
BALTIMORE

TECHNICAL PAPERS
1991 ACSM-ASPRS

ANNUAL CONVENTION

BALTIMORE

TECHNICAL PAPERS
1991 ACSM-ASPRS

ANNUAL CONVENTION

D

Volume 6
Auto-Carto 10

ACSM 51st Annual Convention
ASPRS 56th Annual Convention

Copyright 1991 by the American Congress on Surveying
and Mapping and the American Society for Photogrammetry
and Remote Sensing. All rights reserved. Reproductions of
this volume or any parts thereof (excluding short quotations
for use in the preparation of reviews and technical and
scientific papers) may be made only after obtaining the
specific approval of the publishers. The publishers are not
responsible for any opinions or statements made in the
technical papers.

Permission to Photocopy: The copyright owners hereby give
consent that copies of this book, or parts thereof, may be
made for personal or internal use, or for the personal or
internal use of specific clients. This consent is given on the
condition, however, that the copier pay the stated copy fee of
$2 for each copy, plus 10 cents per page copied (prices subject
to change without notice), through the Copyright Clearance
Center, Inc., 27 Congress St., Salem, MA 01970, for copying
beyond that permitted by Sections 107 or 108 of the U.S.
Copyright Law. This consent does not exceed to other kinds
of copying, such as copying for general distribution, for
advertising or promotional purposes, for creating new
collective works, or for resale.

When reporting copies from this volume to the Copyright
Clearance Center, Inc., please refer to the following code:
ISBN 0-944426-44-1/91/2 + .10.

ISBN 0-944426-38-7
ISBN 0-944426-44-1

Published by
American Congress on Surveying and Mapping

and
American Society for Photogrammetry and Remote Sensing

5410 Grosvenor Lane
Bethesda, MD 20814-2160

USA
Printed in the United States of America

Proceedings

Tenth International Symposium on Computer-Assisted Cartography

AUTO-CARTO 10
Baltimore, Maryland
March 25-28, 1991

FOREWORD

This volume contains the 27 papers of the Tenth International Symposium on Computer-
Assisted Cartography. AUTO-CARTO 10 represents a new direction for the series.
(Only time will tell whether it was the start of a new course, or a temporary detour!) For
the first time, full papers were peer-reviewed by at least two, and often three or four,
members of the program committee. Furthermore, accepted papers were returned to the
authors for revision based on the reviewers comments. Our announced plan was to
accept between 30 and 40 papers, and we expected to select those from a pool of perhaps
100 submissions. Based on that expectation, a large program committee with a total of
22 members was established to conduct the reviewing and to advise on final program
decisions; the program committee co-Chairs wish to thank all the members of the
committee for their timely and conscientious reviewing and other participation in the
decision-making process.

We were surprised, and somewhat disappointed, when only 39 full papers were
submitted for consideration. (This compares to some 160 abstracts submitted to AUTO-
CARTO 8 four years earlier.) However, the quality of those papers was in most cases
very high, and we believe that "self-selection" was in part responsible for the low
number submitted. Other possible reasons for the low pool of papers are that the
community realized too late that full papers were due in September; or that the
community does not wish to have fully-refereed proceedings, preferring instead to
submit refereed material through the journals. In fact some people suggested exactly that
reason, and the program chair(s) for AUTO-CARTO 11 will have to consider carefully
whether to try full reviewing again, or return to the previous system of screening
extended abstracts or short proposals.

Despite the low number of submissions, we continued to apply the high refereeing
standards that had been promised to the authors. All unanimous recommendations from
the reviewers were followed; for the remaining papers, a subset of the program
committee met in Anaheim and finalized the decisions. The result was the acceptance of
27 of the papers which appear in this volume. Then, because the 27 papers did not fill
all available AUTO-CARTO 10 program slots, three panel discussions that had been
proposed were inserted into program, and brief summaries (unrefereed) also appear in
this volume.

Do the members of the "AUTO-CARTO community" want refereed proceedings? After
the meeting, people should make their feelings on this clear, and transmit them to us, or
to the Board of the American Cartographic Association. Regardless of the future of full-
paper refereeing in AUTO-CARTO, we are proud of the quality of papers in this volume,
and look forward to an excellent meeting in Baltimore!

David M. Mark, Buffalo, New York
Denis White, Corvallis, Oregon

28 January 1991

iii

The AUTO-CARTO 10 Program Committee

David Mark, co-Chair
Denis White, co-Chair

Marc Armstrong
Kurt Brassel

Peter Burrough
Bill Carstensen
Nick Chrisman

Keith Clarke
David Cowen
David Douglas

Peter Fisher
Andrew Frank

Randolph Franklin
Michael Goodchild

Steve Guptill
Jon Kimerling

Nina Lam
Duane Marble

Jean Claude Mueller
Tim Nyerges
Alan Saalfeld
Marvin White

IV

Table of Contents

Refereed Papers:

Database Architecture for Multi-scale GIS
Christopher B. Jones 1

Resolution Revisited
Ferenc Csillag 15

Generalization Operations and Supporting Structures
Kate Beard and William Mackaness 29

Using Spline Functions to Represent Distributed Attributes
John R. Herring 46

New Proximity-preserving Orderings for Spatial Data
Alan Saalfeld 59

Zenithial Orthotriangular Projection
Geoffrey Dutton 77

Detecting Features in Low Resolution Aerial images of
City Blocks

Bill Sakoda and Joseph G. Hauk 96

Automatic Digitization of Large Scale Maps
Andreas Illert 113

Thematic Mapping from Imagery: An Aspect of
Automated Map Generalization

Minhua Wang, Peng Gong, and Philip J. Howarth 123

Producing Answers to Spatial Questions
GailLangran 133

Qualitative Spatial Reasoning about Cardinal Directions
Andrew U. Frank 148

Improving Spatial Analysis in GIS Environments
Geoffrey Dutton 168

Characterization of Functions Representing Topographic
Surfaces

GertW.Wolf 186

Simulation of the Uncertainty of a Viewshed
Peter F. Fisher 205

Dynamic maintenance of Delaunay Triangulations
Thomas Kao, David M. Mount, and Alan Saalfeld 219

Adaptive Hierarchical Triangulation
Lori Scarlatos and Theo Pavlidis 234

Structuring the Knowledge of Cartographic
Symbolization-- An Object-oriented Approach

Feibing Zhan 247

Are Displays Maps or Views?
WernerKuhn 261

UGIX: A GIS Independent User Interface Environment
J. F. Raper and M. S. Bundock 275

Algebraic Optimization of Combined Overlay Operations
Claus Dorenbeck and Max J. Egenhofer 296

Spatial Overlay with Inexact Numerical Data
David Pullar 313

A Diagnostic Test for Error in Categorical Maps
Nicholas Chrisman and Marcus Lester 330

GeoGraph: A Topological Storage Model for Extensible
GIS

K. Bennis, B. David, I. Morize-Quilio, J. Thevenin,
and Y. Viemon 349

Topological Models for 3D Spatial Information Systems
Simon Pigot 368

The Reactive-tree: A Storage Structure for a Seamless,
Scaleless Geographic Database

Peter van Oosterom 393

Integration of Spatial Objects in a GIS
Richard G. Newell, Mark Easterfield, and David G. Theriault 408

VI

Summaries for Panel Discussions (Unrefereed):

Alternative Representations of Geographic Reality
Organizers: Stephen Guptill and Scott Morehouse 416

What's the Big Deal about Global Hierarchical
Tesselation?

Organizer: Geoffrey Dutton 418

Visualizating the Quality of Spatial Information
Organizers: Barbara P. Buttenfield and M. Kate Beard 423

Refereed Paper (Late Arrival):

A General Technique for Creating SIMD Algorithms on Parallel
Pointer-based Quadtrees

Thor Bestul 428

vn

Author Index

Beard, Kate 29,439
Bennis, K. 349:
Bestul, Thor 428
Bundock, M. S. 275
Buttenfield,-Barbara P. 423
Chrisman, Nicholas 330
Csillag, Ferenc 15
David, B. 349
Dorenbeck, Claus 296
Dutton, Geoffrey 77, 168, 418
Easterfield,,Mark 408
Egenhofer, Max J. 296
Fisher, Peter F. 205
Frank, Andrew U. 148
Gong, Peng 123
Guptill, Stephen 416
Hauk, Joseph G. 96
Herring, John R. 47
Howarth, Philip J. 123
Illert, Andreas 113
Jones, Christopher B. 1
Kao, Thomas 219
Kuhn, Werner 261
Langran, Gail 133
Lester, Marcus 330
Mackaness, William 29
Morehouse, Scott 416
Morize-Quilio, I. 349
Mount, David M. 219
Newell, Richard G. 408
Pavlidis, Theo 234
Pigot, Simon 368
Pullar, David 313
Raper, J. F. 275
Saalfeld, Alan 59, 219
Sakoda, Bill 96
Scarlatos, Lori 234
Theriault, David G. 408
Thevenin, J. 349
van Oosterom, Peter 393
Viemon, Y. 349
Wang, Minhua 123
Wolf.GertW. 186
Zhan, Feibing, 247

IX

DATABASE ARCHITECTURE FOR MULTI-SCALE GIS

Christopher B. Jones
Department of Computer Studies

The Polytechnic Of Wales
Pontypridd

Mid Glamorgan, CF37 1DL, UK

ABSTRACT

Many applications of GIS, such as planning, exploration and
monitoring of natural resources, require the mapping and analysis of
spatial data at widely differing scales. Ideally, a single large scale
representation of spatial data might be stored, from which smaller scale
versions were derived. Currently however, automation of the necessary
generalisation processes is not sufficiently well advanced for this to be a
possibility. Consequently, multiple representations must be maintained,
though proven generalisation techniques can be used to reduce data
duplication, provided that processing overheads are not prohibitive.
Maintenance of a multiple representation database requires a flexible
approach to the use of both single-scale and multiresolution data
structures. Furthermore, rule-based software is required for a) deciding
whether new datasets should be merged with existing ones, or stored as
separate representations, and b) selecting appropriate representations and
applying generalisation procedures to satisfy user queries. This paper
presents an overview of a database design, based on a deductive
knowledge-based systems architecture, which attempts to meet these
requirements.

INTRODUCTION

Increasing interest in the use of geographical information systems
(GIS) brings with it requirements for the analysis and display of
geographical information at various scales, relating to different
locations and to different themes. The accumulation of this information
introduces a need for sophisticated databases that are flexible with
respect to the variety of stored data and to the scale and locational
accuracy of the output. Such requirements arise in organisations
concerned with monitoring or exploiting the natural and man-made
environment.

Maintenance of data derived from a variety of source scales raises a
major issue of whether the individual real-world objects should be
represented once, at their highest resolution, or whether multiple
versions at different scales should be stored. Ideally perhaps the former
option appears most desirable, since it avoids data redundancy and the

1

possibility of inconsistency between versions. The approach depends
however upon the assumption that smaller scale versions can be derived
automatically. With the current, relatively limited, capabilities of
automatic generalisation software, this is not a valid assumption (Brassel
and Weibel, 1988). In a multi-scale database servicing a wide range of
output requirements there is therefore good reason to store multiple
representations of the same objects (Brassel, 1985). Even when small
scale versions can be derived automatically, there will be situations,
involving large degrees of generalisation, in which the delays due to
computation could not be tolerated in an interactive GIS. In such
circumstances it could be desirable to store the results of automated
generalisation.

The presence of multiple representations of spatial objects, and the need
for retrieval at a range of scales, places considerable demands upon a
database management system. If it is to maintain and retrieve data with
the minimum of user-intervention, it must incorporate software capable
of making decisions about updates and retrievals. When new datasets are
loaded, decisions must be taken about whether to replace existing data,
merge with existing data, or store as a separate representation. On
querying the database there may be several candidate representations.
One of these may be selected for output or it may be used to derive an
appropriate representation using automatic generalisation procedures. In
addition to the inclusion of 'intelligent1 software, the need arises for data
structures which are efficient for access in terms of ground resolution,
spatial location, topology and aspatial attributes.

A research project has been initiated with the aim of building an
experimental multi-scale spatial information system. In the remainder of
the paper the components of the proposed experimental system are
outlined, before discussing specific issues which arise in designing and
implementing multi-scale GIS. Attention is focused in particular on
multiresolution data structures, indexing mechanisms and the
maintenance and query of multiple scale representations.

COMPONENTS OF A MULTI-SCALE DATABASE
ARCHITECTURE

An overview of the main components of a proposed multi-scale
database is illustrated in Figure 1. All updates and queries are channelled
through a deductive subsystem, the rule-base of which controls changes
to the contents of the database and retrievals from it. The contents of the
database are summarised within an object directory which, though it may
be spatially segmented, serves primarily to record the presence of stored
objects in terms of their application-specific classes and the nature of
their representations with regard to dimension, locational accuracy and
spatial data model. The rule base of the deductive subsystem refers to the

current contents of this object directory in order to make decisions about
appropriate strategies for update and retrieval. It also controls the
execution of spatial processors required for certain update operations
and for performing, where necessary, generalisation operations on
retrieved objects.

The detailed spatial structure of objects listed in the object directory is
recorded in the topology and metric geometry components. The metric
geometry component stores data referenced directly to locational
coordinates and could include both vector and raster data employing
specialised multiresolution data structures. In the case of vector
structured objects a close relationship could be expected with
corresponding elements in the topology component of the database. The
distinction between topology and metric geometry is intended to
facilitate efficient search based on topological information at various
levels of detail. Range searches for all objects in a given rectangular
window may be served directly by the metric geometry data structures.

The rule-based component of the experimental system is envisaged
initially as a deductive, or logic database which may be implemented in a
logic programming language with extensions for calling external
procedures and for access to permanent storage. Execution of rules for
update of single resolution and multiresolution spatial data structures and
for generalisation will then be achieved by calling the various spatial

Rule Base
+

Inference
Mechanism

Spatial Processors

Geometry
Generalisation

Database Access Mechanisms

Object Directory

(spatially segmented)

Figure 1

Topology Metric
Geometry

processors. Implementation of the spatial data structures requires the use
of complex data types, while the processors which operate on them
could, in some cases, consist of knowledge-based subsystems in their own
right. These latter components of the database may appear therefore to
be suited to implementation using object-oriented programming
techniques.

Recognition of the importance of combining rule processing with
object-oriented databases is reflected in the design of systems such as
POSTGRES (Stonebraker, 1986). The potential of this type of database
system for implementing multi-scale GIS has already been identified by
Guptill (1989, 1990). From the more purely deductive database
standpoint, new versions of the logic programming language Prolog are
being developed to provide efficient integration with a permanent
database (Bocca et al, 1989; Vieille et al, 1990). By adding facilities for
handling complex data types and for calling external procedures, the
deductive database architecture may also then provide a suitable basis
for building multi-scale geographical databases.

MULTIRESOLUTION DATA STRUCTURES

Whether there are single or multiple representations of individual
objects and classes of object, each representation may be regarded as a
candidate for retrieval over a range of scales. The largest scale limit will
be constrained by the locational accuracy of the geometric data. The
smallest scale limit will be determined by the capability of automated
generalisation functions which can operate on the object. Widely used
line generalisation procedures such as the Douglas algorithm (Douglas
and Peucker, 1973) have been used, in combination with smoothing
operators over scale changes in excess of a factor of 100 (Abraham,
1988). When the linear features form part of areal objects, automated
procedures are generally very much more restrictive, since issues such
as object amalgamation and displacement must be taken into account.
Automated areal generalisation was used in the ASTRA system (Leberl
and Olson, 1986) but scale changes were only of a factor of about two. A
variety of techniques is available for generalisation of digital terrain
models (Weibel, 1987). Limits on the possible degree of generalisation
of these models depends on the error tolerance of the application.
However, when structure lines (ridges, valleys and form lines) are added
to the model, the limits may be expected to be similar to those of the
generalisation of the individual linear features.

Given that individual representations apply over a range of scales, the
question arises as to how best to store the objects to achieve efficient
access at different scales. The options are single storage of the object
with generalisation to smaller scales at the time of the query; storage of
several pre-generalised versions of the object, with the possibility of data

duplication (as in Guptill, 1990); and storage of a non-duplicating
hierarchical representation of the single object (see below). The first of
these options could, in the case of linear features and terrain models,
require initial retrieval of orders of magnitude excess data before
simplification by a generalisation function. The second option could give
efficient access to a representation which may closely approximate the
retrieval specification, but at the expense of a storage overhead due to
data duplication. The third option is a compromise in which a
generalisation function is used to segregate the geometric component of
the objects according to their contribution to shape and accuracy. By
organising the component data in a hierarchical manner it is then
possible to access only the geometric data required to build a
representation at, or an approximation to, the required level of
generalisation.

Multiresolution data structures which avoid or minimise data
duplication are available for both linear features and surfaces. For linear
features, the strip tree (Ballard, 1981) provides a means of accessing
successively higher resolution approximations to a curve represented by
rectangular strips. In its original form it is not very space efficient, as
individual points may be stored several times if they bound successively
narrower strips. Each rectangle must also be explicitly defined. The
original strip tree consists essentially of a binary tree. The root node
stores a rectangular strip which encloses the entire feature, along with
pointers to two offspring. A point where the curve touches the side of
the initial strip is used to subdivide the curve into two parts, each of
which is represented by enclosing strips which are stored in the
offspring nodes. The curve is divided recursively in this manner until
individual strips coincide with straight line, zero width, segments
between successive vertices of the feature.

The multi-scale line tree (or line generalisation tree) is related to the
strip tree and may be regarded as a tree of variable branching ratio
rather than a binary tree (Jones 1984, Jones and Abraham 1986,1987).
Each level of the structure corresponds to a maximum implicit strip
width. Furthermore, it is vertex rather than strip oriented, and each
level stores vertices which are intermediate to those at the next higher
level. The result is that it is significantly more space-efficient than the
strip tree. It has been implemented in a network database in which each
level of a hierarchy is stored independently of the other levels of the
same line object, but in association with the equivalent generalisation
levels of other objects (Abraham, 1988). Thus rapid access to all features
of a particular resolution is facilitated by only retrieving, for each
object, those hierarchical levels which are relevant to a specified output
scale (or spatial resolution).

Use of a multi-scale line tree introduces the problem of maintaining

aspatial and topological attributes of the line features. If the hierarchy
extends across a wide range o,f scales, the line itself may be
geographically extensive.such .that;there are distinct internal subdivisions
relating to .different feature codes .and to topological nodes. By attaching
sequence numbers to the component vertices of a line, aspatial
classification and topological structure can ,be .defined in terms of ranges
of sequence numbers .and individual, sequence ̂ numbers which have been
designated as -nodes (Jones and Abraham, 1987; Abraham, 1988). To
retain ac.cess-.efficiency, the node vertices should he stored at the highest
hierarchical level (lowest resolution) at which they are likely to be
required. Thus vertices which-the generalisation procedure may classify
as low level would, if they were logical nodes, be raised to the
appropriate higher 'level.

Multiresolution representations ,of surfaces may be categorised into
those teased .on .mathematical ifunctional ̂ models of the :surface and those
based on -original, <or ^derived, 'sample .points. Jf 'the .coefficients of a
surface function are orthogonal, dn .the sense that they represent
independent ̂ components of the.surface.shape, then a/multiresolution data
structure could :be created by.* separating the .storage of the components
into distinct records. Each .record would .correspond to a 'level 1 ,
characterised .by'the.extent to which .the stored:coefficients contributed to
the surface shape.'The most "important components could be stored at the
highest levels, while.less significant .ones were stored at progressively
lower levels. A.problem which ̂ occurs whenmsing.global functions, such
.as iFourier Series, is that the [reconstructed, simplified surface, may be
subject locally ;to relatively .large ^ejrors. ,A .mathematical function
approach whicli controls errors '.can l>e obtained -.by partitioning the
surface into rectangular regions each of which is represented by its own
function '(Pfaltz, 1975). 'By-partitioning ^the surface in the manner of a
quadtree, .the .size .of the quadrants ..can ;be reduced locally .until the
chosen function fits the, surf ace .to within a pre-specified tolerance (Chen
and Tobler, .1986.; iLeifer and .Mark;, 1987.). Although the method has
.been applied primarily ;to the representation ,of surfaces at a specified
error tolerance, it ;,co.uld -b_e .extended into :a multiresolution quadtree in
which intermediate;(subdividjs.d),nodes stored a function.accompanied by
a measure <of the .associated srror.

Surfaces represented by sample .points are usually,organised either as
regular .grids .of elevation values or as ,an Irregular set of significant
points. Irregularly distributed points are typically -structured by
triangulation, to -form a 'triangulated irregular network, or TIN
(Peucker et al, 1978). Because the sample .density-of,a TIN Is.adapted to
local variation in surface .detail the structure lends itself to
implementation as .a .multiresolution structure.

The Delaunay pyramid (De Floriani, 1989) is a hierarchical
multiresolution tree for storing triangulations. The top level of the tree
stores a Delaunay triangulation of a subset of the original dataset of
important points. The next lower level is constructed by adding vertices
which are chosen to be the most distant from the previous triangulated
surface. Points are added to the previous surface, which is
re-triangulated to accommodate them until the error between this new
surface and the remaining points is within a pre-set tolerance. The next
lower level is created in a similar manner, controlled by the error
tolerance for that level. Each level stores a list of the triangles and
vertices .of which it is composed, the differences (in terms of triangles)
between the adjacent upper and lower levels, and pointers from certain
triangles to those which replace them, and are hence intersected by them,
at the immediate lower level. Note that only a subset of triangles at each
level points to lower triangles, since some of the previous triangles will
be retained in the lower level.

An advantage of a triangulated surface model is that it provides the
possibility of being integrated with point, linear and polygonal features.
If the vertices which define the .latter features are merged with those
which define a digital elevation model then, after triangulation, the
linear and.polygonal features can be constituted by the edges within the

itriangulation, while point features are represented by single nodes. To
ensure that linear features are retained in this way, the triangulation
process must be constrained by boundaries defined by the linear features
(see De Floriani and Puppo, 1988, for the constrained triangulation of
multiresolution topographic surfaces). Provided all nodes are uniquely
identified, the embedded spatial objects and their topology can be
referenced directly to sequences of, and individual, triangulation nodes.
In a multiresolution structure, references to nodes can include their level
within the hierarchy and, just as with the multi-scale line tree topology,
their nodes would be stored at the highest level that they could be
expected to be of use. A multiresolution triangulation data structure
integrated with topology and feature specification is currently being
developed (details will be published elsewhere).

INDEXING MECHANISMS

Appropriate schemes for efficient spatial access to multiresolution
hierarchies may vary according to whether,the objects encoded in the
hierarchies are very extensive compared with potential regions of
interest. This factor determines the desirability of incorporating spatial
indexing .within the object representation in addition to a spatial index
which refers only to the entire objects. The latter indexing scheme would
indicate the storage location of objects, the geometry of which was
stored in, for example, a multi-scale line tree, a multiresolution
triangulation or a single level representation. Methods of implementing

the primary object index include techniques such as i) a fixed grid with
references to intersecting objects; ii) a bounding quadtree cell scheme
(Abel and Smith, 1983); and iii) an R-tree, or one of its relatives, which
works with minimum bounding rectangles (Guttman 1984, Faloutsos,
1987). Depending on the nature of the application, an additional aspatial
index to objects could also be desirable.

If the geometry of objects referenced by the spatial or aspatial index
was extensive compared with the search window, it would be necessary
to traverse the geometric data structure, selecting those parts inside the
window. If the geometry was stored as a multiresolution hierarchy (line
tree or triangulation), covering a wide range of scales, then it could
frequently be expected to be spatially extensive relative to query
windows for large scale applications. The multi-scale line tree was
implemented on this assumption and incorporated spatial indexing within
each level of the hierarchy. In that experimental database, both fixed
grid and quadtree schemes were applied, in which the cells of the grids
and of the quadtrees stored sets of vertices in chained records. When the
fixed grid size was selected to be different for each level (according to a
regular pyramid) the performance of the two schemes was found to be
similar (Abraham, 1988).

In De Floriani's Delaunay pyramid (De Floriani, 1989), the
pointer-based implementation provides some direction to spatial search
within the structure once candidate triangles have been identified at the
top level. The implementation described appears to have been oriented
towards point rather than window searches. An alternative approach,
currently being pursued, is to impose a spatial index on each level.

Bearing in mind that a multi-scale database may be very large and that
objects may occur at widely differing levels of class-generalisation
hierarchies, the concept of a single spatial index and a single list or index
of objects becomes rather monolithic. Given that the scale of the output
can be expected to be correlated with the level of class generalisation, a
natural development of the indexing system is to segregate it into
generalisation levels allowing direct access into an appropriate level.
Each level could be associated with some limiting spatial resolution and
would reference only classes of object which were regarded as likely to
become significant at that scale. The choice of classes could be somewhat
arbitrary on the assumption that a data dictionary indicated the
correlation between class and level. It would not be necessary to refer
explicitly to the parents of classes in a class-generalisation hierarchy,
provided the content and structure of all such hierarchies was stored
separately, allowing them to be inferred (see, for example, Egenhofer
and Frank, 1989).

MAINTENANCE OF MULTIPLE REPRESENTATIONS

An important issue in maintaining multiple representations is the extent
to which data duplication and data redundancy are to be tolerated.
Duplication will occur when one representation is a simplified version of
the other if its geometry, such as the vertices of a line or triangulated
surface, is a subset of that of the other version. If an automatic
procedure exists for performing the simplification, then the smaller scale
version may be regarded as redundant. Data redundancy in this sense can
also arise in the absence of data duplication provided that there is an
automatic procedure for deriving a required small scale version from
the larger scale version. For the purposes of an interactive information
system however, this notion of redundancy may be questioned if the
processing required by the automatic procedure was too much to provide
an acceptable response time.

The multiresolution data structures referred to earlier give rapid access
to generalised versions which are geometric subsets, and they therefore
provide a means of avoiding data duplication, at least for linear features
and surfaces. When 'quantum leap' differences occur in the course of
generalisation, due for example to changes in dimensionality and to
merging and displacement of objects, the existing types of
multiresolution data structures cannot be used. It can also be expected
that where automatic procedures do exist for this degree of
generalisation, there is a greater chance of being too slow for
satisfactory user interaction. It is in the event of major changes in the
geometric representation that the storage of multiple versions is most
likely to be appropriate. This does not however preclude the use of
multiresolution data structures for separately maintaining both the
smaller and larger scale representations across their different ranges of
scales.

Another situation in which multiple versions might be stored is that in
which data duplication was very localised, due to the presence of
geographically small areas of large scale, high resolution data within a
region which was covered by a much more extensive, smaller scale
representation. A method of maintaining a consistent representation at
the small scale, while also avoiding the data redundancy, would be to
generate a multiresolution data structure from the large scale data and
merge it, at the top level, with the existing small scale version. This
would involve cutting out the duplicated section and edge matching
between the two versions (see Monmonier, 1989b, for a discussion of
techniques for automatic matching of map features which differ in their
original scale of representation). It may be envisaged that the processing
overheads incurred in local deletions followed by merging of the new
data may not be deemed justifiable for relatively small quantities of data,
since the coverage at the larger scales would only be patchy. As more

extensive coverage at the larger scales accumulated in the database, a
point would be reached at which the delete and merge process became
justifiable.

Control over the decision on when to merge new data with stored data
can be placed within a rule base which is integral to the database
management system. An analogy may be made with trigger mechanisms
which have been incorporated in database systems such as POSTGRES
(Stonebraker, 1986). Triggers are an automatic means of maintaining
integrity based on rules which dictate that once a particular data element
has changed, it may propagate a sequence of changes to related records
in the database. Each trigger may be expressed as a production rule
which is implemented by a forward chaining mechanism in which the
firing of one trigger may lead to subsequent firing of another trigger.

The possibility of a chain of triggered updates can be envisaged in a
multiple representation database if the insertion of large scale
representations filled gaps in an intermediate scale representation,
enabling the latter to be merged with an existing, smaller scale,
representation. Thus databases which include trigger mechanisms can be
seen, to some extent, as dynamic, self-maintaining systems. If there was
any doubt about the reliability of such systems, with regard for example
to correct matching and merging of geometry and topology, these
updates could be subject to user-verification before being committed to
the database. All operations could be reversible if historical records
were maintained in archival memory.

