
Algebraic Optimization
of Combined Overlay Operations*

Claus Dorenbeckt
Max J. Egenhofer*

National Center for Geographic Information and Analysis
University of Maine

Orono, ME 04469, U.S.A.
CLAUS@MECANl.bitnet
MAX@MECANl.bitnet

Abstract
The operations necessary to combine map layers are formalized with algebraic
specifications. This shows that arithmetic operations upon discrete spatial subdi
visions are reduced to a single, parametric overlay operation, the actual behavior
of which is determined by a value operation which combines the non-spatial at
tributes of the individual cells of the corresponding layers. The novel approach is
the application of these formalisms to find more efficient strategies for processing
several overlay operations at an implementation-independent level. Two particu
lar strategies are investigated: (1) the elimination of equivalent subexpressions to
reduce the complexity of the overlay operation and (2) the integration of several
overlay operations into a single one.

1 Introduction
Spatial data models (Peuquet 1984, White 1984, Frank and Kuhn 1986, Herring
1987, Egenhofer et al. 1989) and spatial data structures (Peucker and Chrisman
1975, Corbett 1979, Nagy and Wagle 1979, Samet 1989) have been extensively
studied in the past. More recently, the interest in the relations between spatial
data models and spatial data structures has increased (Egenhofer and Herring
1991, Frank 1991b, Frank and Mark 1991, Goodchild 1991). Initial results of
these investigations are:

• A spatial data model is the formalization of spatial concepts so that they can
be represented in a computer.

"This work was partially funded by a grants from NSF under grant number SES 88-10917 and
Intergraph Corporation, principal investigator Andrew U. Frank.

tOn a leave of absence from the University of Bremen, F.R. Germany.
* Additional support from Digital Equipment Corporation under grant number TP-765536 is

gratefully acknowledged.

296

• A spatial data structure is the implementation of a particular spatial data
model.

• A spatial data model may have multiple implementations with various effects
on the performance and the storage requirements.

• A spatial data structure must fulfill the properties of the operations specified
for the data model, in order to be a valid implementation of a spatial data
model.

For example, the data model of a regular subdivision of space into squares of
equal size, frequently called a raster model, may be implemented with different
spatial data structures, such as a 2-dimensional array, run-length encoded, as a
quadtree data structure, etc. (Samet 1989).

Within this framework of spatial data models and spatial data structures, a
question of particular interest is, "How to describe formally the behavior of the
operations?" This question covers the properties of the operations, i.e., the linkage
between a data model and its various implementations, but, more importantly, also
the specifications of the properties of their combinations. Note that it does not
treat the actual implementation, i.e., a particular data structure or an algorithm.

Formalizations of spatial data models and GIS operations are necessary to
(1) verify that an implementation, i.e., a spatial data structure, does what was set
forth by the spatial data model, and (2) compare the semantics of different spatial
data models (Frank 1987, Smith and Frank 1990). Non-spatial data models have
been formalized, for example, by the relational algebra which specifies the behav
ior of the operations upon relational tables (Codd 1970, Ullman 1982), but only
subsets of spatial algebras exist, e.g., for topological relationships (Egenhofer and
Herring 1990) or directions (Peuquet and Ci-Xiang 1987, Chang et al. 1989, Frank
1991a). Each of these approaches is limited to a very specific class of operations
and no attempts have been made to integrate them into a larger system.

The Map Analysis Package provided the first comprehensive collection of an
alytical and spatial operations on the basis of regular tessellations (Tomlin 1983,
Tomlin 1990). It describes map overlay operations informally, without applying
the mathematical rigor necessary to analyze the behavior of the operations, leaving
ample space for ambiguous interpretations. One implementation of this MAP alge
bra describes formally these operations in the C++ programming language (Chan
and White 1987), but lacks the definitions of the corresponding observe operations
so that no axioms about the behavior of the operations can be formulated.

More formal approaches are based on the Euclidean plane and the representa
tion of spatial data in terms of points, lines, and areas. A formalisation of the non
set-theoretic part of Euclidean geometry (Tarski 1959) gives a collection of thirteen
elementary axioms. An algebraic specification of graphic data types formally de
fines the semantics of a simple graphics programming language without geometric
operations (Mallgren 1982). An algebra for geometric constructions, based upon
well-known algebraic structures such as rings and fields (Goguen 1989), demon
strates the use of algebraic specifications for spatial objects, however, it is limited
to a few, very basic constructs in plane geometry. The geo-relational algebra
enhances the relational model with computational geometry operations (Guting
1988). A formalized interpretation of operations upon maps uses set operations

297

and a construct similar to constructs in functional programming languages, such as
mapcar in LISP, applying a user-defined function to each element of a set (Scholl
and Voisard 1989).

