribution. Global
measures such as the average number of elements per node at one LOD or the total num-
ber of elements can be used for weighting or as a boolean decision factor for the generali-
zation algorithm. For instance, for changing the point size (Fig. 10), or pruning elements
from the tree to avoid an over-homogenization of the underlying spatial pattern.

Selection. Chooses a subset of points from the original set of points, based solely on at-
tributes, such as a relevance value per point object (Bereuter and Weibel, 2010).
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Figure 2: Point reduction algorithms, with results for depth 1: a) quadtree source data; b) value-based selec-
tion, retaining elements with highest attribute value per subtree; c) centrality-based simplification, retaining
elements closest to the mean center.
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Value-based selection and rank-based selection. Returns the most significant element per
quadnode. ‘Most significant’ denotes a function of a numeric attribute, such as maximum
value of an attribute of points occurring in a subtree. For POI data, such as restaurants,
highest relevance may be used (obtained from a relevance ranker). For point collections
(i.e. point data sets that encompass large collections of count or observation data), such as
animal observation data, the most or least frequently occurring species may be used. If
the value of the point is weighted with the leaf node’s depth, the algorithm will generate a
generalization result that is weighted approximately by the local point density.

Simplification. Like selection, it chooses a subset of the original points. However, it is
governed by geometric properties, as in line simplification (Bereuter and Weibel, 2010;
McMaster and Shea, 1992).

Centrality-based simplification. Retains the most central point per quadnode. Based on
mean center (or centroid, midpoint); thus solely requires the positions of the point features.

Aggregation. Replaces two or more point features with a new placeholder feature (i.e.
the point positions change). Reduces the number of points by grouping together semanti-
cally similar or spatially close points (Bereuter and Weibel, 2010).

Midpoint aggregation. Generalizes by the mean center point of a quadnode subtree’s
points (Fig. 3b). Like centrality simplification, it uses solely the positions of the points.
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Clustering-based aggregation. Returns a placeholder (e.g. the modal center) for highly
clustered and densely populated quadnodes with a high number of children, based on the
positions and attributes of the points.
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Figure 3: Aggregation algorithms: a) quadtree source data, b) midpoint aggregation; c) cluster-based aggre-
gation; d) co-location filtering for co-occurring same valued points.

Co-location filtering. Generalizes quadnodes based on a co-location rule, such as the co-
occurrence of features in a quadnode belonging to the same class, or capturing logical re-
lationships between different point categories. Co-location of one or more point features
in space seems to influence the user’s decision in location-based services (Reichenbacher
and De Sabbata, 2011). An example for co-location is finding co-located parking places
and restaurants in a city. For each quadnode’s subtree the co-location algorithm checks if
it contains restaurants and parking spaces, and if so, how often, to weight the co-
occurrence of restaurants and parking spaces within that node. The more points a child
node represents the higher the probability of co-location and the number of times co-
location occurs.

Displacement. Locally reconfigures point symbols to resolve spatial conflicts by moving
them apart (Bereuter and Weibel 2010). Displacement does not reduce the number of
points represented. It is thus usually applied for the ‘finishing touches’, as the last in the
chain of generalization operators. Its application limited to resolve spatial conflicts in a
narrow band of scales, typically from one LOD to the subsequent one. The width of the
quadnode’s boundary at the maximum depth of the current LOD denotes the smallest re-
quired distance to resolve spatial conflicts (Fig. 4b).
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Figure 4: Steps applied by the displacement algorithm for the red quadnode: a) Points A, B, C stored in the
child nodes are candidates for displacement. Gray shaded areas denote candidate nodes for displacement,
numerals denote their storage capacity. Red arrows indicate possible movement direction for the points
contained in child nodes. b) Optimal displacement directions for B and C. A is kept as the most central
point. ¢) B and C are displaced and the child nodes removed.
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The proposed algorithm tries to relocate points (that would otherwise be removed by a se-
lection or aggregation operator) of a quadnode, and moves them to neighboring
quadnodes. The current LOD defines the deepest possible quadnode (red square in figure
4a) at which one point can be displayed, given cartographic constraints (e.g. point symbol
size). Points are moved to the most favorable (i.e. closest and of depth < current LOD)
neighbor quadnode with no childnodes (gray shaded quadnodes in Fig. 4a). If there is
space for displacement, as in the example process illustrated in Figure 4 for Points B and
C, these are displaced, while A as the most central point is kept (Fig. 4b). The child nodes
of the red quadnode can be removed as only one point is now remaining inside (Fig 4c¢).