DATABASE QUERIES ON MULTIPLE REPRESENTATIONS

A query to a multi-scale, multiple representation database can be
expected to be faced with a choice of versions which are candidates for
retrieval. An automatic query processor would then need to make a
choice of the appropriate retrieval to meet the user's requirements.
Criteria for an appropriate retrieval would differ according to whether
the output was required for analytical purposes or solely cartographic
purposes. In the latter case the version retrieved might be the one which
most closely resembled the level of generalisation dictated by the map's
theme and scale. Such a version could be obtained by a variety of means.
There could be a single level stored representation of the appropriate
generalisation. Alternatively there could be a multiresolution data
structure which encompassed the required generalisation level and could
therefore be traversed to construct the output. Failing that, there could
be a large scale version which could be generalised by software. In the
latter case the automated generalisation process could operate only on
that large scale version or perhaps, as Monmonier (1989a) has proposed,
an additional smaller scale version could be used to guide generalisation
to an intermediate level. If no sufficiently large scale data were

10

available, a poorer quality version could be retrieved and the user
warned accordingly, or a failure reported.

The above strategies would not in general be suitable for queries based
on the need for data analysis problems in which locational accuracy was
of prime importance. Cartographic generalisation would not then be
desirable and the appropriate version would be that derived directly
from, or a subset of, the largest scale representation. Particular
problems could arise with this sort of query if coverage of the query
window required access to representations with differing locational
accuracy. In any event, data retrieved for analytical purposes would need
to be labelled with their accuracy, and processes involving overlay
between different objects would need to maintain a measure of the errors
propagated by the combination of geometric objects.

It is apparent that implementation of a query processor capable of
adapting to user requirements will require the specification of rules to
control the action to be taken under the various conditions of user needs
and data availablility. The query processor could operate initially on the
object directory which recorded the class, location, dimension, accuracy
and spatial data model of objects stored in the data base. The rules could
then be applied to select the best representation given the query
conditions. This would include taking the decision on whether to apply
automatic generalisation procedures and choosing which procedures
were most suitable. The mechanism for implementing a deductive system
governing queries may differ somewhat from that governing updates,
referred to in the previous section. Because a query may be regarded as
a specific goal, it lends itself to a backward chaining mechanism which
attempts to match the contents of the database with the search conditions.

SUMMARY

The construction of a database, capable of maintaining multiple scale
representations of spatial objects, poses major problems with regard both
to the development of efficient multiresolution data structures and to
controlling update and answering queries. The need for explicit rules
governing update, database integrity and the retrieval of generalised
objects indicates the desirability of a deductive, knowledge-based
architecture providing declarative rule specification. Storage of complex
objects in specialised data structures, along with the need for associated
processors for update and generalisation, suggests however that it may
also be appropriate to use object-oriented programming techniques. A
research project is currently in progress with the aim of experimenting
with deductive databases for implementing a multi-scale spatial
information system. In the planned system, rules of update and query
processing are specified in a deductive, logic database which is interfaced
to spatial processors and spatial data structures which may be

11

implemented, at least in part, in procedural or object-oriented languages.
The operation of the spatial processors may themselves employ
knowledge-based inference techniques which are encapsulated within the
respective modules. The primary, deductive component of the system
makes decisions about appropriate update and retrieval operations by
referring to the current contents of an object directory, which
summarises the nature of stored object representations in terms of their
feature class, location, dimension, accuracy, and spatial data model.
Details of the spatial structure of stored objects are maintained within
separate topology and metric geometry components of the database, to
which the object directory refers.

REFERENCES

Abel, DJ. and J.L. Smith 1983, A data structure and algorithm based on
a linear key for rectangular retrieval: Computer Vision. Graphics and
Image Processing. Vol. 24, pp. 1-13.

Abraham, I.M. 1988, Automated Cartographic Line Generalisation and
Scale-Independent Databases, PhD Thesis, The Polytechnic of Wales.

Ballard, D.H. 1981, Strip trees: a hierarchical representation for curves:
Communications of the ACM. 24, pp. 310-321.

Bocca, J., M. Dahmen, M. Freeston, G. Macartney, P.J. Pearson 1989,
KB-PROLOG, a PROLOG for very large kowledge bases: Proceedings
7th British National Conference on Databases. Edinburgh, pp. 163-184.

Brassel, K.E. 1985, Strategies and data models for computer-aided
generalization: International Yearbook of Cartography. Vol. 25, pp.
11-28.

Brassel, K.E. and R. Weibel 1988, A review and conceptual framework
of automated map generalization: International Journal of Geographical
Information Systems. Vol. 2, No. 3, pp.229-244.

Chen, Z.-T., and W. Tobler 1986, Quadtree representations of digital
terrain: Proceedings Auto Carto London. Vol. 1, pp. 475-484.

De Floriani, L. 1989, A pyramidal data structure for triangle-based
surface description: IEEE computer Graphics and Applications. March
1989, pp. 67-78.

12

De Floriani, L. and E. Puppo 1988, Constrained Delaunay triangulation
for multiresolution surface description: Proceedings Ninth IEEE
International Conference on Pattern Recognition. CS Press, Los
Alamitos, California, pp. 566-569.

Douglas, D.H. and T.K. Peucker 1973, Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature: Canadian Cartographer. Vol. 10, No. 2, pp. 112-122.

Egenhofer, MJ. and A.U. Frank 1989, Object-oriented modeling in GIS:
inheritance and propagation: Proceedings Auto-Carto 9. Ninth
International Conference on Computer-Assisted Cartography. Baltimore,
Maryland, pp.588-598.

Faloutsos, C., T. Sellis, N. Roussopoulos 1987, Analysis of
object-oriented spatial access methods: Proceedings ACM SIGMOD'87.
pp. 426-439.

Guptill, S.C. 1989, Speculations on seamless, scaleless cartographic data
bases: Proceedings Auto Carto 9. Ninth International Conference on
Computer-Assisted Cartography, Baltimore, Maryland, pp. 436-443.

Guptill, S.C. 1990, Multiple representations of geographic entities
through space and time: Proceedings 4th International Symposium on
Spatial Data Handling. Zurich, pp. 859-868

Guttman, A. 1984, R-trees: a dynamic index structure for spatial
searching: Proceedings ACM SIGMOD'84. pp.47-57.

Jones, C.B. 1984, A tree data structure for cartographic line
generalisation: Proceedings Eurocarto III, Research Center Joanneum,
Institute for Image Processing and Computer Graphics, Graz.

Jones, C.B. and I.M. Abraham 1986, Design considerations for a
scale-independent database: Proceedings, Second International
Symposium on Spatial Data Handling. Seattle, pp.384-398.

Jones, C.B. and I.M. Abraham 1987, Line generalisation in a global
cartographic database: Cartographica. Vol. 24, No. 3, pp.32-45.

Leberl, F.W. and D. Olson 1986, ASTRA - A system for automated
scale transition: Photo grammetric Engineering and Remote Sensing. Vol.
52, No. 2, pp. 251-258.

13

Leifer, L.A. and D.M. Mark 1987, Recursive approximation of
topographic data using quadtrees and orthogonal polynomials:
Proceedings Auto-Carto 8. Eight International Conference on
Computer-Assisted Cartography. Baltimore, Maryland, pp. 650-659.

Monmonier, M. 1989a, Interpolated generalisation: cartographic theory
for expert-guided feature displacement: Cartographica. Vol. 26, No. 1,
pp. 43-64.

Monmonier, M. 1989b, Regionalizing and matching features for
interpolated displacement in the automated generalisation of digital
cartographic databases: Cartographica. Vol. 26, No. 2, pp.21-39.

Peucker, T.K., R.F. Fowler, JJ. Little, D.M. Mark 1978, The
triangulated irregular network: Proceedings Digital Terrain Models
(DTM) Symposium. ASP-ACSM, St. Louis, pp. 516-540.

Pfaltz, J.L. 1975, Representation of geographic surfaces within a
computer: in Display and Analysis of Spatial Data. Edited by J.C. Davis
and M. J. McCuUagh, Wiley, pp. 210-230.

Stonebraker, M.R. and L.A. Rowe 1986, The design of POSTGRES:
Proceedings ACM SIGMOD'86. pp.340-355.

Vieille, L., P. Bayer, V. Kuchenhoff, A. Lefebvre 1990, EKS-V1, a
short overview: Proceedings AAAI-90 Workshop on Knowledge Base
Management Systems. Boston.

Weibel, R. 1987, An adaptive methodology for automated relief
generalization, Proceedings Auto-Carto 8. Eight International
Conference on Computer-Assisted Cartography. Baltimore, Maryland,
pp. 42-49.

14

RESOLUTION REVISITED

Ferenc Csillag
Department of Geography, Syracuse University

Syracuse, NY 13244
(FCSILLAG@SUNRISE.bitnet)

ABSTRACT

This paper discusses the nature of models applied primarily for
environmental data, where, theoretically, data collection is not restricted
in terms of resolution. Once these data are entered into a geographical
information system, its data structure should also be adjusted to the
underlying model. This adjustment can determine a range of scales for
spatial primitives to be efficiently handled by the system. The paradox of
data models, in terms of what is an object rather than a group of points, is
shown with an example. It is concluded that there may not be a generally
best resolution for a given environmental variable to be mapped.

INTRODUCTION

Resolution, as such, would be most frequently defined in
dictionaries as technical limitation or characteristics of some kind of a
system. Obviously it is associated with "the minimum difference between
two independently measured or computed values which can be
distinguished by measurement or analytical methods" (NCDCDS, 1988).
Concerning a geographical information system (GIS), this definition
would determine our task: Target objects to be mapped should be defined
so that they can be distinguished from each other. This formal
requirement would subsequently determine the amount of necessary
detail to represent these objects. With abstract spatial entities defined,
attribute properties can easily be assigned to them: census tracts have a
population, square meters do not. In most instances of environmental
mapping, however, the problem is faced from a different angle. First, the
spatial entities should be defined according to which attributes can be
assigned, since, for example, a census tract may not have high suitability
for wheat. Secondly, the definition above treats distinguishability as a
dichotomous variable and does not specify levels of accuracy. This is
primarily due to the still existing gap in understanding the relationship
between spatial and non-spatial resolution (see Dueker, 1979 for early
reference) that can be referred to respectively as a
recognition/identification problem in the mapping space and in the
feature (or measurement) space (see Fig.l).

Let us treat the above outlined apparent contradiction in a
"historical" context, i.e. with the analysis of the considerably long history
of philosophical and sophisticated discussions in the GIS-era about the
relationship of geometry and attributes, as well as their respective
accuracies. There are numerous approaches to such issues from
geosciences, cartography, statistics, etc., but unfortunately the more
authoritative definitions read, the more confusing they are.

15

mapping space

• llrlbule-1

attribute-2

feature space

x y z attribute- 1 attribute-2 • • • class attribute- 1 attribute-2- •

INTERPOLATIO

CLASSIFICATION

Figure 1.
Schematic representation of the relationship

between spatial and non-spatial data characteristics

The examination of the problem is organized as follows. Section 1
describes the major distinct approaches, which deserve much attention. I
would argue that, although some of the technical ideas have been around
for two decades or more, their authors might have wanted to use and
interpret them in an inadequate way. Therefore a significant section is
devoted to the mathematical models and some examples are elaborated
on to prove their use. Section 2 then introduces an uncertainty
relationship between spatial resolution and attribute accuracy. It is an
extension of the "control one, measure another" scheme (Sinton, 1978),
because it shows how resolution will vary in the mapping space once
attribute accuracy is fixed, and vice versa. Section 3 presents an
illustrative ecological site characterization example.

APPROACHES TO RESOLUTION

The nature of the approaches to resolution issues in mapping
varies because the primary task is considered to be different: (1) in the
geosciences it is assumed to be based on stochastic signal reconstruction
which is also the most popular view of those in remote sensing and

16

image processing, (2) in "conventional" cartography it is more or less
loosely linked to scale and observable detail, while (3) in the jargon of
digital cartography ("data modelers") representation and model-fitting are
the preferred key terms. For this discussion let us use an "ultimate"
working definition of our task: derive information, or in other words,
make a prediction at a "non-visited" site, where site refers to both
mapping and feature spaces. Additionally, when discussing these
approaches, one should not forget that all our mathematical tools operate
on the foundations of mathematical models, i.e. much of our effort is
focused on constructing meaningful models and the sometimes lengthy
demonstration of mathematical apparatus must not hide this significant
first step.

Geosciences - sampling, interpolation and variability

There is an obvious assumption about objects, or processes in
space, namely, the larger the sample we have, the better. Since usually a
number of constraints (e.g. time, storage, money) limit our ability to
sample "infinitely", models, predicting our information loss with
sampling, are of extreme interest. Therefore, not surprisingly, following
paths of the "digital revolution of the 50's" in geosciences (see Clearbout,
1976, Webster, 1977 for reviews), references to the sampling theorem
have emerged in the general cartographic literature (e.g. Tobler, 1969,
Csillag, 1987, Tobler, 1988). There are three very attractive aspects to this
approach: (1) it can be utilized in sampling design, (2) it provides handy
tools for interpolation as well as filtering, and (3) it is computationally
very efficient.

Once one adopts this approach, the underlying mathematical-
statistical assumptions of the model should be clearly understood. A
significant part of the discussion below is written in order to outline the
background of the choices one can have when applying mathematical
models. It turns out, that in some cases certain assumptions are made not
because they provide more reasonable basis, but because of the practical
reason that otherwise certain problems could not have been handled.
First of all, in this particular case, having a sample of size n, the model is
concerned with ^(x1) / ...,^(xn) stochastic variables having joint normal
distribution. It is crucial to everyday practice that we hardly have any
tools to check this assumption. It is especially difficult, because the sample
taken at n locations is a single realization of the variables. Furthermore, it
is assumed that the expected value of this distribution is zero, and the
variance is finite. So with this model we are confined in our prediction to
the case, when, somehow, our original problem has been reduced to a
zero-mean variable. With these assumptions we can prove that the
covariance exists (i.e. COV[£(xi),£(xj)]< o) and it is positive semi-definite. It
is our task now to construct an estimate of our distribution so the
variance of the difference between the model and the estimate should be
minimum. It is only due to the joint-normality assumption that our
search for the estimate can be restricted for linear functions, i.e. in the
form of weighted sum:

(1)

17

The major problem in constructing our estimate is that we may not
have sufficient information about the covariance, therefore further
assumptions will be necessary. For instance, stationarity is a quite
frequent assumption in order to reduce dramatically the number of
elements to be estimated in the covariance matrix.

It is probably the advantage of modeling with linear functions that
makes interpolation and filtering so popular in applying these tools (for
math-intensive review of spectral analysis see Brace well, 1965, or Bend at
and Piersol, 1986). However, even if our assumptions are valid, there are
Imany manners of abuse. When I say abuse, I mean that you can rarely
find anyone who would apply these techniques, usually available by
pressing a button, having tested accuracy constraints.

Let us just consider two simple cases for demonstration, linear
interpolation and moving averaging. For the former case, suppose that
we have taken sparse samples. Disregarding the distortion that may be
due to undersampling, (i.e. less frequent sampling than half of the
shortest wavelength represented), let us linearly interpolate among our
data points! The total RMS-error (Bendat and Piersol, 1986), the square
root of the mean difference between the original and the interpolated
signal over the entire Nyquist-interval, will be

(2) ERMS(f) = 2 - sinc2(f)(2+(2W)2/3))

where sine denotes the sine-cardinal function [sinc(a)=sin(^a)/^a],
while f denotes dimensionless frequency (equals frequency times
sampling distance). As Figure 2 clearly illustrates, linear interpolation can
severely distort higher frequency signals. If, for example, one would
interpolate 1,2,4,... points between existing data points, the maximum
error term (from Eq.2. at f'=0.5) would be -5.63, -26.83, -50.21 in decibels,
and 52, 4, 0.3 in relative percentage, respectively, providing upper limits
for accuracy.

Considering moving averaging, it is again the frequency-dependent
distortion that should be pointed out. In general, filtering can be written
in the form

(3) ' yk = Zj qxk+i (i = -N,N)

for which moving averaging is a special case with q= 1/(2N+1) for
all i's. The amplitude response (or frequency modulation function, S(f'))
can be obtained with the Fourier- transform of the (filter) coefficients. In
this particular case it is in the form of a geometric series:

(4) S(f') = Si q exp{-j21if'} = 1/(2N+1) £j exp{-j2flif'} =

= 1/(2N+1) exp{-j2TINf'} [1

= sinc(2N+l)f'/sinc(f)

18

0.1 0.2 0.3 0.4 0.5

-40-

MB
[201ogS(f)]

Figure 2.
Total RMS-error of linear interpolation for the Nyquist-interval

[The vertical axis is given in dB:=201ogS(f)]

-20-

40 -

0.1 0.2 0.3 0.4 0.5

irv dB
[201ogS(f)l

LOCAL MAXIMA location: fi=(2k+l)/2(2N+l), k=l,...,N

| LOCAL MINIMA location: £=k/(2N+l), k=l,...,N
v amplitude: S(f)=0

. ^yT:?^rgtgs^c^«gssj^^gssssjSj^^^m^:^.."^g»:''".

Figure 3.
The amplitude modulation transfer function of moving averaging

for filter-size 3 and 9. Local extremes can be calculated with the given
formulae, based on S(f')/ where N denotes the length of the filter.

19

Some characteristics of S(f') for "everyday-size" moving average
filters are displayed on Figure 3. It should be noted again, that these filters,
generally applied heuristically, are close to our expectations at low
frequencies, but at higher ones they seem to misbehave.

Such methods of spectral analysis aim to construct our estimate of
the covariance matrix based on the strict stationarity assumption. A close
relative, called kriging, became popular and uses the assumption of
second order stationarity (Journel and Huijbregts 1978). The estimation
procedure, in this case, is even further reduced, since it aims at the most
commonly independent, parametric estimation of the substitute of the
covariance function, called a semi-variogram (McBratney and Webster
1986). We should point out that it is the equivalence of the squared
deviation from the mean and the normalized square difference between
all pairs, known since the early days of mechanics, that is behind this
methodology.

There are some further necessary remarks to be made about
kriging. The estimation procedure with the stationarity assumption
already eliminated a number of unknown parameters, and the covariance
became a function of distance. Thus the covariance matrix is only
dependent on the spatial arrangement of the sample that is, again,
computationally efficient. However, the estimation procedure becomes
highly dependent on the values of the semi-variogram at small distances,
i.e. the nugget value, (Ripley 1981), and becomes statistically unstable
when this value is not zero (Mardia, 1980, Philip and Watson, 1986). Still,
the popularity of kriging is due to its close links to spatial variation
(variability, heterogeneity, etc.) and the seemingly straightforward
manner in which it treats continuous functions characterizing such,
otherwise hardly mappable, phenomena.

The spread of these methods in GIS-applications can probably be
attributed to their ability to give direct estimates of deviation from an
expected value for points, as well as for areas (Journel, 1986). The spatial
mean derived this way for arbitrary spatial partitioning has been widely
applied in environmental sciences as well as in remote sensing (Burgess
and Webster, 1980, Woodcock and Strahler, 1984). This implies that our
software eventually can map not only a certain variable, but its reliability.

Cartography - scale, precision and detail

My impression is that cartographers do not like the term resolution
(Robinson et al., 1984, Campbell, 1991). Implicitly, however, a kind of a
rule of thumb is used according to Tobler (1988): Since the smallest
physical mark which the cartographer can make is about one half of a
millimeter in size, one can get a fairly good estimate of resolution in
meters by dividing the denominator of map scale by two thousand.

This rule is certainly far from being absolute. The real art in
cartography is to represent objects even if they are smaller than this
nominal resolution because of "relative importance". Discussions about
generalization, in fact, clearly reflect this paradox. For example:

20

"Cartographically speaking, it is essential to retain
both the details required for geographical accuracy and
required for recognizability within a digital data base.

To preserve accuracy and recognizability automatically
during map generalization, one must be able to describe
digitally the details that must be preserved." (Buttenfield,
1989)

Inevitably, cartographers, in the "traditional" sense (Vasiliev et al.,
1990), are concerned with visually conceivable objects, i.e. map elements
whose geometric and attribute characteristics are merged forming a
graphic attribute. Thus the distinct boundary between precision and
accuracy seems to be intentionally loosened.

In the previous section, for example, precision could have been
understood as the definite upper limit of accuracy in both mapping and
feature spaces, while here it is related only to location, and the content
has been switched to recognizability. Consequently, this approach forms a
counterpart of the one discussed above with extreme "geometrization" of
the resolution issue.

Data model(er)s and structures - raster vs. vector

In one of the most recent summaries on accuracy-related research
in GIS (Goodchild and Gopal, 1989), resolution had a roughly equal
number of references (18) in the index with filtering (9) and interpolation
(10), and generalization, on its own (17), was very close. This may mislead
us into thinking of a delicately balanced approach.

The conventional separation of spatial data into geometry and
attributes has not left this community yet. Such a separation is consistent
with an entity-relationship model of phenomena, with geometry
defining the objects, which then have attributes and relationships (Mark
and Csillag, 1989). And there seems to be a borderline: Those who go for
the priority of geometry (mapping space), having their roots in e.g.
cartography or surveying, take a model of space most commonly called
"vector", while those who emphasize the significance of classification,
most probably rooted in geosciences, would adopt a model usually called
"raster". Geometry and attributes, however, have in many cases intrinsic
links to each other, therefore any treatment of one in isolation from the
other will have a high risk of misrepresenting the phenomenon.

There is also a substantial difference between accuracy concepts in
the vector and raster models (Chrisman, 1989, Mark and Csillag, 1989).
The former, modeling space occupied by objects, attaches accuracy
measures to representation of geometry (mapping space), while the latter,
partitioning space into units which then will have attributes, prefers to
assign such measures to the classification of attributes (feature space).

Regarding previous comments on the philosophy of modeling,
once we have adopted a model, there are no mathematical-statistical tools
to exchange it for another model; one can either apply it successfully with

21

proper predictions, or can fail to get close to reality. In light of this, there is
no valid conclusion available to decide which model is "better".

As far as choice or design of data structures is concerned, lots of
efforts have been devoted to handling numerous kinds of objects (spatial
primitives) simultaneously, and to implement their manipulation as
transparently as possible (Goodchild, 1987). Thorough research has been
carried out on the design of the functionality of GIS software focusing
interest on user needs in terms of data volume and manipulation
requirements.

Once a system is implemented on this basis, efforts to achieve a
predefined classification accuracy may lead to either cumbersome
recursion, or overdesigning the capabilities of the system. It seems to be
more popular for "GISers" to provide performance tests only in terms of
"geometrical representation", however, the community still lacks those
tests on matching categorization requirements. Vector viewers specially
claim that the raster approach overemphasizes geometric properties,
while the vector model permits the attribute to be attached to the
appropriate spatial object. Indeed, that is why there is emphasis on the
links between geometry and attributes: the appropriate objects are not
known a priori. It seems to me that the methodology of cartographers has
been preferred to modeling uncertainty.

Unless data structures, efficiently handling a set of spatial
primitives, are not adjusted to the inherent data characteristics, including
accuracy, heterogeneity and the like, there will be no guarantee that a
given representation can fulfill the requirements of classification
accuracy. On the other hand, whenever the attribute domain was in focus,
a very limited set of spatial characteristics, like a single fractal dimension,
was taken into consideration (Goodchild and Dubuc, 1987). It would be
properly modest to say that we have understood, and more or less
successfully modelled, spatial data in the mapping space, while the
exploration of feature space is still ahead.

THE CARTOGRAPHIC UNCERTAINTY RELATIONSHIP

The solution of the problem of making reliable maps (i.e. where
both locational and classification accuracy is known and limited) has to be
accompanied by the recognition that "accurate" and "erroneous" are not
just two disjoint sets, but rather should be viewed as a continuum. When
map users consider accuracy issues, they certainly want "the best". In
simple words, if 10 m and 90% were printed on a tourist map as accuracy
limits, they would like to assume that any dark green patch represents a
forest with the same locational and thematic accuracy. And this is the
point where real data may cause so much trouble to professional
modelers. All of our tools dealing with spatial data, and de facto our
geographical information systems, are context-dependent.

It requires manageable definitions of "objects to be mapped". We
may want to ask, for instance in the previous example, whether our
definition of a forest is useful at all: Can one, two, three... trees be a forest?
Or, if one knows for sure that there is no forest covering more than 10,000
square miles in an area, is that a useful piece of information? Such

22

questions should not look absurd. When soil scientists are calculating the
risk of missing a(n infinitely narrow) boundary in the field, landscape
architects assign a value of ecological potential for a 5 km * 5 km area, or
economists rank countries based on per capita income, etc., they are
dealing with very similar problems: Complex human concepts (variables,
categories and relationships) are "projected" into Euclidean space in a
manner that their potential for further inference is maximized. In other
words, spatial homogeneity criteria are defined so that uncertainty is
tolerable.

There is a significant mathematical-statistical arsenal to study such
criteria. Beyond classical works in autocorrelation studies (e.g. Griffith
1988) more recently attribute classification with spatial constraints has
been introduced (Gordon, 1987) more or less independently from
mainstream GIS-related research (Chrisman, 1986).

Most importantly to our topic it has been shown for
environmental variables that homogeneity criteria based on a given
categorization reveal spatial variation (Csillag and Kertesz 1990).
Generally speaking, there is a contradiction between the requirements of
constant attribute accuracy and constant spatial resolution. The general
concept that fixed these parameters independently over an entire data set
cannot be held. If given that recognition probabilities for a class-set are
predefined, there is no guarantee that a certain spatial resolution will
match any homogeneity criterion. Conclusively, there may not be a
unique, generally best resolution for a data set; either accuracy or
resolution will exhibit variation.

ECOLOGICAL SITE CHARACTERIZATION - AN EXAMPLE

Let us illustrate the above outlined ideas with a practical
environmental mapping example. The task of information processing in
this case is to quantitatively describe ecological site characteristics of a salt-
affected low-grass prairie (Toth et al., 1990a).

This landscape covers more than 100 km2 in the Hortobagy-region
in E-Hungary, and it can be characterized by abrupt changes in soil
conditions, surface grass cover, microrelief with very sharp boundaries
(Rajkai et al., 1988). Additionally, the descriptive measures of the
apparent surface pattern are highly scale dependent, consequently there
have been numerous efforts to determine the spatial behavior of
underlying variables. The primary tool of these investigations was
geostatistics, but several botanical and cartographic considerations were
also taken into account.

The section below is focused on the following problem. Given a set
of interrelated variables their spatial characteristics are determined in
order to find the most suitable resolution to sample and map them. If
these characteristics turn out to be different, a pointwise classification
based on these variables will lead to heterogeneous patches. Having a
control categorical variable, the spatial variability of the individual
variables can be described by patches. How can those patches be found, for
which all spatial variances will be lower than an acceptable threshold?

23

This way one can identify class-membership for any given location with
predefined accuracy.

The variables included in this study cover a wide range related to
salinity status, soil chemistry, soil texture, etc., as well as microrelief and a
number of botanical variables. The typical alkali soils in the Hortobagy
National Park, mainly heavy-clay solonetz soils, can be characterized by
varying depth of A horizon (Rajkai et al., 1988), and that variation
corresponds to the dramatically different surface conditions. It is an
erosion process on an almost completely flat plain induced by local
disturbance (Toth et al., 1990a). Eroded surfaces occur as micro-valleys,
and there is a well-known toposequence from elevated spots through the
slopes down to the valleys. As the A horizon is washed away pH, salt-
content (S%), and exchangeable sodium percentage (ESP) increase, while
ecological diversity decreases. This spatial pattern which is seemingly
dominant in the meter range horizontally and in the centimeter range
vertically produces a highly complex terrain over the whole extended
area.

The mapping strategy must be based on understanding the
interrelationships between soils and vegetation forming a complex
ecological system. A 15 m by 15 m plot was selected as a test-site for
detailed analysis, a number of 60 - 500 m long transects were sampled,
while remotely sensed data were collected for regional extrapolation,
inventory and monitoring (Toth et al., 1990b). From an environmental
point of view the task is to assign description of spatial variation to
patches, in terms of variables and resolution, which otherwise would
appear as equally homogeneous in terms of salinity status.

Figure 4. summarizes some of the data collected for the test-site.
Systematic sampling was applied along the 1.5 m by 1.5 m grid, while
stratified random sampling was carried out for the distinct floors of the
toposequence, i.e. for hills, slopes and valleys. Soil samples were collected
for 100 cm3 samples, i.e. with approximately 5 cm2 ground resolution,
while botanical data for individual species and total coverage were
recorded corresponding to 50 cm by 50 cm quadrats.