This paper addresses the formalization of operations on regular tessellations to
assess optimization strategies, particularly for combinations of overlays. The oper
ations necessary to combine map layers are formalized with algebraic specifications
and the optimization attempts to identify a more efficient combination of the ini
tial operations. It employs algebraic methods to substitute complex combinations
by simpler ones (Ullman 1982), a technique commonly employed in electrical en
gineering applications (Preparata and Yeh 1973) and compiler design (Aho et al.
1985).

The remainder of this paper is structured as follows: the next section briefly
introduces the two formalisms used, i.e., algebraic specifications and decision ta
bles. Section 3 formalizes a specific map overlay operation and then generalizes
this formalism so that it becomes applicable for arbitrary overlay operations. The
properties of value operations to combine layers, cell-by-cell, are analyzed in Sec
tion 4, ,and strategies are proposed for efficient combinations of multiple overlay
operations. Section 5 summarizes the results and concludes with directions for
further research.

2 Formal Methods

2.1 Algebras
Multi-sorted algebraic specifications are a tool commonly used in software en
gineering to describe completely and formally the behavior of complex sys
tems (Liskov 1986). They are based on heterogeneous algebras (Birkhoff and
Lipson 1970) and their extensions to multi-sorted algebras (Guttag 1977). Data
algebras (Zilles 1979), using equations to define the independent properties of data
structures, and abstract data types (ADTs) (Goguen et al. 1978) influenced to
day's understanding of algebraic specifications. An algebraic specification consists
of three parts (Liskov 1986, Ehrich et al. 1989): (1) a set of sorts, 1 (2) a set of op
erations defined upon the sorts, and (3) a set of axioms or equations that specifies
the behavior of the operations. Two kinds of operations are distinguished: (1) op
erations to create or modify an ADT, called creators, and (2) operations to observe
some of the properties of an ADT, called observers. A specification is sufficiently
correct and sufficiently complete in terms of its creators and observers (Guttag
and Horning 1978).

The following example specifies an ADT point in the Euclidean plane. The
ADTs integer and boolean are assumed to exist with their usual semantics. The
syntax of this specification method resembles the syntax of specification-like pro
gramming languages such as Eiffel (Meyer 1988) and MOOSE (Egenhofer and
Frank 1988).

1 The term sort does not imply an order (sorting) over the instances. Programming languages
use the less ambiguous term type in lieu of sort, however, types consider also the structure of the
sorts (Cardelli and Wegner 1985) which is part of an implementation.

298

SORTS2 point USES integer, boolean
OPERATIONS3 make: integer x integer -» point

x: point —> integer
y: point —•» integer
isEqual: point x point —>boolean

VARIABLES4 ii, i 2 : integer; pt , p 2 : point
EQUATIONS5 x (make (i1(i2)) == ii

y (make (i!, i2)) == i2
isEqual (pi, p2) == integer .isEqual (x (pi), x (p2)) and

integer.isEqual (y (pi), y (p2))

Specification 1: Point.

2.2 Decision Tables
A decision table is another method to specify formally the behavior of operations,
particularly those which can be described by a series of rules. It consists of two
parts: (1) a set of conditions which have to be satisfied simultaneously and (2) the
corresponding actions to be taken upon the conditions (Metzner and Barnes 1977).

Decision tables are most naturally presented in the form of a table with the set of
conditions being put into the upper half of the table and the set of corresponding
actions underneath. Boolean values, T and F, are assigned to the conditions
indicating whether or not the corresponding action should be taken. If an action
is taken independent of a condition then a dash in the corresponding decision
indicates don't care. Since the entries in conditions and corresponding actions are
logically connected with AND, they are commutative.

Decision tables are a well-suited tool to express some spatial analysis operations
which frequently use complex algebraic expressions to describe their operations
and mappings. The following example demonstrates the use of a decision table
to formalize a particular value operation, the localRating, frequently used in the
MAP algebra (Tomlin 1990). LocalRating assigns to each n-tuple of values a new
value. For example, the following localRating combines a layer of altitudes with a
vegetation layer into a new layer windExposure.

• If the altitude is greater than or equal to 290 and vegetation type 0 then the
wind exposure is 1.