In order to find candidate neighbors for displacement of a given quadnode (framed red in
Fig. 4) the displacement algorithm checks for each neighbor quadnode of the same depth
or lower if it already stores points. The algorithm only needs to displace points if the
quadnode contains more than one point, and thus is not satisfying its cartographic con-
straints.

For each child quadnode two or three directions, respectively, exist for the point dis-
placement to the neighboring quadnodes, depending on whether the king’s or rook’s
move neighborhood is used (Fig. 5a, b). For instance in Figure 4, where the rook’s move
neighborhood is used (Fig. 5b), for the NW child node neighbors to the North and West
need to be checked. These are exactly those shared with the sides of the parent quadnode.

a) 1 T b) T 1 c) A
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Figure 5: Options for displacement moves for point data: a) three movement options per child quadnode
(king’s move); b) two movement options per quadnode (rook’s move); c) preferred range of movements
(shaded area) for point B from the midpoint.

The direction in which a point is displaced is preferably directly opposed to the direction
of the midpoint formed by all the quadnodes points (Fig. 5¢). The preferred range of di-
rections in which a point can be displaced is limited by the bisectors of its immediate
neighboring points to the midpoint and by the neighbor nodes having sufficient capacity.

A point can only be displaced to the neighboring quadnode if that node shares the same
depth and is empty, or has a lower depth. This is controlled by the quadnode storage ca-
pacity: how many points can the neighboring quadnode possibly store, without subdivid-
ing to a level higher than the maximal allowed depth for the current LOD (see Fig. 4a).
For each possible direction (see below) the storage capacity of the neighbor node is col-
lected and the child nodes are sorted in ascending order of the number of possible dis-
placement neighbors and their associated storage capacity. The child node with the least
possibilities for displacement is displaced first. After its displacement to its neighbor, the
neighbor’s storage capacity is reduced by one. If there is no other further possibility of
displacement the point is kept. In the case all points can be displaced (Fig. 4a) the point
closest to the midpoint is kept (Point A in Fig. 4b). If for more than one point there is no
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possibility for displacement, the most central point (or the one with the highest im-
portance value) is kept and the others removed (which is then equivalent to selec-
tion/simplification).

If the neighboring quadnode is of a lower depth and already stores one point, this node
will be further subdivided to insert the moved point (Point C in Fig. 4c). If after subdivi-
sion both points happen to be inside the same childnode, the moved point is removed.

The displacement process is completed if for the quadnode in question (framed red in
Fig. 4) only one point remains and the child nodes have been removed (Fig. 4c).

Extension. The above algorithm can be extended by allowing point displacement to be
propagated to neighbors of degree 2, if a point cannot be displaced to direct (degree 1)
neighbors using the above algorithm. For performance reasons, it is advisable to limit the
search to a pre-defined, small degree of neighborhood. Due to lack of space, the extended
algorithm will not be further elaborated on.