The geostatistical evaluation of measurements revealed that there
are sharp differences between the spatial characteristics of individual
variables, even though they play more or less similar roles in describing
salinity status. For example, while pH clearly showed well-defined spatial
structure on the test-quadrangle with a characteristic range of about llm,
that of clay percentage came out to be about 14 m with very high nugget,
but salt-content had an unbounded semi-variogram. If one wanted to
characterize a given surface within the region, there were always
variables, which showed too high estimation variance, or others must
have been oversampled. Therefore, an optimum sampling scheme for
classification of salinity status based on these variables could not be
computed.

Stratified sampling was controlled by botanical data Elevated spots
are characterized by more complex associations and more surface cover,
while valleys are dominated by one species. This is due to the dramatic
difference between their salinity status: Where the A horizon is present,
pH and salt-content is lower, while on eroded spots severe salinization

24

Distribution of major associations

^H Artemis io-Fesrucerum p. [A]

p~] transition [A-C]

['Q;\>| transition [A-P]

Y//A Puccinellietum 1. [P]

Camphorosmetum a. [C]

Y(h)

Puccinellietum 1.

1.5 m 1.5 m

15m
0.01

Figure 4.
Environmental data for resolution study (Hortobagy National Park, E-Hungary) - systematic

and stratified random sampling
[Distribution and classification of major botanical associations on the test-site (sketch-map,

top); Descriptive data along cross transect for vegetation quadrats (top left graph) and for
related variables (low left graph); Semi-variograms of two soil properties with curves to

guide the eye (top right graph); Descriptive statistics (mean and standard deviation) for pH
and salt-content for two-classes of the toposequence (low right graph) - see text for details]

25

occurs. Although this relationship supported the initial classification,
descriptive statistics showed an interesting side-effect. On the hills pH and
root-dry weight had significantly higher variance than in the valleys, or
on the slopes, while this relationship was reversed in case of, for instance,
salt-content. This observation leads again to a conflict, if one wishes to
determine the necessary number and distribution of samples to classify a
given location.

As a summary of this example the hierarchical nature of the
possible solution should be pointed out. On a general soil map this area
would be shown as a "highly variable salt-affected" area. Neither does this
description contain explicit information about the amount or nature of
this variation, nor does it provide reasonable estimates of the key
variables by means of descriptive statistics. Having a detailed survey data
set, say in a GIS, overlaying pH on salt-content leads to different results
depending on which salinity class gets preference in determining
classification criteria. It is because the objects to be mapped, in this case
salinity classes, have class-dependent links between the mapping space
and the feature space. Therefore, for example, more saline surfaces can be
better identified with finer resolution, taking into account more non-
spatial variation in salt-content, than non-eroded surfaces, and so on.
Furthermore, this information can eventually be incorporated in the data
structure as well.

CONCLUDING REMARKS

The evolution of geographical information analysis has resulted in
conflicts with the common sense of "resolution". It has been shown that
there is inherent uncertainty involved in data models applied in
geographical information systems. Several approaches have been applied
to spatial data to deal with this uncertainty, but they handle the mapping
and feature space separately. In environmental mapping, when
resolution of spatial sampling is theoretically unrestricted and
classification does not define the spatial objects themselves, the problem
of determining an optimal resolution, which provides a given constant
attribute accuracy leads to a contradiction. A soil mapping example
outlines that the most promising path for further research is context-
dependent merging of criteria defined in mapping and feature space,
rather than separating them as independent properties of objects to be
mapped. The various statistical tools one can apply through data models
permit not only control of accuracy, but they can contribute to the
evolution of data structures, which incorporate this information. These
data structures should be object-oriented, since there are no objects unless
they can be recognized with certain probability, and can be located with
certain accuracy.

ACKNOWLEDGEMENT

The research reported here was carried out at the Research Institute
for Soil Science and Agricultural Chemistry (MTA TAKI), Hungarian
Academy of Sciences before the author joined Syracuse University. The
financial support of the National Science Research Foundation (OTKA,
Hungary) is gratefully acknowledged. I am indebted for the invaluable

26

discussions with Miklos Kertesz, Agnes Kummert, Laszlo Pasztor, Tibor
Toth. Thanks are also due to the two reviewers for comments on the
manuscript.

REFERENCES

Bendat, J.S. and A.G. Piersol (1986) Random Data: Analysis and
Measurement Procedures; John Wiley & Sons, New York.

Bracewell, R. (1965) The Fourier transform and its applications; McGraw
Hill, New York.

Burgess, T.M., Webster, R. (1980) Optimal interpolation and isarithmic
mapping of soil properties II. Block kriging; J.Soil Sci.31, 333-341.

Buttenfield, B. (1989) Scale-dependence and self-similarity in cartographic
lines; Cartographica, 26, 79-100.

Campbell, J. (1991) Map use and analysis; W.C.Brown Publishers,
Dubuque.

Chrisman, N.R. (1986) Obtaining information on quality of digital data;
in: Proc. AutoCarto London; Vol.1. 350-358.,

Chrisman, N.R. (1989) A taxonomy of error applied to categorical maps;
Int'l. Cartographic Assoc. World Congress, Budapest, (manuscript).

Chrisman,N.R. (1989) Modeling error in overlaid categorical maps; in:
Accuracy of spatial databases (ed. M.Goodchild and S.Gopal), pp. 21-
34.,Taylor & Francis, London.

Clearbout, J.F. (1976) Fundamentals of geophysical data processing;
McGraw Hill, New York.

Csillag, F. (1987) A cartographer's approach to quantitative mapping of
spatial variability; in: Proc. AutoCarto 8, pp.!55-164.,ASPRS-ACSM,
Falls Church.

Csillag, F. (1989) Maps and images preserving the spatial structure of
agroecological information; Proc. RSS Annual Conference (Bristol),
469-471.

Csillag, F., M.Kertesz (1990) Spatial variability: Error in natural resource
maps?; Agrokemia & Talajtan, 37, 715-726.

Dueker, K.J. (1979) Land resource information systems: spatial and
attribute resolution issues; Proc. AutoCarto IV, Vol.11, pp 328-337.,
ASP-ACSM, Falls Church.

Goodchild, M.F. (1987) Towards an enumeration and classification of GIS
functions; in: Proc. International GIS Symposium (Crystal City),
Vol.IL, pp.67-79.

Goodchild, M.F. and O.Dubuc (1987) A model of error for choropleth
maps, with applications to geographic information systems; in: Proc.
AutoCarto 8, pp.!65-174.,ASPRS-ACSM, Falls Church.

Goodchild, M.F. and S.Gopal eds. (1989) Accuracy of spatial databases,
Taylor & Francis, London.

Gordon, A.D. (1987) Classification and assignment in soil science; Soil Use
and Management, 3,3-18.

Griffith, D.A. (1988) Advanced Spatial Statistics, Kluwer Academic
Publishers, Dordrecht.

Journel, A.G. and Ch.J.Huijbregts (1978) Mining geostatistics; Academic
Press, London.

Journel, A.G. (1986) Geostatistics: Models and tools for Earth sciences;
Math. Geol 18, 119-139.

Mardia, K.V. (1980) Some statistical inference problems with kriging II.
Theory; in: Advances in Automatic Processing and Mathematical
Models in Geology; pp.113-131., SCIENCES DE LA TERRE, Paris.

27

McBratney, A.B. and R.Webster (1986) Choosing functions for semi-
variograms of soil properties and fitting them to sampling estimates;
J.Soil.Sd., 37, 617-639.

Mark,D.M., F.Csillag (1989) The nature of boundaries in 'area-class' maps;
Cartographica, 26, 65-79.

Philip, G.M., Watson, D.F. (1986) Geostatistics and spatial data analysis;
Math.GeoL, 18, 505-509.

Rajkai, K., E.Molnar and J.J.Oertli (1988) The variability of soil properties
of a cross-section and its coherence with plant pattern; in: Proc. XIII.
ISSS World Congress Papers (Hamburg), Vol.ffl. 1247-1258.

Ripley, B.D. (1981) Spatial statistics; JohnWiley & Sons, New York.
Robinson, A.H., Sale, R.D., Morrison, J.L., Muehrcke, P.C. (1984) Elements

of cartography 5th edition John Wiley & Sons, New York.
Sinton, D. (1978) The inherent structure of information as a constraint to

analysis: mapped thematic data as a case study; m:Harvard Papers on
Geographic Information Systems (ed. G.Dutton), Vol.7., Addison-
Wesley, Reading.

Tobler, W. (1969) Geographical filters and their inverses; Geographical
Analysis, 1, 234-253.

Tobler, W. (1988) Resolution, resampling, and all that; in: Building
databases for global science (ed. HMounsey and R.Tomlinson), pp.
129-137.,Taylor & Francis, London.

Tobler, W. (1989) Frame independent spatial analysis; in: Accuracy of
spatial databases (ed. M.Goodchild and S.Gopal), pp. 115-122.,Taylor
& Francis, London.

Toth, T., MKertesz, F.Csillag, and L.Pasztor (1990a) From pattern
elements toward vegetation processes of continental salt-affected
rangelands; Journal of Rangeland Management (forthcoming).

Toth, T., M.Kertesz, F.Csillag, and L.Pasztor (1990b) Characterization of
semi-vegetated salt-affected landscapes by means of field remote
sensing; Remote Sensing of Environment (forthcoming).

Vasiliev, I, Frendschuh, S., Mark, D.M., Theisen, G.D. and McAvoy, J.
(1990) What is a map?; Cartographic Journal (forthcoming)

Webster, R. (1977) Quantitative and numerical methods in soil
classification and survey; Oxford University Press, Oxford.

Woodcock, C.E., Strahler, A.H. (1984) Image variance and spatial structure
in remotely sensed scenes; in: Proc. 2nd NASA Conference on
Mathematical Pattern Recognition and Image Analysis, NASA
Johnson Space Center, Houston, pp. 427-465.

28

Generalization Operations and Supporting Structures

Kate Beard
Department of Surveying Engineering &

s National Center for Geographic Information and Analysis
University of Maine

Orono, ME 04469
BITNET: Beard@Mecanl

William Mackaness
National Center for Geographic Information and Analysis

Department of Geography
State University of New York - Buffalo

ABSTRACT

Current GIS do not support wide flexibility for the performance of map
generalization operations so users have limited opportunity for creating
views of data at different levels of resolution. This paper describes a
context for computer assisted generalization and reports on a set of
generalization operators. The generalization operators are embedded
within a larger scheme for a map design system which could be attached to
a GIS. The selection and sequencing of operations is not fully automated
but relies on user interaction. This approach is adopted to allow users
maximum flexibility in tailoring maps to their individual needs. The
system, however, is designed to provide substantial support for the user in
negotiating this process. The final section of the paper describes data
structures for supporting the operations within the context of this
interactive environment.

INTRODUCTION

In many studies or projects, we wish to see some piece of geography
represented or displayed in a simpler or more abstract form. We may also
at any time wish to change the level of detail or level of abstraction of a
representation. Although the ability to change the resolution of spatial or
non-spatial information in a representation is highly desirable, this
capability is not well supported by current GIS. Most commercial GIS
software packages support generalization as one or two algorithms for line
simplification (Joao 1990). These systems can be tricked into performing
other generalization functions (Daly 1990), but the capabilities are not
explicitly documented such that they are readily available to the casual
user. The need for flexible and efficient changes in resolution warrants an
expansion of generalization capabilities which are easy and intuitive for
users to employ. Mackaness and Beard (1990) describe a user interface
concept for a map design and generalization system. This paper expands
on this earlier concept but focuses more specifically on generalization
operations to be included in the system, the context in which they are
applied, and proposed structures needed to support them. The paper

29

begins with an overview of the system to provide a context for the
generalization operations.

CONTEXT FOR THE GENERALIZATION OPERATORS

McMaster and Shea (1988) and Shea and McMaster (1988) consider the
important questions of why, when, and how to generalize. Much of the
motivation and selection of type and degree of generalization is driven by
user needs and purpose. The remainder is dictated by graphic media and
format. This section develops a context for when and how to generalize
within the proposed system based on two controlling factors: the user and
graphic constraints.

The proposed map design system
The system as proposed by Mackaness and Beard (1990) assumes a vector
GIS database exists. Characteristics of this database are described in greater
detail in Section 4. It further assumes that users will .interact with the
database to select and extract information to compos! views of the data at
different levels of resolution or detail. Generalization operations in this
case do not create new databases at coarser resolutions, but create
materialized views of the original database. Views have been described in
the database literature as an interface between a user (or application) and
the database which provides the user with a specific way of looking at the
data in the database (Langerak 1990).

In this system, we embed generalization operations within the basic
functions of map composition and design. As itemized by Keates (1988)
these include

 selection of geographic area,
 selection of information content,
 specification of format,
 specification of scale and
 specification of symbols.

These functions are intricately linked, but not necessarily in sequential
order. Although at the outset one would most logically begin with
selection of a geographic area, specification of the remaining functions
could occur in any order including the ability to revise the size and
configuration of the geographic area.

Full automation or system specification of these variables is probably not
practical. Map design and generalization decisions depend largely on
knowledge of map purpose so user interaction is highly desirable if not
required. As Turk (1990) points out, improvements in human computer
interaction will require shared cognitive responsibility between operator
and computer. The proposed system therefore supports a high degree of
user interaction, but is designed to assist the user in navigating through
the process. The balance between user specification and system support is
based on a consideration of which functions are best handled by the

30

system, which by the user, and which in some supportive arrangement
between the two.
Figure 1 provides an overview of the system with an indication of which
steps are user controlled and which are shared or managed by the system.
Figures 2a-d illustrate user interface design for specification of the
functions shown in Figure 1.

* User

Select Scale *-> Set Display Device

* System/User * System/User

* System/User

Figure 1. Overview of the system showing relationships between map design functions.
Asterisks indicate functions which are controlled by the user and/or the system. There is an
implied order to the functions given by the tree structure but the arrows indicate an ability
to move freely between the various functions.

Select flrea

flsia
Europe
United States

Figure 2 a. Illustration of user interface for selecting geographic area.

31

[Selection
Theme

Hydrography^
Boundaries
Pipelines
Buildings
Railroads V
Roads V

(Cancel)

(OK)

-

1

o

Feature Class

Interstate *
State Highway
State Rid Highway
County

O;

Expression

(Cancel)

(OK)

^Change flrea) (Set Page/Scale) (Set Symbols)

Figure 2b. Illustration of the user interface for selecting information content for inclusion on
a map. Buttons on the bottom allow users to move to the other functions/menus.

Set Page/Scale

Pagesize
E3 Monitor
D fl D R4

D fl3
D R2
D R1
D RO

DB
DC
Do
DE

1:1
Messages

Maplimits H

Scale

Snap to scale

1:20m

(Change Selection)

C Change flrea)

(Cancel)
C OK)

Figure 2c. Illustration of the user interface for selecting scale and/or page format. Users can
move to the area selection menu or the information content selection menu from this screen.

32

Selected Set

Hydrography
Lakes
Ponds
Streams

Roads
Interstate
State Highway
State flid Highway
County
Buildings
Church
School

m
ED

k
i

Default Symbol Sets
USGS
NOS

<>

•A..
•<&

Symbol Palette
Point Forms Line Forms
• • *. «

Rddition — --_- —— .

BBHBS

Orientation
*4t +

C, icon*)
Sl" _. C Pattern)
•••••• , —————— .

, ——— .mmjuuuuuu. —— r] ————————— , C COlOr)

(Saue Symbol Set) (Cancel)

C Rdd Sumbols) C OK)

Figure 2d. Illustration of the user interface for specifying symbology. The selected
information content is displayed on the left, and a symbol palette for making symbol
choices appears on the left. The system indicates an appropriate range of dimensions for
symbols given a scale. Selection of a default symbols set is also possible.

Once the user has made preliminary selections, the system can build on
this information to provide clues and recommendations for subsequent
steps. For example, if a user selects a geographic area which is 4 by 5 miles
and selects, as a format, E size paper with a map area of 20 by 24 inches, the
system computes a scale. As illustrated in Figure 2c, a computed scale
would appear in the scale box and an appropriate scale range would be
indicated by the shaded area on the slider bar for selecting scale.
Alternatively, if the user specifies an area, information content, and scale,
the system can recommend a range of appropriate formats. User
specification and system feed back iterate toward an eventual result which
meets users requirements and assures a legible display.

Specification of a geographic area, information content, format, scale, and
symbology sets the scene for generalization. The combined specification of
these five items can generate spatial conflicts or graphic interference, and
to create useful and legible products these conflicts must be avoided or
resolved. Conflicts can be avoided by re-specifying any one or more of the
functions just described or resolved by generalization. In this paper we
focus on resolution of conflicts by generalization operations.

Context for identifying and resolving conflicts
The types of conflicts which occur in map design are related to minimum
requirements for maintaining graphic clarity and legibility. These

33

minimum requirements have been generally well documented in
cartographic texts and cartographic production specifications. They are
based on avoiding:

 areas which are too small
 line segments which are too short
 items which are too narrow
 items which are too close.

Items being too close results in congestion, coalescence, or conflict. The
result of items being too small is imperceptibility and the same applies to
segments which are too short and items which are too narrow.
Congestion, coalescence, conflict, and imperceptibility are conditions
described by Shea and McMaster (1989) that require some type of
generalization for resolution.

These minima can be fixed as thresholds in any appropriate display units
(eg. inches as shown in Table 1). Given a specified scale, format, and
symbology, items selected from the database for display are screened
against these thresholds to identify and locate conflicts. These conflicts
are the minimum set of items or features which must be generalized. If
any of the specifications are revised, the set of features which must be
generalized will change

Conflict

Too small

Too short

Too narrow

Too close

Threshold

.01 sq. in.

.08 in.

.15 in.

.20 in.

Table 1. Illustrates fixed thresholds for legibility. In map construction these are
transformed according to the selected scale and compared against dimensions of objects in
the database.

Assume now the system has identified a list of all features and locations
which are: too small, too short, too narrow, and/or too close (includes
areas of overlap and coincidence). The specific function of the
generalization operators is to resolve these identified problem areas. A set
of rules could be formulated to direct the selection and application of
generalization operators, but as generalization is intricately tied to map
purpose, appropriate operations are difficult to anticipate for all cases. A
simple rule would be to omit all areas which are too small. The user,
however, may not wish to omit all small features, but exaggerate some or
merge them with other nearby objects.

34

If the desired result is to be achieved from the users perspective, the user
must have some involvement in orchestrating the operations. This
prompts another balancing of tasks between operator and computer. In
this case users are allowed to freely apply operators as they chose, but the
system directs them to areas requiring generalization. An important
function of the system is to clearly display all conflicts to the user and
indicate when they have been resolved. This is handled by two methods.
One is by listing objects which are in conflict with themselves or one or
more other objects. The other is through graphic display of the conflicts.
In the graphic display, all items in conflict (those falling below the
thresholds) are displayed in red. All features which can be legibly displayed
appear black. The items in red are the conflicts which must be resolved.
As conflicts are resolved by generalization operations they are re-displayed
in black and their resolution is also indicated on the corresponding tabular
listing. Figure 3 provides an example of the interface for displaying
conflicts to the user.

File Edit Operators Laqout Font Style Symbols

CD

Conflicts
Hudroaraohu
Ponds
Streams
Roads
Interstate
State Highway
State Rid Highway
County

Buildings
Church
School

Majn Map

Figure 3. Example of the interface for displaying conflicts to the users. Conflicts are
graphically (spatially) identified in red (dashed here) on the map as well as in the listing
on the left.

GENERALIZATION OPERATORS

The function of the generalization operators in this context is to adjust a
selected set of objects such that they can be legibily displayed at a specified
scale, format and symbology. This section identifies a set of proposed
generalization operators. Several cartographers have generated
comprehensive lists of generalization processes (Steward 1974, Brassel
1985, McMaster and Monmonier 1989, McMaster 1990). Using these
inventories, we can apply a structure to assist in identifying an appropriate
set of operators. This structure distinguishes between operations on

35

graphic symbols and operations needed to simplify digital representations.
These are referred to as structural operators: those that simplify or abstract
the level of detail, and display operators: those that adjust the graphic
display to ensure legibility. Structural operators can be seen to perform
three basic operations: reduction in the number of objects, simplification
of spatial detail, and simplification of attribute detail, with combinations
of the three possible (Beard 1990). Display operators include operations
such as displacement, masking, and symbol changes needed to resolve
symbol collisions when a representation is displayed. This structure can
be applied to McMaster's (1990) list of operations, for example, to assemble
a toolbox of operators. For this system, operations from each category are
selected to provide users a range of options and tailored for the purpose of
resolving the conflicts identified above.

Proposed generalization operators
In this system we include the following operators:

Operations which reduce the number of objects
 select
 omit

Spatial operators
 coarsen
 collapse
 combine

Attribute operators
 classify

Display operators
 exaggerate
 displace

The names of many of these operators have appeared in the literature
previously (Shea and McMaster 1989, Nickerson and Freeman 1986,
Brassel 1985, Lichtner 1979), but their functions may differ here to
specifically respond to conflict resolution. The functions of these operators
as used in this system are described below.

SELECT: This is a special operator which must precede all others. It is
required to initialize the composition of a graphic view of the database
which can then be displayed on a monitor or as hardcopy output. The user
is informed of information stored in the database and from this they may
select items by theme, feature type, or instance (see Figure 2b). This
operation allows the user to explicitly choose only desired items. For
example, the user may select the theme roads, in which case all roads in
the selected geographic area will be extracted for display. The user may
also be more specific and select only Interstate Highways or to be most
specific, select only Interstate 95 for example.

OMIT: Once items have been selected for display, the omit operator allows
removal of objects. These objects are only removed from the display list
and not from the database. As with the SELECT operator, individual
objects may be removed or objects may be removed by theme, feature type,

36

or conflict type. For example the OMIT operator could be used to remove
all objects which were too small.

COARSEN: This operator removes fine spatial detail (crenellations from a
line). This operator could be applied to objects stored in the database with a
high level of spatial detail, and which the user wishes to display in less
detail. This operator works primarily on metric detail, but may change the
topology of objects. Figure 4 illustrates an example of application of this
operator to a lake with an island. In the resulting figure, the metric detail
has been modified and the island has been removed, changing the
topology.

4 a 4b
Figure 4a. shows a lake with an island at the level of detail it is stored in the database.
Figure 4b show the same lake after application of COARSEN. The areas in conflict are
show by dotted line (in color, these would be shown in red). In the resulting figure the
conflicts have been resolved.

The user need not specify parameters for this operator. They only need
select the object or objects to be coarsened and apply the operator. The
operator uses the minimum thresholds which have been computed for
the selected scale or format. The resulting representation is therefore
appropriate to the selected scale. As shown in Figure 4, the small bays and
island which fall below the threshold for areas too small, items too close,
or items too narrow are removed by the coarsen operator. This operator
can be applied to individual objects, themes or feature types.

COLLAPSE: The collapse operator substitutes a ID or OD representation for
a 2D representation. This operator could be applied to objects stored in the
database as areas, but which a user wishes to display as points or lines.
Figure 5a and 5b show examples of COLLAPSE as applied to an estuary and
a city. This operator must be preceded or succeeded by a symbol change.
COLLAPSE resolves the legibility problem of items being too close, or
COLLAPSE followed by a change in symbol width could resolve the
problem of items being too small or too narrow.

} / s^ L^Cf^
/ ^~

Figure 5a. COLLAPSE applied to an estuary
city.

Figure 5b. COLLAPSE applied to a

37

COMBINE: The combine operator simplifies a spatial representation by
merging objects which are nearby in space into a single new object. For
example a cluster of small islands may be combined to form a larger
island. The operator applies only to two or more selected objects and the
result is always one new object. Thus COMBINE is strictly a localized
operator. This operation must be preceded or succeeded by the CLASSIFY
operator so that the resulting object is properly identified. Figure 6a and 6b
illustrate an example of COMBINE. COMBINE resolves items being too
small or too close.

Figure 6a. COMBINE applied to islands. Figure 6b. COMBINE applied to fields.

AGGREGATE: This operator is similar to COMBINE but merges objects
which are adjacent rather than those with intervening spaces. CLASSIFY
must precede this operator as well. The aggregate operator can be applied
globally by theme or by feature class.

CLASSIFY: This operator allows individual objects, feature types or
themes to be assigned to a new class. The classification may be based on
shared attribute characteristics of objects. The user or systems selects a set
of objects and assigns a new class label (eg. For all objects with attribute D,
Class = M). A symbol change must follow this operation, and when the
new symbol is assigned, all objects assigned to the new class inherit the
symbol. This operator does not directly resolve conflicts but is required as
a supporting operation for operators which change the nature of an object
(i.e. COMBINE and AGGREGATE).

EXAGGERATE: The exaggerate operator expands the size or width of
objects. It can be applied by theme, feature type, instance or conflict type.
The operator expands the object to meet the minimum threshold for
legibility and therefore requires no parameter specification by the user.
For a line or point representation, the width or radius is expanded. This
can be accomplished by redimensioning a symbol. For an area, the
operation performs a localized scale increase.

Figure 7a. EXAGGERATE applied to an inlet
roads

Figure 7b. EXAGGERATE applied to

38

DISPLACE: This operator is applied locally to two or more objects which
are too close or overlapping.

Conflicts can be resolved by several different generalization operators with
choice dependent on the desired outcome. Objects which are too small can
be resolved by omitting them, exaggerating them, or combining them with
other nearby objects. Objects which are too close can be resolved by
omission, collapse, simplification, combination, or displacement. The
selection and application of the operators is left to the user to allow them
the most freedom in constructing a map to fit their needs. Some order is
imposed in that some operators will not be accessible depending on the
state. For example, SELECT is the only operator which can be accessed
initially, and AGGREGATION may not be applied without first applying
CLASSIFICATION.

Another key aspect in the design of operators is that they obey one overall
rule. That is they are to resolve one or more conflicts when invoked and
create no new conflicts. This rule is used to avoid convoluted iterations of
operations in the resolution of conflicts. In particular this implies that all
symbol specification occurs prior to generalization. For clearly, if symbol
re-dimensioning occurs subsequent to generalization operations, new
conflicts will arise and the generalization must be renegotiated.

SUPPORITNG STRUCTURES FOR GENERALIZATION OPERATIONS

For effective interactive use of the system, two tasks in particular must be
performed efficiently. Conflict areas need to be identified rapidly so users
can be quickly informed of the number and location of conflicts. Secondly
the operators themselves must perform efficiently. In this section we
consider supporting structures for facilitating each of these tasks.

Conflict Identification
Section 2 identified four types of conflicts. The first was areas too small to
be legible. Identification of these conflicts is relatively straightforward. We
first assume that areas are computed and stored as attributes of closed
polygonal objects. Then, once a scale has been specified or computed, the
minimum area threshold is derived, and conflicts are returned from the
boolean function:

AREATOOSMALL = OBJECTAREA < THRESHOLD

If AREATOOSMALL then DISPLAY (OBJECT, RED)

The number of comparisons required is of order N, the number of
polygon objects selected for display.

Identification of the remaining conflicts depends on finding the euclidean
distances within and between objects that are smaller than the minimum
threshold computed from scale and symbol dimensions. This three
additional boolean functions:

39

SEGTOO SHORT = SEGLENGTH < SEGTHRESHOLD

WIDTHTOONARROW = OBJECTWIDTH <, WIDTH THRESHOLD

TOOCLOSE = POINTTOPOINT < CLOSETHRESHOLD

To support these functions, we could conceivably pre-compute and store
all distances between objects (objects in this case being points) as an
ordered list. Discovery and retrieval of all violating objects could then
follow by a search using distance as the key through the set of records
ordered by distance between and within objects. This approach is
sufficient to identify conflicts and provide the information to display
conflict areas. The cost of computing and storing distances, however, is
too high to justify simply the identification of conflicts. On the other hand
if the cost can be spread over several other operations it becomes more
justifiable. Our second criteria was to support efficient performance of
generalization operations. In the next section we examine how pre-
computed and stored distances figure into the resolution of conflicts and
performance of the generalization operators.

Data Structures and Operator Performance
The number of operations dependent on knowledge of distance between
objects implies the need for a database organized by spatial proximity. Such
databases have been previously researched (Matsuyama 1984, Samet 1984)
and arguments made for their use in the context of map design and
generalization (Mackaness and Fisher 1987). Matsuyama's method,
however, does not explicitly represent distance relationships among
objects. Vornoi diagrams and the dual Delauney triangulation have also
been proposed for representing spatial proximity relationships (Green and
Sibson 1977, Brassel 1978, Gold 1987,1989), but these also do not implicitly
or explicitly store a full complement of distance relations. In Figure 8,
form triangle edges we could derive distances from P6 to P4-P9 but not
directly to PI or Pll.