• If the altitude is greater than or equal to 290 and vegetation types 1-3 then
the wind exposure is 2.

• If the altitude is less than 290 and vegetation type 0, 1, or 3 then the wind
exposure is 3.

2The SORTS definition includes the data type to be specified and the types it USES to describe
its properties.

3 OPERATIONS are defined by their name, the Cartesian product of the input sorts, and the
sort of the result.

4 VARIABLES describe the instances of the sorts used in the equations.
5 The behavior of each operation is expressed by EQUATIONS in terms of equivalent observe

and create operations.

299

• If the altitude is less than 290 and vegetation type 2 then the wind exposure
is 4.

Table 1 shows a decision table which models these rules.

altitude
vegetation
windExposure

> 290
0
1

> 290
1 V2V3

2

< 290
OV1 V3

3

< 290
2
4

Table 1: The decision table for the local rating of altitudes and vegetation [Tom-
lin 1989].

3 Formalizing Overlay Operations
The raster model is a particular subclass of the regular tessellations with a discrete
representation of space (Egenhofer and Herring 1991, Frank 1991b). It partitions
the area of interest into equally-shaped cells so that (1) the set of all cells forms a
complete partition, called a layer, and (2) any pair of cells does not overlap. This
section will demonstrate the use of algebraic specifications to specify formally
combinations of layers.

3.1 An Overlay Example
The most common queries upon layers are based on the map overlay methodol
ogy, i.e., the combination of several layers into a new one (Steinitz et al. 1976).
A simple, but specific example is to show the use of algebraic specifications for
describing a particular overlay operation. The operation to be specified is the com
bination of the two layers with regular rectangular cells, both over the same spatial
extent, in the same scale, and with the same orientation. Each cell is made from
a location and a value. In this particular example, each value is an integer, with
the operations equal and maximum and their usual semantics, and each location
is a rectangle described by its lower-left and upper-right points (Specification 1),
a creator (make), and three observe operations (Specification 2).

300

SORTS location USES point, boolean
OPERATIONS make: point x point —> location

lowerLeft: location —» point
upperRight: location —> point
isEqual: location x location —»boolean

VARIABLES pi, p2 : point, lj, 1 2 : location
EQUATIONS lowerLeft (make (px , p 2)) == p:

upperRight (make (pT , p2)) == p2
isEqual (li, 12) == point.isEqual (lowerLeft (li),

lowerLeft (12)) and
point.isEqual (upperRight (li),

upperRight (12))

Specification 2: Location as the Cartesian product of two points.

Cells have operations to make a new one and to access its components, i.e.,
getLocation and getValue (Specification 3).

SORTS cell USES location, value
OPERATIONS make: location X value —> cell

getLocation: cell —>• location
getValue: cell —>value

VARIABLES 1: location; v: value
EQUATIONS getValue (make (1, v)) == v

getLocation (make (1, v)) == 1

Specification 3: Cells.

The resulting layer contains the greater of the two values at the corresponding
spatial locations (Specification 4).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -> layer

overlayMaximum: layer x layer —* layer
VARIABLES la, 1 2 : layer; Ci, c2 , c3 : cell
EQUATIONS FOR EACH [G! , c2 , c3] IN [lj, 1 2 , overlayMaximum (lx, 12)] :

location.isEqual (cell.getLocation (c3),
cell.getLocation (cj)) and

location.isEqual (cell.getLocation (c3),
cell.getLocation (c2)) and

value.isEqual (cell.getValue (c3),
value.maximum (cell.getValue (ci), cell.getValue (c2)))

Specification 4: Combining two layers by selecting the maximum value.

301

The syntax of the equations uses a FOR EACH5 loop (Liskov et al. 1981)
to apply an operation to all elements of a set (Backus 1978), i.e., all cells which
are part of, or IN, a layer. Actually, this is an observe operation upon a layer
returning the cells in the aggregate one after another. Simultaneous loops over
multiple aggregates group the parts and the aggregates pairwise between brackets
so that the n-th part in on bracket corresponds with the n-th aggregate in the
other.

This set of specifications for layers, cells, rectangles, and integers completely
formalizes the behavior of this particular overlay operation.

• Layers are combined by applying a particular operation to corresponding cells,
i.e., cells with the same spatial location.

• The same value operation is applied to all cells of a layer.

• The value combination of cells preserves the locations of the cells, i.e., the
location of each cell in the resulting layer is the same as the one of the cells
combined.

