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Abstract

This paper presents a general technique for creating SIMD parallel 
algorithms on pointer-based quadtrees. It is useful for creating paral 
lel quadtree algorithms which run in time proportional to the height 
of the quadtrees involved but which are independent of the number 
of objects (regions, points, segments, etc.) which the quadtrees repre 
sent, as well as the total number of nodes. The technique makes use 
of a dynamic relationship between processors and the elements of the 
space domain and object domain being processed.

1 Introduction
A quadtree is a data structure for indexing planar data. It is a tree with 
internal nodes of degree four, where the root represents a planar rectangular 
region, and the four sons of each internal node represent the four quadrants 
of the node's region. Generally, each node stores some information about 
the region it represents and also a color, with the internal nodes being con 
sidered gray and the leaf nodes having some color derived from the data in 
their regions. A particular variety of quadtree is typically denned by giving a 
decomposition rule, which determines whether a region should be subdivided 
and the corresponding node given sons. For example, for quadtrees to repre 
sent binary images (i.e. region quadtrees), the rule is that if a region contains 
pixels with both binary values, it is decomposed and the corresponding node 
is an internal gray node with four sons. If a region consists entirely of only 
one the binary values, the corresponding node is a leaf node and has, say, 
the color black if the single value is 1 and white if it is 0. For our purposes, 
the division of a region into quadrants is always done uniformly, although 
the definition of quadtree does not necessitate this.

This paper describes a technique for creating quadtree algorithms in 
tended to run in a parallel processing environment with many processors 
sharing a single instruction stream (Single Instruction stream Multiple Data 
stream or SIMD) and possessing a general facility for intercommunication 
among the processors. The algorithms are for building and processing quadtrees 
stored with one quadtree node per processor, and with non-leaf node pro-
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cessors possessing pointers to the processors representing their sons. We call 
such a quadtree implementation a parallel pointer-based quadtree.

The target architecture consists of many (several thousand) processors 
each with a modest amount (a couple Kbytes) of local storage, and all of 
which simultaneously perform a single sequence of instructions in lockstep. 
The exception to this is that each processor can ignore instructions depending 
on the current values in its local memory. Each processor has access to 
anywhere within the local memory of any of the other processors. Thus if 
each processor possesses a pointer to data in some other processor's memory, 
they may all dereference their pointers in lockstep. Simultaneous reads of 
data from a single location are supported. Simultaneous writes of data to a 
single location are also supported, as long as a contention resolution operation 
is specified along with the write operation, such as summing the received 
values, min or maxing them, performing various boolean operations on them, 
or selecting one of them arbitrarily.

A fundamental operation used often in the following is that of processor 
allocation, in which a processor obtains a pointer to some other processor 
not in use and initializes its local memory in some fashion, causing it to then 
become part of the active computation underway. Processors can also be de 
allocated, meaning that they no longer contribute to the active computation, 
and lay idle waiting to be allocated again by an active processor. This can be 
done in parallel for many processors which desire to allocate other processors 
by using the rendezvous technique [4].

This algorithm creation technique combines two paradigms for parallel 
computation in the arena of spatial data structures and the objects they 
represent. One paradigm is space parallelism, in which the two or three- 
dimensional space represented by our data structure (in this case a quadtree) 
is divided up among the processors, each of which operates serially across the 
entire set of objects. The other paradigm is object parallelism, in which the 
set of objects involved is divided up among the processors, each of which 
operates serially across the entire space. The technique described here uses 
parallelism across both space and the set of objects. In order to accomplish 
this combination of paradigms the technique leans heavily on the facility 
of general intercommunication among processors, and in particular on the 
capability of the handling of multiple reads and writes.

The technique succeeds partially because of its use of a very fine-grained 
parallelism in which we have parallel processors distributed both across the 
spatial elements and across the objects in the object set. However, the tech 
nique only attains its full generality when we discover a mechanism to press 
beyond even this level of granularity when necessary, and to make use of a a 
dynamic relationship between processors and the elements of the space and 
object domains being processed.

2 A Degenerate Case
It is simplest to describe the algorithm creation technique by first describing a 
degenerate case of it. We use as an example problem the task of constructing 
a PR quadtree for a collection of points in a plane, and create a parallel 
algorithm for this task. In the construction of a PR quadtree, a node should
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be assigned the color gray and subdivided if more than one point lies within 
its boundary. A node should be white if it contains no points and black if it 
contains exactly one.