Pi

P10
Figure 8. Distance relationships in Delauney Traingles.

In most cases, queries to these structures can return a spatial neighborhood
or the set of objects within a neighborhood. Distances can then be

40

computed for these smaller sets. In this system, access to distance
relationships is required frequently and uniformly over a geographic area.
Given the level of interaction, the system also requires fast performance.
The COARSEN, DISPLACE and EXAGGERATE operators in particular can
benefit from immediate access to stored distance relationships. The next
section describes a structure for storing and retrieving distance
relationships. It assumes distances between points have been pre-
computed.

A data structure for storing and retrieving distances.
Recall that the function of the generalization operators is to resolve
identified conflicts and create no new conflicts. To assure that conflicts are
resolved and no new ones created requires knowledge of distances
between and within objects. Operators therefore need information beyond
an ordered list of distances sufficient for identifying conflicts. In this case
we need to know not just that a distance is sub-threshold but the locations
where sub-threshold distances occur. The search condition thus involves
the combination of three keys (Distance, X and Y), creating a
multidimensional or range query problem. Assuming a threshold
distance T, what we are after is a piece of the XY plane that yield dusters of
points less that T distance apart.

The structure required is an indexed sequential data structure. Such a data
structure accommodates both random and sequential access to records. In
this case we adapt a method described by Orenstein and Merrett (1984).
This involves interleaving bits of the tuple (DIST, X, Y) and storing the
'shuffled' tuples in the database. Interleaving the bits of a tuple maps a k-d
space (3 in this case) to a 1-d space, creating a Z-ordering. The Z-ordering
assures that points which are close in k-d space will be close in 1-d space.
A similar ordering was first used by Morton (1966) for CGIS and has been
replicated and expanded since by several others (Bentley 1975, Burkhardt
1983, Orenstein 1983, Ouksel and Scheuermann 1983, Tropf and Herzog
1981).

As Orenstein and Merrett (1984) note, the domains of the attributes in the
tuple need not be the same size. An array [attr] can be used to indicate the
attribute from which each bit was taken, yielding the shuffle function h(t)
= [attr]{i} = i mod k where t is any tuple and k is the number of attributes
per tuple.

Each bit in the 'shuffled' tuple corresponds to a split of a region of the
three D space into two subregions of equal size. The bit equals 0 for one
subregion and 1 for the other. Each additional bit splits the previous two
subregions into two sub-sub-regions and so on. The direction of the split
is given by the attribute [attr] from which the bit originated.

Sub-regions can be described by prefixes of the shuffled value. The
addition of bits to the prefix refines subregions as described above.
Smaller prefixes in other words correspond to larger pieces of the XY plane
and larger distances.

41

Information retrieved from this structure can support identification of
conflicts and provide direct input for the COARSEN, DISPLACE and
EXAGGERATE operators. We discuss retrieval next in the context of the
COARSEN operator.

Information is retrieved from the structure by a 3d search region SR.
Initially SR is the entire space. A query region QR is posed given by the
minimum bounding rectangle (MBR) of an object selected for
COARSENing and by the threshold TOOCLOSE. If SR is outside QR, then
SR contains no tuples satisfying the query and no action is required. If SR
is inside QR, all points in SR satisfy the query and are unshuffled and
returned. If SR overlaps QR but is not within it, SR is split into two new
SRs. This step is applied recursively until SR is within QR. Several SRs
may be required to cover a given QR, a weakness of this scheme which
Orenstein and Merrett note. Once the final set of SRs is determined,
tuples are actually retrieved by both random and sequential access. To use
Orenstein and Merrett's notation SRi0 : SRhi denotes a range of shuffled
values corresponding to a prefix. Retrieval of all points from an SR
requires retrieving the tuples (t) such that SRi0 ^ shuffle(t) < Srhi. The data
structure can be randomly accessed using SRi0 as the search argument.
Then sequential accesses retrieve tuples until the shuffle value of a tuple
exceeds SRhi-

The set of tuples (DIST, X, Y) returned by this search procedure provide
direct input for COARSEN. COARSEN performs a cluster analysis on the
returned points and distances. The outcome of the cluster analysis is a
reduction in the number of points such that no two are closer than
threshold T. Simplified objects are then recomposed from the remaining
points (see Figure 4).

A similar retrieval of records supports DISPLACE. DISPLACE is a
localized operator applying to a small area. The area in which
displacement will occur can be selected by clicking and dragging to define a
rectangle. This rectangle and threshold TOOCLOSE define the query region
QR. The search procedure returns the set of points within the rectangle
and the distances between them.

SUMMARY

This paper discusses the context for a flexible and interactive approach to
generalization. The design of the system seeks a balance between user
responsibility and discretion and system intelligence to assist the user.
The user makes initial selections for geographic area and information
content. They may also specify scale, format and symbology or allow the
system to compute or set defaults. Four types of graphic conflicts are
identified as arising from these specifications. The selected objects can be
too small, too short, too narrow or too close for the given scale and
symbols dimensions. The purpose of generalization operators is to resolve
such conflicts and assure a legible display. Identification and location of
conflicts requires knowledge of distances between and within objects.

42

Distance computations are costly no matter how they are approached, but
they are critical to operation of the system. The high degree of interaction
demands high performance from the system. To support efficient
interaction, we investigated methods for pre-computing and storing
distances. An indexed sequential data structure is proposed to support
efficient retrieval of information, but this must be subjected to testing to
assure adequate performance.

ACKNOWLEDGEMENTS

This work has been supported in part by National Science Foundation
grant SES-88-10917 and represents a contribution to Research Initiative 3,
"Multiple Representations" of the National Center for Geographic
Information and Analysis. The NSF support is gratefully acknowledged.

REFERENCES

Beard, M.K. 1990. 'Constraint Based Transformation for Map
Generalization1 NCGIA Symposium, "Towards a rule based symposium
for map generalisation" Syracuse, NY, To appear in Map Generalisation:
Making Decisions for Knowledge Representation London: Longmans
(forthcoming).

Beard, M. K. 1988. Multiple representations from a detailed database: a
scheme for automated generalization PhD thesis, University of
Wisconsin, Madison.

Beard, M.K. 1987. How to Survive on a Single Detailed Database.
Proceedings Auto Carto 8. pp. 211-220.

Bentley, J.L. 1975. 'Multidimensional binary search trees used for
associative searching' Communications of ACM 18:9 pp. 9-517.

Brassel, K. and Weibel, R. 1988. 'A Review and Conceptual Framework of
Automated Map Generalization,' International Journal of Geographical
Information Systems. 2: pp. 229-244.

Brassel, K.E. 1985. 'Strategies and Data Models for Computer-Aided
Generalization'. International Yearbook of Cartography. 25: pp. 11-30.

Brassel, K. 1978. 'A topological data structure for multi-element map
processing', In Proceedings of the First International Advanced
Symposium on Topological Data Structures for Geographic Information
Systems (G. Dutton, Ed) VOL. 4. Addison-Wesley, Reading, MA.

Burkhardt, W.A. 1983. Interpolation Based Index Maintenance.' BIT 23:3
pp. 274-294.

Daly, R. 1990. 'Map Generalization using ARC/INFO' Research Report No.
10. Northwest Regional Research Laboratory, Lancaster University.

43

Gold. C. M. and Cormack, S. 1987. Spatially ordered Networks and
Topographic reconstruction. International Journal of Geographic
Information Systems. 1: pp. 137-148.

Gold, C.M. 1989. 'Spatial Adjacency: a General Approach. Auto Carto 9.
pp. 298-312.

Green, P. J. and Sibson, R. 1977. 'Computing Dirichlet Tessellations in the
Plane', Computer Tournal. 21:2 pp. 168-173.

Joao, E. M. 1990. 'What experts systems don't know: the role of the user in
GIS generalization'. Proceeding NATO ASI, on Cognitive and Linguistic
Aspects of Geographic Space. Las Navas del Marques, Spain.

Keates, J. S. 1989. Cartographic Design and Production, New York, NY.
Longman Scientific and Technical.

Keates, J. S. 1982. Understanding Maps London: Longman.

Mackaness, W. and Beard, K. 1990. Development of an Interface for user
interaction in rule Base Map Generalization. Technical Papers GIS/LIS '90.
Anaheim, CA. 1: pp. 107-116.

Mackaness, W. A. 1990. 'Application and evaluation of generalization
techniques' NCGIA Symposium, "Towards a rule based symposium for
map generalisation" Syracuse, NY, To appear in Map Generalisation:
Making Decisions for Knowledge Representation London: Longmans
(forthcoming).

Mackaness, W. A. 1988. Knowledge based resolution of spatial conflicts in
digital map design Unpublished PhD Thesis, Kingston Polytechnic, UK.
May 1988.

Mackaness, W. A. and Fisher, P. F. 1987 'Automatic recognition and
resolution of spatial conflicts in cartographic symbolisation' Auto Carto 8
Baltimore, Maryland, pp. 709-718.

Matsuyama T, Hao, L.V. and Nagao, M., 1984. 'A file organisation for
geographic information systems based on spatial proximity', Computer
Vision, Graphic and Image Processing. 26:3. pp. 303-318.

McMaster, R. 1989. 'Introduction to Numerical Generalization in
Cartography', In Numerical Generalization in Cartography. Monograph
40. Cartographica. 26:1. pp. 1-6.

McMaster R. B. and Shea, K.S. 1988. 'Cartographic Generalization in a
Digital Environment.: a Framework for Implementation in a Geographic
Information System'. Proceedings GIS/LIS '88. San Antonio. 1: pp. 240-
249.

44

Morton, G.M. 1966. 'A computer oriented geodetic database and a new
technique in file sequencing.' Unpublished manuscript, IBM, Ltd. Ottawa
Canada.

Muller J C 1989. 'Theoretical considerations for automated map
generalisation1, ITC Journal 3:4. pp. 200-204.

Nickerson, B. G. and Freeman, H. 1986. 'Development of a Rule-Based
System for Automated Map Generalization,' Proceedings, 2nd
International Symposium on Spatial Data Handling, pp. 537-556.

Orenstein, J.A. 1983. 'A Dynamic Hash File for Random and Sequential
Accessing'. In Proceedings of the 6th International Conference on Very
Large Databases. Florence, Italy. IEEE, New York, pp. 132-141.

Orenstein, J. A. and Merrett, T.H. 1984. 'A class of data structures for
associative searching'. In Proceedings of the 3rd ACM SIGACT- SIGMOD
Symposium on Principles of Database Systems. Waterloo, Ontario. ACM,
New York, pp. 181-190.

Ouksel, M. and Scheuermann, P. 1983. 'Storage mappings for
multidimensional linear hashing' In Proceedings of the 2nd ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems. Atlanta,
GA. ACM, New York, pp. 90-105.

Peckham, J. and Maryanski, F. 1988. 'Semantic Data Models,' ACM
Computing Surveys. 20:3. pp. 153-189

Robinson, A. H., Sale, R, Morrison, J. L. and Muercke, P. 1984. Elements of
Cartography 5th Edition New York, NY. John Wiley and Sons.

Shea, K. S. and McMaster, R. 1989. 'Cartographic Generalization in a
Digital Environment: When and How to Generalize1, Auto Carto 9. pp.
56-65.

Steward H J 1974 'Cartographic generalisation: some concepts and
explanations' Cartographic Monograph No 10 Toronto: University of
Toronto Press.

Topfer , P. and W. Pillewizer . 1966, 'The Principles of Selection', The
Cartographic Journal, 3:1. pp. 10-16.

Tropf, H. and Herzog, H. 1981. 'Multidimensional range search in
dynamically balanced trees1 . Angew Info. 2: pp. 71-77.

Turk, A. 1990. Towards an understanding of human computer interaction
aspects of geographic information systems' Cartography (in press).

45

USING SPLINE FUNCTIONS TO
REPRESENT DISTRIBUTED

ATTRIBUTES

John R. Herring
Intergraph Corporation

Huntsville, Alabama 35894-0001 USA
e-mail: ingr!bl7a!mobius!jrh@uunet.uu.net

ABSTRACT

All current G1S systems assign discrete, static attribute values to geometric
objects (vector, pixel, or voxel). This is not how the world usually works. Physical
objects of geographic importance are heterogeneous things. The width, depth,
and flow-rate of a river, the porosity, density, and permeability of a rock body, the
pressure, temperature, and velocity of the air or water, all of these things vary in
complicated, sometimes chaotic, and convoluted ways; ways that affect our experi
ence and ways that would effect our computer models, if we took them into
account, and knew how to deal with them. Given this fact-of-life, the next genera
tion of G1S systems must have a mechanism to model truly continuously variable
attribute values. Spline functions gives us one such a way.

Spline functions have long been used in CAD/CAM to represent geometric
forms, curves and surfaces, a use that they are well qualified to perform in GIS
applications (see for example Auerbach (1990)). But splines are a much more
general concept than a convenient way to store geometry; they are a way to effi
ciently approximate, to any degree of accuracy, any function. By shifting our para
digm, we can make the dimensions of the splines simultaneously represent both
geometry and attribute distributions.

INTRODUCTION AND BACKGROUND

Any information system must be able to model the reality of its application (Casti
(1989)). A database designer begins with a methodology (for example, entity,
attribute, relation modeling), that at an abstract level, uses a model of reality onto
which he will impose his data concepts by a series of data transformations, eventu
ally mapping the highest level abstractions by stages to a concrete storage mecha
nism (Date (1983), LJllman (1988) and (1989), Codd (1990)). This resultant
storage mechanism unfortunately puts restrictions back upon the scope of the orig
inal abstract model, often restricting the attributes of a data item to the
fundamental data types of integer, floating point, character string and variants
thereof. In addition, the data types are usually considered independent of the
methods needed to manipulate them, leaving the application the requirements to
supply not only ingenious storage work arounds, but also the edit, analysis, query

46

and mechanisms needed. This compounds the fundamental database manage
ment system problems of data integrity and semantic data control (see Ozsu
(1991)). With the advent of abstract data types (ADT), this is no longer the case
(Gorlen (1990)). Using ADT's, the database designer can encapsulate a complex
data storage format with the methods for its creation, manipulation, analysis,
query, and display. This process is beginning to make its way into commercially
available relational data bases (RDB) such as Empress, Oracle, Informix, and
Ingres, and is the foundation of the new object oriented technology, such as
Versant (VERSANT Object Technology), and Ontos (Ontologic) (see Khoshafian
(1990)). This paper investigates the use of spline functions as an ADT for the
storage of both space varying and time varying attributes.

Spline functions (see Farin (1990), Bartels (1987), Faux (1979)), often used in
computer aided design and manufacture (CAD/CAM), are actually part of a very
old branch of mathematics, approximation theory. Basically, splines allow us to
approximate any function by the specification of a set of control points in the
range of the function (called "poles", not necessarily function values) which
control a varying weighted average based upon a set of functions (called "weight
functions"). In CAD/CAM applications, the poles are 3-D points, and the weight
functions map a compact subset of a Euclidean space (of dimension 1, 2, or 3) to
the unit interval [0,1] = {xGR|0<x<l}. The resulting range of the spline is
a geometric object (contained in the convex hull of the poles). This object is
either a curve, surface, or solid depending upon the dimension of the domain
space; 1, 2 or 3 respectively.

More simply put, this paper proposes that we take the CAD/CAM inter
pretation of a spline, and extend the dimensions of the both the domain (source)
and range (target) space; so that a CAD/CAM 3D point (x, y, z) becomes a GIS N-
D point (x, y, z, time, density, porosity, permeability, ...). This approach basically
generalizes the use of geometry to represent geography into the use of geometry
to represent any measurable quantity; an old, well known and understood concept
that most people encounter in a first algebra course.

The remainder of this paper develops the theory of splines to support this
concept and gives examples of the type applications most likely to useful in GIS
applications. Anyone wishing to learn about splines for their own sake is directed to
the references, especially Farin (1990) which presents a more geometric develop
ment than most, and Auerbach (1990) which is a good example of the use of
splines in geographic visualization. The development presented in this paper will
emphasize some particular aspects of splines in ways peculiar to their use in
supporting the spatial and temporal distribution of attributes.

FUNCTIONAL REPRESENTATIONS

A functional geometric description used in CAD/CAM is a generalization of the
algorithmic construction objects used in vector data sets (line, polyline, polygon,
circles, ellipse, general conies, etc.). Each functional geometric object consists of a
domain (source or parameter space) and a function mapping the domain into the

47

range coordinates system, usually E\ 3-dimensional Euclidean space. Domains
are usually some subset of a Euclidean space, the most common of which are I
(the closed interval from 0 to 1, [0,1]) or some unit cube I" (the cartesian product
of I with itself, n times).

Spline functions are defined as a variable weighted average, using weight func
tions, over the domain of some specified set of points in the target coordinate
space (poles) (see Farin (1990), Rogers (1990), Bartels (1987) or Faux (1979)).
Formally, for a three-dimensional data set, we have a (interval) spline as a func
tion:

f:In -» E3

where t is a vector in I", P(are points in E3 and w^) are functions from I" into I 1
such that:

0 < w((t) < 1 for every t = (t t , ...,tn) G I"
Y" w(t) =1Zji=i i v '

The affect of any one of the poles P is felt only where the associated weight func
tion \v is non-zero (called the support of w().

Geometrically speaking, the weight functions are usually bell-shaped curves
with a single maximum point (the parameter value of which is usually a "knot" asso
ciated to the pole), tapering off to 0 in all directions away from this central peak.
Because of this, the poles of a spline are often near critical points of the spline,
often the value of the spline as evaluated at the knot. A spline passes through a
particular pole, in general, only if the associated weight function is 1 at its knot
value (which implies that all other weights are zero).

On I n, the most common splines are based upon the n'th tensor product of
weight functions for I. Given collections of weights, w and W we can define a
collection of w<8>W by (w<S>W) (u,v) = w.(u) W (v). This set of functions can be
used as weights since I is closed under multiplication and

Ju (w<g)W) |j (u,v) = £ ^ w,(u) W(v) = £w(u) £\V(v) = 1X1 = 1

Splines built using such tensor product weight functions are tensor splines. Most
commercially available packages use exclusively tensor splines for higher dimen
sional functions due to their ease of computation, see Faux (1979).

Generalizations of these standard cubes can involve the choice of a different
interval to support either computational convenience or added geometric inter
pretations of the parameter; for example it is often computational advantageous
to use time or arc length for curves (discussed below), see Farin (1990). Unless
otherwise stated, we will assume that the parameter cubes I, I2, ... , I" can be based
upon any intervals in Euclidean space, as needed to support interpretations.

Some earlier nontensor higher dimensional spline work used triangles in place
of cubes producing what is called a simplical spline (see Farin (1990)). This type

48

of splines has generated some interest in the GIS applications, specifically in
contour preserving surface visualization using a simplical decomposition or triangu
lated irregular network (TIN) based upon a constrained Delaunay triangulation,
in Auerbach (1990).

A special case of the spline function is the B-spline. B-splines use piecewise poly
nomial or rational functions for weight functions. Each weight function's support
spans an interval defined by a set of knots (the number of which is the order of the
spline). This gives the spline designer a "local control" that allows him to adjust
pole values while only affecting the spline is a very restricted neighborhood of the
pole's knot. Further, given a set of sample points (t, v) t e I, v e En, 1 < i < m,
there are closed form solutions to finding m poles for which the associated spline
exactly fit the samples, or for finding least-square "best fit" splines with a fewer
number of poles (see Bartels (1987)). All of this discussion can be generalize to
TIN's and to general simplical complexes (see Farin 1990).

Derivatives

It should be noted here that, while not always precisely spline functions them
selves, the various derivative of a spline have easily calculable forms. Given a differ-

 >
ential form D (i. e. something like , 1 < k < n), the value of the form applied to a

spline can be expressed as (a result of simple calculus):

In all cases, this is not a spline function as it is written (the sum of the derivative
weights would necessarily be a constant 0, since 2 D w = D (2 w) = D (1) = 0),
but calculations of the various D f() is not significantly harder than the calculation
of the spline values themselves. Further, for particular classes of splines, such as
Bezier splines, there is collection of poles that will represent D f() as a spline func
tion of a different degree (see Faux (1979)).

Curves

Curves can be represented as one-dimensional splines:

The continuity and differentiability of the curve are determined by the smooth
ness of the weight functions. The various derivatives of the curve as a function
have exactly what you might expect. c'(t) is a tangent vector to the curve, with
magnitude equal to the velocity of "t" with respect to arc length (thinking of t as a
time component). c"(t) is acceleration, with a component parallel to the curve
(parallel to c'(t)) giving the acceleration of t with respect to arc length, and the
remaining component vector normal to the curve pointing directly away from the
center of curvature. The component of c"'(t) perpendicular to the c'(t), c"(t) plane is
a binomial indicating the direction of the torsion (twisting) of the curve (tendency of
the curve to leave a planar surface) (see Rogers (1990)).

49

Using different parameterizations, gives some other interesting physical inter
pretations to c'() and c"(). If c() is parameterized by the arc-length (usually
written as "s") of the resultant curve, then the c'(s) is the unit tangent and c"(s) is
in the normal with the length of c"(s), written as |c(s)||, being the local Gaussian
curvature of the curve c(t), the inverse of the radius of curvature. The accelera
tion vector, c"(t), will always line in the plane of c'(s) and c"(s), so that we could
write

c"(t) = a c'(s) + b c"(s)

where "a" is the magnitude of the force of acceleration along the curve, and "b" is
the magnitude of the force of acceleration due to change of direction (a sort of
steering force).

Surfaces

Surfaces can be represented as two-dimensional tensor splines:

s:I 2 -E 3

The images of the domain lines in the surface give a spline grid of constant
parameter values. The partial derivatives of a surface spline give us the tangents
to the surfaces in the direction of the associated parameter curves. Another inter
pretation of a surface tensor spline is as a parameterized set of curve splines.
Assuming that we have a surface spline, s(t, u), we can define

VUG I, cu(t) = s(t,u).

Applying our knowledge of curves, we know that

And, swapping the roles of u and t, we also have

Interpreting this in terms of the geometry, we can say that the partial derivatives
of the surface spline are tangent vectors to curves totally contained within the
surface. Assuming that the surface spline function is well behaved, the two
tangent vectors give us a spanning set for the plane tangent to the surface at the
corresponding point.

Simplical splines are closely related to triangulated irregular networks (TIN).
Based upon a triangulated domain, the most common methodology would be to
use the underlying geographic surface as the spline's domain. The use of a general
ized full 3D triangulation would allow the surface to fold back over itself by
allowing multiple s values for a single (x,y).

50

Volumes

Solids (volumes) can be represented in two distinct manners. The most common
representation is as a collection of surfaces which form the boundary of the solid. In
terms of distributions of attributes, this formulation would be useless, since it does
not distribute the parameter space into the interior of the volume. In the second
technique, generalizing from the above, we can always consider solids as represent-
able as three-dimensional splines:

Such volume splines must usually be almost everywhere one-to-one to prevent
the function from collapsing multiple points from the parameter space into single
points in the range space (the mathematical equivalent of "spindle, fold and muti
late"). The most common exception to this is where the boundary of the param
eter space is collapsed to give us non-rectilinear ranges.

If we apply the same technique to the parameters of a volume as we did above
to the surface, we can view the function as a parameterized set of surfaces or as a 2-
parameter set of curves. The embedded surfaces are called a "foliation" of the
volume.

The generalization of the TIN based spline uses simplices of dimension 3 (tetra
hedrons), see Herring (1990). For geographic use, the underlying tetrahedron
irregular network would normally be a simplical complex spanning the volume of
interest.

Higher Order Geometries

All of the above geometric descriptions can be extended to a 4th or higher
dimension entity using the same techniques. An interesting hybrid is to use
temporal spline curves P(t) to describe the motion of the poles of a spline through
time. For the tensor splines, this is simply going to a spline of one higher dimen
sion. For a simplical spline, this forms the tensor product of the existing spline
with the temporal curve, as opposed to forming a 4D simplical complex. Even for
simplical splines, tensoring with time curves is probably the preferable technique,
since this most closely matches the way in which one thinks of time and motion.
For most applications where time can be treated as an independent dimension,
this technique should be applicable without much difficulty.

DISTRIBUTIONS

Distributions of attribution can be addressed by spline and other functional repre
sentations in two basic manners. The first technique includes the definition of the
attributes with the geometry in a single spline function, The second technique
uses multiple splines over a single parameter space. Other approaches can be
viewed as combinations, and multiples of these first two.

In the first approach, given an attribute or a set of "k" attributes, each of which
is expressible as a real value, and each of which is a continuous function of space,

51

we can generate spline functions whose first three range coordinates (dimension
of target geometry) represent points, and whose k trailing range coordinate values
are for the attributes along the spline:

f: I n -» E 3 (geometry) x E k (attributes)

This generalizes to temporal variability through the use of a space time
geometric component, giving us:

f: 1 n -» E 3 (geometry) x E1 (time) x E k (attributes)

In the second approach, the attributes are generated by separate spline func
tions, but sharing a common parameter domain. Thus, we have a set of functions,
f() , fj? etc.. The first functions gives us a mapping from the parameter space to the
geometry, and each additional function generates a single attribute or a set of
related attributes. The value of an attribute "a" at a point is then given by an
implicit equation:

V t G I" f (t) = value of attribute a at the point fQ(t)

In using splines or other functional geometric descriptions for the distribution
of attribute values, we are creating a tensor sum model that makes no implementa
tion distinction between geometry and other numerically measurable attributes
(Herring (1990)).

Distributing Attributes Along a Line Feature

To distribute an attribute along a line feature, two pieces of information are
needed. First, we need a parameterization of the line to use to associate spine
values to positions on the line. Second, we need a set of sample values of the
attribute along the line, or a mechanism to generate those values. Putting these
pieces of information together, we now have a set of sample pairs consisting of the
parameter values and attribute values:

S = {(t,a) t E I, a the attribute value at the point on the line associated to t}

value of attribute at point

c(t) = (x,y,z)
geometric graph

f(D = a
ttribute graph

parameter space parameter space

The General Approach

52

We now have to choose a set of poles P and weights w :I-»[0,1] (1 < j < m), that will
generate a spline function

f = Y"' w (t)P
Li-i r ' j

such that:

V(t,a) eS, f(t) a a\ t > I/ ' V |/

To associate a spline function to an existing line, we have to define how the
parameter space is mapped to positions along the curve.

The spline case: If the line is already a spline (geometric) we can use this
geometric spline's parameterization.

If our samples are at knots in the spline's parameter space, then we can
augment the existing geometric poles with and additional dimension for the
attribute, adjusting the pole-attribute values (a1), until the sample attribute values
are achieved. This gives a combined geometric-attribute representation, as follows:

vtei, fo(t)=^,(t)(P,a'i)

Assuming that we have n such geometrically correlated attributes, we have an
extended spline function as follows:

Vtei, f (t) =Y m w(t) (P , a' , a' ,...,a')
' O v ' /j\=\ i v ' v i ' l,i' 2,r n, i'

Where P [is the original geometric pole, and each a'ki is an appropriately chosen
value so that the k'th attribute value is achieved at the i'th knot.

If the attribute values are statistically independent of the shape of the geometry,
or we do not have attribute values for the knots of the geometry spline, then the
above method will not work. But using the same parameterization, we can define
separate splines for each attribute or set of correlated attributes, using only the
common parameter space to synchronize curve geometry and attribute distribu
tion. Given a set of sample values (x^z^a), 1 <i<k, of the attributes along the
line feature, using the geometry spline f0(), we solve for t(such that:

f(f) = (x,y.z)O v / v i''i i'

This gives us a set of spline functions samples (t, a), which we can use to generate
a spline (using weights "W") that precisely fits the samples with k poles, or an
approximation with fewer poles, giving us a spline f^) such that:

VtGl, W^wWP

and f1 (t)=2;. 1 W(t) a',

and the value of attribute "a" at fQ(t) is f^t).

Multiple attributes can be handled either in single splines (as was done with the
geometry spline above or as separate splines.

