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Abstract
The operations necessary to combine map layers are formalized with algebraic 
specifications. This shows that arithmetic operations upon discrete spatial subdi 
visions are reduced to a single, parametric overlay operation, the actual behavior 
of which is determined by a value operation which combines the non-spatial at 
tributes of the individual cells of the corresponding layers. The novel approach is 
the application of these formalisms to find more efficient strategies for processing 
several overlay operations at an implementation-independent level. Two particu 
lar strategies are investigated: (1) the elimination of equivalent subexpressions to 
reduce the complexity of the overlay operation and (2) the integration of several 
overlay operations into a single one.

1 Introduction
Spatial data models (Peuquet 1984, White 1984, Frank and Kuhn 1986, Herring 
1987, Egenhofer et al. 1989) and spatial data structures (Peucker and Chrisman 
1975, Corbett 1979, Nagy and Wagle 1979, Samet 1989) have been extensively 
studied in the past. More recently, the interest in the relations between spatial 
data models and spatial data structures has increased (Egenhofer and Herring 
1991, Frank 1991b, Frank and Mark 1991, Goodchild 1991). Initial results of 
these investigations are:

• A spatial data model is the formalization of spatial concepts so that they can 
be represented in a computer.
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• A spatial data structure is the implementation of a particular spatial data 
model.

• A spatial data model may have multiple implementations with various effects 
on the performance and the storage requirements.

• A spatial data structure must fulfill the properties of the operations specified 
for the data model, in order to be a valid implementation of a spatial data 
model.

For example, the data model of a regular subdivision of space into squares of 
equal size, frequently called a raster model, may be implemented with different 
spatial data structures, such as a 2-dimensional array, run-length encoded, as a 
quadtree data structure, etc. (Samet 1989).

Within this framework of spatial data models and spatial data structures, a 
question of particular interest is, "How to describe formally the behavior of the 
operations?" This question covers the properties of the operations, i.e., the linkage 
between a data model and its various implementations, but, more importantly, also 
the specifications of the properties of their combinations. Note that it does not 
treat the actual implementation, i.e., a particular data structure or an algorithm.

Formalizations of spatial data models and GIS operations are necessary to 
(1) verify that an implementation, i.e., a spatial data structure, does what was set 
forth by the spatial data model, and (2) compare the semantics of different spatial 
data models (Frank 1987, Smith and Frank 1990). Non-spatial data models have 
been formalized, for example, by the relational algebra which specifies the behav 
ior of the operations upon relational tables (Codd 1970, Ullman 1982), but only 
subsets of spatial algebras exist, e.g., for topological relationships (Egenhofer and 
Herring 1990) or directions (Peuquet and Ci-Xiang 1987, Chang et al. 1989, Frank 
1991a). Each of these approaches is limited to a very specific class of operations 
and no attempts have been made to integrate them into a larger system.

The Map Analysis Package provided the first comprehensive collection of an 
alytical and spatial operations on the basis of regular tessellations (Tomlin 1983, 
Tomlin 1990). It describes map overlay operations informally, without applying 
the mathematical rigor necessary to analyze the behavior of the operations, leaving 
ample space for ambiguous interpretations. One implementation of this MAP alge 
bra describes formally these operations in the C++ programming language (Chan 
and White 1987), but lacks the definitions of the corresponding observe operations 
so that no axioms about the behavior of the operations can be formulated.

More formal approaches are based on the Euclidean plane and the representa 
tion of spatial data in terms of points, lines, and areas. A formalisation of the non 
set-theoretic part of Euclidean geometry (Tarski 1959) gives a collection of thirteen 
elementary axioms. An algebraic specification of graphic data types formally de 
fines the semantics of a simple graphics programming language without geometric 
operations (Mallgren 1982). An algebra for geometric constructions, based upon 
well-known algebraic structures such as rings and fields (Goguen 1989), demon 
strates the use of algebraic specifications for spatial objects, however, it is limited 
to a few, very basic constructs in plane geometry. The geo-relational algebra 
enhances the relational model with computational geometry operations (Guting 
1988). A formalized interpretation of operations upon maps uses set operations
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and a construct similar to constructs in functional programming languages, such as 
mapcar in LISP, applying a user-defined function to each element of a set (Scholl 
and Voisard 1989).