We allow a processor for each point, containing that point's coordinates, 
and initially have one processor to represent the root of the quadtree under 
construction. The algorithm consists of a single loop iterating from the top to 
bottom level of the quadtree being built, constructing all the quadtree nodes 
for each particular level at once. Each point processor contains a pointer to 
a node processor, and initially all the point processors point to the single 
root node processor. The algorithm is illustrated in Figures 1 through 4 for 
a small set of points.

For the first iteration of the loop, all points retrieve from the root node 
information about where the boundary of the region it represents lies, and 
then compute whether or not they lie within that boundary. All points 
outside of the root boundaries set their node pointers to null. All points 
with non-null node pointers then send the value "1" to the root node. These 
values are summed at the root node as they are received. The root node 
processor then checks this sum, and if it is greater than 1, meaning that 
more than one point lies within its boundary, it assigns itself the color gray, 
and allocates processors for its four son nodes. If the sum is 0 then the node 
assigns itself the color white, and black if the sum is 1. Each point then 
checks the node it points to (still the root node during this first iteration), 
and if it is gray, computes which quadrant of the node it is in, and fetches 
the corresponding son pointer. Each point processor now possesses a pointer 
to the node processor corresponding to the quadrant within which the point 
lies, if it lies in any, or has a null node pointer otherwise.

On the second iteration of the loop each point again sends the value "1" 
to the node to which it points, the nodes check the sums they receive, and all 
those nodes found to have more than one point within their boundaries are set 
to gray and allocate sons. Each point processor then selects the appropriate 
son to point to. This process is repeated moving down the quadtree being 
created until no node has more than one point within its boundary, or some 
limit on the number of quadtree levels has been reached.

Below is the PR-quadtree construction algorithm. The main procedure 
is 'PR_quadtree()'. This procedure takes as an argument a pointer to a node 
processor, which it uses as the root of the quadtree constructed. Only those 
point processors active when the routine is called are used for the construction 
of the quadtree. This is so that some subset of all the stored points could be 
selected as a basis for the quadtree, by having the routine called from within 
a parallel conditional statement. The effect of a conditional statement in 
a parallel context is to deactivate for the duration of the statement those 
processors whose currently stored values do not satisfy the conditional, as 
will be discussed below.

In the procedure 'PR-quadtree', every node is given a flag called live. At 
the beginning of each iteration of the procedure's loop, we set the live flag 
to true in all those nodes which have some point processor pointing lo them, 
and to false in all other nodes. Only those nodes for which lin is true are 
operated on during the rest of the iteration.

We give here a description of our programming paradigm mid algorithm 
notation.
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The algorithm is given as a procedure, possibly with other supporting 
procedures. There is no nesting of procedure declarations. Besides proce 
dures there are global variables; a variable is global if it is declared outside of 
any procedure. A procedure may return a value; if so, the type of the value 
is given before the 'procedure' keyword.

A variable can be either parallel or non-parallel; in the latter case we say 
that the variable is mono. Every parallel variable belongs to some particular 
parallel processor type, such as point processor or node processor. A variable 
is declared as mono with the construct "mono declaration''' and as parallel 
with the construct "parallel processor-type declaration'''. In certain contexts 
the default type is mono and in certain other contexts the default is parallel; 
in these contexts the prefixes "mono" or "parallel processor-type" may be 
omitted. Global declarations of variables are mono by default, so when global 
declarations of parallel variables are made the prefix "parallel processor-type'1 '' 
must be used, and furthermore the declarations must be given in a record- 
style block delimited by the keywords 'begin' and 'end'. Only one such global 
block of variables is permitted for each processor type. Each processor type 
has its own namespace for global variables.

If a variable is a pointer, both the pointer itself and the type of object 
pointed to can be either parallel or mono. The declaration "mono pointer 
mono integer p" specifies a simple mono pointer to a mono integer, and corre 
sponds to the usual notion of pointers in serial architectures. The declaration 
"mono pointer parallel apple integer p" specifies that 'p' gives a uniform off 
set into the storage of all processors of type 'apple' and that at that offset 
is found a parallel variable of type integer. The declaration "parallel apple 
pointer parallel orange integer p" specifies that the parallel pointer 'p' be 
longs to the processors of type 'apple', and that each instance of 'p' points 
to some datum of integer type in some processor of type 'orange'. The dec 
laration "parallel apple pointer mono integer p" specifies that the parallel 
pointer 'p' belongs to the processors of type 'apple' and that each instance 
of 'p' points to some mono integer datum.

