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ABSTRACT

Numerous cartographic applications rely on triangulated surface models for accurate 
three-dimensional representations of real-world data. Some applications require a series 
of triangulations to represent a single surface at progressively finer levels of detail. Past 
work has emphasized techniques relying on plane geometry using little or no surface 
data. We propose a technique that adapts the triangulation to surface characteristics. 
Because our adaptive hierarchical triangulation focuses on the topology of a surface, it 
reduces the number of triangles required for a good approximation. It also produces 
fewer long and slivery triangles within each level of detail. Our structure guarantees the 
accuracy of each level of detail. Our structure only retains important triangles, thereby 
reducing the total number of triangles that must be stored and searched. Furthermore, 
the tree-like structure of our hierarchy is well-adapted to multiple resolution views, 
allowing smooth transitions between levels of detail in flight simulators. These advan 
tages add up to a triangulation that provides great accuracy in a model that can be 
rapidly searched, rendered, and otherwise manipulated. Tests on data with digital eleva 
tion input have confirmed the above theoretical expectations. On eight such sets the 
average "sliveriness" with the new method was between 1/5 and 1/10 of old triangula 
tions and number of levels was about one third. Although the number of descendants at 
each level increases slightly, the total number of triangles is lower, implying faster spa 
tial search.

INTRODUCTION

Geographic information systems, flight simulators, and numerous other cartographic 
applications rely on digital terrain models for simulation, visualization, and analysis. 
Increasingly, these applications require both greater accuracy and data compression 
from these models. Triangulated models are popular because triangles are simple to 
manipulate and render. Triangulated Irregular Networks (TINs) offer the additional

t Portions of this paper were included in a paper presented at Visualization '90. For further details 
and examples of this work, interested readers should request a technical report entitled "Hierarchical 
Triangulation Using Terrain Features" from Lori Scarlatos.
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advantage of not being bound by regularity constraints. TINs can therefore approximate 
any surface at any desired level of accuracy using a very small number of polygons. 
Organizing TINs in a level of detail hierarchy provides accurate generalizations meeting 
different application requirements. Hierarchical organization allows easy implementa 
tion of such operations as zooming when viewing the surface. It also facilitates search 
ing and other geometrical operations such as finding the intersection of two surfaces. 
Furthermore, it makes real-time simulation and visualization possible for applications 
that can represent less important areas with less detail in mixed-resolution models.

This paper describes a hierarchical triangulation built from a digital elevation model in 
grid form. Each level in the hierarchy corresponds to a different level of detail that 
approximates the surface within a given tolerance (i.e. maximum error), The top level is 
the coarsest, containing the fewest triangles and approximating the surface within the 
greatest tolerance value to. The i+l'h level in the hierarchy is related to the i th level as 
follows. Tolerance ti+i is smaller than tt . Each triangle T} of the i th level is split into n 
descendent triangles 7/t 1 , ''' , Tf+i at the i'+l'* level, where n can be any positive 
integer.

In the following section, we provide a background of past work on triangulation and 
hierarchical triangulation. We then describe our adaptive hierarchical triangulation 
methodology, and discuss its advantages over other methods. Next, we outline the 
implementation of this algorithm and the resulting data structure. We conclude with a 
discussion of test results obtained from running this implementation.

BACKGROUND 

Triangulation

Triangulation algorithms generally fall into two groups: those that efficiently triangulate 
a given polygon, and those that use triangulation to approximate surfaces. In the former 
category, the primary issues are computational complexity (Aho et al 1974, Garey et al 
1978, Clarkson et al 1989, Fournier and Montuno 1984) or size and shape of the result 
ing triangles (Baker et al 1988). We are more interested in the latter category where the 
primary goal is to produce the best possible surface approximation. This surface 
approximation should contain as few triangles as possible while still meeting given 
accuracy requirements. At the same time, it must minimize the number of very thin, 
slivery triangles which can produce artifacts in renderings of surface models.