53

The Polyline and General Case: If the geometry of the line does not come with its
own parameterization, then we can use any function, such as arc-length of a point
from the line's beginning, as a distribution parameter. Using arc-length as a param
eter defines the domain interval of the spline as I = [0, L] where L is the total
length of the line feature. Using this parameter, we are essentially in the second
case from the section above. The new equation for the t is:

t = distance along the line from start position to (x, y, Z ()

Distributing Attributes Through an Area Feature, Across a Surface

The area, or surface distribution problem revolves around a restriction on the
types of spline functions used for higher dimension. Most common software pack
ages use tensor product splines. This places a restriction on the types of knot spac-
ings that can be used. If kt is the knot associated with w () and k' is the knot associ
ated to w'Q, then the knot associated to W..() = w w'() is (k,k'). This means
that the knots are geometrically dispersed in the parameter space in rows and
columns (possibly nonuniformly spaced). There are three basic alternatives: 1)
use a regular geometric grid as a spline parameter domain, 2) use a tensor spline
geometric description of the area, or 3) use a simplical spline.

regular grid tensor spline parameter grid simplicial spline poles (TIN)

Pole Geometries for Alternative Distibution Types

If we chose to use a regular grid parameter space, we would create orthogonal
profiles in a coordinate block large enough to encompass the entire area, associ
ating the grid points internal to the area to interpolated attribute values, and
external grid points to extrapolated attribute values. Here the basic problem is
the "regularization" of the data to the grid points (discussed below).

In either of the other two alternatives, there are two problems. First, we have to
disperse knots and geometric poles to describe the surface (x,y,z) or area feature
(x,y). Second, we have to obtain attribute values for the points on the surface asso
ciated to each of the knot pole pairs. Having these, we can apply the algorithms
described above to obtain attribute values for the poles that will give us the
required distribution function.

Picking the Grid Points: If we already have a spline representation of the
surface and the attribute values for the corresponding points on that spline
surface, the simplest solution is to use the geometric knots (a direct analogy to the
line cases).

54

If we do not have a spline surface and we wish to use a tensor spline, we can
create a pseudo grid across the feature by digitizing two sets of profile lines, cross-
hatching the area, using the intersections of these profiles to associate to a simi
larly set of orthogonal profiles in the chosen parameter space, creating a tensor
spline surface that approximated the area feature. Using this method would not
necessarily obtain a spline surface whose edge exactly matched the boundary of
the boundary of the delineated area (splines can be made to fit a finite number of
points, not usually an entire curve). The accuracy of the fitted surface would be a
function of the complexity of the area boundary, and the order and number of
poles of the chosen spline, but as long as the new surface covered the area feature,
every point in the area would have an associated attribute value by the resultant
spline distribution.

Alternately, if simplical splines can be used, a tessellation of the surface can be
made using the Delaunay (or other) triangulation of the input attribute data
samples.

Regularization of the data: In either or the grid techniques, it is probable that
after getting a spline approximation of the area, the attribute values for the points
on the spline surface will have to be approximated. Various such approximation
techniques exist. Using the Delaunay triangulation of samples and either linear or
"stolen area" interpolation (Gold (1989) and (1990)), simplical splines (Auerbach
(1990)), kriging (Journel-78, David-76), and cokriging are good examples. The
interpolation scheme may be chosen depending upon the particular application or
depending on a priori assumptions about the data. Recall that the knots, or
weights used for the geometric approximation need not be the ones used for the
attribute approximation, as long as the parameter space is the same. In the
simplical spline case, assuming the data points were chosen with care, little or no
interpolation of Pole values should be necessary.

Distributing Attributes Throuuh a Volume

The volume case is similar to the area case, except that a 3-dimensional approxi
mating spline, a 3-dimensional regularization technique, or a 3-dimensional tetra
hedron irregular network, as appropriated, are needed.

Vector Fields, Differential Equations and Trajectories

The use of splines to represent vector fields, and the ability to take derivatives of
splines leads to their use to represent differential equations and systems of differen
tial equations. For example, suppose that we have a spline representation of
current flow in a hydrologic system. Thus, we have a function
F(u,v,w) >(x,y,z,dx,dy,dz) that maps a three dimensional parameter space into
position and velocity. We can define a solution, or trajectory, to the differential
equation:

(c,c') = F

55

as a function c(t) -* (x,y,z) as one such that:

C(t) = 77 F(U,V,W) ^> C'(t) = 77,,, F(U,V,W) v ' x,y,z V » ' / V ' dx,dy,dz V ' ' /

where "TT" is the projection onto the subscripted coordinates.

A NOTE ON EXPERIMENTATION

Much of what is presented here can be classified as speculative, and in a normal
situation, I would have waited for until more experimental results in specific appli
cations could have been simultaneously reported. I choose not to delay for a
variety of reasons. First, a great deal of work has gone into the various geometric
aspects of spline curves and surfaces and, in a very real and meaningful way, this
paper is simple a reinterpretation of those results. For example, Auerbach (1990)
could be interpreted to show results on the distribution of a single attribute value
over an area feature; its geometric representation (graph) resulting in a surface
contours representing isoclines. Secondly, a large part of this paper is a survey of
some simple mathematical truths, viewed from an unusual perspective. Unlike
physical science, most mathematical papers do not require experimental results to
be valid. Third, and most important, is the potential scope of the applications of
this sort of technology is broad enough to require multiple efforts to validate it.
For example, the distribution of attributes along lines may solve the dynamic
segmentation problem in road maintenance systems. The distribution of attrib
utes in areas has applications in any field which needs to represent heterogeneous
dispersions; forest or soil management, ecological applications such a predator
prey simulations, etc.. Splines have the potential of solving some of the data
volume problems associated to grid based map algebra systems. In 3 dimensions,
spline distributions have a great deal of potential in representing heterogeneous
aggregate both in geology and in engineered materials.

Given the potential of spline distributions and the track record of splines in the
geometric applications, it seemed that the probability for successful experimenta
tion in a wide variety of potential applications is very high.

SUMMARY AND IMPLICATION

Spline functions can be used to approximate a large variety of attribute distribu
tions, through any standard geographic feature, to any accuracy or representation
quality required. The implications of the methods outlined here are far reaching.

They can change the way we think of attribution. Attributes need not be
thought of as static constants, but can be set to vary of both time and space.
Attributes can include complex mathematical structures such as vector fields, set
of trajectories for differential equations, etc.. Such attributes can be represented
to any degree of accuracy required via the use of standard spline functions.

They can solve some long standing storage problems. Spline functions are
known to be extremely efficient storage mechanisms, requiring as little as a tenth

56

or a hundredth of the space as compared to vector representations of equal accu
racy and quality of representation and visualization.

B-splines and NURBS (non-uniform rational b-splines), which are a standard in
CAD applications and deliverable as standard software packages, meet the accu
racy and representation requirements of these geographically and temporally
distributed attributes. As a software engineering bonus, common geometric repre
sentations such as splines simplify system development.

Simplical splines solve some of the problems found in the standard tensor
splines, and are a mechanism to visualize distributions from raw sample data.
Theoretically, they should have many of the advantages of TIN based DTM's over
grid representations.

ACKNOWLEDGMENT

I would like to thank Andrew Frank, Thomas Fisher, and Eric Bayer for their
participation in the free form technical discussions over a period of year which
lead directly to this paper. A good idea can have many fathers; a bad one is always
an orphan.

REFERENCES

Auerbach, S. and Schaeerben (1990), "Surface Representations Reproducing
Digitized Contour Lines", Mathematical Geology, Vol. 22, No. 6, pp 723-
742.

Bartels, Richard H., John C. Beatty, Brian A. Barsky (1987), An Introduction to
Splines for use in Computer Graphics and Geometric Modeling, Morgan
Kaufmann Publishers, Inc., Los Altos, California

Casti, John L. (1989), Alternate Realities: Mathematical Models of Nature and
Man, John Wiley & Sons; New York.

Codd, E. F. (1990) The Relational Model for Database Management: Version 2,
Addison Wesley Publishing Company, Reading, Massachusetts.

Date, C. J. (1983), An Introduction to Database Systems, Vol. II (printed with
corrections 1985), Addison Wesley Publishing Company, Reading
Massachusetts.

Date, C. J. (1984), Relational Database: Selected Writings, Addison Wesley,
Reading, Massachusetts.

Date, C. J. (1986), An Introduction to Database Systems, Vol. I, Fourth Edition,
Addison Wesley Publishing Company, Reading Massachusetts.

David, M. (1976), "The Practice of Kriging", Advanced Geostatistics in the Mining
Industry, M. Guarascio, et al. editors, D. Reidel Publishing Company,
Dordrecht, Holland

Farin, G. (1990), Curves and Surfaces for Computer Aided Geometric Design,
Second Edition, Academic Press, Boston, Massachusetts.

57

Faux, I. D., and Pratt M. J. (1979), Computational Geometry for Design and
Manufacture, Ellis Horwood Limited, Chichester, UK.

Gold, Christopher M. (1989), Chapter 3 - Surface Interpolation, Spatial
Adjacency and GIS, in Three Dimensional Applications in Geographic
Information Systems, ed. J. Raper, Taylor and Francis Limited, London, pp.
21-35.

Gold, Christopher M. (1990), Spatial Statistics Based on Voroni Polygons, paper
presented at the Atlantic Institute Seminar, August 1990, University of New
Brunswick, Fredericton, New Brunswick, Canada, Y. C. Lee coordinator.

Gorlen, Keith E., Sanford M. Orlow, and Perry S. Plexico (1990), Data
Abstraction and Object-Oriented Programming in C++, John Wiley and
Sons, Inc., Chichester, UK.

Herring, John R. (1991), The Mathematical Modeling of Spatial and Non-Spatial
Information in Geographic Information Systems, David Mark and Andrew
Frank, ed., Cognitive and Linguistic Aspects of Geographic Space,
Proceedings of a NATO Advanced Study Institute, (to appear).

Journel, A. and C. Huijbregts (1978), Mining Geostatistics, Academic Press,
London, England.

Khoshafian, Setrag and Razmik Abnous (1990), Object Orientation: Concepts,
Languages, Databases, User Interfaces, John Wiley and Sons, Inc., New
York.

Munkres, James R. (1963), Elementary Differential Topology, Princeton
University Press, Princeton, New Jersey.

Ozsu, M. Tamer and Patrick Valduriez (1991), Principles of Distributed Database
Systems, Prentice Hall, Englewood Cliffs, New Jersey.

Rogers, David F. and J. Alan Adams (1990), Mathematical Elements for
Computer Graphics, Second Edition, McGraw Hill Publishing Company,
New York.

Stonebreaker, M., ed. (1986), The INGRES Papers: Anatomy of a Relational
Database System, Addison Wesley, Reading, Massachusetts.

Ullman, J. D. (1988), Principles of Database and Knowledge-Base Systems, Vol I,
Computer Science Press, Rockville, Maryland.

Ullman, J. D. (1989), Principles of Database and Knowledge-Base Systems, Vol II,
Computer Science Press, Rockville, Maryland.

58

NEW PROXIMITY-PRESERVING ORDERINGS
FOR SPATIAL DATA

Alan Saalfeld
Bureau of the Census1
Washington, DC 20233

ABSTRACT

This paper presents new methods for ordering vertices or edges in a tree
(connected acyclic graph). The new orderings are called tree-orders; they can be
constructed in linear time; and they are fully characterized by a useful proximity-
preserving property called branch-recursion. The paper describes how tree-ordering
techniques can be applied to find orderings for other types of spatial entities:

 ordering points in the plane,

 ordering points in higher dimensional spaces,

 ordering vertices of any graph,

 ordering edges of any graph,

 ordering line segments in two-dimensional networks,

 ordering line segments of networks in higher dimensions,

 ordering regions in the plane,

 ordering (n — l)-cells in n-dimensional polytopal regions,

 ordering n-cells in n-dimensional cell decompositions.

For each of the spatial entities listed above, the orderings produced by ex
tending the tree-ordering methods exhibit important proximity-preserving prop
erties. The paper includes a description of several potential applications of the
new orderings of the diverse spatial objects.

PRELIMINARIES

At its most elementary level, database management is the art of organizing or
ordering data so that they may be accessed and utilized most efficiently for some
particular set of operations of interest. This paper presents a new way of ordering
data that will permit a collection of important operations related to clustering
and to systematic sampling to be carried out efficiently and effectively. In this

1 The views expressed herein are those of the author and do not necessarily represent the views
of the Bureau of the Census.

59

section we review and summarize some definitions and basic concepts needed to
describe our ordering techniques.

Orderings and Lists
Throughout this paper, ordering or order, without any qualifying adjectives, will

refer to a total order or linear order of a finite set of n elements. Such an order
is nothing more than a sequencing of the n elements, a one-to-one association
of the elements of the set with the integers 1 through n, or a listing of the n
elements. A set of n elements that have been ordered will be called a list or an
ordered list.

In a list of n elements, the (i + l)st element is the successor to the ith
element; and every element except the nth or last element has a unique successor.
Similarly, every element except the first element has a unique predecessor. We
may build a cyclic list or a cyclic order from a list by naming the first element to
be the successor to the last element (and the last element to be the predecessor
to the first). Cyclic lists are often useful because they have no distinguished
elements that require special case handling. For example, with a cyclic list, one
may begin anywhere in the list and exhaustively enumerate elements by taking
successors until one returns to the chosen starting element.

Spatial Queries
Points in two-dimensional and higher dimensional space are often assigned an

order or primary key to facilitate their storage in and retrieval from databases.
Space-filling curves, such as the Peano key and Hilbert curve ([FALl] and [FAL2]),
have proved quite useful for range queries and nearest neighbor queries. These
curves are instances of a large class of orderings called quadrant-recursive order-
ings ([MARK]). The defining property of quadrant-recursive orderings is that, in
any recursive decomposition of a rectangular region into subquadrants, the points
of any sub quadrant always appear consecutively in the quadrant-recursive order
ing. Points within any subquadrant are enumerated exhaustively before exiting
the subquadrant. We will see in the section on branch-recursion that quadrant-
recursive orderings are a special case of a more general class of orderings called
branch-recursive.

Systematic Sampling
Systematic sampling traditionally refers to selection of a subset from a list,

where the subset is formed by selecting elements at regular intervals (called the
skip interval) [KISH]. Elements may be weighted to adjust their probability of
selection (see figure 1).

If all weights are 1, then a skip interval of k produces a 1/fc sample. We may
think of the sampled elements as having the induced order of their sequenced
systematic selection achieved by skipping through the list.

If points in the plane are assigned any quadrant-recursive order, then a sys
tematic selection procedure will sample every subquadrant, no matter what its
size, to within one unit of the overall sampling fraction. This representative
coverage property was noted and utilized for Peano key ordering by Wolter and
Harter [WOLT].

If we regard systematic sampling as a means of ordering subsets, then trivially
we may recover the original order of an unweighted list by sampling with skip
interval equal to 1. This seemingly trivial means of recovering an ordering will
be exploited in the section on tree-ordering vertices to build an ordering when

60

Figure 1: Systematic Sampling from Lists

we sample a set systematically after breaking each element into weighted pieces
having total weight 1.

Graphs and Maps
The linework of any map has an underlying structure of a graph2 . We will use

the usual combinatorial definitions of graph theory found in the standard text
by Harary [HARA]. A graph G = (V,E) consists of a finite non-empty set V
of vertices together with a set E of unordered pairs of vertices called edges. A
vertex v and an edge {u, iu} are incident if and only if v = u or v = w. The
degree of a vertex is the number of edges incident to the vertex. A walk of the
graph G consists of a sequence (v\v^vz • • • v*) of vertices u,-, not necessarily all
distinct, such that for each j = 1,2,. . . , (k — 1), {vy,vj+i} is an edge of G. A
tour is a walk (viv^vy • • «*) such that Vi = v*. A path is a walk with no edges
repeated. A cycle is a path (v\v^v^ • • -vt) with k > 3 such that Vi = u*. A tree
is a graph with no cycles. A tree as we have defined it is sometimes called a free
tree to differentiate it from a rooted tree, which possesses a distinguished vertex
called the root.

PROPERTIES OF TREES

We describe some properties of trees that make them easier to work with than
graphs in general. We will show in the sections on ordering vertices and edges in
a graph how problems of ordering graph components can be converted to prob
lems of ordering tree components for a derived tree. Computer scientists have
developed a number of ways of ordering the vertices of rooted trees embedded in
the plane [AHO2]. We will be looking at new orderings for free trees.

Combinatorial Properties
We list some important properties of trees.

2 For some applications it may be preferable and even necessary to regard the linework of a
map as a pseudo-graph, a structure which allows multiple edges between two vertices. For the
applications which we are examining here, the distinction is unimportant.

61

Property 1 Every tree with n vertices has exactly (n — 1) edges.

Property 2 A connected graph having n vertices and (n — 1) edges is a tree.

Property 3 Adding a new edge to a tree (between existing vertices) always cre
ates a cycle.

Property 4 Removing an edge always disconnects a tree.

Figure 2: Edge Removal Creates Two Branches

We say that each edge determines two branches which are the disconnected
component subtrees resulting from that edge's removal. Always one of the
branches determined by the edge {u,v} contains u and the other branch always
contains v.

Planar Embeddings
Not every graph can be drawn in the plane with non-intersecting line-segment

edges, but a tree can always be represented or realized as a straight-line drawing
in the plane. Moreover, suppose that for each vertex in a tree, we arbitrarily
assign a cyclic order to the edges incident to that vertex. Then there is always
a drawing in the plane of that tree with straight-line-segment edges such that
the clockwise order of the edges incident to any vertex is the arbitrarily assigned
cyclic order of the edges about the vertex.

EULERIAN TOURS

An Eulerian tour of a tree is a special well-balanced tour that traverses every
edge exactly twice, once in each direction. We give two equivalent descriptions
of an Eulerian tour of a tree. Each description depends on our having assigned
a cyclic order to the incident edges of each vertex.

Geometric Version
Draw the tree so that the assigned cyclic order of edges at each vertex is the

clockwise order. Start a tour at any vertex x. Depart along any incident edge
{x, u} toward u. Upon arriving at u, depart along the edge {u,u} that is next to
{z, u} in the clockwise order around u. Upon arriving at u, depart along the edge
{v,z} that is next to {u, v} in the clockwise order around u, etc., until finally
you return to z along the edge that precedes {x, u} in the clockwise order (see
figure 3).

The tour that we have described will traverse each edge twice, once in each
direction and visit every vertex a number of times equal to its degree.

This tour can also be visualized as follows: imagine that the tree itself is the
top view of a wall. Walk next to the wall with your right hand continuously

62

Figure 3: Geometric Depiction of Eulerian Tour

touching the wall. You will eventually return to your starting point, at which
time you will have touched both sides of every wall. Thus, had someone else
been walking on top of the wall and keeping up with you, that person would
have walked every edge of the tree exactly twice.

Combinatorial Version
An Eulerian tour of a tree on n vertices is a walk (viV^v^ • • -t^n-i)? where the

v,-'s are vertices, clearly not all distinct, satisfying

1. Vi = t>2n-l.

2. For t = 1,2,..., 2n 3, {ut-+i, ^+2} is the successor to {u,-, u,-+i} in the cyclic
ordering of edges about the vertex v,-+i.

3. {vi,v2 } is the successor to {t>2n-2 5 Vi} in the cyclic ordering of edges about
the vertex v^.

4. For every edge {u, v} of the tree, the sequence uv and the sequence vu each
appear exactly once in the walk (v\vi • • • u2n-i)-

5. Each vertex except v\ appears as often as its degree.

6. The vertex ui appears one more time than its degree.

Notice further that if uv appears before vu in the Eulerian tour, then the
subwalk between uv and vu that starts and ends at u completely consumes every
edge and vertex in the v-branch determined by edge {u,v}. Moreover, this
subwalk touches nothing but the v-branch of the tree (see figure 4).

Figure 4: A Subwalk Consumes an Entire Branch

Similarly, the remainder of the tour (the part before uv and after vu) com
pletely consumes every edge and vertex of the u-branch resulting from the re
moval of the edge {u, v}. Clearly, no vertex or edge that appears in the v-branch
can ever appear in the u-branch.

We summarize this partitioning of the tour into two non-intersecting walks
in the following lemmas.

63

Tour Splitting Lemmas

Lemma 1 Let (x • • • uv • • • y • • • vu • • • z • •) be an Eulerian tour of some tree,
with x, y, z, u, v vertices on the tour. Then u ^ y, x ^ y, and z ^ y.

Lemma 2 Let (UjV xu2) be an Eulerian tour of some tree, with u\ = u2
and no other occurrences of u\ between Ui and u2 . Then v = x.

Figure 5: Edge Removal Splits the Tour

Figure 5 illustrates the proof of both lemmas. The subwalks uv and vu are
the only means of getting from one branch to the other.

Eulerian Tree Orderings
During the course of an Eulerian tour, all of the vertices and edges are visited at

least once. Suppose we wish to assign the integers 1 through n to our n vertices.
A procedure that visits the vertices in Eulerian tour order, assigning either the
next available number or no number to every visit of each vertex, hi such a way
that exactly one of the visits of each vertex receives an order number, will be
called an Eulerian tree-ordering (ETO) of vertices.

A procedure that visits the edges in Eulerian tour order, assigning either the
next available number or no number to every visit of each edge, in such a way
that exactly one of the two visits of each edge receives an order number, will be
called an Eulerian tree-ordering (ETO) of edges.

Garey and Johnson [GARE] and others [PREP], [EDEl] describe one such
Eulerian tree-ordering of vertices of a Euclidean minimum spanning tree (EMST)
obtained by starting anywhere on the Eulerian tour and assigning the next avail
able number to the first visit to each and every vertex (see figure 6).

Figure 6: First-Visit Eulerian Tree-Ordering

Their ordering, or for that matter, any other Eulerian tree-ordering of a
EMST will always approximate a Euclidean Travelling Salesman Tour to within
a factor of 2, since the Eulerian tour itself is never more than twice the length of
the Euclidean Travelling Salesman Tour.

We now describe a simple procedure for generating all other Eulerian tree-
orderings of the vertices of a tree.

64

TREE-ORDERING VERTICES

Suppose that we are given a tree and an Eulerian tour (vj_, t>2 , , «2n-i) for that
tree (equivalently we are given an embedding of the tree in the plane and a
starting vertex and edge). Then to order the vertices we will proceed as follows.

Setup: Weighting Vertex Visits
For i = 1,2,3,..., (2n 1), regard each v,- that appears in the tour (ui, u2 , , vzn-
as a vertex visit.

For i — 1,2,3,..., (2n — l), assign a non-negative weight u;,- to the ith visit
so that the sum of weights for all visits to any fixed vertex v is one:

For every v 6 V, ^ u;,- = 1.
{ ><=«>

We call any such weight assignment a unit-sum weight assignment.
An important instance of a unit-sum weight assignment assigns the same

weight to all visits to the same vertex. Because each vertex u,- is visited deg(v,-)
times3 , that uniform weight is exactly given by:

, for i = 1,2,..., (2n - 2); and
deg(r;,-)

«>2n-l = 0.

Building the Sampling Interval
As we walk the Eulerian tour, we begin accumulating weights, (exactly as is

done to build a weighted list for systematic sampling) .

Let WQ = 0, and

An Illustration: Uniform Weighting. We illustrate the accumulating of
weights for the uniform weighting scheme for the walk (defegehedbabcbd) drawn
in figure 7.

The total accumulated weights are exactly n and the total weight correspond
ing to each vertex of the tree is exactly one. We can assign numbers to the vertices
by skipping through the weighted interval with skip interval equal to 1. This is
the same as assigning an order number to a vertex each time a vertex visit takes
us up to or past the next whole integer:

If [Wj'-iJ < L^'J» tnen assig11 vertex v, the number \Wj\.
Because some vertices appear in several places in our accumulated weighted

interval, one may suspect that our numbering scheme may assign more than one
order number to a vertex. This cannot happen.

Proofs of Correctness
The proof that the selection procedure outlined above actually produces an

ordering of the vertices follows immediately from the following lemma and its
first corollary.

3 Because the Eulerian tour is cyclic, we like to count vi and vzn-i as the same visit. We
should only assign the appropriate weight to one or the other. We have chosen to assign the
uniform weight to v\.

65

Figure 7: A Tour and its Accumulated Weights

Lemma 3 (Integral-Branch-Weights) The fractional vertex weights accumu
lated between any two consecutive visits of the Eulerian tour to a multivisited
vertex always add up to an integer.

Proof: The proof of this lemma rests entirely on the observation that between
two consecutive visits to any vertex u, one must depart and enter along the same
edge, and an entire branch emanating from that vertex v is completely consumed
by the subwalk of the Eulerian tour, as seen in lemmas 1 and 2.

In consuming an entire branch, one must visit every vertex in that branch as
many times as possible, i.e. as many times as the degree of that vertex. Thus
each vertex in the branch gets fully counted. In other words, the sum of weights
for all the visits for any individual vertex during the walk of the branch is 1. And
the sum of weights for all the visits of all vertices during the walk of the branch
is an integer, equal to the number of distinct vertices in the branch. D

Figure 8: All Vertices of a Branch are Consumed

This lemma has two useful corollaries. To prove the first corollary we will
want to talk about the fractional part of a number or an interval of numbers.
Our meaning is the usual one: the fractional part of 5.35 is 0.35. The fractional
part of an interval such as [17.32, 17.84) is just the set of all possible fractional
values: [0.32, 0.84).

Corollary to Lemma 3.1 Every vertex gets hit exactly once by skipping one
unit at a time through the n-interval.

Proof: Consider any vertex v of degree = k. Let the visits to the vertex v occur
at 11,1*2, ,»*. Then the visits to the vertex v will result in intervals of length

66

u;,-!,«;,-,, • • • ,Wfk being added to the cumulative interval. We want to prove that
the fractional parts of the accumulated sub intervals corresponding to v, namely,

(Wu-i.WiJ,^.!,^],--., and (Wtt . lt Wit] t

in the total interval of length n have no overlap. From lemma 3, it is clear
that each successive interval, (W<y-i, WiJ, corresponding to a visit to v has its
fractional part begin (at W»._i) where the fractional part of the previous interval
(W, j-i, Wj], corresponding to a visit to v left off (at W^^J, since an interval
of integer length (i.e. having no fractional part) corresponding to all of the vertex
visits of the branch consumed, has intervened.

Since the intervals (W^-i.WiJ, (Wia _i,Wia], , (Wit _i,Wit], have no frac
tional parts overlapping and have total length equal to one, the fractional parts
of values assumed in the accumulated intervals corresponding to any individual
vertex must span all of the values between 0 and 1.

This last observation tells us that we can take a random start r in [0,1), take
skip interval 1 once again, and we will again produce an ordering of the tree
vertices. Any real number r or integral augmentation r + m of r can hit at most
one of the k intervals of determined by visits to u; and there is exactly one integer
mo such that r + mo will hit one of the A; intervals, n

Figure 9: Cyclic Ordering with Uniform Weighting

Because the Eulerian tour is cyclic, we can make our cumulative interval
cyclic and our resulting ordering cyclic as well by removing the dependence on
the starting point of the tour when building our cumulative vertex-visit weight
interval, as shown in figure 9. Putting all of the lemmas and corollaries together,
we have the following theorem:

Theorem 1 While making an Eulerian tour of a tree, build a separate (cyclic)
interval of total length n units by assigning a non-negative weight to each vertex
visit in any way so that the total weight for all visits to any individual vertex
is one. Then every vertex gets hit exactly once by skipping one unit at a time
through the cyclic n-interval.

Branch-Recursion
Throughout this section we will regard the orderings generated by our ordering

procedure as cyclic by making the first vertex successor to final vertex.

67

The next corollary follows immediately from lemma 1 and the proof of
lemma 3.

Corollary to Lemma 3.2 The collection of vertices of any branch of the tree
always constitute a complete interval (i.e. appear consecutively) for any cyclic
Eulerian tree-ordering.

We will say that any cyclic vertex ordering that keeps vertices of a branch
together for all branches is a branch-recursive ordering. Corollary 3.2 states that
every Eulerian tree-ordering is branch recursive. It is not difficult to prove the
converse using induction on branch size. We leave the proof of that theorem as
an exercise.

Theorem 2 Every branch-recursive cyclic ordering of the vertices of a tree is
an Eulerian tree-ordering for some Eulerian tour of the tree and some unit-sum
weight assignment to the vertex visits of that Eulerian tour.