Procedures can also be either parallel or mono. A procedure is specified as 
parallel by prefixing its declaration with "parallel processor-type", otherwise 
it is taken to be mono. The arguments, local variables, and return value of 
a mono procedure are taken to be mono by default. The arguments, local 
variables, and return value, if any, of a parallel procedure are by default 
parallel values. Furthermore, within the body of a parallel procedure, parallel 
global names are interpreted in the context of the processor type given in the 
procedure declaration. Any of the parameters, local variables, or return 
values of any procedure can be forced to be of some type other than their 
default by use the 'mono' and 'parallel' prefixes.

Declarations of procedure parameter types are given between the proce 
dure argument list and the procedure's 'begin' statement.

The construct "in.every processor-type do statement-list" causes precisely 
the set of all processors of the given type to become active at the beginning 
of the statement list. Furthermore, within the statement list the names of 
global variables are interpreted in the context of the given processor type. At 
the end of the statement list, the set of processors which were active before 
the statement list was entered is re-established as the active set.

The are two variants to "in_every". One is "in_every boolean-expression
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processor-type do statement-list" and the other is "in_every processor-type 
having boolean-expression do statement-list". Both are equivalent to "in_every 
processor-type do if boolean-expression then statement-list".

Outside of a parallel procedure for a given type or an 'in_every' statement 
for a given processor type, use of parallel global variable names for that 
processor's type is considered an error.

In the construct "if conditional then statement-list", if the conditional 
is a parallel expression (one involving parallel variables or values), then the 
subset of the present active set of processors whose current values satisfy 
the conditional are made the active set at the beginning of the statement 
list. At the conclusion of the statement list, the set of processors which were 
originally active is re-established as the active set.

When a parallel procedure is called, the set of processors active at the 
time of invocation will be the set active at the beginning of the execution of 
the procedure body.

If 'p' is a pointer to a processor, and 'f is a parallel variable in the 
processors of the type of that pointed to by 'p', then the notation 'f<p>' 
indicates the value of the variable 'f' in the particular processor pointed to 
by'?'.

The symbol '<—h' indicates an assignment statement involving a possibly- 
multiple write, and in which the write contention is to be resolved by sum 
ming the multiply-written values. There are other similar assignment sym 
bols such as '<-or' and '<-min'.

The algorithm is as follows:

node I I pointer node father;
node I I pointer node array son[4];
node I I integer level;
node I I node_color color;
node II real left, right, bottom, top;

point I I real x, y;

node II procedure allocate_sons();
/* Allocates four sons for each node active when

the procedure is called and fills each node's
son array accordingly. */

procedure PR_quadtree(root) 
pointer node root;
/* Builds a PR quadtree for all the points which are in 

allocated point processors. Assumes that root points to 
a node whose level and boundary have been initialized, 
and uses this node as the root of the quadtree 
constructed. */ 

begin
node I I integer total; 
point I I pointer node node_ptr; 
point II integer my_quadrant; 
integer 1;

/* Make all points within the root's boundary point to the
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root, give all other points NULL node pointers. */ 
in_every point do 
begin

node_ptr <- NULL;
if x >= left<root> and x <= right<root> and

y >= bottom<root> and y <= top<root> then 
node_ptr <- root; 

end;

/* Loop from level of root to bottom. */

for 1 <- level<root> downto 0 do 
begin

/* Initialize point total for all nodes on present
level to zero. */ 

in_every node having level = 1 do 
total <- 0;

/* Each point contributes 1 to the point total for the
node containing it. */

in_every point having node_ptr <> NULL do 
total<node_ptr> <-+ 1;

/* Nodes with no points in them are white. Nodes with 
one point in them are black. Nodes with more than 
one point in them are gray. If we're not at the bottom 
level we allocate sons for the gray nodes. */ 

in_every node having level = 1 do 
begin

if total = 0 then color <- WHITE 
else if total = 1 then color <- BLACK 
else begin

color <- GRAY;
if 1 > 0 then allocate_sons(); 

end; 
end;

