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ABSTRACT: Flow data visualization is an important yet challenging topic in cartography 
as well as in scientific and information visualization. In recent years, significant progress 
has been achieved for spatial flow data visualization using techniques like spatial 
hierarchical clustering, edge biding, edge routing, directed forces, and spiral trees. This 
paper introduces a new algorithm to map the geographic flow data from one origin to 
many destinations, i.e., one-to-many flow data. The algorithm simulates the flow 
formation of the natural water systems and can capture the spatial distribution pattern of 
the destinations. It methodologically combines the Delaunay triangulation and 
approximate Steiner tree, followed by a path simplification and smoothing procedure. 
The spatial flow layout produced by the algorithm features smooth edges, natural spatial 
cluster, and fluent transition along the flow tree routes. The paper illustrates the usability 
of the algorithm with two exemplar maps. 
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Introduction 
Tracking movement across space and visualizing movement data have been a central 
piece in numerous aspects of the study of the natural world and the human society (e.g., 
Tobler 1987; Sun and Manson 2012; MacDonald et al. 2015). Flow data visualization is 
an important yet challenging topic in cartography as well as in scientific and information 
visualization (Andrienko et al. 2008; Andrienko and Andrienko 2013). In recent years, 
significant progress has been made for the spatial flow data visualization in general and 
one-to-many, i.e., from one origin to many destinations, in particular (Buchin, 
Speckmann, and Verbeek 2011b; Debiasi et al. 2014). New techniques applied in flow 
visualization include spatial hierarchical clustering, edge binding, edge routing, directed 
forces, and spiral trees (Zhou et al. 2013; Guo and Zhu 2014; Zhu and Guo 2014; 
Landesberger et al. 2016). Despite these advancements, visualizing spatial flow data 
remains a challenge for cartographers and computer scientists, particularly because many 
of these methods still need considerable manual calibration, optimization, and revision 
during and after applying computer algorithms.  

Among many designs of the one-to-many flow visualization, the tree structure-based flow 
layout is one of the latest and most appealing (Phan et al. 2005; Buchin, Speckmann, and 
Verbeek 2011b). A flow tree layout is a single-origin, multiple-destination, and directed 
tree structure. It reaches out from the origin to all destinations with smooth trunks that 
split into branches at certain locations and terminate at the destinations. By binding edges 
into different levels of trunks and branches, the flow tree is simple, straightforward, and 
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effective in terms of delineating the network flow direction and volume. While the tree-
based flow map layout is visually appealing, it is difficult to construct compared with 
other types of layouts such as the one using multiple one-to-one direct links. More 
particularly, it is especially challenging to create and position the intermediate nodes 
between the origin and destinations that help produce smooth flow routes but 
simultaneously avoid line crossing and swamps of points or edges. 

This paper proposes a new, automated algorithm to map the geographic flow data from 
one origin to many destinations. The algorithm simulates the flow formation in the 
natural water systems and can capture the spatial distribution pattern of the destination 
nodes. The automated flow map layout algorithm combines Delaunay triangulation and 
approximate Steiner tree and can largely keep edges from crossing. Based on 
cartographic generalization and network regionalization, a path simplification and 
smoothing subroutine is designed to improve the appearance of the final flow layout by 
deleting and moving some intermediate nodes and streamlining transitions from the 
origin, to trunks, to branches, and to destinations in the tree. As such, the spatial flow 
layout produced by the algorithm features smooth edges, natural spatial clusters, and 
fluent transitions along the flow tree paths. The paper illustrates the algorithm with two 
exemplar maps. 

Related Works 
Among the rich set of flow data visualization methods, one relatively small subcategory 
—spatial one-to-many flow layout—has regained attention in recent years (Buchin, 
Speckmann, and Verbeek 2011b; Debiasi et al. 2014). Such one-to-many flow data 
describe real-world flow of substances from one location to many other locations on the 
Earth with physical coordinates. Note that the case of “many-to-one” is technically the 
same as “one-to-many” in terms of layout construction. One-to-many flow data examples 
include maize exports from U.S. to other countries or regions, soybean imports of China, 
and population migration to the State of California from all other states in the U.S. This 
type of data is best represented with tree-style flow maps, where the root node of the tree 
is the origin location, the leaf nodes are destinations, the intermediate nodes define the 
shape of the paths, and all nodes are connected using different levels of trunks and 
braches with gradually varying colors and girths that are proportional to the flow volume. 