This paper addresses the formalization of operations on regular tessellations to 
assess optimization strategies, particularly for combinations of overlays. The oper 
ations necessary to combine map layers are formalized with algebraic specifications 
and the optimization attempts to identify a more efficient combination of the ini 
tial operations. It employs algebraic methods to substitute complex combinations 
by simpler ones (Ullman 1982), a technique commonly employed in electrical en 
gineering applications (Preparata and Yeh 1973) and compiler design (Aho et al. 
1985).

The remainder of this paper is structured as follows: the next section briefly 
introduces the two formalisms used, i.e., algebraic specifications and decision ta 
bles. Section 3 formalizes a specific map overlay operation and then generalizes 
this formalism so that it becomes applicable for arbitrary overlay operations. The 
properties of value operations to combine layers, cell-by-cell, are analyzed in Sec 
tion 4, ,and strategies are proposed for efficient combinations of multiple overlay 
operations. Section 5 summarizes the results and concludes with directions for 
further research.

2 Formal Methods

2.1 Algebras
Multi-sorted algebraic specifications are a tool commonly used in software en 
gineering to describe completely and formally the behavior of complex sys 
tems (Liskov 1986). They are based on heterogeneous algebras (Birkhoff and 
Lipson 1970) and their extensions to multi-sorted algebras (Guttag 1977). Data 
algebras (Zilles 1979), using equations to define the independent properties of data 
structures, and abstract data types (ADTs) (Goguen et al. 1978) influenced to 
day's understanding of algebraic specifications. An algebraic specification consists 
of three parts (Liskov 1986, Ehrich et al. 1989): (1) a set of sorts, 1 (2) a set of op 
erations defined upon the sorts, and (3) a set of axioms or equations that specifies 
the behavior of the operations. Two kinds of operations are distinguished: (1) op 
erations to create or modify an ADT, called creators, and (2) operations to observe 
some of the properties of an ADT, called observers. A specification is sufficiently 
correct and sufficiently complete in terms of its creators and observers (Guttag 
and Horning 1978).

The following example specifies an ADT point in the Euclidean plane. The 
ADTs integer and boolean are assumed to exist with their usual semantics. The 
syntax of this specification method resembles the syntax of specification-like pro 
gramming languages such as Eiffel (Meyer 1988) and MOOSE (Egenhofer and 
Frank 1988).

1 The term sort does not imply an order (sorting) over the instances. Programming languages 
use the less ambiguous term type in lieu of sort, however, types consider also the structure of the 
sorts (Cardelli and Wegner 1985) which is part of an implementation.
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SORTS2 point USES integer, boolean 
OPERATIONS3 make: integer x integer -» point

x: point —> integer
y: point —•» integer
isEqual: point x point —>boolean 

VARIABLES4 ii, i 2 : integer; pt , p 2 : point 
EQUATIONS5 x (make (i1( i2 )) == ii

y (make (i!, i2 )) == i2
isEqual (pi, p2 ) == integer .isEqual (x (pi), x (p2 )) and 

integer.isEqual (y (pi), y (p2 ))

Specification 1: Point.

2.2 Decision Tables
A decision table is another method to specify formally the behavior of operations, 
particularly those which can be described by a series of rules. It consists of two 
parts: (1) a set of conditions which have to be satisfied simultaneously and (2) the 
corresponding actions to be taken upon the conditions (Metzner and Barnes 1977).

Decision tables are most naturally presented in the form of a table with the set of 
conditions being put into the upper half of the table and the set of corresponding 
actions underneath. Boolean values, T and F, are assigned to the conditions 
indicating whether or not the corresponding action should be taken. If an action 
is taken independent of a condition then a dash in the corresponding decision 
indicates don't care. Since the entries in conditions and corresponding actions are 
logically connected with AND, they are commutative.

Decision tables are a well-suited tool to express some spatial analysis operations 
which frequently use complex algebraic expressions to describe their operations 
and mappings. The following example demonstrates the use of a decision table 
to formalize a particular value operation, the localRating, frequently used in the 
MAP algebra (Tomlin 1990). LocalRating assigns to each n-tuple of values a new 
value. For example, the following localRating combines a layer of altitudes with a 
vegetation layer into a new layer windExposure.

• If the altitude is greater than or equal to 290 and vegetation type 0 then the 
wind exposure is 1.

• If the altitude is greater than or equal to 290 and vegetation types 1-3 then 
the wind exposure is 2.

• If the altitude is less than 290 and vegetation type 0, 1, or 3 then the wind 
exposure is 3.

2The SORTS definition includes the data type to be specified and the types it USES to describe 
its properties.