Surface triangulation algorithms may be further categorized by the input data they tri 
angulate. Surface triangulation produces a planar graph by adding edges, and sometimes 
even points, to an initial graph. This initial graph, comprised of points (nodes) on the 
surface, may or may not include connecting edges (critical lines) that further define that 
surface.

In the first sub-category of surface triangulation algorithms, the initial graph contains no 
initial edges. Although some of these triangulation algorithms rely on alternate tech 
niques (Mirante and Weingarten 1982, Manacher and Zobrist 1979) most are a variation 
on the Delaunay triangulation scheme (Watson 1981, Dwyer 1987, Preparata and 
Shamos 1985, Watson and Philip 1984 are only a few). Algorithms based on Delaunay 
triangulation have the advantage of producing few slivers. However, Delaunay's 
method was developed to find nearest neighbors on a plane, not approximate surfaces. 
These algorithms tend to ignore the third dimension, and may therefore produce triangle 
edges that contradict the topology of the actual surface (Christensen 1987).
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The second sub-category of algorithms assumes that all points in the initial graph have 
at least one connecting edge. These edges correspond to the linear patterns that charac 
terize many surfaces, particularly natural ones such as terrain. Because these edges 
describe surface topology, they are retained in the final triangulation to maximize model 
accuracy. Some papers such as (Christiansen and Sederberg 1978, Dennehy and 
Ganapathy 1982) deal with triangulating cross-sections from tomographic scans, 
although the methods of both of these papers require human intervention when the con 
tours get complex. Other algorithms for triangulating cartographic critical lines have 
been recently published (Christensen 1987, Scarlatos 1989, Chew 1989).

Hierarchical Triangulation

Hierarchical triangulations provide both multiple levels of detail and a structural order 
ing for fast spatial search. Recent papers (Goodchild 1989, Fekete 1990) propose to 
represent the entire planetary surface with a quadtree-like hierarchy of regular triangular 
tessellations. This is an excellent scheme for dividing huge data bases into manageable 
areas of interest which may be georeferenced in constant time. However, as shown in 
(Scarlatos 1990b), the placement of points in a regular tessellation is independent of the 
surface topology. Hence coarser levels of detail can distort or entirely miss important 
terrain features, and finer levels of detail can cause unnecessary bottlenecks by produc 
ing large numbers of triangles where a few would do as well.

Previous work by one of the authors has researched techniques to find critical points 
and lines (Scarlatos 1990a), triangulate them (Scarlatos 1989) and then refine those tri 
angulations to produce a hierarchy of detail levels for fast spatial search with maximum 
accuracy (Scarlatos 1990b). These algorithms represent significant improvements over 
other algorithms, producing good triangulations. However, the above algorithms do not 
allow for refinement down to a specified level of accuracy.

Although several refinement techniques have been suggested in the literature (Fowler 
and Little 1979, DeFloriani et al 1984, DeFloriani 1989), these algorithms can introduce 
artifacts to a terrain model because they consider only the locality of points in a 2D 
plane instead of actual terrain topology. Consider, for example, DeFloriani's first algo 
rithm for triangle refinement (DeFloriani et al 1984) which splits a triangle by connect 
ing its corners to a selected interior point (usually, the point of maximum distance 
between the surface and the plane defined by the vertices of the triangle). The algorithm 
ignores the coherence of cartographic features such as valleys or ridges which have a 
linear structure.

Figure 1 shows the results of ignoring such coherence. We assume that a ridge (its 
points marked by small circles in (a)) crosses the triangle, (b) shows that the maximum 
point triangulation will produce an unreasonably large number of triangles. Even worse, 
the triangles will have very sharp angles, which is an undesirable property (Baker et al 
1988). Such triangulations may cause numerical stability problems in finite element 
methods and also produce undesirable display artifacts. In contrast, if we realize that we 
deal with a ridge and introduce a dividing line along it as shown in (c) we will end up 
with fewer triangles, none of them slivery. We should point out that triangles with very 
sharp angles may be inevitable for some types of data. For example, if we have a steep 
cliff we will see large differences in the value between adjacent elevation points. Then 
triangles with very sharp angles cannot be avoided.
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(a) (b) (c)

Figure 1. A ridge passing through a triangle has (a) points along that ridge
that are farthest from the triangle which may be triangulated using

(b) the maximum error point to split each triangle, or (c) cartographic
coherence to approximate the ridge line.