Branch-recursion constitutes a very strong proximity preservation property,
where proximity is measured by the link-distance in the tree or graph. Branches
of a tree may correspond to data clusters in cases where we have built minimum
spanning trees. All quadrant-recursive orderings of a point set in the plane may
be realized as orderings induced on the leaf subsets of branch-recursive orderings
(i.e. Eulerian tree-orderings) of the quad-tree of those points.

Analysis of Complexity
An analysis of the time complexity of our tree-ordering algorithms depends on

the choice of data structure with which we represent the tree. If we have a
topological data structure which allows us to find the adjacent edge to any edge
at any vertex in constant time, then we can order the vertices in linear time. If
we need to build topology from an elementary list of vertices and edges, we can
do so in time O(nlogn), then proceed in linear time to complete the ordering
procedure.

Space complexity is even easier to analyze. The Eulerian tour is always linear
in the size of the tree. It is exactly of size (2n 1). The cumulative interval of
weights that we must build is also of that size.

Enumerating Orderings
If we allow arbitrary unit-sum weighting schemes and arbitrary Eulerian tours,

then we can generate all possible branch-recursive orderings. The number of
branch-recursive cyclic orderings can be shown to be:

as follows. Since there are (deg(u) 1)! ways of cyclically ordering the edges
incident to the vertex v, there are:

possible distinct cyclic Eulerian tours, hi each Eulerian tour, a vertex v may be
enumerated immediately prior to any of its deg(u) branches. This results in

68

distinct cyclic orderings for each Eulerian tour. If, however, we only consider
uniform unit-sum weighting schemes for fixed Eulerian tours, then we have proved
[SAAL] that there are no more than:

LCM{deg(v) | v G V} distinct cyclic orderings;

where LCM is the least common multiple. This translates into the following:
If the maximum degree in the tree is 3, then there are at most 6 distinct cyclic
orderings (independent of the number of vertices) for a fixed Eulerian tour. Max
imum degree 4 translates into at most 12 distinct orderings; and maximum degree
5 or 6 results in at most 60 distinct cyclic orderings.

Some important trees have small maximum degree. A Euclidean Minimum
Spanning Tree (EMST) of points in the plane, for example, has maximum degree
6. The EMST for points in general position has a canonical Eulerian tour as well;
so the unique EMST generates at most 60 distinct cyclic orderings of points in
general position in the plane, no matter how many points are hi the point set!

TREE-ORDERING EDGES

Many of our results and methods for ordering vertices are equally valid for edge
ordering. Theorem 1 for vertices has an exact counterpart for edges:

Theorem 3 While making an Eulerian tour of a tree, build a separate (cyclic)
interval of total length (n — l) units by assigning a non-negative weight to each
edge visit in any way so that the total weight for all visits to any individual edge
is one. Then every edge gets hit exactly once by skipping one unit at a time
through the cyclic (n — 1) -interval.

The proof the theorem 3 is identical to the proof of theorem 1: between consec
utive vertex visits to some vertex, all (both) edge visits to any particular edge
within a branch are exhausted.

Uniform Edge Weighting
A uniform weighting scheme for edges instead of vertices would have each edge

getting weight exactly 1/2 (since every edge is visited twice in the Eulerian Tour).
But giving every edge weight 1/2 amounts to nothing more than skipping every
other edge in our selection procedure. So we have the following corollary to
theorem 3:

Corollary 3.1 While making an Eulerian tour of a tree, number every other
edge visited. Then every edge gets exactly one number assigned to it.

We also see immediately that:

Corollary 3.2 Edges which are consecutively numbered using a uniform weight
ing scheme are never more than link distance 2 apart.

Analysis of Complexity
As before, an analysis of the time complexity of our tree-ordering algorithms

depends on the choice of data structure with which we represent the tree. With
a topological data structure we can order the edges in linear time. If we need
to build topology from an elementary list of vertices and edges, we can do so in

69

time O(nlogn), then proceed in linear time to complete the ordering procedure.
Space complexity is once again linear for edge ordering.

Branch- Recursion
As with vertices, every Eulerian tree-order of edges in branch-recursive in the

same sense:

Corollary 3.3 The collection of edges of any branch of the tree always con
stitute a complete interval (i.e. appear consecutively) for any cyclic Eulerian
tree-ordering of edges.

And, conversely,

Theorem 4 Every branch-recursive cyclic ordering of the edges of a tree is an
Eulerian tree-ordering of edges for some Eulerian tour of the tree and some unit-
sum weight assignment to the edge visits of that Eulerian tour.

Enumerating Edge Orders
As with vertex orders, the number of branch-recursive edge orders is equal to

the number of Eulerian tours times the number of distinct edge orders for every
fixed Eulerian tour. Since each edge may be weighted so that it gets enumerated
either on its first visit in the Eulerian tour or on its second visit, then as long as
these two visits are not adjacent in the Eulerian tour, they will produce different
orderings. Two edge visits to the same edge are adjacent in an Eulerian tour if
and only if the edge is incident to a leaf vertex. A tree with more than two edges
and t leaf vertices has exactly n £ 1 non-leaf edges. Thus for a fixed Eulerian
tour and an arbitrary unit-sum edge weighting scheme there are 2n~*~ 1 possible
orderings. The number of branch-recursive edge orderings is, therefore:

Enumerating uniform-weight edge orders for a fixed Eulerian tour is even more
trivial than enumerating uniform vertex orders. There are exactly two uniform-
weight edge orders if the tree has 3 or more edges.

ORDERING SPATIAL OBJECTS

In this section we will adapt our tree-ordering techniques to order spatial objects.
Our approach in every case will be to convert the ordering problem to a tree-
ordering problem, then solve the tree-ordering problem by a uniform- weight ing
of vertices or edges, as appropriate.

Ordering Points in the Plane
Suppose that we want to assign an ordering to a set of points in the plane.

We know how to order vertices of a tree. So we may convert the points into
vertices by building a tree (adding edges); and one natural tree to build is a
Euclidean minimum spanning tree (EMST) . The EMST is unique if the points
are in general position or if no two interpoint distances are equal. So the steps
needed to convert the problem of ordering points in space to one of ordering tree
vertices are:

1. Build Euclidean minimum spanning tree.

70

2. Walk Eulerian tour, tree-ordering vertices.

We can build a Euclidean minimum spanning tree hi time O(n log n) [AHO2],
sorting the edges at each vertex in clockwise order as they are inserted. The
planar embedding of the tree gives us the geometric version of the Eulerian tour
for free (i.e. the usual clockwise ordering of edges around a vertex). We can then
walk the Eulerian tour and order the vertices in O(n) additional time.

A Cluster Sampling Application. Cluster sampling is a survey sam
pling strategy of selecting small groups (clusters) of neighboring points instead
of selecting individual points randomly distributed. Within-cluster correlation
may reduce the efficiency of such a strategy from a pure sampling viewpoint, but
that consideration is often outweighed by the economic impact of reduced travel
costs for interviewers.

A serious limitation to successfully selecting clusters from lists, however, is
the fact that proximity in the list does not guarantee proximity on the ground.
Selection of points from a list that has been ordered by performing our uniform-
weight tree-ordering algorithm on a EMST of the points will guarantee very
strong proximity correspondence. The following theorem holds:

Theorem 5 Order points in the plane by building their EMST and applying the
uniform-weight vertex tree-ordering algorithm. Then two consecutive points in
the order have a maximum link distance of six and an average link distance of
less than two.

Proof: The degree of any vertex in a EMST is less than or equal to six. Thus
the uniform-weight tree-ordering algorithm accumulates a weight of at least 1/6
with each vertex visit. Moreover, in any tree, the average degree is ^p^-

Ordering Points in Higher Dimensional Spaces
To apply the methods of the section on points in the plane to points in higher

dimensions, we must first address two issues: (1) building a EMST hi higher
dimensions, and (2) defining an Eulerian tour in higher dimensions.

There are straightforward O(n2) time algorithms for building a EMST in
higher dimensions [AHO1]. Some exact algorithms are known with complexity
slightly sub-quadratic [YAO].

Building an Eulerian tour in higher dimensions is not so straightforward. It
requires establishing a cyclic order of edges about every vertex. One possibility
is to project the edges onto some two-dimensional subspace, then order the pro
jection of the edges clockwise on that plane. Another more canonical approach,
suggested by Herbert Edelsbrunner [EDE2], is to map the edge configuration
about a vertex onto points on the surface of a sphere of dimension one less than
the space of the EMST, then apply the ordering scheme to those points on the
sphere recursively (i.e. build then- EMST and order them in a space of smaller
dimension).

In any case, if all we require is some ordering of the edges around each vertex,
we can find one in O(nlogn) time. We summarize the steps needed to convert
the problem to a tree-ordering problem.

1. Build EMST.

2. Cyclically order edges at each vertex.

71

3. Walk Eulerian tour, tree-ordering vertices.

A Sample Stratification Application. Sample stratification is a par
titioning of the universe into groups which are similar across several character
istics. The characteristics should be hi some sense comparable (dealing with
relative incomparability is sometimes known as the Scaling Problem). Stratifi
cation is often accomplished by treating the observations as n-tuples of the n
characteristics (i.e. as points in n-space) and finding a hyperplane or collec
tion of hyperplanes that optimize separation of the points across the half-spaces
or n-cells created. A more straightforward approach to stratification (and one
that would be computationally much simpler) might be to partition a EMST of
the points into branches of greatest separation. With branch-recursive ordering
methods, this operation boils down to list splitting! We at the Bureau of the
Census will be comparing results of using tree-ordering methods to the standard
more complex stratification algorithms.

Ordering Vertices of any Graph
If we are only concerned with ordering the vertices of a graph, we may think

of the graph as a tree with too many edges. So we throw away the least useful
edges until we have whittled the graph down to a tree. If the edges have costs
associated with them, we may wish to minimize the cost of the resulting tree, for
example. We know exactly how many edges to throw away. We will discard an
edge as long as it does not disconnect the graph and we still have (n — 1) edges
left. We summarize the steps needed to convert the problem to a tree-ordering
problem.

1. Build a (minimum) spanning tree.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering vertices.

Ordering Edges of any Graph
In the section on ordering vertices in a graph, we regarded our graph as having

too many edges; and we threw some away. To order the edges of our graphs, we
regard our graph as having too few vertices to be a tree; and we add vertices
by splitting the vertices of the graph and creating more vertices with the same
number of edges. Once again we use our knowledge of the edge/vertex relation
ship in a tree to know when'to stop splitting vertices. We summarize the steps
needed to convert the problem to a tree-ordering problem.

1. Split vertices.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering edges.

We must next order the tree edges about each split vertex. Then the tree edges
may be assigned a cyclic order based on selecting alternate hits from an Eulerian
tour of the corresponding edges of the derived tree.

Since we can certainly split vertices in O(nlogn) time using sorting and a
plane sweep operation, and also order edges about each vertex in some arbitrary
fashion in the same tune complexity, we can accomplish the following ordering
for the edges of any connected graph efficiently:

72

Corollary 5.1 One may find a cyclic ordering for the edges of any connected
graph in O(nlogn) time so that any two edges which are consecutive in the cyclic
ordering never have link distance greater than two in the graph.

Ordering Line Segments in Two-Dimensional Networks
This is just the graph-edge ordering problem, but with fewer decisions to make

because the Eulerian tour is given by the geometry. The word network will
also imply that the topological information of the graph permits linear-tune
generation of the ordering. The steps for converting a connected-network edge-
ordering problem to a tree-edge-ordering problem are:

1. Split vertices.

2. Walk Eulerian tour, tree-ordering edges.

Ordering Line Segments Of Networks in Higher Dimensions
The difference between this section and the section on 2-D networks lies in

establishing a cyclic ordering of edges about each vertex. There may be such
a structure implicitly or explicitly embedded in the topological structure of the
network. We summarize the steps needed to convert the problem to a tree-
ordering problem.

1. Split vertices.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering edges.

Ordering Regions in the Plane
There is planar graph dual to every graph or pseudograph in the plane that is

itself a pseudograph. Every region of the plane corresponds to a vertex in the
new pseudograph; and two vertices in the new pseudograph are adjacent (share
an edge) if and only if the regions shared a face or common side. This dual is
called the adjacency pseudograph; and to reduce a pseudograph to a tree on the
same vertex set, the procedure is the same as with a graph you throw away
edges.

We summarize the steps needed to convert the problem to a tree-ordering
problem.

1. Build adjacency pseudograph.

2. FindMST.

3. Walk Eulerian tour, tree-ordering vertices.

Application to Block Numbering. Consider the problem of numbering
regions of a map in such a way that consecutively numbered regions are adjacent.
It is well known that not every arrangement of blocks can be so numbered. In
fact, when formulated as a problem in the adjacency graph, block numbering
is nothing more or less than the problem of finding a Hamiltonian path for the
adjacency graph (i.e. a path that passes through each vertex exactly once). Even

73

the problem of merely deciding whether such a path exists for an arbitrary planar
graph is NP-complete.

By throwing away edges so as to minimize the maximum degree of vertices
in the resulting pruned tree, one may guarantee that the link distance between
blocks numbered consecutively is no greater than the maximum degree of the
resulting pruned tree by the same argument used to prove theorem 5.

Multistage Sampling. Sampling is often done in stages. Regions may be
selected; and then individual households within selected regions may be subsam-
pled. Region clustering, the capability of selecting groups of nearby regions, is
important to reduce travel and other operational costs of surveys. Non-compact
region clustering involves the selection of nearby, but non-adjacent regions. Non-
compact clustering is an attempt to gain the benefits of reduced travel costs
without the negative impact of high correlation.

Ordering regions by tree-ordering a pruned version of their adjacency graph
will provide a reliable means of forming non-compact region clusters.

Ordering (n — 1) -Cells in n-Dimensional Polytopal Regions
The adjacency dual pseudograph can be constructed for higher-dimensional cell

decompositions. We may split vertices to realize the edges of the adjacency
pseudograph as edges of a tree, as we do in this section; or we may prune edges
and keep the vertices of the adjacency graph, as we do in the next section. We
summarize the steps needed to convert the problem to a tree-ordering problem.

1. Build adjacency pseudograph.

2. Split vertices.

3. Cyclically order edges at each vertex.

4. Walk Eulerian tour, tree-ordering edges.

Ordering n-Cells in n-Dimensional Cell Decompositions
We summarize the steps needed to convert the n-cell ordering problem to a

tree-ordering problem.

1. Build adjacency graph.

2. FindMST.

3. Cyclically order edges at each vertex.

4. Walk Eulerian tour, tree-ordering vertices.

CONCLUSIONS AND FOLLOW-UP

This introduction to branch-recursive orderings does not include empirical evalu
ations of the performance of those orderings. There was neither time to conduct
those evaluations nor space to include them in this restricted paper. However,
the principal reason for not assessing the performance empirically is that it is
evident that these orderings will not do very well for the usual tasks of im
age analysis, range search, and nearest-neighbor-finding as studied in the recent
comparative paper by Abel and Mark [ABEL]. Objects which are adjacent in the

74

branch-recursive ordering are fairly close in space; however, objects which are
adjacent hi space may be rather distant in the branch-recursive ordering. And
there is no easy way to predict how distant or when discontinuities will occur
with general branch-recursive orderings, as is the case with the more common
quadrant-recursive orderings. The somewhat unorthodox nearness properties
that are described in this paper should, nevertheless, prove very useful for sam
pling activities and analysis related to those activities.

The fact that many spatial entities can be realized as or identified with vertices
or edges of trees or graphs makes our results widely applicable. The following
example illustrates both strengths and weaknesses of our methods. Consider the
two tasks of (1) finding a cyclic ordering for n points all lying on a straight line,
and (2) finding a cyclic ordering for n points all lying on a circle. The reason for
considering the two tasks simultaneously is that their Euclidean Minimum Span
ning Trees are topologically the same: they are both linear trees, as illustrated
in figure 10.

Figure 10: Cyclic Ordering of Collinear and Co-circular Points

The uniform weighting strategy will cause us to skip every other point in our
numbering scheme (except at the ends of our linear tree). For the collinear points,
this is clearly optimal hi the following sense: This strategy minimizes the maxi
mum distance between neighbors (i.e. adjacent elements hi the cyclic numbering
scheme). On the other hand, for the co-circular points, the uniform weighting
strategy may produce a distance nearly double that of the optimal numbering
strategy in terms of minimizing the maximum distance between neighbors.

What this example illustrates is that we necessarily lose some shape informa
tion when we embed our data in a tree and use only the topological structure of
the tree from that point on. What the example also illustrates is that we may in
some cases get optimal performance for cyclic orderings.

REFERENCES

[ABEL] Abel, David J.,and David M. Mark, 1990, A Comparative Analysis
of Some Two-Dimensional Orderings, International Journal of Geo
graphical Information Systems, 4(1), 21-31.

75

[AHO1] Aho, Alfred, John Hopcroft, and Jeffrey Ullman, 1974, The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading,
MA.

[AHO2] Aho, Alfred, John Hopcroft, and Jeffrey Ullman, 1985, Data Struc
tures and Algorithms, Addison-Wesley, Reading, MA.

[EDE1] Edelsbrunner, Herbert, 1987, Algorithms in Combinatorial Ge
ometry, Springer-Verlag, New York.

[EDE2] Edelsbrunner, Herbert, 1990, personal communication.

[FALl] Faloutsos, Christos and Yi Rong, 1989, Spatial Access Methods Using
Fractals: Algorithms and Performance Evaluation, University of Maryland
Computer Science Technical Report Series, UMIACS-TR-89-31, CS-TR-
2214.

[FAL2] Faloutsos, Christos and Shari Roseman, 1989, Fractals for Secondary
Key Retrieval, University of Maryland Computer Science Technical Report
Series, UMIACS-TR-89-47, CS-TR-2242.

[GARE] Garey, Michael R., and David S. Johnson, 1979, Computers and
Intractability, A Guide to the Theory of NP-Completeness, W. H.
Freeman, New York.

[KARA] Harary, Frank, 1969, Graph Theory, Addison-Wesley, Reading, MA.

[KISH] Kish, Leslie, 1965, Survey Sampling, John Wiley, New York.

[MARK] Mark, David M., 1990, Neighbor-based Properties of Some Orderings
of Two-Dimensional Space, Geographical Analysis, April, 22(2), 145-
157.

[PREP] Preparata, Franco, and Michael Shamos, 1985, Computational Ge
ometry, An Introduction, Springer-Verlag, New York.

[SAAL] Saalfeld, Alan, 1990, Canonical Cyclic Orders for Points in the Plane,
submitted to Journal of Computational Geometry: Theory and
Applications, Elsevier.

[WOLT] Wolter, Kirk, and Rachel Barter, 1989, Sample Maintenance Based
on Peano Keys, presented at Statistics Canada Symposium on Analysis of
Data in Time, Ottawa, Canada.

[YAO] Yao, Andrew Chi-Chih, 1982, On Constructing Minimum Spanning Trees
in k-Dimensional Spaces and Related Problems, SIAM Journal of Com
puting, November, 11(4), 721-736.

76

Zenithial Orthotriangular Projection

A useful if unesthetic polyhedral map projection to a peculiar plane

Geoffrey Dutton1
Spatial Effects

150 Irving Street
Watertown, MA 02172 USA

qtm@cup.portal.com

Abstract

This paper describes the construction, properties and potential
applications of a cartographic projection recently developed by the
author, called the Zenithial Orthotriangular (ZOT) projection of an
Octahedron. ZOT maps a planet to a plane by modelling it as an
octahedron (a regular solid having 8 equilateral triangular facets),
which is then unfolded and stretched to fit within a square. As
described below, ZOT is developed from a regular octahedron
mapped in North polar aspect, by cutting octant edges of the
southern hemisphere from pole to equator, and stretching all
octahedral facets to occupy eight identical right triangles
(extensions to the ellipsoid are described). The North pole lies at
the center of projection, while the South Pole occupies all four
corners; points along map borders are mirrored across the central
axes. After discussing its cartographic properties, ZOTs relation to
the Quaternary Triangular Mesh (QTM) global tessellation is
explored. The use of ZOT is shown to facilitate recursive definition
of QTM's geodesic graticule of nested triangles. Computationally,
this structure is handled as a quadtree, even though its elements
are triangular in shape. Basic procedures for mapping geographic
coordinates to QTM quadtree addresses via ZOT are presented and
discussed, and suggestions given for standardizing how QTM tiles
are addressed in ZOT space.

1 The author gratefully acknowledges encouragement and support for this
work from Prime Computer, Inc.

77

Polyhedral Maps

There is a family of maps called polyhedral projections that
apportion regions of Earth to coincident facets of some concentric
polyhedron. If the polyhedron is one of the five platonic solids,
these facets will be either square, pentagonal or most likely,
triangular, and all the same size and shape. While these figures
may be torn apart and unfolded in a number of ways, no regular
polyhedron beyond the tetrahedron can be unfolded to lie on the
plane in a maximally compact way; there will always be concavities
whatever arrangement of facets is used. As a consequence,
polyhedral maps tend to have convoluted, lobed shapes, rather
than fitting neatly into a rectangle, as do most projections. This
apparently frustrates cartographers, who often seem to feel that
polyhedral projections involve excessively complicated
computational procedures. This is only partly true: however odd
and enigmatic such constructions may be, they are at least regular
and enumerable.

Mapping regions of the Earth to facets of a polyhedron can
involve any of a number of map projections, the most natural of
which is the gnomic. This is one of the few projections in which all
coordinates relate to a single point of reference (the center of the
planet). Although gnomic projections are not suitable for large
areas, their distortions are quite minor when limited to the facets
of enclosing polyhedra. Most azimuthal projections (such as the
stereographic) require multiple reference points in order to portray
the entire globe. This paper describes an azimuthal mapping of of
an octahedron to a square in North polar aspect.

Projective Properties

The ZOT projection is zenithial (azimuthal) because meridians
remain straight and of constant radial spacing; longitudes may be
measured directly with a protractor. There is, however, more than
one azimuthal origin, as longitudes are only true within a
hemisphere. As the South pole is separated into four locations,
meridians in the southern hemisphere originate at each of the four
corners of the projection. ZOT also has the equidistant property;
distance between parallels is constant throughout the map. The
projection has been named orthotriangular because it maps spherical
triangles to right triangles in its domain. These properties are
evident in the world map in Figure 1. ZOT is also doubly periodic;
that is, it may be repeatedly tiled in two directions to fill a plane, as
Figure 2 illustrates.

78

6L

00 o

ZOT is neither equal-area nor conformal. Along parallels, map
scale varies inversely with latitude, with the error factor growing
from unity at the pole to V3 at the equator. This occurs because the
equilateral facets of the octahedron are mapped to right triangles,
causing their equatorial bases to expand. Along any given
meridian, map scale is constant. However, the scale varies linearly
from one meridian to the next, from unity (at 45, 135, -135 and -45
degrees) to V2 (at 0, 90,180 and -90 degrees longitude), cycling four
times around the equator. In general, there is no scale error at the
poles, a small amount in the vicinity of the 8 octa face centers and
more near their edges, being greatest along the four equatorial
edges, and increasing toward the four equatorial vertices (which
occupy the midpoints of ZOT map margins).

Despite this variability, all meridians map to straight lines
which flex at the equator, and parallels to straight lines which flex
at each 90th meridian, due to the piecewise continuous (polyhedral)
nature of the projection. In most polar azimuthal projections,
parallels map to circles or ellipses. In the orthotriangular
projection, they map to diamonds (squares). This derives from the
distance metric ("Manhattan") employed, and reflects the fact that
the projection maps a sphere to the planar facets of an octahedron.
This rectalinearity and modularity makes the projection very easy
to compute, as it permits geographic coordinates to be mapped to
the plane using linear equations, without recourse to trigonometric
formulae, square roots or, under restricted conditions, real
arithmetic.

One obvious, even disturbing, property of ZOT is the 90e
change in direction of parallels at every 90th meridian. This causes
strange distortions in the shapes in all major land masses other
than South America and Australia. Likewise, the flexing of
meridians at the equator distorts Africa and South America. The
former effect can be minimized by offsetting meridional octant
edges roughly 25Q to the West, which bisects land masses at more
natural locations. The latter effect cannot be mitigated, as the
equator cannot be shifted in any useful way. For computational
purposes ZOT's orientation is rather immaterial, but should be
standardized (see suggestion below).

Computing ZOT Coordinates

When a point is to be projected, its colatitude is multiplied by
the map scale; the product is multiplied by the point's longitudinal
displacement from the left edge of the octant and divided by 7i/2.
The result is either an x or y offset from the pole's location,
depending on the octant within which the point lies. We compute

81

the other offset by subtracting the first one from the scaled
colatitude; this fully determines the point's x,y location on the
map.The procedure's simplicity derives from using "city block"
distances (Manhattan Metric), in which distance between points is the
sum of x and y displacements, instead of Pythagorean distances. In
other words, all points along a given ZOT latitude are equidistant
from the pole closest to them (the sum of x and y is constant and
proportional to colatitude). The locus of all points along a given
latitude is a straight line cutting through the octant at 45Q (parallel
to its equatorial base); a given distance traversed along a parallel
has a size proportional to longitude, another simple linear function.
The ZOT projection for the North polar aspect may be derived as
follows:

Derivation of ZOT x.v coordinates from eeoeraphic Locations

double Plat
double Plon
double Diam
double S
double P2

Parameters:2

int OCT
double R[l]
double R[2]
double C[l]
double C[2]
int FLOPS[8]

Set uv Octant:

int
int
int
int
int
double
double
double
double

ORG
OCT
XI
X2
HS
R[X1]
R[X2]
C[X1]
C[X2]

Latitude being projected ~ In Radians
Longitude being projected - In Radians
Map diameter - Cm, inches or other linear unit
Diam / TC -- Absolute scale factor
T: / 2 - Constant for right angle

Octant occupied by point -
X-coordinate Scale factor -
Y-coordinate Scale factor -
X-coord origin for octant -
Y-coord origin for octant -
{1,1,-1,-1,-1,1,1,-D

in N, 5-8 in S Hemi
- Sign only varies by octant
- Sign only varies by octant
- Center, left or right side
- May be center, top or bottom
- Meridional edge orientations

: (P2 - Plat) div P2
= (ORG + 1) * (Plon
= 2 - ((OCT + ORG -
= 3 - XI

= 1 - (2 * ORG)
: S * FLOPS[OCT]
: - S * HS * FLOPS[9
= - ORG * R[X1]
= - ORG * R[X2]

- Map origin (0 = center, 1 = corner)
div P2) -- Octant occupied (1-8)
1) mod 2) - 1 if Lat maps to X, 2 if to Y

~ 2 if Latitude maps to X, 1 if to Y
-- Hemisphere Sign (1 in N, -1 in S)
-- X or Y factor (-R left, +R right)

- OCT] -- Y or X factor (-R top, +R bot)
- X or Y Center (Zero in N hemi)
~ Y or X Center (Zero in N hemi)

2 The parameters and variables in this algorithm are typed according to
their basic cardinalities. Certain int parameters are also used in floating point
expressions (performed in double precision, we presume); ints to can be
converted to real as one's programming environment may require.

82

Project Point:

double CLP = P2 - (HS * Plat) -- Absolute Colatitude of point
double OLP = CLP * (Plon mod P2) / P2 - Long offset (prop, to Colat)
double PX = R[X1] * abs(CLP - OLP) - Relative X or Y offset
double PY =R[X2]*OLP --Relative Y or X offset
PX = C[X1] + PX - Projected X Coordinate
PY = C[X2] + PY - Projected Y Coordinate

After initial octant setup calculations (which involve computing
only 9 numbers and, in most cases, need be done but a few times for
a given set of coordinates), the above algorithm uses 4 additions, 4
multiplications, 1 division and 2 rational function calls to map one
point from the sphere to the plane. In situations where the octant
points occupy changes frequently, setup can be table-driven based
on an octant number, just as table FLOPS provides signs of scale
factors and axis origins.

Note that while the above algorithm assumes a spherical
Earth, its principle can also be applied to ellipsoids, at the expense
of some additional arithmetic. Table FLOPS represents lengths
(unity) and orientations (sign) of edges of an octahedron enclosing
the planet. Were this object to have non-uniform semiaxes, the
entries in FLOPS would have values differing slightly from unity;
this data could be used to anchor the projection to any specified
ellipsoid. In the spherical case, one computes Y coordinates along a
line having its intercept at Plat and a slope of unity, scaling X from
Plon; for ellipsoids, the procedure involves slopes differing slightly
from unity, but is otherwise handled identically to those more
complex cases.