Although geographers and cartographers, among others, had been making such flow 
maps for many years, only in recent years had computer scientist started to automate this 
process and produced esthetically pleasing flow layout maps (Long and Nelson 2013). 
This thread of research works was pioneered by Phan et. al (Phan et al. 2005). Unlike 
traditional flow maps that use many one-to-one direct links between the origin and 
destinations, either straight or curved, Phan’s flow map uses only a single one-to-many 
tree to link all nodes together. Such a map essentially emulates flow systems in the 
natural world such as rivers. Using spiral trees, Buchin et. al. greatly improved the flow 
map layout (Buchin, Speckmann, and Verbeek 2011b, 2011a). Their works explored the 
application of Spiral and Steiner tree in one-to-many flow layouts. Because they designed 
their algorithm using the mathematical properties of these trees, the Spiral tree-based 
flow maps present a significant improvement in terms of map aesthetic quality. A 
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supervised, force-directed algorithm was also developed to generate similar flow map 
layout using a strategy widely adopted in general graph plotting, where nodes attract or 
repulse each other based on physical laws that define the forces produced by nodes 
according to the differences between expected and actual distances (Debiasi et al. 2014). 

Although automated map-making is generally appealing, cartography is a combination of 
science and art (Moenius 2012; Xiao and Armstrong 2012; Kent 2013). On one hand, an 
automatic cartographic algorithm should produce geometrically accurate maps with as 
high as possible aesthetic qualities. It should require little manual input or intervention 
from map-makers other than specifying spatial data and program parameters. On the 
other hand, an automatic algorithm should not deprive cartographers the option of 
manually improving the map design and its aesthetic quality. The algorithm should allow 
users editing the map with reasonable workload but still guarantee accuracy. In other 
words, manual intervention or revision is best provided as a not-required option to map-
makers in cartographic algorithms. Existing one-to-many flow map methods vary 
significantly in terms of these two aspects. Some cannot produce high quality maps (Phan 
et al. 2005). Some requires considerable manual intervention during the map producing 
process (Debiasi et al. 2014). And most do not provide an intuitive and easy-to-use flow 
layout editing option.  

Specific to the flow map quality, a few basic geometrical and aesthetic criteria might be 
instrumental when evaluating computer algorithms and the quality of their map products. 
First, all destination nodes should be grouped into tree-resembling hierarchy. The 
hierarchy should be able to reflect the spatial pattern of the nodes. For example, nodes 
that are physically close to each other should be allocated into the same sub-tree in the 
hierarchy. The origin is the root node, destinations are leaf nodes, and leaf nodes should 
be away from tree paths as far as possible for clarity. Second, the hierarchy of destination 
nodes must be routed towards the single origin without crossing. Edge bounding and edge 
rerouting are commonly necessary to achieve crossing-free tree maps. Third, the number 
and location of intermediate nodes, which are between the origin and destinations, should 
render smooth and natural transitions between adjacent tree trunks and branches. Trunks 
and branches are as clear and straightforward as possible. Map-makers should be able to 
change the number and/or the location of intermediate nodes so that they could apply 
their own design and aesthetic principles to the flow maps. 
 
Algorithm 
The proposed algorithm in this paper contains five key steps with the goal of 
automatically producing high-quality flow layout maps while offering the option of 
manually refining the position of intermediate nodes and the shape of flow routes. The 
five main steps of the algorithm are 1) add origin, destinations, and candidate 
intermediate points as possible nodes in the approximate Steiner tree; 2) triangulate all 
points, construct a network from the triangles, and conduct a series of stylized shortest 
path analyses from the origin to destinations in the network; 4) refine the paths using 
simplification, repositioning, and smoothing; and 5) render the paths to show the flow 
volume.  
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Step 1: Create Candidate Nodes for Approximate Steiner Tree   
The algorithm first adds a set of points as candidate nodes for an approximate Steiner tree 
(CNAST).  Only part of the points would be chosen, through a series of shortest-path 
finding procedures, as the extra vertices in the final approximate Steiner tree. Steiner tree, 
named after Swiss Mathematician Jacob Steiner, is a minimum-weight connected 
subgraph that connect all nodes in the network (Hwang and Richards 1992; Robins and 
Zelikovsky 2000). Steiner tree is conceptually similar to the minimum spanning tree 
(MST). MST connects network nodes with given network edges and has the shortest total 
path length. The Steiner tree also connects nodes with minimum total path length but it 
utilizes extra vertices that are not the original network nodes. Finding the Steiner tree 
from a set of points is a NP-complete problem and only has approximate solutions for 
most application cases (Garey, Graham, and Johnson 1976; Kou, Markowsky, and 
Berman 1981). Using external candidate points, this flow layout algorithm would create 
an approximate Steiner tree that connects the origin and destinations through extra 
intermediate nodes.   