METHODOLOGY

Our goal is to reduce the number of splits or refinements required to achieve a desired 
level of detail and limit the number of slivery triangles in the results. A generalization 
of the critical line method could produce better accuracy with fewer triangles. We have 
implemented such a strategy as follows. We start with a coarse triangulation. This may 
be carefully produced by techniques outlined in Scarlatos' three papers, or it may be as 
simple as a rectangular area split in two. We then refine this triangulation by adding 
points from the original digital elevation grid and connecting edges. Our refinement 
technique pays particular attention to terrain characteristics, approximating critical lines 
at each step.
To accomplish this, we determine the best places to split each triangle by calculating 
four error values: one inside the triangle, and one on each of the three edges. All error 
values measure the difference between original grid point elevations and their projec 
tions to the surface of the triangulated model. To avoid quantization artifacts, grid 
points near a triangle edge are considered to be on that edge.

Figure 2 shows the five ways that a triangle may be refined. If an isolated peak or pit 
resides within the triangle, it is split at that central peak or pit point as shown. If a sin 
gle ridge or channel line travels up to that peak or pit, the triangle is split where that 
line crosses the edge of the triangle and at the central peak or pit point. If, however, a 
single ridge or channel line enters the triangle and ends at a saddle point or flat, then 
the center point is insignificant and the triangle is split by one edge as shown. If a ridge 
or channel line passes through the triangle, significant errors will be found on two edges 
of the triangle. A line connecting these points approximates the topographical line, and 
an additional edge splits the remaining quadrilateral. Finally, if a triangular patch 
corresponds to a rapidly fluctuating surface, many points are likely to have significant 
errors. Splitting this type of triangle on all edges segments the high-frequency regions 
which may then be further refined.
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Split in center Split on 1 edge 
(significant center)

Spb't on 1 edge 
(insignificant center)

Split on 2 edges Split on 3 edges 

Figure 2. Split strategies for preserving cartographic coherence.

We repeatedly split the triangles until they all meet the given accuracy requirements for 
the current level of detail. Intermediate triangles, used to produce but not included in 
the final triangulation for the current level of detail, are discarded. This reduces the 
number of levels in the hierarchy and the number of triangles within each level, making 
faster search, display, and processing possible. If polygon constraints are more impor 
tant than the level of error, we can easily check the polygon count and terminate a level 
when the limit is approached.

IMPLEMENTATION OF THE ALGORITHM

We implemented our adaptive hierarchical triangulation algorithm as follows. A main 
program retrieves the input data, calls the appropriate triangulation routines, and writes 
out the results to a data base. Input parameters include an initial triangulation, the 
number of levels to create in the hierarchy, and a tolerance for each level. A main loop 
generates each level of detail. At the start of the loop, the current triangulation 
represents level i in the hierarchy. At the conclusion of the loop, the current triangula 
tion represents level i+l in the hierarchy. The body of the loop splits triangles in the 
current triangulation until all errors lie within the given tolerance for that level.

Data Structures

We generate our adaptive hierarchical triangulation from a digital elevation matrix 
which covers a rectangular area of interest. The region outside the area of interest is 
represented by four neighboring "triangles". These extend infinitely to the north, east, 
south, and west of the area of interest. Points within the area of interest provide the 
endpoints of ~ and are entirely covered by — an initial triangulation. Each point may 
therefore be associated with zero, one, or two triangles. Points acting as triangle ver 
tices have no triangle associations. If the distance from a point to a triangle edge is less 
than the distance between grid posts in the original matrix, then that point is considered 
near that edge. A point on or near a triangle edge is associated with the two triangles
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that share that edge. Otherwise, the point is within a single triangle. A Membership list 
contains records of each point's two associated triangles and a distance to their shared 
edge. When a point is near more than one edge, the membership records form a linked 
list in order of increasing distance values.