3.2 A Generalized Overlay Operation
The previous specification can be generalized so that it holds for other overlay
operations as well. Such a generic specification is based upon the definition of a
generalized value type, a superclass of all possible sorts which may characterize
the non-spatial properties of a cell.

A value type must provide operations to compare two values for equality (isEqual)
and to combine values (Specification 5). The specification of its create operation
is DEFERRED (Meyer 1988), because it depends upon the particular value type used.

SORTS value USES boolean
OPERATIONS create: DEFERRED -> value

isEqual: value x value —»boolean
combine: value x value x ...x value —» value

Specification 5: A generic value.

Likewise, the location specification may vary for different shapes of cells. Be
sides the make operation, the ADT location must provide an operation to compare
two locations for equivalence (isEqual) (Specification 6).

SORTS location USES boolean
OPERATIONS make: DEFERRED -> location

isEqual: location x location —>• boolean

Specification 6: A generic location.

5 Not to be confused with the for-all quantifier, V, commonly used in calculus.

302

The specification of the ADT cell as the Cartesian product of location and value
stays unchanged (Specification 3). The modified ADT layer has a single overlay
operation with varying implementations depending on the value operation used to
combine corresponding cells. The FOR EACH loop runs over the sets of all cells
in all layers, indicated by c, and 1,, respectively (Specification 7).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -* layer

overlay: layer x layer x ...x layer x value.combine —> layer
VARIABLES c,, cn : cell; 1,: layer
EQUATIONS FOR EACH [c,, cj IN [1,, overlay (1,, value.combine)]:

location.isEqual (cell.getLocation (cn),
cell .getLocation (c,-)) and

value.isEqual (cell.getValue (cn),
value.combine (cell.getValue (c,-)))

Specification 7: A parametric layer.

The behavior of any overlay operation is expressed by a particular operation
upon the values of individual cells (value. combine). The usage of a variable argu
ment over value operations reduces the specification to a single, generic operation.
Combine is similar to the operators apply (Scholl and Voisard 1989) and A (Giiting
1988) in other formalizations.

The generalized overlay specification reveals that the characteristics of these
overlay operations are exclusively determined by the operation combining several
values. Conversely, the properties of the value operation immediately map onto
the properties of the overlay operation. For arithmetic overlay operations, it is
sufficient to consider each layer as a set of cells, i.e., no topological relationships
among the cells are used. Since the values are combined over the same location,
the overlay operation—in terms of relational algebra (extended with arithmetic
capabilities) (Ullman 1982)—is (1) an equijoin over the same location (Frank 1987)
followed by (2) an arithmetic operation combining the values of corresponding
location and (3) a projection of the locations and the combined value.

4 Optimization
An overlay operation over multiple layers results in a new layer which, in turn, may
be used as an argument in another overlay operation. Frequently, many overlay
operations are combined this way to perform a more complex operation (Tomlin
1990). While sophisticated spatial data structures may efficiently implement an
individual overlay operation, they generally provide only little support for improv
ing the processing of a series of overlays. It will quickly become time consuming
to process sequentially each overlay operation by producing an intermediate layer
after each operation. In lieu of immediately performing each operation, it is more
efficient to evaluate first the entire operation and identify an execution strategy
which predicts the shortest processing time. Similar considerations within the re
lational algebra to gain better performance for complex, combined operations led

303

to the area of query optimization (Ullman 1982). To date, only few attempts have
been made to improve systematically spatial query processing (Hudson 1989, Ooi
and Sacks-Davis 1989). Current overlay processors calculate interactively one over
lay at a time (Pazner et al. 1989), though there have been recently attempts to
pursue more efficient processing strategies (Yost and Skelton 1990). To improve
the overlay operations of several layers, two strategies are investigated: (1) to iden
tify equivalent sub-expressions so that they can be computed only once, and (2) to
integrate several individual overlay operations into a single one. Both strategies
will be investigated subsequently.

4.1 Notation
The uppercase Greek letter omega (ft) will be used to denote overlay. Its argu
ments are (1) the ordered set of layers layert , . . . , layern with n > 0, and (2) a
particular combination operation (Equation 1).

tocombinationVayert , . . . , layern] (1)

The combination operation may be a function, such as max or average, or a
decision table. For instance, the value combination specified in decision table 1 is
applied to the layers altitudes and vegetation, resulting in the layer windExposure
(Equation 2).

windExposure := Slxabie i (altitude, vegetation) (2)

4.2 Equivalent Overlay Operations
A first step during processing the combination of overlays is to identify those se
quences of operations that occur several times so that they need to be executed
only once. The goal for such an overlay optimizer is to find equivalent, but more
efficient expressions, i.e., expressions which yield the same result within less time.
This strategy requires a formal knowledge of equivalent expressions. Mathematics
has the notion of properties of combinations of operations to describe whether two
expressions are equivalent or not. Most familiar are the commutative, associative,
and distributive laws, e.g., for the combinations of sets with the operations union
and intersection. Likewise, the combination of layers with various overlay oper
ations may be described by their commutative (Equation 3), associative (Equa
tion 4), and distributive (Equation 5) properties.