/* If at bottom level then we're done. */ 
if 1 = 0 then return;

/* The points in each gray node divide themselves among
the sons. */ 

in_every point having node_ptr <> NULL and
color<node_ptr> = GRAY do 

begin
/* Each point determines which subquadrant it is in. */
my_quadrant <- 0;
if x > 0.5 * (left<node_ptr> + right<node_ptr>) then
my_quadrant <- my.quadrant + 1;

if y < 0.5 * (bottom<node_ptr> + top<node_ptr>) then 
my_quadrant <- my_quadrant + 2;

/* Each point fetches the pointer to the corresponding
node son. */

node_ptr <- son<node_ptr>[my_quadrant]; 
end;

end; 
end;
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To summarize the technique so far, we allow one processor per object and 
one processor per quadtree node. Each object is given access to a sequence 
of shrinking nodes which contain it; initially all objects have access to the 
root node. By having each object obtain information from its node, and by 
combining at the node information from all of the objects who access that 
node, the objects make decisions about descending the quadtree from that 
node.

3 The General Technique
Now consider instead the task of constructing a PM quadtree for line segment 
data. In constructing a PM quadtree, a node should be assigned the color 
gray and subdivided if its boundary contains more than one endpoint, or 
if its boundary has two segments which enter it but which do not have a 
common endpoint within it. Initially, we have one processor allocated for 
the quadtree root, and one processor for each line segment, containing the 
coordinates of the segment's endpoints.

Consider creating an algorithm, similar to the one given above, to con 
struct the PM quadtree for this segment data. Each segment processor ini 
tially possesses a pointer to the quadtree root processor. Each segment pro 
cessor computes how many of its segment's endpoints lie within the boundary 
of the node to which the segment processor points; this will be 0, 1, or 2. 
Each segment then sends this value to the node it points to, and both the 
maximum and minimum of these values are computed at the node. Any node 
which receives a maximum value of 2 assigns itself the color gray, since this 
means that some single segment has both endpoints in the node's boundary. 
Any node which receives a maximum of 1 and a minimum of 0 also assigns 
itself the color gray, since this means that there are at least two segments in 
the node's boundary, one which passes completely through it and one which 
terminates within it.

Then each segment with exactly 1 endpoint in the node it points to sends 
the coordinates of that endpoint to the node. The node receives the minimal 
bounding box of the coordinates sent to it (this, of course, amounts simply 
to applying min and max operations appropriately to the coordinate compo 
nents). If this minimal bounding box is larger than a point, the node assigns 
itself the color gray, since this means that some two segments entering the 
node have non-coincidental endpoints within the node.

Finally each segment with 0 endpoints in the node it points to determines 
whether it in fact passes through the interior of the node at all, and if so 
it sends the value "1" to the node, where these values are summed. If the 
sum received by the node is greater than 1, the node assigns itself the color 
gray, since this means that some two segments passing through the node do 
not have any endpoints in the node, which implies that they do not have a 
common endpoint in the node. Then all gray nodes allocate son processors. 
Any nodes which were not given the color gray should be colored white if no 
segments entered their interior (the sum is zero), and black otherwise (the 
sum is one).

At this point in the algorithm, we would like to have all segment proces 
sors which point to gray nodes compute which of the node's sons they belong
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to, and retrieve from the node the appropriate son pointer, just as in the 
case of the PR quadtree construction algorithm. Of course in this case, as 
opposed to the case of the point data, a given segment can intersect more 
than one of the node's sons, and we are left with the situation of wanting to 
assign up to four son pointers to the segment processor's node pointer, and 
processing each of the corresponding sons. The solution to this dilemma is 
to allocate clones of each such segment processor, that is, to create multiple 
processors which represent the same segment, and all of which contain (al 
most) the same information. So for each segment processor pointing to a gray 
node, we allocate three clone processors, all of which contain the segment's 
endpoints and a pointer to the same node as the original segment processor. 
In addition, the original and its clones each contain a clone index from 0 to 
3, with the original containing 0 and each of the clones containing a distinct 
index from 1 to 3. Now the original and its clones each fetch a son pointer 
from the node that they all point to, each one fetching according to its clone 
index, so that each gets a different son pointer.