A triangle in the hierarchy is defined by three points from the original elevation matrix. 
Each triangle is associated with a level of detail and contains pointers to its parent, its 
children, and three neighboring triangles that share its edges. In addition, triangles have 
temporary structures keeping track of their splitting points, the maximum error found 
within them, and the number of edges to be split. A flag indicates whether the triangle 
meets the accuracy standards of the current level.

Splitting Triangles
For each specified level of detail, our program repeatedly splits triangles until the tri 
angular mesh approximates the surface within the given tolerance. We find errors 
within a triangle by taking all grid points within the boundaries of that triangle, project 
ing them to the surface of the triangle, and comparing the results to the original eleva 
tion values. Errors are found in four regions on a triangle: on each of the three edges, 
and within the triangle. These errors determine if and how the triangle will be split.

Next, we find the point producing the maximum error in each of the four regions for 
each triangle. Notice that the point with maximum error on one triangle's edge will also 
be the point with maximum error for the other triangle sharing that edge. If the error is 
significant, then that point will split the triangle(s) it belongs to. Significance may be 
calculated in two ways. First, if the given value is greater than the threshholded error 
for the current level of detail, then that point is significant. Alternatively, if the given 
value is more than some percentage of the maximum error found within a triangle, then 
that point is significant. In either case, a point is insignificant if its error falls at or 
below the threshhold for the current level of detail.
After all splitting points have been found, we ensure that the splitting point on an edge 
of one triangle is also a splitting point for the triangle sharing that edge. Then we split 
all the triangles. Although each of the five regular triangulation algorithms is different, 
they all follow the same pattern of steps. First the outer edges of the triangle are split. 
If the splitting point does not lie exactly on the outer edge, this will introduce a minor 
bend in the triangle. Extremely thin triangles produce special cases which must be han 
dled separately. Our technical report discusses the necessary special triangulation in 
depth. In the next step we add all the new interior edges. As we modify and add edges, 
we update the point membership list indicating what triangle(s) each point belongs to. 
Finally, new triangle records are added, and triangle neighbor values are updated.
Data Base Structure

This algorithm produces all of the information required to both render the 3D surface 
and search for spatial relationships. A header record includes information such as a 
ground position for the lower-left corner of the triangulation; spacing between posts in 
the original grid; elevation ranges in the triangulation; number of levels. This is fol 
lowed by the level records. Each level has a threshhold of allowable error, used to pro 
duce the triangulation. It also has a number of points, number of triangles, and a list of 
triangles. Each triangle is defined by 3 point indices, and has a parent pointer, child 
pointers, and neighbor pointers. All this is followed by a single point list. Only points 
that appear in the triangulation are written to the data base; all others are unnecessary. 
Points are ordered such that if level L uses N points, then it uses points 1, • • • Jf. This 
reduces retrieval time for a level of detail.
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RESULTS

We tested our algorithm on eight (8) areas of interest (AOI) representing four very 
different types of terrain. AOI 1-2 contains numerous plateas; AOI 3-4 is a relatively 
flat region; AOI 5-6 contains mountains rising out of the foothills; and AOI 7-8 
represents a portion of the Cascade mountain range. Our data comes from the Defense 
Mapping Agency's Digital Terrain Elevation Data (DTED) Level 1 which has three 
seconds of an arc between posts. Each test AOI covers 75x75 elevation points. A tri 
angulation employing all 5625 points in an AOI would contain 10,952 triangles.