Storage

For interactive zooming the quadtree lends itself nicely as a storage structure for general-
ization results (rather than serving merely as a spatial index). Figure 6 shows the use of
the quadtree as a storage structure schematically. The generalization algorithm returns the
results for each visited node and its subtree (Fig. 6a, algorithm search range). The subtree
in this case may be the complete subtree (Fig. 6a) or a depth restricted subtree (Fig. 6¢).
“Depth restricted” means that the generalization algorithm does not consider the whole
subtree, but solely up to a predefined level. Each result returned from a generalization al-
gorithm is stored in the visited quadnode. If, due to zooming, the same LOD is queried a
second time, the generalization process simply retrieves the stored result from each
quadnode at the queried level of detail.
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Figure 6: Storage options: a) for each quadnode only the leaf nodes for generalization are investigated; b)
for each quadnode the results (black square with red fill) from the previous nodes are considered; c) depth
restricted generalization algorithm.
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If the generalization ascends in the tree, decreasing the LOD, for each new level only the
previous LOD needs to be visited to derive the next LOD, optimizing the algorithm in
terms of speed (Fig. 6b). It is furthermore possible, depending on the generalization algo-
rithm, to limit the search range per quadnode and apply a depth restricted algorithm (Fig.
6¢). For instance, in the case of the displacement algorithm based on the result of a previ-
ously run centrality simplification algorithm, the displacement algorithm moves the
points resulting from the centrality algorithm at the next higher LOD.

Storing the results in the quadnodes supports interactive zooming and allows to apply
some of the generalization algorithms only once on the whole tree.

Experiments
Prototype and Data

The proposed quadtree-based generalization algorithms have been implemented in a pro-
totype generalization platform using Java and Processing (www.processing.org).

The foreground data used originates from OpenStreetMap OSM POI data for the Canton
of Zurich in Switzerland. For the background map a generated soft-toned map style from
CloudMade (www.cloudmade.com) was used. The POI dataset features several catego-
ries, from which a subset was extracted as a thematic layer for this section.

Results and Discussion

Following the description of different generalization algorithms based on the quadtree,
selected results illustrate their application below. The chosen geographic region depicts
either the city or region of Zurich, Switzerland, depending on scale. The chosen POI da-
taset contains all types of eating places for the city of Zurich such as restaurants, pubs or
coffee bars. The dataset shows strong clustering in the dense city area and regions with
marked differences in point density, thus its selection as a test area and dataset.

How one selects and aggregates elements as representatives for the next scale, to abstract
and reduce the depicted information, has a strong influence on how the resulting pattern
is perceived by the user. Due to the regular structure of the quadtree, quadtree-based gen-
eralization may lead to a certain degree of homogenization of the point distribution. Fig-
ure 7b shows an example of strong homogenization, where an (admittedly) cartograph-
ically suboptimal algorithm was used that simply aggregates points of a quadnode to the
position of the corresponding tile center (note that this algorithm was not described
above). However, even for such strong homogenization, the map can be improved, giving
the user a better idea of the underlying spatial pattern, by weighting the point symbol size
by the number of input points they represent (Fig. 7¢). Figure 7 also shows points that fall
into Lake Zurich as a result of generalization, which hints at the lack of spatial constraints
used in this case.
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Figure 7: a) Distribution of eating places in the City of Zurich; b) aggregation of points inside a quadnode
to the tile center; c) weighting the point symbols by the number of original points they represent.

Selection based on ranking or a selection function based on attributes only retains one
representing element per quadnode. In Figure 8 only the highest ranked points per
quadnode are kept for a given LOD, representing the highest ranked eating places in Zur-
ich. Due to the strong selection confined to quadtree tiles, most of the spatial conflicts are
resolved, though no displacement to resolve remaining overlaps was applied. The reduc-
tion of LOD shows nicely how the higher ranked (dark red elements) persist across
scales, and how the generalization approximately retains the spatial point configuration.
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Figure 8: Rank-based selection, progressively reducing the LOD from left to right, retaining the highest
ranked points per quadnode (dark red points).
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While value-based selection retains values a user is most interested in, simplification by
centrality keeps the most central point per node (Fig. 9), that is, the point closest to the
mean center of all points falling within the generalized node. Figure 9b illustrates how
the most central point is selected. As becomes noticeable, the selection of the most cen-
tral point becomes more stable when more points are contained in a quadnode, while
generating questionable results for quadnodes with only two points.
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Figure 9: a) centrality-based selection for LOD 14; b) debug view, rectangles depict a node, gray circles
removed points, and the square denotes the mean center of the points inside the node’s boundary.