3 OPERATIONS are defined by their name, the Cartesian product of the input sorts, and the 
sort of the result.

4 VARIABLES describe the instances of the sorts used in the equations.
5 The behavior of each operation is expressed by EQUATIONS in terms of equivalent observe 

and create operations.
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• If the altitude is less than 290 and vegetation type 2 then the wind exposure 
is 4.

Table 1 shows a decision table which models these rules.

altitude 
vegetation
windExposure

> 290 
0
1

> 290
1 V2V3

2

< 290 
OV1 V3

3

< 290 
2
4

Table 1: The decision table for the local rating of altitudes and vegetation [Tom- 
lin 1989].

3 Formalizing Overlay Operations
The raster model is a particular subclass of the regular tessellations with a discrete 
representation of space (Egenhofer and Herring 1991, Frank 1991b). It partitions 
the area of interest into equally-shaped cells so that (1) the set of all cells forms a 
complete partition, called a layer, and (2) any pair of cells does not overlap. This 
section will demonstrate the use of algebraic specifications to specify formally 
combinations of layers.

3.1 An Overlay Example
The most common queries upon layers are based on the map overlay methodol 
ogy, i.e., the combination of several layers into a new one (Steinitz et al. 1976). 
A simple, but specific example is to show the use of algebraic specifications for 
describing a particular overlay operation. The operation to be specified is the com 
bination of the two layers with regular rectangular cells, both over the same spatial 
extent, in the same scale, and with the same orientation. Each cell is made from 
a location and a value. In this particular example, each value is an integer, with 
the operations equal and maximum and their usual semantics, and each location 
is a rectangle described by its lower-left and upper-right points (Specification 1), 
a creator (make), and three observe operations (Specification 2).
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SORTS location USES point, boolean 
OPERATIONS make: point x point —> location 

lowerLeft: location —» point 
upperRight: location —> point 
isEqual: location x location —»boolean 

VARIABLES pi, p2 : point, lj, 1 2 : location 
EQUATIONS lowerLeft (make (px , p 2 )) == p: 

upperRight (make (pT , p2 )) == p2 
isEqual (li, 12 ) == point.isEqual (lowerLeft (li),

lowerLeft (12 )) and 
point.isEqual (upperRight (li), 

upperRight (12 ))

Specification 2: Location as the Cartesian product of two points.

Cells have operations to make a new one and to access its components, i.e., 
getLocation and getValue (Specification 3).

SORTS cell USES location, value 
OPERATIONS make: location X value —> cell

getLocation: cell —>• location
getValue: cell —>value 

VARIABLES 1: location; v: value 
EQUATIONS getValue (make (1, v)) == v

getLocation (make (1, v)) == 1

Specification 3: Cells.

The resulting layer contains the greater of the two values at the corresponding 
spatial locations (Specification 4).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -> layer

overlayMaximum: layer x layer —* layer 
VARIABLES la, 1 2 : layer; Ci, c2 , c3 : cell
EQUATIONS FOR EACH [G! , c2 , c3] IN [lj, 1 2 , overlayMaximum (lx, 12 )] : 

location.isEqual (cell.getLocation (c3 ),
cell.getLocation (cj)) and 

location.isEqual (cell.getLocation (c3 ),
cell.getLocation (c2 )) and 

value.isEqual (cell.getValue (c3 ), 
value.maximum (cell.getValue (ci), cell.getValue (c2 )))

Specification 4: Combining two layers by selecting the maximum value.
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The syntax of the equations uses a FOR EACH5 loop (Liskov et al. 1981) 
to apply an operation to all elements of a set (Backus 1978), i.e., all cells which 
are part of, or IN, a layer. Actually, this is an observe operation upon a layer 
returning the cells in the aggregate one after another. Simultaneous loops over 
multiple aggregates group the parts and the aggregates pairwise between brackets 
so that the n-th part in on bracket corresponds with the n-th aggregate in the 
other.

This set of specifications for layers, cells, rectangles, and integers completely 
formalizes the behavior of this particular overlay operation.

• Layers are combined by applying a particular operation to corresponding cells, 
i.e., cells with the same spatial location.

• The same value operation is applied to all cells of a layer.

• The value combination of cells preserves the locations of the cells, i.e., the 
location of each cell in the resulting layer is the same as the one of the cells 
combined.

3.2 A Generalized Overlay Operation
The previous specification can be generalized so that it holds for other overlay 
operations as well. Such a generic specification is based upon the definition of a 
generalized value type, a superclass of all possible sorts which may characterize 
the non-spatial properties of a cell.