, layer?} = ^l eam b mation(layers , layerj) (3)
i combination^ combination(layert, layers), layers ~] =

ttcombinationVayer! ^comtm^o^V^t, layers)) (4)
combination ̂ a-yer i $l comiinanon2 (layer %, layeT3 }} =

^combination2 (^ combination! (layeTi , layers), ft combination j (layert , layer s)~) (5)

The specification of the generalized overlay operation (Specification 7) demon
strated that an overlay varies only over different value operations; therefore, the
properties of the combinations of overlay operations can be based upon the prop
erties of the corresponding value operation. For instance, the combination of three

304

layers is associative if and only if the value operation is associative as well:

ft combination^ combm^tion^ayer, , layeT2 }, layers) =
, layer*,)} (6)

value. combine(value. combine^! , vs), v3) =
value. combine(vi , value. combine(vs , vs)) (7)

Since the overlay operations depend completely upon the corresponding value
operations, they can be optimized by only considering the value operations in
the same sequence as the corresponding overlay operations. Equivalent overlay
operations can be found by analyzing the properties of the value operations. These
properties are described in the axioms of the specifications of the values. For
example, given a complex query containing the following expressions:

. . . ft add(lo-yeri ,ft add (layer2 Jayer3)) . . . ft add(layers ,ft add (layers , layer i}) ... (8)

The axioms of the particular value specifications may provide the necessary
information about the properties of the add operation, e.g.,

SORTS value
OPERATIONS add: value x value -> value
VARIABLES Vj , v2 , v3 : value
EQUATIONS add (VL v2) == add (v2 , vj

add (YI, (add (v2 , v3)) == add (add (vt , v2) , v3))

Specification 8: Commutative and associative properties of the value operation
add.

Based upon these axioms it can be formally analyzed whether or not these
two expressions are the same. First, the overlay operation is substituted by the
corresponding operations upon values (Equations 9 and 10).

ft add^ayert, ft add(layer2, Iayer3)) =>• value. add(vt , value. add(vs , vs)) (9)
=^ value .add(vs , value. add(vz, vt)) (10)

Then the axioms are applied. With the associative law, Equation (10) is trans
formed.

value. add(vs , value. add(vg, vt)) = value. add(value.add(vs , v2), vt) (11)

Finally, the commutative law is applied twice.

value. add(value.add(vs , vs), Vj) = value. add(vt , value. add(v3 ,
= value. add(vt , value. add(vs , v$)) (12)

Equation (12), the equivalent for (10), is the same as (9), i.e., the two subex
pressions in Equation (8) are the same and, therefore, only one of them must be
executed.

305

4.3 Integration of Multiple Overlay Combinations
A second strategy to reduce the execution time of a complex combination of over
lays is to integrate several overlay operations into a single, equivalent one, i.e.,

(13), layers , layers)

Again, the specification of the generalized overlay operation (Specification 7)
was fundamental in tackling this problem. It shows that this integration means
to move a value operation, value, oper at ion2 , from the inner FOR EACH loop
into the outer loop and combine value, oper at ioni with value. operation2 into
value. operation3 . The validity of such combinations can be checked with the
axioms specifying the value ADTs.

FOR EACH (ti, t 2) IN (A,
FOR EACH (t3 , t 4) IN (B, C)

DO value. operation2)
DO value. operation!

=>
FOR EACH (ti, t 2 , t 3) IN (A, B, C)

DO value. operations

An alternative approach to this symbolic optimization is the use of decision
tables to evaluate the combinations. Given the sets of values on each layer, the
decision tables can be applied to analyze the property of the combination of op
erations.

The following example demonstrates such an integration. Four layers, AI, A2 ,
BI, and B 2 , with the four respective sets of values, {2, 4, 8}, {6, 10}, {3, 4}, and
{1, 2, 3), should be combined such that

result := Slmm (^,en,,(Ai,Ag),Sl TM,tt(Blt Bg))

The decision table 2 shows the combinations for the two inner overlays.