Related Antecedents

The ZOT is not the first world projection into a square domain
having double periodicity, nor is it the first to exploit the geometry
of the octahedron. It apparently is the first to employ a Manhattan
distance metric, and one of the few which can be constructed
without trigonometric functions (such as the Peters or
equirectangular). One of its more interesting predecessors is the
Quincuncial projection, developed in the 1870's by Charles Sanders
Peirce. Based on elliptic integrals, this remarkable and elegant
construction is conformal and doubly periodic,3 Despite its obvious
octahedral symmetry, Peirce apparently never related his projection
to polyhedra. Although widely appreciated, it fell into disuse,
although the Coast and Geodetic Survey used it in a 1947 world
navigation map (Eisele, 1963).

3 Quincunx is a Latin word meaning "arrangement of five things." Peirce's
Quincuncial projection is just that, as it places the South pole at the corners of
a square and the North pole at its center.

83

Also related to ZOT is Cahill's Butterfly projection (Fisher and
Miller, 1944), an interrupted conformal projection of the globe onto
eight triangular facets arranged in a butterfly-like shape. In each of
its octants, the equator and central meridian are straight and all
other meridians and parallels bow outward. As a result, assembly
of the Butterfly results in a lumpy shape somewhere in between an
octahedron and or a sphere. Also, indexing map locations is
complicated both by the mathematics required for the Butterfly
projection and the arrangement of its facets.

Buckminster Fuller's Dymaxion projection dates from the 1940's
and seems to have undergone a metamorphosis from an initial
cuboctahedron basis4 to the icosahedral form of the version
currently marketed (Life, 1943; Fisher and Miller, 1944; Fuller,
1982). Fuller's and Cahill's motivations seem to have been similar
in producing these projections; to minimize scale errors and to
exploit polyhedral geometry to produce a globe that can be folded
from a single sheet of paper. Fuller was keen on using his
projection to convey thematic data about "Spaceship Earth", (he
envisioned a large Dymaxion geodesic globe studded with
computer-controlled miniature lamps to depict global statistical
data, but seems never to have done this). Most versions of the
Dymaxion employ gnomic projections.

The "polygnomic" world projection onto an icosahedron may
have first been realized by Fisher (Fisher, 1943), even though Fuller
enjoyed taking credit for it. Indeed, the idea (if not its execution)
can be traced back to the work of Albrecht Diirer in the sixteenth
century (Fisher and Miller, 1943, p. 92). This invention suited
Fuller's purposes perfectly, as it represents chords of great circles
with straight lines, like the struts of one of his geodesic domes.
ZOT, however, is not polygnomic; it is oriented to the poles, not to
the center of the Earth. Consequently, most great circles are not
straight lines in ZOT space (but the equator and all meridians are).

4 A cuboctahedron is a 14-sided polyhedron having 8 triangular and 6
square facets. Unlike the five regular polyhedra, the facets are tangent to two
concentric spheres, complicating construction or calculation of features that
cross facet edges.

84

Error Adjustment

Nearly any area or distance measured from an ZOT projection
will be incorrect by as much as a factor of two. As it is almost as
simple to calculate the scale error at any point as it is to compute
coordinates, and only slightly harder to derive the error involved
when distances between points or polygonal areas are computed
(with cases involving more than one octant presenting the most
complexity). This means that size and distance calculations may be
corrected as required; the greater the precision, the greater the
cost. Tables can be developed to facilitate such corrections.

Polyhedral Addressing

ZOT is not esthetically pleasing, especially in comparison to the
sweeping curves of Peirce's Quincuncial. ZOT generates angular
discontinuities at octant boundaries, violating a number of
cartographic precepts. No claim is made for it as an optimal visual
matrix for presenting global spatial data. Still, ZOT projection may
have considerable computational utility when applied to tessellated
polyhedra embedded in a well-defined spherical manifold, as the
following section explains.

The best uses for ZOT may be those which capitalize on its
computational simplicity. In particular, there is a strong affinity
between ZOT and the geometry of the Quaternary Triangular
Mesh (QTM) global location coding model (Dutton, 1989;
Goodchild and Yang, 1989). Figure 3 and Figure 4 illustrate how
QTM's recursive subdivision of octahedral facets into four tiles
each is mapped to a completely regular mesh of right triangles
when projected via ZOT. This mesh densifies in the same manner
as a rectangular quadtree does, but also includes diagonal elements
(parallels of latitude). Note how each triangle's edges split in half,
and how its hypotenuse follows a particular latitude. This may be
exploited to derive QTM facet addresses from latitude and
longitude, as Figure 5 shows.

The arithmetic used in this procedure consists of testing sums
and differences of x and y displacements against one parameter
(s/2 in fig. 5) that is constant for all QTM tiles at a given level of
detail. In addition, the algorithm needs to know the '"basis number"
of each node (vertex) in the QTM network in order to assign a
QTM ID to every tile in the hierarchy; each vertex is identified with
a 1-node, 2-node or 3-node (its basis number), and all higher-level
nodes at a particular location continue to manifest its original basis
number. This digit is common to all four QTM cells surrounding
each octa vertex, and all six cells that surround the nodes that
appear in subsequent subdivisions. Central (0) cells are associated

85

86

Z.8

with no node, but their vertices (and subsequent cells that surround
them) themselves have node identifiers.

To map geographic coordinates to QTM identifiers, an
additional procedure is therefore needed: one which identifies the
"pole node"5 (the right-angled vertex) of each QTM cell, and also
assigns correct basis numbers to all three nodes (pole nodes can
have IDs of 1, 2 or 3). This is a property not of the ZOT projection
itself, but of the sequencing of 1- 2- and 3-cells at each level in the
tessellation, which may be done as specified here, as Goodchild and
Yang (1989) describe,6 or in some other way. Another aspect of
navigating QTM which must be parametrized is the geometric
orientation of principle axes with respect to the pole node of each
facet, which can be either of two arrangements per octant, one for
ID's 1, 2 and 3, the other involving ID's of zero. When a point
occupies a central (0) facet, the facet's orientation inverts, rotating
180 degrees. This new arrangement persists until a zero ID recurs,
at which point the facet shrinks by 50 percent and flips into the
other orientation. The rule is: all facets within a given octant share
its orientation unless their QTM codes contain an odd number of zeros;
in such cases the current x and y scale factors interchange and change
sign.

When a 0-tile comes into being, its pole node is a reflection of,
and has the same ID as its parent QTM facet's pole node. What
had been half of its parent's x-extent becomes the 0-tile's y-extent,
and vice versa. In cases where the child tile is in the triangle
dominated by the parent's pole node, its ID will be the same as its
parent's. In either of the remaining two (nonzero) cases, the ID of
the child's pole node flips from that of the node to which it is
closest to that of the other non-pole node. Once embedded in the
ZOT plane, transitioning to certain QTM ID's involves horizontal
displacement, while vertical movement is used to reach others (x
and y in ZOT space; see Figure 5). Three of the six possible
arrangements of nodes within an octant are enumerated in Table 1
and diagramed in Figure 6.

5 This is the local origin of each facet, the vertex in the QTM mesh that, as
projected via ZOT, has edges that all meet at right angles. Local ZOT distances
are measured with respect to this origin, which moves each time a QTM ID
assumes a new value.

6 Goodchild and Yang number the tiles their mesh from 0 to 3 in one of
two patterns that spiral out from the the central (0) tile first either North or
South (1), then Southwest or Northwest (2), then East (3). While this scheme
may simplify trilocation (generating tile IDs), it lacks one important property:
There is no correspondence between tile ID's and vertex basis numbers; this
makes it more difficult to relate tiles to the nodes they surround (their QTM
Attractors).

One derives QTM code digits
recursively by, at each level,
identifying which of four tiles
encloses a point occupying
latitude (0) and longitude (x).
This position is referenced to a
local origin ("pole"), yielding 30
and dx (angular displacements
within a QTM cell). The number
returned identifies the closest
QTM attractor (node).

s = 90.; side length in degrees
s/2 = 45.; half side length
dy = 30; latitude change from origin
dx = 3x - dy; other coordinate
If (dx+dy) < s/2 then return (1);
If dy> s/2 then return (2);
if dx > s/2 then return (3);
else return (0);

Get s; the length of triangle legs.
Get s/2; half of s.
Get dx; point x-offset from origin
Get dy; point y-offset from origin
{s is angular; := 180 / (2 A level),

as measured from pole}
{dx & dy are also angular offsets}

89

Table 1

Basis numbers of nodes of children of an octa facet

(3 of 6 orientations)

OTM Tile

Parent
0
1
2
3

OTM Tile

Parent
0
1
2
3

OTM Tile

Parent
0
1
2
3

Pole

1
1
1
3
2

Pole

2
2
3
2
1

Pole

3
3
2
1
3

- Figure 6

- Figure 6c

- Figure 6d

Note how in each case, if a point lies nearest the parent's pole
node, the child will have the same pole, but the x-node and the y-
nodes interchange ID's.

Computational Properties

Because planar geometries are generally much more straight
forward than spherical ones, it is almost always easier to compute
relations such as distances, azimuths and polygon containment on
the plane rather than on the sphere. The former may involve
square roots and occasional trig functions, but rarely to the degree
demanded by geographic coordinates, where spherical
trigonometry must be used no matter what ranges may be involved
(unless approximations will suffice). Polyhedral geometry, being
closed and faceted, is globally spherical but locally planar. The
maximum practical extent of localities varies, both in cartesian and
faceted cases, according to the projection employed (for cartesian
coordinates) or the type and level of breakdown (for hierarchical
polyhedral tessellations).

One essential operation that ZOT can facilitate is computing
polyhedral facet addresses (geocodes) from geographic coordinates.
Called trilocation (Dutton, 1984), it recursively identifies the ID's of

91

tiles containing a given location, generating a sequence of L 2-bit
codes, where L is the depth of recursion. The simplest general
algorithm for trilocating a point in QTM determines which of four
tiles it is in by comparing squared distance from the specified point
to the centroids of the central QTM tile and each of the three outer
ones to find the closest one; this requires 1 to 3 squared distance
computations and comparisons per level, or O (2L) comparisons per
point. If performed in global space, great circle distances are
needed, but in the plane cartesian distances will suffice (in neither
case need square roots be extracted, as we need only order
distances, not measure their absolute magnitudes). In ZOT space,
computing a QTM ID requires only one addition, one subtraction, and
one, two or three tests of inequality, as demonstrated in Figure 5.

ZOT casts trilocation into a well-defined planar geometry
where triangular cells can be efficiently identified. Moreover, one
may compute facet ID's to 15 levels of detail using coordinates
stored as 32-bit integers (attempting greater precision would cause
overflows and aliasing of IDs beyond the 15th level). Projecting
candidate points from longitude and latitude into ZOT coordinates
only involves solving several linear equations per point. ZOT
distances order themselves the same as geodesic distances, and as
just described, are much easier to compute.

Orientation Options

The ZOT projection has been shown in a specific orientation
throughout this paper. As mentioned above, it is trivial to rotate
the Prime Meridian to cross any point on the equator. This
relocates four QTM cardinal points and all octant boundaries; one
may be tempted to do so to avoid spreading areas of interest over
more than one or two octants. Such schemes are always to the
advantage of certain territories at the expense of others. Such
suboptimizations are probably self-defeating, and in any case
violate the spirit of the model: QTM can best identify locations on
a planet if its mesh is embedded in a particular manifold
(topological reference surface) in an agreed-upon way. Differently-
oriented manifolds generate different QTM codes for the same
location; this complicates spatial analysis, as codes from QTM
model variants that do not share a common orientation are not
commensurate, even when they represent identical locations.

QTM isn't very useful unless it is standardized, as are latitude
and longitude. If nothing else, QTM is a coordinate system,
designed to recursively encode (at some specified precision)
locations on planets into unique triangular facets. It is therefore
desirable that all QTM codes having a given address map to the
same location on a planet, no matter who specified the address,

92

where they came from or for what purpose. This implies that
certain areas will always be inconveniently split by octant
boundaries. Such situations can be handled by methods which knit
facets together along octant edges, such as associating them with
QTM attractors7 (which as figure 3 shows, follow the same pattern
in all eight octants). Were everyone who used the framework to
agree on how to orient it, all their QTM codes would also agree.
Little additional data (mainly an ellipsoid model) is required beyond
a common definition of the octahedron's orientation to the planet
concerned.

Table 2 proposes a standard way to orient QTM to ZOT, used
in illustrating this essay. It is defined by three parameters that
relate QTM nodes to ZOT space: (1) The projection's aspect (North
polar); (2) the longitudinal offset, if any, for the prime meridian (0Q);
(3) the cardinal direction from the central axis along which the
prime meridian runs (-Y). If the geographic North and South poles
are assigned ID's of 1, and the intersection of the equator with
longitude 0Q and 180e are labeled 2, the remaining two octahedral
nodes (where the equator and longitudes -90Q and 90Q cross)
therefore have ID's of 3. This fully defines the basis number of
every node in the entire QTM hierarchy. The ZOT coordinates for x
and y nodes are given in terms of the map radius (which is the
length of octahedral edges as projected). These are either zero, or
plus or minus unity.

7 QTM nodes are also called attractors because all coordinates in the vicinity
of a node alias to it, hence can be thought of as being attracted to that location.
All QTM nodes beyond the original six octahedral vertices propagate their ID
to six surrounding tiles, and all coordinates falling within those tiles are
associated with the attracting node.

93

Table 2a

Proposed QTM Orientation Standard for Octa Vertices

(Octa vertices define 3 orthogonal axes
upon which all QTM codes are based)

Latitude Longitude Pole

90 N
90 S
0 N/S
0 N/S
0 N/S
0 N/S

(0)
(0)
0 E/W

180 E/W
90 E
90 W

1
1
2
2
3
3

0
 1
'0

0
1

-1

0
 1
1

-1

0
0

Table 2b

Proposed QTM Orientation Standard for Octa Facets

(-x = left; +x right; -y up; +y down w.r.t. Pole node,
Signs are descriptive only; node IDs are positive)

Octant N/S Pole X-ID Y-ID

1
2
3
4
5
6
7

N
N
N
N
S
S
S

1
1
1
1
1
1
1

3
3

-3
-3
-2
-2

2

2
-2
-2

2
-3

3
3

8 S 1 2 -3

Projected Implications

It is not foreseen that zenithial orthotriangular projection will
ever be widely employed in published maps. ZOT is too peculiar to
serve as an aid to navigation or to be used to convey thematic data
(unless its double periodicity can be exploited) 8. What it offers,
however, is a computational shortcut for spatially indexing
locations on a planet. This approach follows the lead of Lucas
(1979), Diaz and Bell (1986) and others in attempting to define
special arithmetics for tessellated spatial data in order to take
advantage of properties of particular tessellations. Although the
spaces in which most such arithmetics operate cannot be visualized
as readily as ZOT space can, tessellar methods can have
considerably higher computational efficiencies than standard
geometric calculations.

8 One might convey bivariate (or even trivariate) attribute data using a
tiling of ZOT maps (as Figure 2 shows). For example, a thematic variate, such
as population densities, could be displayed in a grid of M maps across, each
column representing a different date in history (e.g., 1950,1970 and 1990); each
of N rows of the grid might display a different spatial resolution (one could
display densities computed over the areas each nation, province or canton,
one row for each scale).

94

ZOT can greatly simplify repetitive geometric operations in a
quaternary triangular mesh, as we have tried to describe. QTM
facets are optimally arrayed in ZOT space, and their addresses are
highly tractable to compute. Deriving QTM ID's from geographic
coordinates via ZOT is algorithmically inexpensive, growing more
or less as O(L logL). So, ZOT may prove to be a useful cartographic
abstraction, at least to the extent that QTM is a felicitous
framework for spatial data.

References

Diaz, B. and S. Bell, 1986; Spatial data processing using tesseral methods,
Proc. Tesseral Workshops 1 and 2 (1984 and 1986). U. of Reading, UK:
NERC Unit for Thematic Information Systems.

Dutton, G.H., 1984; Geodesic modelling of planetary relief,
Cartographica. Monograph 32-33, vol. 21, no. 2&3, ps. 188-207.

Dutton, G.H., 1989; Modelling locational uncertainty via hierarchical
tessellation; M. Goodchild and S. Gopal, eds., Accuracy of Spatial
Databases. London: Taylor & Francis, ps. 125-140.

Eisele, C, 1963; Charles S. Pierce and the problem of map-projection;
Proc. Amer. Philo. Soc., vol. 107. no. 4, ps. 299-307.

Fisher, I., 1942; A world map on a regular icosahedron by gnomic projection,
Geographical Review, October, pp. 605-619.

Fisher, I. and O.M. Miller, 1944; World maps and globes.
New York: Essential Books.

Fuller, R.B., 1982; Synergetics: Explorations in the geometry of thinking,
New York: Macmillan, 2 vols.

Goodchild, M. and S. Yang, 1989; A hierarchical spatial data structure for
global geographic information systems. Santa Barbara, CA:
NCGIA tech. paper 89-5.

Life, March 1,1943; article about Buckminster Fuller's Dymaxion Globe.

Lucas, D., 1979; A Multiplication in N-space. Proc. Amer. Math. Soc.
Vol 74, no. 1.

95

DETECTING FEATURES IN
LOW RESOLUTION AERIAL IMAGES OF CITY BLOCKS

Bill Sakoda
Joseph G. Hauk

Computer Science Department
State University of NY at Stony Brook

Stony Brook NY 11794
and

Grumman Data Systems
1000 Woodbury Road

D12-237
Woodbury NY 11797

Contact: Bill Sakoda
wjs@sbcs.sunysb.edu

(516) 632-8439

ABSTRACT

This project is a case study of extraction of roads and houses from low-
resolution infrared aerial photographs of city block areas. Houses and roads
are about 2 pixels wide. Infrared renders houses, connecting driveways, and
roads light, with significant blurring. The situation is challenging because of
the similar imaging of the objects of interest and the low resolution.

We show how to combine regions from thesholding, a residual-based
edgefinder, and spot (house) identification through a modified Gaussian curva
ture to obtain road networks and houses. A tree growing procedure for aggre
gating points in the plane is developed, and applied to find smooth trajectories
through detected building locations, yielding rows of houses along roads. In
addition to proposing a practical method for this problem domain, we hope
that this and similar studies contribute to development of techniques for low-
level feature extraction and methods for combining them.

INTRODUCTION

This project is a case study of extraction of roads and houses from low-
resolution infrared aerial photographs of city block areas. Houses and roads
are about 2 pixels wide. Infrared renders houses, connecting driveways, and

Presented at Auto Carto 10, March 23-29 1991, Baltimore MD.

96

roads light, with significant blurring. The situation is challenging because of
the similar imaging of the objects of interest and the low resolution. We are
interested in extracting maximum information from low resolution data
because this reduces the number of images that need be captured, and because
in surveillance applications, low resolution data may be all that are available.

We show how to combine regions from thesholding, a residual-based
edgefinder, and spot (house) identification through a modified Gaussian curva
ture to obtain road networks and houses. A spanning-tree-based procedure for
sending smooth paths through points is developed. Such a procedure has
numerous applications because significant physical objects tend to have
smooth boundaries, while feature detectors often produce fragments. One can
deduce the boundaries by reassembling the fragments. This module is tested
by applying it to house locations, yielding rows of houses along roads. In
addition to proposing a practical method for this problem domain, we hope
that this and similar studies contribute to development of techniques for low-
level feature extraction and methods for combining them.

Figure 1 summarizes our results.

PREVIOUS WORK

There has been much work in this area, due to the variety and volume of data
awaiting availability of practical systems, and suitability of numerous sub-
domains as testbeds for different techniques.

Emphasis of work in the area includes low-level primitives (Nevada and Babu
1980), detection of cultural objects by rectangular or smoothly curving con
tours (Fua and Hanson 1987), complete systems based on applying special
knowledge of particular sub-domains (Huertas et. al. 1987), and general
mechanisms for applying knowledge constraints (McKeown et. al. 1985).
Most work spans the range from use of low level vision to acquire basic data,
to application of domain-specific knowledge, whether it be applied as a special
case or through a general mechanism. It is typical for authors to comment on
special characteristics making their domain challenging to automatic analysis.
The present study considers a particular sub-domain - low resolution infrared
city blocks ~ and shows how mathematically well-behaved primitives can be
used in conjunction with world constraints to extract features. A general sys
tem will function most efficiently with a library of such sub-domains and a
kernel of mathematically precise low-level detectors. Binford (1982) argues
lucidly that success in large domains using model-based analysis will require
strong low-level modules.

97

Figure la. Source picture CIRCLE.
128 by 128.

Figure Ib. Features located in CIR
CLE. Straight line segments from
roads are plotted different shades of
gray. Isolated black dots are build
ings.

Figure Ic. Picture BLOCK. House
Locations found via gaussian curva
ture marked black. Source image is
128x128.

Figure Id. House grouping results
from BLOCK after line fitting (shown
in black). Results of road extraction
algorithm are shown in grey.

Figure 1: Summary of road and building extraction techniques.

Cultural Feature Detection
Huertas, Cole and Nevatia (1987) demonstrated a system for detection of air
port runways from very high resolution photographs. This work showed a nice
balance of simple but well-considered low (lines) and middle (APAR) level

98

vision, use of hand-tooled high level constraints from the problem domain, and
a working demonstration. APARS are approximately parallel edges of oppo
site contrast (Anti-PARallel), useful for detecting bars or slowly varying rib
bon shapes against a contrasting background. They point out that while run
ways are essentially elongated rectangles, the problem is very challenging
because of runway markings, non-uniformity of runway surface (oil spots and
shoulders), repair work, vehicles on the tarmac, and intersections. LINEAR
(Nevada and Babu 1980) is used to produce line segments and APARS. A
variety of 5 by 5 masks are used to detect edges, which are then thresholded,
thinned, linked, and approximated as piecewise linear. APARS are then
identified. APAR-based approaches tend to produce many false candidates,
especially when a feature has parallel sub-features (eg lines down a runway),
and each line can then contributes to many APARS. This is handled by histo-
gramming APAR widths, and selecting candidates with widths appropriate for
runways, shoulders and markings. APARS are joined by analyzing continuity,
collinearity, and gap texture. Finally, hypotheses of positioning of runway
subfeatures are verified from FA A specifications.

Fua and Hanson (1985) used parallel and perpendicular line segments to locate
cultural objects in high resolution images. Undersegmentation was resolved
by using linking to connect almost-collinear lines, complete corners, and close
open-ended U's and parallels. Subsequently (Fua and Hanson 1987), they pro
posed detecting roads by using linear edge segments to calculate road width
and center; fitting a spline to the center; then using the center spline to locate
splines for each side of the road. This allows the road to be continued even
when one side is lost due to imaging conditions, occlusion, junctions.

Pavlidis and Liow (Pavlidis and Liow 1988) detected regions by following an
oversegmented split-and-merge phase with boundary and edge modification
based on contrast, boundary smoothness, and image gradient along boundaries.

The integration of top-down and bottom-up analysis has been advocated by
many authors. In particular, Matsuyama (1987) presented an image under
standing system that generates hypotheses to test for the existence and location
objects, according to the results of low-level vision techniques.

Similarly, Nicolin and Gabler (1987) demonstrated a knowledge-based system
for interpretation of aerial images of suburban scenes. Their system is divided
into several functional units. One unit contains a methods base of low-level
image processing techniques and a second unit contains a knowledge base for
suburban scenes. The system's control module uses the knowledge base to
decide which techniques from the methods base should be applied to the
image.

McKeown and Denlinger (1988) constructed a system for high-resolution
imagery based on cooperation between a surface correlation tracker and edge
tracing. They detect edges using a 5 by 5 Sobel gradient. The correlation
tracker, after a design of Quam (1978), looks for patterns such as lane markers

and wear patterns. Starting position of the road, its direction, and width are
assumed given. The hypothesized road trajectory is tested by pushing a cross-
section of the road forward and testing for cross-correlation.

Aviad and Carnine (1988) presented a method for generating hypotheses for
fragments of roads, intended to be fed to a road tracker. The Nevatia and
Babu (1980) edge finder is used, followed by Road Center Hypothesis detec
tion by antiparallel edges. RCH's are then aggregated by a greedy linker.
This is followed by editing by a smoothness checker, and a final linking.

Point Grouping
In our paper, we examine how to group points in the plane (houses locations)
into smoothly varying curves that will lend insight into the feature composi
tion of an aerial image. Zahn (1971) applied graph theoretic algorithms to
detection of clusters in arbitrary point patterns. By constructing a minimal
spanning tree, he is able to cluster dots into groups according to their point
density, measured by calculating the local average length of the spanning
tree's edges. A histogram of the local point densities is then calculated and
categorized. All edges having neighbors of two (or more) different point den
sity categories are deleted. The resulting graph contains a spanning tree for
each point cluster.

Stevens (1978) showed that orientation patterns in a field of random dots
can be detected by the use of a local support algorithm. Local orientation is
found by drawing virtual lines between neighboring points and then searching
for the predominant orientation of the virtual lines. For example, Stevens'
algorithm can deduce local relationships in a pattern consisting of an original
set of random dots together with a duplicated translation, or with a duplicated
set expanded about a center. It will also group isolated one-dimensional
curves. Since it finds the major orientation in two-dimensional neighbor
hoods, it is not well suited to grouping houses, where there are nearby linear
strings of different orientation. Likewise, Zucker (1985) presented an
orientation-based process to infer contours from a collection of dots by locally
finding the tangent fields.

Tuceryan and Ahuja (1987) performed clustering and linking according to
properties of the Voronoi polygons induced by the dots, including area, eccen
tricity, isotropicity, and elongation. For example, dots around the boundary of
a cluster can be identified because they are eccentric within their polygons.

Vistnes (1987) used a statistical model for the detection of dotted lines
and curves embedded in a random dot field. His model is based on a local
operator that detects regions of differing dot densities.

ROAD AND HOUSE DETECTION

The goal of this phase is efficient generation of a map of as many of the main
roads and houses as possible. When in doubt we are conservative, identify-

100

ing those features in which we have high confidence. We pay particular atten
tion to connectivity of the road networks as this is a key semantic feature.

APARS tend to produce disconnected representations at junctions, (e.g., at a Y
junction in a road) since the generating parallel edges do not continue all the
way to the center of the junction. In contrast thinning naturally preserves the
connectivity at the junction. Centers between APARS are much less sensitive
to small glitches in data than thinning in finding skeletons for wide objects,
but thinning is suitable for the present domain because features are only a few
pixels wide. These data are a difficult (though possibly feasible) case for edge
linking and APAR detection because very close proximity of houses causes
the edge-finder to wander. Our greedy thresholding quickly and simply yields
good connectivity over large segments.
Road and house detection runs in 6 steps.

1. (Greedy thresholding): Undersegmented regions consisting of houses,
roads driveways, and some adjoining areas are thresholded from the
source.
2. (Residual edge cutting): The Lee/Pavlidis/Huang (1988) residual
edgefinder is tuned to handle these small-scale data, and edges are used to
further segment the regions.
3. (Thinning and small component removal): Resulting regions are
thinned. Thinning is careful to respect connectivity, which can now be
deduced by local analysis of neighbors. Small components are removed.
4. (Gaussian curvature spot detector): A modified Gaussian curvature
spot detector is applied, yielding most house positions.
5. (Trimming): House locations and connectivity of the road network are
used to trim the network down to major roads.
6. (Line fitting): The network is decomposed into line segments.

Thresholding
This data set is interesting because neither the regions from thresholding nor
edgefinding by themselves yield adequate information about the road net
works. A greedy threshold does maintain good connectivity, but blurs the
houses into the roads. Adjacent houses blur together, mimicking the linear
structure of the roads. More conservative thresholds curtail this aggregation
somewhat, but even when the threshold is reduced to the point where the roads
begin to disconnect, significant aggregation of distinct features remains. Fig
ure 2 shows the regions obtained at 2 threshold values.

Edgefinding
Our edgefinder is based on the residual technique of Lee, Pavlidis and Huang
(1988). They detect edges as zero-crossings of the difference between source
image and a regularization of the image. We found that effects of small varia
tions in the image were reduced by applying a mild smoothing to the image
first. So, edges are the zero-crossings of the difference of a mildly regularized

101

(2 a) Image CIRCLE threshold > 80 (2 b) CIRCLE threshold > 110

Figure 2: A greedy theshold yield excellent road connectivity but blurs houses into
roads. More conservative thresholds yield neater road segments, but leave gaps,
eliminate small roads, and still leave some building and driveways attached. We
take the undersegmented greedy image and use edges to refine it.

image ((5= 5.0), and a smoother image (p= 1.0). Zero-crossings are thres-
holded by slope.