A value type must provide operations to compare two values for equality (isEqual) 
and to combine values (Specification 5). The specification of its create operation 
is DEFERRED (Meyer 1988), because it depends upon the particular value type used.

SORTS value USES boolean
OPERATIONS create: DEFERRED -> value

isEqual: value x value —»boolean
combine: value x value x ...x value —» value

Specification 5: A generic value.

Likewise, the location specification may vary for different shapes of cells. Be 
sides the make operation, the ADT location must provide an operation to compare 
two locations for equivalence (isEqual) (Specification 6).

SORTS location USES boolean 
OPERATIONS make: DEFERRED -> location

isEqual: location x location —>• boolean

Specification 6: A generic location. 

5 Not to be confused with the for-all quantifier, V, commonly used in calculus.
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The specification of the ADT cell as the Cartesian product of location and value 
stays unchanged (Specification 3). The modified ADT layer has a single overlay 
operation with varying implementations depending on the value operation used to 
combine corresponding cells. The FOR EACH loop runs over the sets of all cells 
in all layers, indicated by c, and 1,, respectively (Specification 7).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -* layer

overlay: layer x layer x ...x layer x value.combine —> layer 
VARIABLES c,, cn : cell; 1,: layer
EQUATIONS FOR EACH [c,, cj IN [1,, overlay (1,, value.combine)]: 

location.isEqual (cell.getLocation (cn ),
cell .getLocation (c,-)) and 

value.isEqual (cell.getValue (cn ),
value.combine (cell.getValue (c,-)))

Specification 7: A parametric layer.

The behavior of any overlay operation is expressed by a particular operation 
upon the values of individual cells (value. combine). The usage of a variable argu 
ment over value operations reduces the specification to a single, generic operation. 
Combine is similar to the operators apply (Scholl and Voisard 1989) and A (Giiting 
1988) in other formalizations.

The generalized overlay specification reveals that the characteristics of these 
overlay operations are exclusively determined by the operation combining several 
values. Conversely, the properties of the value operation immediately map onto 
the properties of the overlay operation. For arithmetic overlay operations, it is 
sufficient to consider each layer as a set of cells, i.e., no topological relationships 
among the cells are used. Since the values are combined over the same location, 
the overlay operation—in terms of relational algebra (extended with arithmetic 
capabilities) (Ullman 1982)—is (1) an equijoin over the same location (Frank 1987) 
followed by (2) an arithmetic operation combining the values of corresponding 
location and (3) a projection of the locations and the combined value.

4 Optimization
An overlay operation over multiple layers results in a new layer which, in turn, may 
be used as an argument in another overlay operation. Frequently, many overlay 
operations are combined this way to perform a more complex operation (Tomlin 
1990). While sophisticated spatial data structures may efficiently implement an 
individual overlay operation, they generally provide only little support for improv 
ing the processing of a series of overlays. It will quickly become time consuming 
to process sequentially each overlay operation by producing an intermediate layer 
after each operation. In lieu of immediately performing each operation, it is more 
efficient to evaluate first the entire operation and identify an execution strategy 
which predicts the shortest processing time. Similar considerations within the re 
lational algebra to gain better performance for complex, combined operations led
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to the area of query optimization (Ullman 1982). To date, only few attempts have 
been made to improve systematically spatial query processing (Hudson 1989, Ooi 
and Sacks-Davis 1989). Current overlay processors calculate interactively one over 
lay at a time (Pazner et al. 1989), though there have been recently attempts to 
pursue more efficient processing strategies (Yost and Skelton 1990). To improve 
the overlay operations of several layers, two strategies are investigated: (1) to iden 
tify equivalent sub-expressions so that they can be computed only once, and (2) to 
integrate several individual overlay operations into a single one. Both strategies 
will be investigated subsequently.

4.1 Notation
The uppercase Greek letter omega (ft) will be used to denote overlay. Its argu 
ments are (1) the ordered set of layers layert , . . . , layern with n > 0, and (2) a 
particular combination operation (Equation 1).

tocombinationVayert , . . . , layern ] (1)

The combination operation may be a function, such as max or average, or a 
decision table. For instance, the value combination specified in decision table 1 is 
applied to the layers altitudes and vegetation, resulting in the layer windExposure 
(Equation 2).

windExposure := Slxabie i (altitude, vegetation) (2)

4.2 Equivalent Overlay Operations
A first step during processing the combination of overlays is to identify those se 
quences of operations that occur several times so that they need to be executed 
only once. The goal for such an overlay optimizer is to find equivalent, but more 
efficient expressions, i.e., expressions which yield the same result within less time. 
This strategy requires a formal knowledge of equivalent expressions. Mathematics 
has the notion of properties of combinations of operations to describe whether two 
expressions are equivalent or not. Most familiar are the commutative, associative, 
and distributive laws, e.g., for the combinations of sets with the operations union 
and intersection. Likewise, the combination of layers with various overlay oper 
ations may be described by their commutative (Equation 3), associative (Equa 
tion 4), and distributive (Equation 5) properties.