The candidate Steiner tree node set can be created from a few different sources. The 
principle here is to cover areas where the optimal Steiner tree nodes are most likely to 
locate while simultaneously controlling the total number of the candidates. First, the 
origin and destinations would be added as “real” nodes in the tree (other nodes are also 
called “dummy” nodes in this paper). Second, a line segment is plotted from the origin to 
each individual destination and points are evenly sampled on the line. These lines help 
capture the directions from the origin to the destinations. Third, a group of points are 
created around each destination. This is to create multiple possible routes connecting the 
tree to the destinations in the case of path conflicts. Fourth, optional trunk routes could be 
added to the set in order to direct the flow. This is particularly useful when there are well 
known migration routes, for instance. Last, a systematic or random sample points could 
be created within the extent of the map to fill critical gaps. These points become 
necessary when points from other sources cannot produce quality results. Note that this 
option should be used with caution because it will generate a large number of points and 
would reduce the efficiency of the algorithm. 

When adding new nodes to the candidate Steiner tree node set, if they are too close to 
existing nodes, they should be ignored in order to avoid overcrowded node clusters. 
Furthermore, all intermediate nodes or dummy nodes should not be too close to the “real” 
nodes for the purpose of making rooms for visually attractive curves that end at the 
destinations. This step is summarized as follows (Figure 1). 

§ Add candidate Steiner tree nodes or “dummy” nodes  
o Add points on the line segments from origin to destinations: get the “big” direction 
o Add points around the destinations: help make destinations leaf nodes in the tree 
o Add external points (optional): explicitly highlight important routes 
o Add auxiliary random or systematic points (optional): fill in the gaps 
o Keep nodes away from each other with a minimum distance: avoid arbitrary 

swamps of nodes 
o Remove all “dummy” nodes that are too close to “real” nodes: make room for 

curves. 
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Figure 1 Candidate Nodes for Approximate Steiner Tree (red: points around destinations, green: 
points on the line segments from origin to destination, blue: external points) 

Step 2: Triangulate points, build network, and find paths with constraints 
Using all points in the candidate Steiner tree node set, a Delaunay triangulation could be 
conducted to find how the mapped area can be decomposed into connected triangles. The 
triangulation could be a regular or a constrained one. When using the constrained, the 
connectivity between the origin to destinations must be preserved. Then, a network would 
be constructed with the vertices of those triangles being the graph nodes and their edges 
being the graph edges (Figure 2). In the network, vertices and edges are categorized in 
different groups. Vertices could be “real” nodes, that is the origin and destinations, or 
“dummy” nodes, that is the intermediate nodes created for the approximate Steiner tree. 
From the two types of nodes, three types of edges are defined: edges that connect two 
“real” nodes, two “dummy” nodes, or one “real” and one “dummy” node.  

   
Figure 2 Triangulation and Network Construction 

With the network, it is critical to find the paths that form the approximate Steiner tree and 
“optimally” connect the origin and destination nodes with the intermediate nodes in 
between. This is the core of the proposed algorithm and is based on the weighted 
betweenness centrality of nodes and edges. Betweenness centrality is a network statistic 
that measures the number of occasions in which a graph node or edge is included in the 
shortest path between any two nodes in the network. The edges and intermediate nodes 
that are never on the shortest paths from origin to any destination would be removed from 
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the network as they contribute little or nothing to the optimal routes (Figure 3). The 
weight of each edge left in the network is also accumulated when it is repeatedly included 
in different shortest paths. In the end, the edges that are more often being chosen in the 
shortest paths would have more weights and are more likely to be included in the shortest 
path to the next destination. In other words, the shortest distance path finding has positive 
feedback and edges are able to accumulate their advantages in the calculation. This is 
similar to the evolution of river channels in the natural world, where the riverbeds of 
main streams experience more erosion because of greater water volume, lower attitude, 
and would likely gather more water over time and become the main trunk.  