(14)

A t
A 2
x,

2
6
4

2
10
6

4
6
5

4
10
7

8
6
7

8
10
9

Table 2: (a) Xt := average(A t ,A 2) and (b) Xt := (Bt ,B2 }.

306

Table 3 shows the result of the combination of the two intermediate results with
the operation min.

xt
xz
X

4 4
2 1
2 1

4
3
3

6
2
2

6
1
1

6 5
3 2
3 2

5
1
1

5
3
3

7 7
2 1
2 1

7
3
3

9
2
2

9 9
1 3
1 3

Table 3: X :=

The sequence of operations may be expressed by a single table. Its condition
part contains the Cartesian product of the values in the four layers and the action
part has the corresponding values of the combinations (Table 4).

A t
A s
Bt
Bs

2
6
4

1V3

2 2
6 6
3 4
- 2

4 44
666
434

1V3 - 2

2
10
4

1 V3

2 2
10 10
3 4
- 2

4
10
4

1V3

4 4
10 10
3 4
- 2

8
6
4

1 V3

8 8
6 6
3 4
_ 2

8
10
4

1 V3

8 8
10 10
3 4
- 2

1 23 1 23 23123 2 3 2 3

Table 4: X := min(average(A 1 ,A 2 }, Table 2b(B1 ,Bs)).

Table 4 can be simplified by combining columns with the same actions, e.g.,

2V4V8 2V4V8 2V4V8 2V4V8 2V4V8 2V4V
6 10 6 10 6 10
443344

1V3 1V3 - - 2 2
X

Table 5: X := min(average(A 1 ,A s }, Table 2b(B1 ,Bs)).

Further integrations (over the values of A2) and the substitutions of disjunctions
which cover the entire domain by the value don't care reduce the value operation to
an operation which is independent of the two layers A\ and A? (Table 6); therefore,
the entire overlay operation may be reduced to the combination of the two layers
BI and J52 .

307

Bt
Bs

4
1V3

3 4
- 2

2 3

Table 6: The simplified decision table for ^l mtn (^l average(A l , A 2), ^Tabie eb(Bi , Bs)}.

The decision table also indicates in which order the two layers should be pro
cessed. The value of a layer needs not be examined if the result is independent of it.
For example, it is more efficient to execute £1 Table sb(B\, B^) than ft Table zb (B^, BI).
In the first case, the result of half of the operations is determined by just examin
ing BI , because the outcome of the combination with value 3 is independent of the
value at the corresponding location in B2 . If the value is 4 then the corresponding
value in B2 must be examined as well. On the other hand, if the converse operation
is executed then always the values of both layers must be processed.

5 Conclusion
Rigid formal methods have shown to be effective tools to identify optimization
strategies for combinations of overlay operations. The algebraic specification of a
generalized overlay operation for tessellations revealed that

• a layer may be considered a set of cells, each consisting of a location and a
value, and

• arithmetic overlay operations over layers can be broken down into a value
operation to be performed for each cell of a layer or tuple of corresponding
cells in several layers, similar to the application of a function to a whole set
in functional programming.

Since overlay operations are founded upon value operations, it is possible to map
the considerations about best execution plans for operations onto considerations
about the combination of value operations. Two particular ways of optimizing
several overlay operations have been investigated:

1. the use of axiomatic description of the value operations to identify whether or
not two combinations of value operations are equivalent. Faster executions of
combinations of overlays are possible, because such equivalent subexpressions
can be substituted by the result of one single overlay operation.

2. the use of decision tables, representing the characteristics of value operations,
to integrate several overlay operations. This method can be applied if the sets
of values of all layers are known. The integration reduces any combination of
overlay operations into a single one and is most effective if the number of con
ditions is small. Decision tables are less suitable for large sets of conditions,
because the tables grow multiplicatively before reduction.

308

The results obtained demonstrated the usefulness of the approach. Further in
vestigations are necessary to build sophisticated query optimizers for raster GIS's.
The present work, intentionally, excluded geometric operations on cells, e.g., those
which exploit the neighborhood relationship between cells. Within the formal
framework provided it is now possible to study their behavior to formalize geo
metric operations on tessellations.

6 Acknowledgements
Thanks to Andrew Frank for his useful comments on earlier versions of this pa
per and to Kelly Chan, Werner Kuhn, Hans-Peter Kriegel, and Alan Saalfeld for
stimulating discussions.

References
A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, MA, 1985.