Aggregation groups two or more elements and replaces them by a new placeholder point
feature, weighted by the number of features aggregated. Figure 10a shows the result of
midpoint aggregation, as blue, graduated circles weighted according to the number of ag-
gregated points. For comparison, the resulting points of a ranking-based selection for the
same LOD are overlaid.

Co-location filtering is another type of aggregation where spatially co-occurring points
are retained and weighted by their frequency. Figure 10b side shows aggregation
weighted by the number of co-occurrences of restaurants and parking places per node.
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Figure 10: a) overlay of midpoint aggregation (blue, with symbol size weighted by number of aggregated
points), and ranking-based selection (red) for LOD 13, overlaps shown in purple; b) aggregation by co-
location, with symbol size weighted by number of co-occurrences for restaurant and parking.
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To further resolve spatial conflicts in a map and retain more elements than for instance in
the case of centrality-based simplification a displacement algorithm can be applied (Fig.
11). The displacement algorithm tries to accommodate as many points as possible, keep-
ing only one point per quadnode, denoting the highest possible resolution for the current
LOD (given cartographic legibility constraints). The proposed displacement algorithm
only displaces points to its closest neighbor if the neighboring quadnode has a storage ca-
pacity higher than one for the current LOD. If for a node no displacement is needed, no
check is applied for overlaps with points stored in neighboring quadnodes that are adja-
cent to the node’s boundary. Thus, some overlaps are still visible in Figure 11b, which
could be resolved by an additional check while applying the displacement algorithm. The
displacement result (Fig. 11b) is capable of displaying more points than the correspond-
ing centrality-based simplification (Fig. 11a), since it was possible to remove some over-
laps and move points to adjacent quadnodes. Figure 12, on the example of a sequence
over three consecutive LODs, shows how the displacement algorithm operates.
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Figure 11: a) result of centrality based simplification, displaying 114 elements; b) displacement applied af-
ter selection based on centrality displaying 124 elements.
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Figure 12: Example of displacement algorithm: a) raw data; b-d) displacement sequence for three LODs.

Finally, Figure 13 illustrates in a series of steps how different generalization operations
may be applied and chained together. As a reference the raw, ungeneralized input data is
displayed in Figure 13a. In a first step (Fig. 13b) centrality-based simplification is used to
relax spatial conflicts, while largely maintaining the spatial distribution of the input data.
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Remaining spatial conflicts are then further resolved by the displacement algorithm in
(Fig. 13c). In Bereuter and Weibel, 2012, we have introduced ‘content zooming’, which
provides the user with the capability to change the amount and granularity of foreground
information presented, while keeping the geometric map scale the same. Content zoom-
ing is intended to allow overriding the effects of ‘standard” map generalization, focusing
on optimized content representation from the perspective of information seeking by a
mobile user. In our example, content zooming is shown by overriding standard settings
for displacement: Figures 13d and 13e show displacement results for an increased and a
decreased LOD, respectively. Zooming in (13e) and out (13d) of the content enables the
user to get a better idea of the spatial distribution and allows interactively adapting the
amount of map content to his/her needs.
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Figure 13: Series of steps of the application of different generalization algorithms (see text).

Conclusions

In a move to combine the advantage of efficient heuristics and hierarchical data struc-
tures, we have proposed a series of algorithms for on-the-fly point data generalization
based on the quadtree, which has several useful properties that make it interesting for
computationally efficient generalization. On-the fly generalization of point data is re-
quired to effectively display foreground data in online map services for web and mobile
mapping. We have proposed algorithms that implement the major generalization opera-
tors that can be applied to point data: selection, simplification, aggregation, and dis-
placement. We have also shown how the quadtree data structure cannot only be used as a
spatial index to make the generalization efficient, but also as a storage structure.

In this paper, only few experiments have been shown. They may be sufficient to illustrate
the potential of using quadtrees for point data generalization, but more systematic exper-
iments will be required to thoroughly assess the strengths and limitations of the proposed
algorithms, and compare them to ‘classical’ generalization algorithms. Further algorith-
mic improvements are also possible, such as inclusion of spatial constraints imposed by
the background map (e.g. the lake in Fig. 7).
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