 
Figure 3 Path Finding in the Network for Approximate Steiner Tree 

The edges that are not on any shortest paths in the Steiner tree will be removed. The 
intermediate nodes that are solely associated with those edges will be accordingly 
removed. During the shortest path finding and edge removing process, the following 
constraints must be considered. 

§ Constraints when finding shortest paths and removing edges (similar to a constrained 
MST) 
o Leaf node: all destination nodes must be leaf nodes and all leaf nodes must be 

destination nodes. 
o Root node: the origin node shall be the only root node. 
o “Real” nodes: only “dummy” nodes or edges connecting two “dummy” nodes can 

be removed.  
o Connectivity: all destination nodes must be connected to the origin node. 
o Degree: all nodes must have a degree of three or smaller. It means the tree must be 

binary. 

Step 3: Simplify and smooth the paths   
After getting all the nodes and edges that define the “optimal” paths in the tree, these 
paths are still not smooth enough because the intermediate nodes were created from many 
different sources and do not align with each other. In order to derive smooth paths, some 
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unimportant intermediate nodes must be removed. A process similar to the Douglas-
Peucker generalization is then applied to remove those two-degree intermediate nodes 
that have minimal impacts on the shape of the path. Two-degree nodes only influence the 
shape of the paths and removing them would not change the network topology. One 
important rule when deleting intermediate nodes is to keep network edges from 
intersecting. The simple line segment intersecting routine can be used to check this 
constraint. Any redundant edges that link to four or more degree nodes are also removed. 

Once the network paths are simplified, a smoothing procedure can be applied to create 
visually more appealing routes between the origin and destinations. The smoothing 
process goes through each individual path from the origin to the destination. Every step 
of the smoothing involves three nodes. The smoothing is based on the quadratic form of a 
Bézier curve and the detail of the method is described below (Figure 4). This method is a 
local operator and only influences the shape between two nodes. However, changing the 
position of a single intermediate node would impact two segments in the path.  

Inputs: Previous controlling node ( pN ),  From node ( fN ), and To node ( tN ).  
Outputs: A Bézier curve between 𝑁! and 𝑁! 
Process: Draw an extension line pfL from pN  to fN . If tfp NNN∠  is not close to 180 
degree, i.e., tN  is not on pfL  and far from it. Add a point controlP  on pfL  and make 

),(),( tfcontrolf NNdistPNdist = . Use the quadratic form of Bézier curve to generate a 
smooth line ftBC  connecting fN  and tN . If ftBC  intersects with another curve, move 
the point controlP  along the extension line pfL  until ftBC  only goes through open area or 
the program reaches maximum number of tries. 

If tN  is on the extension line pfL  or very close to it, at least two controlling points 
1
controlP  and 2

controlP are needed to generate a smooth curve. 1
controlP  should be along the 

extension line pfL , between fN and tN  and locates two thirds of line segment ftLS  from 

fN . 2
controlP  should be on the line going through tN and be perpendicular to pfL , with 

),(),( 2
tfcontrolt NNdistPNdist = . Similarly, move these two controlling points along these 

two lines to avoid collision with other curves.  

  

Figure 4 Path Smoothing 

𝑁! 

𝑁! 

𝑁! 𝑃!"#$%"& 𝑁! 𝑁! 𝑁! 
𝑁! 𝑃!"#$%"&!  

𝑃!"#$%"&!  
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Step 4: Refine paths automatically or manually (optional) 
This is an optional step that allows map-makers to change the position of intermediate 
nodes. Contrast to the simplification that removes unnecessary intermediate nodes, path 
refinement changes the position of the intermediate nodes instead of deleting them. 
Because the origin and destination nodes are “real” nodes with geographic coordinates, 
only the intermediate nodes can be moved during the process. The automatic method 
would try to move “dummy” nodes so the angles between path segments can be 
maximized with the constraints of not intersecting other paths. The effect is similar to 
line straightening with curvy, smooth transition. The algorithm offers an interactive node 
selection and relocation interface in the R® and RStudio® environments. It automatically 
redraws the smoothed paths of the flow layout and gives users instant feedback. This 
process would continue until users terminate it. The edited network paths can then be 
rendered using the actual flow volume. 

Step 5: Render paths with varying color and width  
The last step of the flow visualization is to render the paths using varying colors and 
width. The color scheme is using two divergent colors for the origin and the destinations. 
The color gradually changes from the color of the origin to the color of the destinations 
proportional to the accumulative lengths of the network paths. It is mathematically 
determined by interpolating the two colors using the path distances to the origin and 
destinations. Similarly, the width of the approximate Steiner tree can be determined by 
scaling the edge width using the total flow volume that goes through that particular edge. 
Depending on the nature of the flow data, the width can be transformed with logarithm or 
negative exponential functions in order to achieve the best contrast.   