J. Backus. Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs. Communications of the ACM,
21(8):613-641, August 1978.

G. Birkhoff and J. Lipson. Heterogeneous Algebras. Journal of Combinatorial
Theory, 8:115-133, 1970.

L. Cardelli and P. Wegner. On Understanding Type, Data Abstraction, and Poly
morphism. ACM Computing Surveys, 17(4):471-552, April 1985.

K. Chan and D. White. Map Algebra: An Object-Oriented Implementation. In:
International Geographic Information Systems (IGIS) Symposium: The Research
Agenda, Vol. II, pages 127-150, Arlington, VA, November 1987.

S.K. Chang, E. Jungert, and Y. Li. The Design of Pictorial Databases Based Upon
the Theory of Symbolic Projections. In: A. Buchmann, 0. Giinther, T. Smith,
and Y. Wang, editors, Symposium on the Design and Implementation of Large
Spatial Databases, Lecture Notes in Computer Science, Vol. 409, pages 303-323,
Springer-Verlag, New York, NY, July 1989.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communications
of the ACM, 13(6):377-387, June 1970.

J. Corbett. Topological Principles of Cartography. Technical Report 48, Bureau
of the Census, Department of Commerce, 1979.

M. Egenhofer and A. Frank. MOOSE: Combining Software Engineering and
Database Managemenst Systems. In: Second International Workshop on
Computer-Aided Software Engineering, Advance Papers, Cambridge, MA, May
1988.

309

M. Egenhofer, A. Frank, and J. Jackson. A Topological Data Model for Spa
tial Databases. In: A. Buchmann, O. Giinther, T. Smith, and Y. Wang, editors,
Symposium on the Design and Implementation of Large Spatial Databases, Lec
ture Notes in Computer Science, Vol. 409, pages 271-286, Springer-Verlag, New
York, NY, July 1989.

M. Egenhofer and J. Herring. A Mathematical Framework for the Definition of
Topological Relationships. In: K. Brassel and H. Kishimoto, editors, Fourth Inter
national Symposium on Spatial Data Handling, pages 814-819, Zurich, Switzer
land, July 1990.

M. Egenhofer and J. Herring. High-Level Spatial Data Structure, in: D. Maguire,
D. Rhind, and M. Goodchild, editors, Geographical Information Systems:
Overview, Principles, and Applications, Longman Scientific and Technical, Lon
don, 1991 (in press).

H.-D. Ehrich, M. Gogolla, and U. Lipeck. Algebraic Specifications of Abstract
Data Types (in German). B.C. Teubner, Stuttgart, 1989.

A. Frank and W. Kuhn. Cell Graph: A Provable Correct Method for the Storage
of Geometry. In: D. Marble, editor, Second International Symposium on Spatial
Data Handling, pages 411-436, Seattle, WA, 1986.

A. Frank. Overlay Processing in Spatial Informaion Systems. In: N. Chrisman,
editor, AUTO-CARTO 8, Eighth International Symposium on Computer-Assisted
Cartography, pages 16-31, Baltimore, MD, March 1987.

A. Frank. Qualitative Spatial Reasoning about Cardinal Directions. In: D. Mark
and D. White, editors, Autocarto 10, Baltimore, MD, March 1991a.

A. Frank. Spatial Concepts, Geometric Data Models and Data Structures. Com
puters and Geo-Sciences, 1991b (in press).

A. Frank and D. Mark. Language Issues for Geographical Information Systems, in:
D. Maguire, D. Rhind, and M. Goodchild, editors, Geographical Information Sys
tems: Overview, Principles, and Applications, Longman Scientific and Technical,
London, 1991 (in press).

J. Goguen, J. Thatcher, and E. Wagner. An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types. In:
R. Yeh, editor, Current Trends in Programming Methodology, Prentice-Hall, En-
glewood Cliffs, NJ, 1978.

J. Goguen. Modular Algebraic Specification of Some Basic Geometrical Construc
tions. In: D. Kapur and J. Mundy, editors, Geometric Reasoning, pages 123-153,
MIT Press, Cambridge, MA, 1989.

M. Goodchild. A Geographical Perspective on Spatial Data Models. Computers
and Geo-Sciences, 1991 (in press).

R. Giiting. Geo-Relational Algebra: A Model and Query Language for Geo
metric Database Systems. In: J. Schmidt, S. Ceri, and M. Missikoff, editors,

310

Advances in Database Technology—EDBT '88, International Conference on Ex
tending Database Technology, Venice, Italy, Lecture Notes in Computer Science,
Vol. 303, pages 506-527, Springer Verlag, New York, NY, 1988.