We implemented the adaptive hierarchical triangulation algorithm with varying parame 
ters to see which behaved best. The first parameter is how we determine the 
significance of point p 's error ep . Error ep may be considered significant compared to 
1) tolerance value tt for level /, so that ep ^tt , or 2) a percentage N of the maximum 
error etmm found for current triangle t, so that ep & etmai . The second parameter deter 
mines when we split a triangle at one edge and a significant center (as shown in Figure 
2 ). Center point c may be considered significant compared to 1) the error ev of split 
ting point v on the edge of the triangle, so that ec ^ev , or 2) the significance value 
used to determine the significance of all other points, as determined by the first parame 
ter. Hence we ran four optional programs. Option 1 uses tolerance to determine 
significance, and requires a center point to be at least as significant as an edge point in 
order to be used. Option 2 uses 75% of the maximum error within a triangle to deter 
mine significance, and also requires a center point to be at least as significant as an 
edge point. Options 3 and 4 are like options 1 and 2 respectively, except that a center 
point's significance is determined by the usual measures. As a basis of comparison, we 
implemented DeFloriani's first algorithm (DeFloriani et al 1984) and ran it with the 
same test data.

We executed DeFloriani's algorithm and all four options for our algorithm using the 
eight AOIs as input, producing triangulations with a minimum error of 10 meters. All 
tests demonstrated that adaptive hierarchical triangulation works well. Tables 1-4 show 
some of our results.

A better triangulation will produce fewer slivery triangles. The table shows how slivery 
the resulting triangles were. We measured sliveriness with the following ratio, calcu 
lated for each triangle in the triangulation: ^TXrtjger2 • The best possible ratio is 
approximately 20.78 for an equilateral triangle. Larger values represent thinner trian 
gles, so smaller numbers are better. We summed all of these ratios together and divided 
by the total number of triangles to get an average sliveriness figure. We then divided 
that result by the sliveriness ratio for an equilateral triangle. Note that on the average 
most of the triangles have much sharper angles than sixty degrees. Using DeFloriani's 
algorithm, some angles are as small as 0.25 degrees. Notice how much better adaptive 
hierarchical triangulation performed, using all four options. Options 1 and 2 seem to 
work about equally well, indicating that the best measure of point significance is deter 
mined by data characteristics. Options 3 and 4 consistently performed a little worse. 
This leads us to conclude that a center point should only be included in the division of 
a triangle if it is more significant than the edge point.
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Table 1

Measures of Sliveriness*
AOI

1

2

3

4

5

6

7

8

DeFloriani-1

32.294

52.487

35.889

50.682

56.835

40.932

51.261

39.925

Option 1

5.086

9.645

5.934

11.315

14.843

5.305

4.352

5.949

Option 2

5.113

11.882

5.672

10.969

8.757

5.371

4.932

6.200

Option 3

6.301

11.074

6.398

12.581

14.329

7.376

6.089

6.805

Option 4

6.578

11.107

5.998

12.854

8.676

7.437

7.367

7.153

* normalized to 1 for an equilateral triangle 

Table 2

Comparison of Hierarchies

AOI

1

2

3

4

5

6

7

8

Number of 
Levels*

DeFloriani-1

15

17

17

17

19

18

17

18

Option 1

5

5

5

5

5

5

5

5

Average Number 
of Children**

DeFloriani-1

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

Option 1

2.8

2.4

3.6

3.6

2.4

2.5

2.4

2.3

* number of levels specified for new algorithm 
* * number of children assumed to be 2.5 for old algorithm
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A better triangulation will permit fast spatial search. The time required for a search is 
determined by the number of levels that must be searched, and the number of child 
nodes that must be examined at each level. DeFloriani's algorithm, which always splits 
a parent triangle into 2 or 3 children, has an average of about 2.5 children per parent 
node. The number of levels in a hierarchy depend on the number of iteration levels 
required to build the triangulation. Adaptive hierarchical triangulation, on the other 
hand, guarantees a fixed number of levels in the hierarchy, but can split a parent trian 
gle into any number of children. Although one may presume that a very large number 
of children will be produced, table 2 shows that this is not the case. Table 2 shows that 
search times using an adaptive hierarchical triangulation will be as fast as, or faster 
than, the other. Additional results can be found in our technical report.