Results 
Two examples are provided to illustrate the algorithm. The first example is the migration 
flow to California from all other states in the U.S. in the 2000 census (Figure 5). It adopts 
the optional external migration paths to generate candidate Steiner tree nodes. No 
auxiliary random or systematic points are used. This is a many-to-one flow map, with the 
centroids of states as origins and the centroid of California as the only destination. The 
color and width of the migration paths are scaled according to the population that 
migrated to California in the census data. The transition between nodes and edges is 
smooth and the map also shows clear clustering patterns. For example, the cluster of 
Northeast, Southeast, and Midwest are visually identifiable in the map. At the same time, 
the flow map effectively arranges the flow routes to reach overcrowded destination nodes 
like those in the Northeast.  

The second example is the soybean export from Brazil (Figure 6). The origin is the 
centroid of the Brazil and destinations are major sea ports in major importing countries. 
This example used the systematic auxiliary points, which are similar to the regular grid 
covered on the Earth. Taking advantage of the shortest path algorithm embedded in the 
method, different travel costs are assigned to network edges according to their locations. 
Edges on the land area have higher cost that those in the ocean. And edges that fall in the 
polar area have extreme high cost, so the paths would not go through the Arctic ocean. As 
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a result, the flow routes look similar to the real-world shipping routes in many locations. 
As the algorithm makes no line crossing a priority, routes in some areas are not close to 
real navigation routes. In this flow map, the sizes of origin and destinations are also 
scaled according to the volume of soybean trade.  

 

 
Figure 5 Migration to California in 2000 Census 

 
Figure 6 Brazil Soybean Exports 

In both examples, no manual intervention was involved. Results were generated 
completely automatically by the algorithm implemented in R using packages sp, spatial, 
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maptools, deldir, and igraph. All nodes are smoothly connected and transition from edge 
to node is natural with the Bézier curves. The background map and the path routes are 
rendered along with the origin and destination nodes. The colors of edges change 
according to the volume on each specific segment of the edges.  

Discussion and Conclusion 
This paper presents a new automatic flow map layout generation method. It simulates the 
natural flow formation in the physical world. The algorithm constructs a network using a 
set of arbitrary points with Delaunay triangulation. A series of styled shortest paths 
finding procedures are then applied to build an approximate Steiner tree that connects the 
origin to multiple destinations through intermediate nodes. The approximate Steiner tree 
can largely capture the spatial distribution of destination nodes. Then the approximate 
Steiner tree is simplified, smoothed, and rendered to product the final flow layout map. 
Importantly, the algorithm is designed with cartographic principles and has an optional 
node-editing tool that allows map-makers to customize flow maps while strictly 
following predefined topologic and aesthetic rules. By using specific auxiliary points and 
configuring the cost or weighted distances of edges in the network, this algorithm has the 
capability of guiding the flows in certain areas or directions. The two examples provided 
in the paper illustrate that the algorithm can effectively produce one-to-many flow layout 
maps with certain aesthetic standards. 

While the current algorithm can automatically create quality flow maps, improvements 
are still possible and would be pursuit in the following directions. Further optimization 
could explicitly utilize the spatial clustering patterns of destination nodes (Zhu and Guo 
2014; Tao and Thill 2016). The flow path could connect to a cluster first and then 
connect to nodes in the cluster. This is particularly useful when there are a large number 
of destinations and/or destinations are clustered in small areas. Second, alternative 
smoothing methods that can simultaneously consider multiple nodes and edges could be 
designed to improve the smoothness in the path transition. Third, method of 
automatically moving dummy nodes or optimizing dummy nodes position is needed as 
the initial possible points are created with little consideration of the network constructed 
later. A raster mask layer could be used to label the space as open or occupied. Dummy 
nodes can freely move in the open space without crossing the occupied space. A network 
node location optimization procedure could be constructed to create better locations for 
those three-degree intermediate nodes. Last, techniques in general graph visualization 
like force-directed algorithm and alpha-based edge bundling should be explored, which 
might help develop a solution for the ultimate many-to-many flow layout maps (Holten 
and Van Wijk 2009; Zhou et al. 2013; Debiasi et al. 2014). 
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