, layer?} = ^l eam b mation(layers , layerj ) (3) 
i combination^ combination(layert, layers ), layers ~] =

ttcombinationVayer! ^comtm^o^V^t, layers )) (4) 
combination ̂ a-yer i $l comiinanon2 (layer %, layeT3 }} =

^combination2 (^ combination! (layeTi , layers ), ft combination j (layert , layer s )~) (5)

The specification of the generalized overlay operation (Specification 7) demon 
strated that an overlay varies only over different value operations; therefore, the 
properties of the combinations of overlay operations can be based upon the prop 
erties of the corresponding value operation. For instance, the combination of three
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layers is associative if and only if the value operation is associative as well:

ft combination^ combm^tion^ayer, , layeT2 }, layers ) =
, layer*,)} (6)

value. combine(value. combine^! , vs ), v3 ) =
value. combine(vi , value. combine(vs , vs )) (7)

Since the overlay operations depend completely upon the corresponding value 
operations, they can be optimized by only considering the value operations in 
the same sequence as the corresponding overlay operations. Equivalent overlay 
operations can be found by analyzing the properties of the value operations. These 
properties are described in the axioms of the specifications of the values. For 
example, given a complex query containing the following expressions:

. . . ft add(lo-yeri ,ft add (layer2 Jayer3 )) . . . ft add(layers ,ft add (layers , layer i}) ... (8)

The axioms of the particular value specifications may provide the necessary 
information about the properties of the add operation, e.g.,

SORTS value
OPERATIONS add: value x value -> value 
VARIABLES Vj , v2 , v3 : value 
EQUATIONS add (VL v2 ) == add (v2 , vj

add (YI, (add (v2 , v3 )) == add (add (vt , v2 ) , v3 ))

Specification 8: Commutative and associative properties of the value operation 
add.

Based upon these axioms it can be formally analyzed whether or not these 
two expressions are the same. First, the overlay operation is substituted by the 
corresponding operations upon values (Equations 9 and 10).

ft add^ayert, ft add(layer2, Iayer3 )) =>• value. add(vt , value. add(vs , vs )) (9)
=^ value .add(vs , value. add(vz, vt )) (10)

Then the axioms are applied. With the associative law, Equation (10) is trans 
formed.

value. add(vs , value. add(vg, vt )) = value. add(value.add(vs , v2 ), vt ) (11) 

Finally, the commutative law is applied twice.

value. add(value.add(vs , vs ), Vj) = value. add(vt , value. add(v3 ,
= value. add(vt , value. add(vs , v$)) (12)

Equation (12), the equivalent for (10), is the same as (9), i.e., the two subex 
pressions in Equation (8) are the same and, therefore, only one of them must be 
executed.
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4.3 Integration of Multiple Overlay Combinations
A second strategy to reduce the execution time of a complex combination of over 
lays is to integrate several overlay operations into a single, equivalent one, i.e.,

(13), layers , layers)

Again, the specification of the generalized overlay operation (Specification 7) 
was fundamental in tackling this problem. It shows that this integration means 
to move a value operation, value, oper at ion2 , from the inner FOR EACH loop 
into the outer loop and combine value, oper at ioni with value. operation2 into 
value. operation3 . The validity of such combinations can be checked with the 
axioms specifying the value ADTs.

FOR EACH (ti, t 2 ) IN (A,
FOR EACH (t3 , t 4 ) IN (B, C)

DO value. operation2 )
DO value. operation! 

=> 
FOR EACH (ti, t 2 , t 3 ) IN (A, B, C)

DO value. operations

An alternative approach to this symbolic optimization is the use of decision 
tables to evaluate the combinations. Given the sets of values on each layer, the 
decision tables can be applied to analyze the property of the combination of op 
erations.

The following example demonstrates such an integration. Four layers, AI, A2 , 
BI, and B 2 , with the four respective sets of values, {2, 4, 8}, {6, 10}, {3, 4}, and 
{1, 2, 3), should be combined such that

result := Slmm (^,en,,(Ai,Ag ),Sl TM,tt(Blt Bg)) 

The decision table 2 shows the combinations for the two inner overlays.