The subsequent iterations of the algorithm proceed as the first, with each 
segment processor determining how many of its endpoints lie within the 
interior of the node it points to, and with the eventual computation of the 
colors of all the nodes on each particular level. At this point in each iteration, 
notice that any segment processors pointing to leaf nodes, or whose segments 
do not pass at all through the interior of the node to which they point, will 
not have any further effect of those nodes, and can thus be de-allocated and 
re-used later. This reclaiming of segment processors keeps the number of 
clones allocated for each segment from growing exponentially. In fact the 
number of processors required for a given segment at a given level in the 
construction of the quadtree will be only roughly as many as there are nodes 
in that level of the tree through whose interior the segment passes.

To summarize the general technique then, we allow one processor per 
quadtree node, .and initially allow one processor per object. Each object 
is given access to a sequence of shrinking nodes which contain part of it; 
initially all objects have access to the root node. By having each object 
obtain information from its node, and by combining at the node information 
from all of the objects who access that node, the objects make decisions 
about descending the quadtree from that node. For those objects which do 
descend, it is desirable for their various parts which lie in various quadrants of 
the node to descend in parallel. Thus we allow duplicate or 'clone' processors 
for each object, and have each processor handle just that portion of the object 
relevant to one quadrant of the node. Duplicate processors which determine 
that they can no longer effect the the node to which they point, because 
that node is a leaf, or because the object they represent does not overlap 
that node, can deactivate themselves so that they may be used later in the 
computations for some other object.

We see then that this technique allows us to go beyond the level of gran 
ularity of one processor for every element (space component or object) to 
a level where there are multiple processors for certain elements and none 
for others; where the processors are being used and disposed in a dynamic 
fashion.
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4 Other Applications
The same general technique can be applied to create algorithms for several 
other quadtree tasks. For example consider the task of shifting a quadtree. 
Suppose we have already created somehow a quadtree with one processor 
per node, and wish to compute a new quadtree to represent the original 
one shifted by some amount. Using this technique we create the following 
algorithm.

Have each black leaf node of the old quadtree compute its own shifted 
position. Then allocate a new processor for the root node of the new (shifted) 
quadtree, and give each old black leaf node a pointer to this new root node. 
Iterate the following from top to bottom of the new quadtree.

Each old black leaf node fetches the boundary of the new node it points 
to, and computes whether, in its new shifted position, it encloses that node. 
All old black leaf nodes which do enclose the new node they point to send the 
value TRUE to the new node, which combines the received results by or-ing 
them. Any new node which thus determines it is enclosed by some old black 
leaf node assigns itself the color black. Then each old black node computes 
whether it intersects the new node it points to even if it doesn't enclose it, 
and if so sends TRUE to the new node, which combines the received results 
by or-ing them. The new node then assigns itself the color gray if it is not 
already black and if some old black leaf node intersects it, i.e. if the received 
result is TRUE. Any new node which does not determine itself to be black 
or gray in this way assigns itself the color white. All new gray nodes allocate 
sons for themselves. Each old black leaf node pointing to a new gray node 
allocates clones for itself, and divides up among itself and its clones the son 
pointers of the new gray node to which they all point.

In the above procedure, before clones are allocated, any processor rep 
resenting an old black leaf node which points to a black or white new node 
should de-allocate itself so that it may be re-used, since it will no longer affect 
the new node it points to. Of course, this de-allocation should not be done 
for those processors which originally represented the quadtree to be shifted, 
if it is desired that this original quadtree not be lost, but these processors 
can be specially marked to avoid their being de-allocated.

It is not hard to see how this same technique can also be used to create al 
gorithms for quadtree rotation and expansion which run in time proportional 
to the height of the new quadtree, by computing in parallel the rotated or 
expanded version of each old black leaf node, and building the new quadtree 
using cloning. One can also create algorithms for the simultaneous insertion 
of many polygons or arbitrary regions into a quadtree. Some of these al 
gorithms will require an additional post-processing phase in which any node 
with four sons of the same color is given that color and has its sons discarded. 
This can be done in a single bottom-up pass over the new quadtree in time 
proportional to its height.

5 A Hidden Edge Algorithm Using Cloning
To show the flexibility of our technique, we use it here to create an algorithm 
for computing hidden edges in a scene consisting of polygons lodged in 3-
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space. The algorithm builds an MX quadtree of the pixels in the viewplane. 
In an MX quadtree [3], all pixel sized leaf nodes through which an edge passes 
are black, and all other leaf nodes are white.