A better triangulation will result in fewer triangles. Table 3 shows the total number of 
triangles in the hierarchy. Notice that the options that produced the fewest total trian 
gles also produced the least slivery triangles. Table 4 shows the number of triangles at 
the highest level of detail, with a maximum error of 10 meters at each point. Compare 
this to 10,952 triangles for the original grid. Although the difference in values is not 
striking, the adaptive hierarchical triangulation usually produced fewer triangles than 
DeFloriani's algorithm.

Figure 3 demonstrates the significance of the improvements made by the adaptive 
hierarchical triangulation. Figure 3 a shows a view of AOI 1 using the original grid 
data. Figure 3 b shows the same view of the data triangulated with DeFloriani's algo 
rithm for a maximum error of 10 meters. Figure 3 c shows the same view of the data 
triangulated with our algorithm (using option 1) for a maximum error of 10 meters. All 
three views were rendered with Gouraud shading. Notice the severe artifacts caused by 
very thin triangles in the DeFloriani model.

While Delaunay triangulations have been proposed as means for reducing the number 
of very sharp triangles within hierarchical structures (DeFloriani 1989), Delaunay tri 
angulations have serious drawbacks as discussed in (Christensen 1987). In some cases, 
using Delaunay triangulation to add points can actually increase error levels in the 
model, even though the model contains more triangles. The algorithm of Baker et al 
(1988) while it avoids generating obtuse triangles, it generates far too many points and 
triangles for our purposes.
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Table 3

Total Number of Triangles 
in the Hierarchy

AOI

1

2

3

4

5

6

7

8

DeFloriani-1

2918

4198

2576

2007

5433

3935

4908

7962

Option 1

2866

3964

1862

1551

5339

3283

4655

7927

Option 2

2876

4124

1806

1525

5179

3289

4735

8125

Option 3

3208

4344

2022

1737

5508

3624

4995

8312

Option 4

3195

4364

2055

1757

5372

3604

5109

8516

Table 4

Number of Triangles* 
in Highest Level of Detail 
(Tolerance = 10 meters)

AOI

1

2

3

4

5

6

7

8

DeFloriani-1

1741

2474

1547

1211

3185

2318

2883

4568

Option 1

1852

2330

1353

1123

3072

1979

2745

4418

Option 2

1858

2380

1309

1111

3062

1992

2769

4414

Option 3

1942

2442

1439

1196

3127

2167

2899

4436

Option 4

1935

2452

1470

1237

3135

2137

2901

4586

compare to 10952 triangles in grid
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Figure 3. Perspective views of AOI 1 modeled with 
(a) DTED, (b) DeFloriani's algorithm, (c) Adaptive Hierarchical Triangulation.
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CONCLUSIONS

Adaptive hierarchical triangulation, presented in this paper, has the following advan 
tages over other algorithms currently used. First, because our algorithm focuses on the 
topology of a surface, it reduces the number of triangles required to accurately approxi 
mate the surface and produces fewer long and slivery triangles within each level of 
detail. Second, our structure guarantees the accuracy of each level of detail. This may 
be easily extended to impose a polygon limit at each level. Third, our structure only 
retains important triangles, thereby reducing the total number of triangles that must be 
stored and searched. Fourth, the tree-like structure of our hierarchy is well-adapted to 
multiple resolution views, allowing smooth transitions between resolutions in anima 
tion. Because adaptive hierarchical triangulation pays attention to surface topology, this 
transition from low to high levels of detail will cause only minor terrain features to 
appear. Finally, adaptive hierarchical triangulation algorithm is fully automated, requir 
ing only the area of interest and a series of tolerance levels to be defined. This algo 
rithm can also be shown to run in O(n Inn ) time. These advantages add up to a triangu 
lation that provides great accuracy in a model that can be rapidly searched, rendered, 
and otherwise manipulated.