(14)

A t 
A 2
x,

2 
6
4

2
10
6

4 
6
5

4 
10
7

8 
6
7

8 
10
9

Table 2: (a) Xt := average(A t ,A 2 ) and (b) Xt := (Bt ,B2 }.
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Table 3 shows the result of the combination of the two intermediate results with 
the operation min.

xt
xz
X

4 4 
2 1
2 1

4 
3
3

6 
2
2

6
1
1

6 5 
3 2
3 2

5 
1
1

5 
3
3

7 7 
2 1
2 1

7 
3
3

9
2
2

9 9 
1 3
1 3

Table 3: X :=

The sequence of operations may be expressed by a single table. Its condition 
part contains the Cartesian product of the values in the four layers and the action 
part has the corresponding values of the combinations (Table 4).

A t
A s
Bt
Bs

2
6
4

1V3

2 2
6 6
3 4
- 2

4 44
666
434

1V3 - 2

2
10
4

1 V3

2 2
10 10
3 4
- 2

4
10
4

1V3

4 4
10 10
3 4
- 2

8
6
4

1 V3

8 8
6 6
3 4
_ 2

8
10
4

1 V3

8 8
10 10
3 4
- 2

1 23 1 23 23123 2 3 2 3

Table 4: X := min(average(A 1 ,A 2 }, Table 2b(B1 ,Bs )). 

Table 4 can be simplified by combining columns with the same actions, e.g.,

2V4V8 2V4V8 2V4V8 2V4V8 2V4V8 2V4V 
6 10 6 10 6 10 
443344 

1V3 1V3 - - 2 2
X

Table 5: X := min(average(A 1 ,A s }, Table 2b(B1 ,Bs )).

Further integrations (over the values of A2 ) and the substitutions of disjunctions 
which cover the entire domain by the value don't care reduce the value operation to 
an operation which is independent of the two layers A\ and A? (Table 6); therefore, 
the entire overlay operation may be reduced to the combination of the two layers 
BI and J52 .
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Bt 
Bs

4 
1V3

3 4 
- 2

2 3

Table 6: The simplified decision table for ^l mtn (^l average(A l , A 2 ), ^Tabie eb(Bi , Bs )}.

The decision table also indicates in which order the two layers should be pro 
cessed. The value of a layer needs not be examined if the result is independent of it. 
For example, it is more efficient to execute £1 Table sb(B\, B^) than ft Table zb (B^, BI). 
In the first case, the result of half of the operations is determined by just examin 
ing BI , because the outcome of the combination with value 3 is independent of the 
value at the corresponding location in B2 . If the value is 4 then the corresponding 
value in B2 must be examined as well. On the other hand, if the converse operation 
is executed then always the values of both layers must be processed.

5 Conclusion
Rigid formal methods have shown to be effective tools to identify optimization 
strategies for combinations of overlay operations. The algebraic specification of a 
generalized overlay operation for tessellations revealed that

• a layer may be considered a set of cells, each consisting of a location and a 
value, and

• arithmetic overlay operations over layers can be broken down into a value 
operation to be performed for each cell of a layer or tuple of corresponding 
cells in several layers, similar to the application of a function to a whole set 
in functional programming.

Since overlay operations are founded upon value operations, it is possible to map 
the considerations about best execution plans for operations onto considerations 
about the combination of value operations. Two particular ways of optimizing 
several overlay operations have been investigated:

1. the use of axiomatic description of the value operations to identify whether or 
not two combinations of value operations are equivalent. Faster executions of 
combinations of overlays are possible, because such equivalent subexpressions 
can be substituted by the result of one single overlay operation.

2. the use of decision tables, representing the characteristics of value operations, 
to integrate several overlay operations. This method can be applied if the sets 
of values of all layers are known. The integration reduces any combination of 
overlay operations into a single one and is most effective if the number of con 
ditions is small. Decision tables are less suitable for large sets of conditions, 
because the tables grow multiplicatively before reduction.
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The results obtained demonstrated the usefulness of the approach. Further in 
vestigations are necessary to build sophisticated query optimizers for raster GIS's. 
The present work, intentionally, excluded geometric operations on cells, e.g., those 
which exploit the neighborhood relationship between cells. Within the formal 
framework provided it is now possible to study their behavior to formalize geo 
metric operations on tessellations.
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