This algorithm is based on the Warnock algorithm for hidden edge com 
putation [1] [5]. The essential idea of the algorithm is that while recursively 
decomposing the viewplane into quadrants, if it can be determined that all 
of the pixels which compose some entire quadrant at some level of decom 
position should be white, then the quadrant does not need to be further 
decomposed. In order to determine if this is so for a given quadrant, we 
consider the planes (in 3-space) in which our polygons lie. After computing 
the projections onto the viewplane of all polygons (which is done in parallel 
by the polygon processors), we consider the planes of those polygons whose 
projections completely enclose the given quadrant. We wish to determine 
if the plane of any of those polygons is "closer" to the viewpoint than the 
planes of the other polygons whose projections enclose the quadrant. To 
determine this, we compute the inverse projections of the quadrant corners 
onto the planes of the enclosing polygons, and if one plane is found to be 
nearer to the viewpoint for all four corners, it is deemed the closest plane.

The algorithm proceeds as follows. We initially assign one processor per 
polygon, and have one processor representing the root node of the viewplane 
quadtree being constructed. Initially each polygon processor possesses a 
pointer to the root node. The following procedure is iterated from top to 
bottom of the quadtree being built.

Each polygon computes its projection onto the viewplane (these can be 
pre-computed since they are fixed), and determines the relationship of its 
projection with the quadtree node to which it points. Specifically, it de 
termines whether its projection encloses the quadrant, or is involved with 
it, meaning it overlaps but does not enclose the quadrant, or whether it is 
outside the quadrant altogether.

Each polygon whose projection encloses its quadrant computes the in 
verse projection of each of the four corners of its quadrant onto its plane. 
This computation produces for each corner a distance from the viewpoint 
to the polygon's plane. Each of these polygons then sends this distance for 
each of the four corners to its quadrant (node) processor, which computes 
the minimum of these values as they are received. Each polygon then reads 
back the minimum distance for each of the four corners, and if all four min 
imum distances are equal to the corresponding distances which the polygon 
computed for its own plane, the polygon concludes that its plane is closest 
to the viewpoint. The polygon then informs its quadrant that it is enclosed 
by the projection of a polygon whose plane is closest to the viewpoint, and 
based on this the quadrant assigns itself the color white.

Then all polygons which are involved with (i.e. overlapping but not en 
closing) their quadrant send the value TRUE to their quadrant, which com 
bines the values sent to it by or-ing them. Any quadrant not already assigned 
the color white and which determines it has some polygon involved with it 
assigns itself the color gray. All other quadrants have no polygons whose 
projections either enclose them or are involved with them, so they assign 
themselves the color white. All gray quadrants allocate sons.

Those polygons which point to a quadtree leaf node, or which are outside 
the quadrant to which they point, de-allocate themselves, since they will no
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longer affect those nodes. All remaining polygon processors point to a gray 
nodes. Each remaining polygon processor allocates clones, and divides up 
among itself and its clones the son pointers of its node.

On the last iteration of the algorithm, that is, the pixel-level iteration, 
the procedure above is modified so that any node which is involved with some 
polygon assigns itself the color black instead of gray. After this last iteration, 
the quadtree constructed is an MX quadtree representation of the viewplane 
of the projection, with hidden edges eliminated.

Below is the hidden-edge algorithm. The main procedure is 'hidden_edge()', 
which takes as an argument a pointer to a node processor, and uses this as the 
root of the quadtree constructed. As with 'PR_quadtreeQ', only those poly 
gon processors active when the routine is called are used for the construction 
of the hidden-edge image quadtree.

node |
node |
node I
node I
node I

pointer node father;
pointer node array son[4];
integer level;
node_color color;
real left, right, bottom, top;