J. Guttag. Abstract Data Types And The Development Of Data Structures.
Communications of the ACM, 20(6):396-404, June 1977.

J. Guttag and J. Horning. The Algebraic Specification of Abstract Data Types.
Acta Informatica, 10:27-52, 1978.

J. Herring. TIGRIS: Topologically Integrated Geographic Information Systems.
In: N. Chrisman, editor, AUTO-CARTO 8, Eighth International Symposium on
Computer-Assisted Cartography, pages 282-291, Baltimore, MD, March 1987.

D. Hudson. A Unifying Database Formalism. In: ASPRS/ACSM Annual Con
vention, pages 146-153, Baltimore, MD, April 1989.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Schaffert, R. Scheifler, A. Snyder.
CLU Reference Manual. Lecture Notes in Computer Science, Vol. 114, Springer-
Verlag, New York, NY, 1981.

B. Liskov and J. Guttag. Abstraction and Specification in Program Development.
MIT Press, Cambridge, MA, 1986.

W. Mallgren. Formal Specification of Graphic Data Types. ACM Transactions of
Programming Languages and Systems, 4(4):687-710, October 1982.

J. Metzner and B. Barnes. Decision Table Languages and Systems. Academic
Press, New York, NY, 1977.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, NY,
1988.

G. Nagy and S. Wagle. Geographic Data Processing. ACM Computing Surveys,
11(2):139-181, June 1979.

B. Ooi and R. Sacks-Davis. Query Optimization in an Extended DBMS. In:
W. Litwin and H.-J. Schek, editors, Third International Conference on Founda
tions of Data Organization and Algorithms (FODO), Lecture Notes in Computer
Science, Vol. 367, pages 48-63, Springer-Verlag, New York, NY, June 1989.

M. Pazner, K.C. Kirby, and N. Thies. MAP II: Map Processor—A Geographic
Information System for the Macintosh. John Wiley &; Sons, New York, NY, 1989.

T. Peucker and N. Chrisman. Cartographic Data Structures. The American Car
tographer, 2(2):55-69, 1975.

D. Peuquet. A Conceptual Framework and Comparison of Spatial Data Models.
Cartographies 21(4):66-113, 1984.

D.J. Peuquet and Z. Ci-Xiang. An Algorithm to Determine the Directional Rela
tionship Between Arbitrarily-Shaped Polygons in the Plane. Pattern Recognition,
20(l):65-74, 1987.

311

F. Preparata and R. Yeh. Introduction to Discrete Structures. Addison-Wesley
Publishing Company, Reading, MA, 1973.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley
Publishing Company, Reading, MA, 1989.

M. Scholl and A. Voisard. Thematic Map Modeling. In: A. Buchmann,
O. Giinther, T. Smith, and Y. Wang, editors, Symposium on the Design and
Implementation of Large Spatial Databases, Santa Barbara, CA, Lecture Notes in
Computer Science, Vol. 409, pages 167-190, Springer-Verlag, New York, NY, July
1989.

T. Smith and A. Frank, Report on Workshop on Very Large Spatial Databases.
Journal of Visual Languages and Computing, 1(3):291-309, 1990.

C. Steinitz, P. Parker, and L. Jorden. Hand-Drawn Overlays: Their History and
Prospective Uses. Landscape Architecture, 66(8):444-455, 1976.

A. Tarski. What is Elementary Geometry? in: L. Henkin, P. Suppes, and
A. Tarski, editors, Symposium on the Axiomatic Method, pages 16-29. North
Holland, Amsterdam, 1959.

C.D. Tomlin. Digital Cartographic Modeling Techniques in Environmental Plan
ning. PhD thesis, Yale University, 1983.

C.D. Tomlin. Geographic Information Systems and Cartographic Modeling.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

J. Ullman. Principles of Database Systems. Computer Science Press,
Rockville, MD, 1982.

M. White. Technical Requirements and Standards for a Multipurpose Geographic
Data System. The American Cartographer, ll(l):15-26, March 1984.

M. Yost and B. Skelton. Programming Language Technology for Raster GIS Mod
eling. In: GIS/LIS 90, pages 319-327, Anaheim, CA, November 1990.

S. Zilles. An Introduction to Data Algebras. In: D. Bj0rner, editor, Abstract
Software Specifications, pages 248-272, Spring-Verlag, New York, 1979.

312