REFERENCES

Aho, A.V., Hopcroft, I.E. and Ullman, J.D., 1974. The Design and Analysis of Com 
puter Algorithms, Addison-Wesley, Reading, Mass.

B. S. Baker, E. Grosse and C. S. Raferty, 1988. Nonobtuse triangulation of polygons, 
Discrete Computational Geometry, 3, 147-168.

Chew, L.P., 1989. Constrained Delaunay triangulations, Algorithmica, 4, 97-108.

Christensen, A.H.J., 1987. Fitting a triangulation to contour lines, Proceedings of 
AUTO-CARTO8,57-61.

Christiansen, H.N. and Sederberg, T.W., 1978. Conversion of complex contour line 
definition into polygonal element mosaics, Proceedings of SIGGRAPH '78, 187-192.
Clarkson, K.L., Tarjan, R.E. and Van Wyk, C.J., 1989. A fast Las Vegas algorithm for 
triangulating a simple polygon, Discrete and Computational Geometry, 4(5), 432-432.

DeFloriani, L., Falcidieno, B., Nagy, G., and Pienovi, C., 1984. A hierarchical structure 
for surface approximation, Computers and Graphics, 8(2), 183 - 193.

DeFloriani, L., 1989. A pyramidal data structure for triangle-based surface description, 
IEEE Computer Graphics & Applications, 9(2), 67-78.

Dennehy, T.G., and Ganapathy, S., 1982. A new general triangulation method for planar 
contours, Proceedings of SIGGRAPH '82, 69-74.
Dwyer, R.A., 1987. Faster divide-and-conquer algorithm for constructing Delaunay tri 
angulations, Algorithmica, 2(2), 137-151.

Fekete, G., 1990. Rendering and managing spherical data with sphere quadtrees, 
Proceedings of Visualizaion '90, 176-186.

Fournier, A., and Montuno, D., 1984. Triangulating simple polygons and equivalent 
problems, ACM Transactions on Graphics, 3(2), 153 - 174.

Fowler, R.J. and Little, J.J., 1979. Automatic extraction of irregular network digital ter 
rain models, Proceedings of SIGGRAPH '79, 199-207.

245



Garey, M. R., Johnson, D. S., Preparata, F. P. and Tarjan, R. E., 1978. Triangulating a 
simple polygon, Information Processing Letters, 7, 175-180.

Goodchild, M.F., 1989. Optimal tiling for large cartographic databases, Proceedings of 
AUTO-CARTO 9 , 444-451.

Manacher, O.K. and Zobrist, A.L., 1979. Neither the greedy nor the Delaunay triangu- 
lation of a planar point set approximates the optimal triangulation, Information Process 
ing Letters, 9, 31-34.

Mirante, A. and Weingarten, N., 1982. The radial sweep algorithm for constructing tri 
angulated irregular networks, IEEE Comuters Graphics & Applications, 2, 11-21.

Preparata, P.P. and Shamos, M.I., 1985. Computational Geometry, Springer-Verlag, 
New York.

Scarlatos, L.L., 1989. A compact terrain model based on critical topographic features, 
Proceedings of Auto-Carto 9, 146-155.

Scarlatos, L.L., 1990(a). An automated critical line detector for digital elevation 
matrices, Proceedings of the 1990 ASPRSIACSM Annual Convention, 43-52.

Scarlatos, L.L., 1990(b). A refined triangulation hierarchy for multiple levels of terrain 
detail, Proceedings of the IMAGE V Conference, 115-122.

Watson, D.F., 1981. Computing the n-dimensional Delaunay tessellation with applica 
tions to Voronoi polytopes, The Computer Journal, 167-172.

Watson, D.F. and Philip, G.M., 1984. Survey: systematic triangulations, Computer 
Vision, Graphics, and Image Processing, 26, 217-223.

246