/* Vertex projections onto viewplane. */
polygon II real array x[NPOINTS], y[NPOINTS];
/* Number of vertices in polygon. */
polygon II int npts;
/* Parameters of polygon plane. */
polygon I I real a, b, c;

polygon II real polygon II procedure poly_plane_dist(x, y);
polygon I I real x, y;
/* For each active polygon, returns the distance from the

viewpoint to the polygon plane via the point (x, y) on
the viewplane. */

polygon II procedure allocate_clones(); 
/* Allocates four clones for each active polygon. The 

clones get the clone indices 0, 1, 2, and 3. */

polygon II procedure deallocate_clones(); 
/* Deallocate all active clones. */

node || procedure allocate_sons();
/* Allocates four sons for each active node. */

polygon I I relation
polygon II procedure find_relation(left, right, bottom, top); 

polygon II real left, right, bottom, top; 
/* Each active polygon determines the relationship (INVOLVED,

OUTSIDE, ENCLOSES) of its projection with the rectangle
defined by the parameters passed. */

procedure hidden_edges(root)
value pointer node root;
/* Builds a parallel quadtree to represent the scene of 

all the polygons. Performs hidden edge elimination 
based on a projection using the plane of the quadtree 
leaves as viewplane. The pointer passed is assumed to 
point to a quadtree node whose level and boundaries
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have been initialized and is used as the
root of the quadtree constructed. */ 

begin
polygon I I relation rel;
polygon || real pleft, pright, pbottom, ptop;
polygon I I pointer node node_ptr;
polygon I| real pll, plr, pul, pur;
polygon I| integer clone_index;
integer 1;

/* Start off with all polygon clones pointing to the root. */ 
in_every polygon do 
node_ptr <- root;

/* Loop from level of root node to bottom. */

for 1 <- level<root> downto 0 do 
begin

/* Each polygon fetches the boundaries of the node it
points to and determines its relationship with it. */ 

in_every polygon do 
begin
pleft <- left<node_ptr>; 
pright <- right<node_ptr>; 
pbottom <- bottora<node_ptr>; 
ptop <- top<node_ptr>;
rel <- find_relation(pleft, pright, pbottom, ptop); 

end;

/* Each node on the current level initializes the minimum
distance for its four corners to be infinity. */ 

in_every node having level = 1 do 
begin

11 <- INFINITY; 
Ir <- INFINITY; 
ul <- INFINITY; 
ur <- INFINITY; 

end;

/* Every polygon processor whose projection is not outside 
its node determines the distance from the viewpoint to 
the polygon's plane for each of the four corners of the 
node. For each of the four corners, the minimum 
distance, computed over the set of planes of all such 
polygons, is accumulated at the node processors. */ 

in_every polygon having (rel <> OUTSIDE) do 
begin

pul <- poly_plane_dist(pleft, ptop); 
pur <- poly_plane_dist(pright, ptop); 
pll <- poly_plane_dist(pleft, pbottom); 
plr <- poly_plane_dist(pright, pbottom);

ul<node_ptr> <-min pul; 
ur<node_ptr> <-min pur; 
ll<node_ptr> <-min pll; 
lr<node_ptr> <-min plr; 

end;

/* Each node on the current level initializes to FALSE 
a flag which indicates that it is enclosed by the
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projection of the closest polygon, and to TRUE a flag 
which indicates that the projections of all polygons 
are outside it. */ 

in_every node having level = 1 do 
begin

enclosed_by_closest <- FALSE; 
all_outside <- TRUE; 

end;

/* Each polygon whose projection encloses its node
determines if its plane is closest (among the planes of 
all such polygons) at all four corners of the node. 
The disjunction of these results is accumulated at the 
node processors. */ 

in_every polygon having (rel = ENCLOSES and
pul = ul<node_ptr> and 
pur = ur<node_ptr> and 
pll = ll<node_ptr> and 
plr = lr<node_ptr>) do 

enclosed_by_closest<node_ptr> <-or TRUE;

/* Each polygon knows if it is outside the node it 
points to. The conjunction of these results is 
accumulated at the node processors. */

in_every polygon having (rel <> OUTSIDE) do 
all_outside<node_ptr> <-and FALSE;

/* Finally we determine the color for each node on the
current level. */ 

in_every node having level = 1 do 
begin

if enclosed_by_closest or all_outside then
color <- WHITE; 

else begin
if 1 = 0 then color <- BLACK; 
else color <- GRAY; 

end; 
end;

/* Each polygon clone pointing to a black or white node, 
or which is outside of the node it points to, 
is de-allocated. */ 

in_every polygon having (color<node_ptr> = WHITE or
color<node_ptr> = BLACK or 
rel = OUTSIDE) do 

begin
deallocate_clones(); 

end;

/* If at the bottom level then we're done. */ 
if 1 = 0 then return;

/* Each gray node on the current level allocates sons. */ 
in_every node having level = 1 and color = GRAY do 

allocate_sons();

/* Each remaining polygon allocates four clones and
tags itself as an old clone. */ 

in_every polygon do 
begin
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allocate_clones();
in_every polygon do new_clone <- TRUE; 
new_clone <- FALSE; 

end;

/* Then the new polygon processors each get a pointer 
to one of the node's sons, and the old polygon 
processors are deallocated. */ 

in_every polygon do 
if new_clone then
node_ptr <- son<node_ptr>[clone_index]; 

else
deallocate_clones();

end; 
end;

6 Some Timing Results
In this section we present some timing results for the PR quadtree build 
ing algorithm and the hidden edge algorithm for implementations of these 
algorithms on a Connection Machine. A Connection Machine is a SIMD 
architecture based on a multi-dimensional cube. The vertices of the cube 
correspond to processors, and the edges correspond to direct communication 
links between the processors. The illusion of direct access from one processor 
to the memory of any other is supported by a sophisticated routing algo 
rithm, which deals with bottlenecks and which also supports simultaneous 
read access and simultaneous write access using several contention resolution 
operations. Due to the nature of the contention resolution mechanism, the 
amount of time required to perform a simultaneous write to or read from 
a single location tends to be proportional to the log of the number of pro 
cessors performing the simultaneous access. The Connection Machine also 
support virtual processors, meaning that each processor can emulate several 
processors, with a proportional reduction in processing speed and memory 
per processor. The mechanism of virtual processors in transparent to the 
code which runs on the Connection Machine.

The algorithms were implemented in C*, a parallel version of C, using 
floating point for all geometric coordinates and were run on a 16384 processor 
CM-2 without floating point hardware. For each algorithm and number of 
objects processed, two times are given. One is the real elapsed time, and one 
is the amount of time spent actually performing operations on the Connec 
tion Machine. The tables reveal that the running times of the algorithms on 
a Connection Machine are not in fact completely independent of the number 
of objects represented, which was expected since the execution of multiple 
reads and writes takes time proportional to the log of the number of pro 
cessors involved in the simultaneous access. This fact, together with the 
fact that such intercommunication operations tend to be the most time con 
suming operations on a Connection Machine, explains the approximate log 
dependency seen in the tables of the algorithm running times on the number 
of objects represented.

Table 1 shows timing results for the PR quadtree building algorithm for 
various numbers of points distributed randomly over a square region, for a
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quadtree with a maximum depth of eight levels.

Number of Points
10

100
1000

10000

Elapsed Time (s)
0.88
2.15
4.09
6.98

CM Time (s)
0.61
1.78
3.25
6.02

Table 1:

Table 2 shows timing results for the hidden edge algorithm for various 
numbers of square polygons distributed randomly over a parallelpiped region 
with a pre-computed parallel projection onto a viewplane parallel to one of 
the faces of the parallelpiped. The MX quadtree constructed has a maximum 
depth of eight levels, i.e. it is the MX quadtree for a 128 by 128 pixel image.

Number of Polygons
5 

50 
500

Elapsed Time (s)
9.49 
12.64 
18.79

CM Time (s)
8.57 
11.24 
15.49

Table 2:

7 Summary
This paper has presented a technique for creating SIMD algorithms for paral 
lel pointer-based quadtrees. It combines parallelism both across the elements 
of the space represented by the quadtree and across the elements of the set of 
objects represented. It produces algorithms wherein a dynamic relationship 
is maintained between elements and processors, with elements having per 
haps several processors operating on them simultaneously, and with elements 
disposing of their processors when they are no longer required, so that they 
may be re-used by other elements.

8 Future Plans
We will continue to apply this technique in the construction of parallel al 
gorithms for a variety of quadtree tasks. In addition, we point out that we 
presented this technique as an embodiment of a control mechanism which 
can exploit fine-grained parallelism to create a useful dynamicism between 
processors and elements of our processing domain. In the future we plan to 
expand on the notion of this sort of dynamicism and apply it to other data 
structures and problem domains.
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Figure 1: Before the 
first iteration

Figure 2: After the 
first iteration

Figure 3: After the 
second iteration

Figure 4: After the 
final iteration
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