We compared Canny and residual edgefinders at different resolutions. The
residual finder tended to generate more closed or almost-closed contours
around small features like houses, which is especially useful in the trimming
technique we are using. Figure 3 shows Canny and residual edges.

A common method for recording an edge map is to mark edge pixels on a ras
ter the same size as the source image. Here one might choose to mark the
edge on the darker side, the lighter side, or on the side nearer zero. Doing so
in this case blurs nearby linear features (eg adjacent roads) together. For
tunately zero-crossings have more structure than this - they form contours. A
zero-crossing falls between raster positions having positive and negative resi
dual values. We use a zero-crossing tracker which walks this boundary, break
ing zero-crossing contours into smooth segments. A raster twice the size of
the source is used, with cells having even coordinates holding the source pic
ture, and with zero-crossing information stored between.

This data structure is now used to prune the regions. Since we are trying to
preserve the lighter structures, the zero crossing segment walker sets every
pixel on the darker side of a zero-crossing to black. This corresponds to a cut
when lighter areas are chosen by thresholding. Figure 4 shows the result of
removing edge points.

102

MJgjT^I
;zScJ?-£s

(3 a) Edges from residual edge finder
for image CIRCLE

(3 b) Canny edges, a = 1.0

Figure 3: Residual and Canny edges. Stronger edges are plotted darker. We found
that the residual edges yielded more road boundaries, and tended to trace closed
contours around houses.

(4 a) Image CIRCLE with edge points
removed (black)

(4 b) Image CIRCLE: edge points
removed from greedy threshold

Figure 4: Tnresholded regions have good connectivity; Edges are sparse but have
good spatial accuracy.

Residual edges in this example accurately delineate many physically
significant boundaries but are sparse and would present a difficult case for a
purely edge-based technique. A purely edge-based analysis might be possible
and would be very interesting.

103

Thinning
The image is thinned (Pavlidis 1982), and small components are removed.
The results are in Figure 5.

Figure 5: Image CIRCLE after thin
ning and removal of small components

Gaussian curvature spot finder
Gaussian curvature can be used to construct an efficient operator which
responds strongly to small bright spots (eg, houses around 2-3 pixels wide, as
they are in our source image), but does not respond to straight edge data
(roads).

Gaussian curvature of the gray level picture g(x,y) is given by:

9* 2 9jg2
3*2 3v2

1 + dg
ox

-\2

dxdy

2
+ dg

dy

2

o4s

(See, e.g., Spivak (1970) or Horn (1986). We have been using the numerator
of this expression to locate spots. It can be rewritten:

By
x By Bx ' By

In this rendering as cross-product of directional derivatives of gradient vectors
we can see directly why there is no response to straight edges. All gradients
point normal to the direction of the edge. Therefore derivatives also point in
this direction, yielding a zero cross-product. This quantity is invariant of

104

orientation of the coordinate system because the Gaussian curvature and
denominator both are invariant.

In discrete image space at point (x , y) this curvature c can be computed as:

- \8x-l, y+l ~ 8x-l,y-l

d_sq_x = gx+i >y + gx-i,y -2gx ,y
d_Sqj> = gx,y+l+gx,y-l-2gx,y

c = d_sq_x • d_sq_y -

Our Gaussian curvature module finds bright spots by first convolving the input
picture with a gaussian; then finding points of high curvature. A spot is
reported at locations whose curvature is greater than a specified threshold, and
not less than the curvature of its 4 compass neighbors. This tends to mark a
single pixel for each bright spot. Figure Ic shows the results of the Gaussian
curvature operator.

Trimming via Connectivity analysis
At this point the constructed network has much of the connectivity structure of
the underlying roads. Junctions can be located by locally counting neighbors.
One must allow for diagonal connectivity to a neighbor if there is no 4-
connectivity, as in Figure 6(a). Junctions of degree greater than 3 may be
spread over neighboring pixels (Figure 6b).

(a) (b)

Figure 6: (a): In looking for junctions, cell "a" should count "n" as a neighbor
only if neither of their common 4-neighbors is occupied, (b): When > 4 roads
meet, the junction can be spread over nearby cells.

105

Strings of nearby houses tend to blur together, producing linear bright strips
which mimic road structure. A two-stage preening is now undertaken to elim
inate these. First, starting from each house point, road pixels are deleted back
up to a distance 7, but not past junctions. Stopping at junctions deletes drive
ways up to a main road without interrupting it. Then short stubs are deleted,
by starting at endpoints and looking for a junction within 5 pixels. If a junc
tion is found, the segment from the endpoint the junction is deleted. Figure 7
shows the results.

(7 a) Source picture ANGLE; 70 by
80. May be better viewed from a dis
tance (like Harmon's Abraham Lin
coln).

(7 b) Spots from Gaussian curvature
detector in white. Linear segments
attached to houses, to be deleted, in
black.

(7 c) Remaining short stubs to be
deleted.

(7 d) Final results after line fitting.

Figure 7: Deletion of driveways and aggregated houses. Starting from house
locations, road pixels are traced and deleted up to distance 7, but not past
junctions, (b): Result after thresholding, edge cutting, thinning, small com
ponent deletion, with road segments to be deleted in black, (c): Remaining
short stubs to be deleted, in black.

106

Line Fitting
Straight lines are fit to the thinned segments by testing line segments between
successively more distant data points, and breaking at points of sufficiently
large maximum distance between the test line and data (Pavlidis 1988b).

DOT GROUPING

In this section, we develop an algorithm for grouping points in two-
dimensional Euclidean space, and apply it to detecting the curvilinear structure
of houses lying beside roads. The algorithm takes as input a set V of points
from R 2 (the detected locations of houses in our application), and constructs a
forest joining certain vertices in V. The forest is grown as a sequence of trees,
and each tree is grown by adding edges. The cost metric C(T,v,w) designates
the cost, possibly , of adding edge (v,w) to the partially constructed tree T.
The algorithm is structurally similar to Prim's (1957) greedy algorithm for
constructing a minimum cost spanning tree. Our model differs in allowing the
metric to be a function of the partially constructed tree. A great deal of con
trol over the grouping can be exercised by varying the metric.

Grouping algorithm
Let TI j denote the i-th tree after ;' edges have been added.

1) (Start a new tree): Let i be the number of trees constructed so far.
We let Tj+1,1 consist of the edge joining a pair of vertices at minimum
Euclidean distance, among all vertices not contained in any tree. If no
edge is found, the construction is complete.

2) (Grow the current tree): Among all vertices w not in any current
tree, and all vertices v in the current tree 7,-, find a pair (VQ,WQ) minim
izing C(T,,v 0,H'o). Add it to T, and iterate this step. If no finite-cost
addition can be found, go to (1) to start the next tree.

We have found it computationally and semantically advantageous to disallow
edges longer than a parameter D max. This can be subsumed in the model by
assigning any edge of length greater than D max infinite cost, and leads to an
implementation where vertices can be assigned to local buckets of size 2D max
by 2D max, and search for an appropriate neighbor of vertex v can be con
strained to at most 4 buckets.

We now demonstrate how our state-dependent metric can be used to advan
tage. Let

CPci«rv* 1a(7',v,w) = 0, * Dist (v ,w) + (1 -cc) * angle (T ,v ,w) .

angle(T,v,w) is the absolute value of the angle (in degrees) that is formed
between the new branch and the neighboring branch (already included in the
current tree T) having the most similar orientation. Parameter a determines

107

the relative weighting between orientation and proximity, with a = 1 being the
simple minimum Euclidean distance metric. The value a= .9 has produced
good results in grouping houses in this dataset.

Figure 8a. Example 1: Minimum Figure 8b. Example 1: Tree con-
Euclidean distance spanning tree. structed by orientation-sensitive

metric CCMn,g>a= .9

Figure 8c. Example 2: Minimum Figure 8d. Example 2: Tree con-
Euclidean distance spanning tree. structed by orientation-sensitive

metric Ccurve>ot= .9

Figure 8: Two examples of smooth curve tracking ability of the orientation sen
sitive metric. Left column shows the minimum cost spanning tree under the
Euclidean metric; right column shows the metric Cc«m;,a=.9 combining distance
and change in orientation.

108

Figure 8 shows how use of orientation information can assist in tracking
smooth intersecting curves: Ccum>,o=.9 follows the curves (Figure 8 b, d) better
than the pure proximity-based metric (Figure 8 a, c).

Figure 9a shows the result of applying CCUrve,a=.9 to detected building locations
in our dataset. Much of the linear structure of the house groups is captured,
but some of the branches selected do not lie parallel to the nearby road but
instead cross perpendicular to it. This occurs when houses on opposite sides
of the same street are close enough to form a link. These stubs can be avoided
by looking ahead for a smooth extrapolation: if we are trying to extend from
vertex v in the current tree to a new vertex w , the extension is allowed only if
there is an additional vertex x with the angle between (v,w) and (wjc) close to
180 degrees. This yields a new cost metric:

Cbokahead,a,e(T ,V ,VV) =

C curve ,a(T ,v ,w) if there exists a vertex x, with the angle
between (v ,w) and (wjc) differing
from 180 degrees by at most e;

<» otherwise.

This metric prevents the growth of branches that form stubs, but keeps corners
and crossings intact as shown in Figure 9.

Figure 9a. Ccurve,a=.9 tracks curves
well, but tends to generate short cross
links between segments.

Figure 9b. C/oo^^ a=9 inhibits
cross links by requiring that there be
at least 2 adjacent edges lying nearly
along a straight line.

109

Finally, we calculate the two most frequently occurring house link orientations
and delete any links whose orientation differs significantly. This is reasonable
since communities generally have roads that run in two primary directions.
Then a simple line fitting program (Pavlidis 1988) is used to straighten the
house clusters. The house clustering results together with the results of the
road extraction algorithm are shown in Figure 1.

Future work on clustering
The next step would be to integrate the roadfinding with building grouping.
Our building groups occasionally cross roads, and this could be inhibited.
Where houses are relatively sparse the roadfinder alone tends to work well.
With dense houses, the similarity of house and road imaging tends to compli
cate the roadfinding, but the houses group well, providing additional semantic
clues. Grouping algorithms tend to be more tolerant to noise in the case of
high density. The algorithms should synergize well, as in most places they
agree, but there are places in the image where one algorithm has strongly
located a road (or road segment) in which the other algorithm has difficulty or
misses completely.

SUMMARY

The residual edge-finder tends to produce strong contours around small
objects. For this data set, these edges can be used to significantly improve seg
mentation of low resolution road networks obtained from thresholding. A
variant of Gaussian curvature is effective in locating buildings. We have
developed a spanning tree technique sensitive to angles between branches, and
shown it to be effective in detecting smoothly varying trajectories through
given points.

ACKNOWLDEGEMENTS

We are grateful to Dr. Herb Tesser for suggesting this problem, and to Theo
Pavlidis for many useful discussions and suggestions.

REFERENCES

Aviad, A. and Carnine, P. D. Jr (June 1988): "Road Finding for Road-
Network Extraction," Proceedings: IEEE CVPR, pp. 814-819.

Binford, T. O. (1982): "Survey of Model-Based Image Analysis Systems,"
Int. J. Robotics Res., vol. 1, no. 1.

110

Fua, P. and Hanson, A. J. (December 1985): "Locating Cultural Regions in
Aerial Imagery Using Geometric Clues," Proceedings: Image Understanding
Workshop, pp. 271-278.

Fua, P. and Hanson, A. J. (1987): "Using Generic Geometric Models for
Intelligent Shape Extraction," Proceedings: Image Understanding Workshop,
pp. 227-233.

Horn, B. K. P. (1986): Robot Vision, MIT Press.

Huertas, A., Cole, W., and Nevatia, R. (July 1987): "Detecting Runways in
Aerial Images," Proceedings: AAAI-87, pp. 712-717.

Lee, David, Pavlidis, T., and Huang, K. (1988): "Edge detection through
Residual Analysis," Proceedings: IEEE CVPR, pp. 215-222.

Matsuyama, T. (1987): "Knowledge-Based Aerial Image Understanding Sys
tems and Expert Systems for Image Processing," IEEE Transactions on Geos-
cience and Remote Sensing, vol. 25, pp. 305-316.

McKeown, D., Harvey, W. A., and McDermott, J. (1985): "Rule-Based
interpretation of Aerial Imagery," IEEE Trans. PAMI, vol. PAMI-7, pp. 570-
585.

McKeown, David M. and Denlinger, Jerry L. (June 1988): "Cooperative
Methods for Road Tracking in Aerial Imagery," Proceedings: IEEE CVPR,
pp. 662-672.

Nevatia, R. and Babu, R. (1980): "Linear Feature Extraction and Descrip
tion," CVG1P, vol. 13, pp. 257-269.

Nicolin, B. and Gabler, R. (1987): "A Knowledge-Based System for the
Analysis of Aerial Images," IEEE Transactions on Geoscience and Remote
Sensing, vol. 25, pp. 317-329.

Pavlidis, Theo (1982): "An Asynchronous Thinning Algorithm," CGIP, vol.
20, pp. 133-157.

Pavlidis, Theo (1988b): Personal communication.

Pavlidis, Theo and Liow, Yuh-Tay (June 1988): "Integrating Region Growing
and Edge Detection," Proceedings: IEEE CVPR, pp. 208-214.

Prim, R. C. (1957): "Shortest Connecting Networks and some Generaliza
tions," BSTJ, vol. 36, pp. 1389-1401.

Quam, Lynn H. (May 1978): "Road Tracking and Anomaly Detection in
Aerial Imagery," Proceedings: Image Understanding Workshop, pp. 87-100.

Spivak, M. (197Q>: Differential Geometry, vol. 2, p. 95.

Ill

Stevens, K. A. (1978): "Computation of Locally Parallel Structure.," Biol.
Cybernetics, vol. 29, pp. 19-28.

Tuceryan, Mihran and Ahuja, Narendra (1987): "Extracting Perceptual Struc
ture in Dot Patterns: An Integrated Approach," University of Illonois at
Urbana-Champaign Technical Report, vol. UILU-ENG-87-2206.

Vistnes, Richard (1987): "Detecting Dotted Lines and Curves in Random-Dot
Patterns," Image Understanding, pp. 849-861.

Zahn, Charles T. (1971): "Graph-Theoretical Methods for Detecting and
Describing Gestalt Clusters," IEEE Trans. Computers, vol. C-20, pp. 68-86.

Zucker, Steven W. (1985): "Early Orientation Selection: Tangent Fields and
the Dimensionality of Their Support," McGill University Technical Report,
vol. TR-85-13-R.

112

Automatic Digitization of Large Scale Maps

Andreas Dlert

Institute of Cartography
University of Hannover

Appelstrasse 9A
3000 Hannover 1

Germany

Abstract

This paper describes a software system for automatic digitization of large scale maps.
The system is capable of converting raster data into structured vector data. Strategy
and configuration of the software are explained. Some tests on German maps are
introduced in brief.

1. Introduction

A GIS is a computerized database management system used for the capture, storage,
retrieval, analysis and display of spatial data. Of these items, especially storage and
analysis of mass data are what makes a GIS such a powerful tool. However, the
problem remains to get the mass data into the computer.

Digital data flowing from the environment into the computer may be managed
solely by remote sensing techniques. Satellite images supply up-to-date information,
but such information is restricted by pixel resolution, multispectral classification and
visibility of the features. Terrestrial topography produces data which are very accu
rate, but field work is time-consuming and expensive. For these reasons, digitization
of area! photography or existing maps has become the most common method for data
capture in large scale mapping.

As mentioned above, data capture is defined as part of a GIS. If you look around
at the tools GIS products offer, most of them prefer manual digitization by hand
held cursor. Such conventional systems are easy to handle and adapt well to different
tasks. Unfortunately, manual digitization is a laborious procedure, and human labour
is costly today.

To overcome this problem some companies have provided semi-automatic systems
which support manual digitization by line following algorithms. The operator has just
to indicate the beginning of a line, the computer then traces the line until the next
node. Line following systems are quite effective with isoline maps, but interaction
increases with the number of nodes on complex maps.

Data capture by scanner is very fast and requires a minimum of human inter
action. Result of scanning is a raster image. Pixel format performs excellent with
two dimensional coverages in small scales, but whenever linear features, topology or
non-geometric attributes have to be handled vector data are better suited. Especially
in large scale mapping, vector format satisfies the demands much better than raster
data. Thus, scanned data needs to be converted into structured vector data.

113

'

Non-structured
Vector Data

Figure 1 Data Entry to CIS /Lichtnerjllert 1989/

114

At present, visual recognition of printed texts with computers seems to have
no problem any more. On the other hand, automatic interpretation of drawings is
still a matter of research. Nevertheless, some algorithms of text recognition may
as well be applied on maps. Scientists at the Institute of Cartography, University
of Hannover have developed a software system which combines common methods
of Optical Character Recognition with specific algorithms for mapping applications.
Concepts and results will be described in the following.

2. Strategy

Input of the recognition system is a raster image, while output is structured vector
data. In other words the system has to handle both raster- and vector data, including
raster-to-vector-conversion. Pattern recognition methods may be performed using
both types of data.

Automatic interpretation of maps splits into two parts: First the contents of a
raster image have to be broken down into graphic primitives, such as arcs, letters
and symbols. Prior to application of character recognition procedures, the texts and
symbols are separated from the rest of data. Next the shape of the features has to be
described by numerical characteristics. Finally the features are classified according
to these characteristics using methods of statistical pattern recognition. The features
are treated one by one without considering any context.

In the second step the recognition system combines primitive elements into ob
jects of a higher level. In contrast to the first step, not isolated elements but relations
between features are examined. Classification of relations and structures is perfor
med using rules which build a model of the map. Two approaches are known: the
knowledge-based approach and the procedural approach.

The knowledge-based approach takes advantage of Artificial Intelligence tools.
A knowledge-based system consists of a knowledge base and an inference engine.
The knowledge base holds rules and facts about map features. The inference engine
enables classification by matching the rules with the data. Sequence of the rules
and facts in the knowledge base should play no role at all. Therefore updating of
the system is quite easy. The knowledge-based system does not require information
about a certain solution strategy the inference engine tries to reach a goal without
human help so long as the knowledge base supplies sufficient information. Thus
knowledge-based systems are very flexible and user-friendly.

Unfortunately, the inference engine slows down rapidly with the increasing number
of rules. Efficient applications are limited with nowadays technologies to a number of
about 300 rules. If you consider the variety of graphic representations in map design,
this is much less than required. Therefore the performance of the inference engine has
to be improved by information which defines the combination of rules. As a result,
application of rules tends towards a fixed sequence, and the knowledge-based system
converts into a procedural system.

A procedural system follows the principles of traditional software engineering.
The programmer evaluates a strategy by arranging rules in a fixed sequence, which
turns to be an algorithm. Algorithms run very fast and effectively depending
on the skills and experiences of the programmer. Building up a procedural system

115

for automatic digitization of maps means to develop specific algorithms for different
representations of spatial features. The expenditure on software development is very
high. Once a procedure is established its application is limited to a specific type of
map.

Recently procedural systems seem more suitable to practical applications with
large sets of data than knowledge-based systems. In this context, the system deve
loped at Hannover is oriented to the procedural approach. Nevertheless, research
on knowledge-based methods continues and may replace the traditional methods in
future /Meng,1990/.

3. The recognition procedure

At the Institute of Cartography, University of Hannover a software system named
CAROL (Computer-assisted Recognition of linear features) has been developed du
ring the last five years. Goal of the system is automatic digitization of large scale
German maps. As mentioned above, the system follows a procedural strategy.

3.1 Data aquisition

First of all, the map has to be scanned. Scan resolution relies on the type and
quality of map. With low resolution, details might get lost. With high resolution, the
amount of data and noise within the raster image will increase. In most applications a
resolution of 50 fim (500 dpi) proved sufficient. The maps dealt with in Hannover used
to be black and white, so raster data is organized in binary format. In case of colour
maps, binary images are obtained either by scanner firmware (colour separation) or
image processing (multi-spectral classification).

3.2 Raster-to-vector conversion

Raster-to-vector conversion is performed by the software tool RAVEL /Lichtner,1987/.
Using distance transformation and topologic skeletonization algorithms, the vecto-
rization program extracts lines from the raster image and arranges them in an arc-
and-node-structure. At further steps, connected lines are linked to line networks.
Iconic polygons are computed from the line network. So far, only geometry and
topology of the map are known. The map graphics are broken down into primitive
elements.

3.3 Segmentation

To enable character recognition, letters and symbols have to be composed from arcs
and separated from the rest of line graphics. Since such features are in most cases
isolated networks, segmentation can be carried out quite easily by checking the size
of a circumscribing rectangle. If texts and symbols intersect with the line network,
additional information like line width or straightness have to be considered. Charac
teristic of segmentation procedures is that they take advantage of simple classification
operations. Figure 2 demonstrates the effect of some threshold operations on the vec
tor data. Segmentation procedures structure the data in a rough way and therefore
help to reduce the expenditure on detailed classification.

116

a) Detail of German Base Map scale 1 : 5000 b) Line Width > 6 Pixels

a

J f 5/

?a//iat/s

09

 - a ' 5o2/a/-
x / amt

Q

c) Extension of Line Networks in X,Y < 40 Pixels d) Complementary to c)

Figure 2 Segmentation of unstructured vector data

3.4 Recognition of texts and symbols

Next isolated texts, symbols and numbers have to be classified. This task is similar to
the objectives of Optical Character Recognition, and so Cartography may make use of
existing methods. Template matching counts as the easiest approach. A template is
defined as an ideal pattern of the class. This template is matched against the raster
image. The procedure reveals high success rates, although computations are very
simple. Unfortunately, template matching works only on features with uniform size
and rotation. Thus the method does not satisfy the demands of many applications.

So procedures have to be considered which extract characteristics independent
of size and rotation. A method adopted in the CAROL system is expansion of the
contour in a Fourier series /Zahn,Roskies 1972/, /Illert,1988/. While tracing the
contour of a feature the angular change is summed up and perceived as a function of
arc length from the starting point. This angle versus length function is expanded in
a Fourier series. The Fourier descriptors (i.e. amplitudes and phase angles) are taken
as chracteristics. Figure 3 demonstrates the method by reconstructing the original
contour polygon from Fourier Descriptors of increasing degree. An expansion up to
degree ten already yields sufficient information for shape recognition. In addition
to Fourier Descriptors further characteristics like number of nodes or arcs may be
included to improve the results of classification.

The classification itself is based on statistical analysis. The n characteristics of a
feature define its location in the so-called n-dimensional feature space. Similar fea-

117

Contour Polygon Reconstruction from Fourier Descriptors up to Degree:
n = 2 4 7 10 20 40

Figure 3 Expansion of contour polygons in a Fourier series

tures of a common class produce clusters in feature space. Therefore a class may be
described by parameters of normal distribution. Limitations to the statistical model
lead to different classification methods, such as maximum-likelihood-classification or
minimum-distance-classification. However, experience reveals that success of clas
sification depends much more on the choice of suitable characteristics than on the
statistical model.

3.5 Analysis of complex features

The preceding steps structured the data into arcs, letters and symbols. Now these
primitive features have to be combined into objects of higher level. The structure of
a map feature in regard to its primitive components is reflected in the map legend.
Some graphic structures are common to a lot of map types (e.g. dashed lines, hatching
etc.), but a good part is unique for a special type of map. In the CAROL system,
procedural analysis of complex features is performed by algorithms like:

 recognition of dashed lines : The system examines the data for repeated se
quences of dashes, dots and gaps.

 recognition of hatched areas : The system extracts groups of parallel lines and
computes an outline polygon.

 combine symbols in strings (digits to numbers, letters to texts) : The system
checks relative position, rotation and size. Feature codes may be changed due
to context (e.g. Number '0' and uppercase 'O' or number '!', uppercase '!'
and lowercase T).

 Decoding of attributes: Texts, numbers and symbols are assigned to spatial
features (lines, polygons, points)

118

The set up of the procedure, the choice of parameters and the sequence of algorithms
should be supervised by an expert. Extensive installation work is necessary whenever
the procedural system faces a new type of map.

To enable knowledge-based interpretation, basic rules have to be derived from the
algorithms and put into a knowledge base. When applied to a set of arcs, nodes and
texts, the inference engine performs the interpretation task. With a global knowledge
base no specific set-up would be required, but on the other hand technology does not
yet support such ideas.

4. Applications

4.1 Hannover town plan scale 1:20.000

The city of Hannover has published a town plan at the scale of 1:20.000. Size of the
map is 120 x 90 cm2 . The map is printed in 12 colours. Recently local authorities
have introduced vector-based GIS software. One of its applications will be thematic
mapping. In this context the town map acts as topographic base map.

The City of Hannover, Department of Cartography maintains about 20 printing
separates, each of them showing a certain category of features like public buildings,
industrial plants, forests or hydrography. Ten of these black-and-white separates
were scanned with a resolution of 50 /im, resulting in ten raster images of 25.000 x
18.000 pixels. Raster-to-vector-conversion yields ten sets of vector data, either centre
lines (in case of linear features like isolines or small rivers) or contour polygons (in
case of area! features like buildings, forests etc.). The centre lines are organized in
an arc-and-node structure, whereas polygons are structured hierarchically in regard
to feature outlines and enclosed blank areas. Finally, lines are smoothened, and the
data sets are merged by affine transformation. The whole process took about one
week on microcomputer equipment, resulting in a data base of about 300.000 lines
and 50.000 polygons.

4.2 Isoline maps scale 1 : 5000

German isoline maps at the scale 1:5000 show topography complementary to the
ground situation in base map 1:5000. The graphic of isoline maps comprises solid
lines with height numbers (height interval 10 m), dashed intermediate lines (intervals
5 m, 2,5 m or 1 m depending on gradient), height spots with numbers and slope
symbols.

Computation of a DTM requires height data in digital form. For that the map
sheets were scanned and vectorized. Next dashed lines were recognized. Then seg
mentation operations by parameters number of nodes, extension in X and extension
in Y help to subdivide the data in slope symbols, isolines and numbers. Recognition
of digits zero to nine is performed using Fourier Descriptors. After classification the
digits were linked to height numbers and assigned to the 10 m isolines or to height
spots respectively. Finally, height values have to be assigned to the intermediate
isolines through interpolation within the 10 m intervals.

Interactive work is reduced to a maximum of one hour for each map sheet of 40 x 40
cm2 . The procedure is detailed in /Yang,1990a/.

119

Printing Separates Results of Vectorization

Figure 4 Digitization of Hannover town plan scale 1:20.000

4.3 German base map scale 1 : 5000

The base map covers the whole area of West Germany with few exceptions in the
south. Ground situation is displayed in detail. The features like buildings, roads or
forests are hardly affected by generalization due to the large scale. By this the map
is an ideal source for GIS data bases.

The recognition procedure is set up as explained in section 3. Scanning and vec-
torization of a 40 x 40 cm2 map sheet produce a set of unstructured vector data,
ranging from 20.000 arcs in rural areas to 100.000 arcs in densely populated areas.
Recognition of texts and symbols has to classify about 80 different features. Algo
rithms have been established to analyse some of the most common map features,
such as

buildings (hatched polygons)
forests (polygons + texture of tree symbols)
meadows (polygons + symbols: two neighbored dots in level)
gardens (polygons + symbols: three dots arranged in a triangle)
roads (long and narrow polygons, inside blank or street name)

120

Structured Vector Data:

Detail of German Base Map,scale 1 : 5000

Meadows

Figure 5 Digitization of German base map scale 1:5000

121

Examples are displayed in Figure 2 and 5.

First tests have been carried out with data aquisition for the ATKIS system of Ger
man Surveying Agencies which requires information of some 10.000 map sheets. Au
tomatic digitization reveals success rates of 80 to 95 % (see Figure 5) /IIlert,1990/'.
However some problems may still arise:

1. Geometry of vector data obtained by scanning has to be enhanced to meet the
high quality standards of German cadastre.

2. The classification software should be embedded in a CAD system to support
interactive editing of errors during the recognition process.

3. Success rates rise with complexity of algorithms, but on the other hand the
system becomes less flexible in regard to application on different map types.
Because of that the knowledge-based approach should be kept in mind.

5. References

Grunreich,D. (1990) Das Projekt ATKIS: Konzeption und erste Erfahrungen aus der
Aufbauphase des digitalen Landschaftsmodells 1:25000 (DLM25).
Proceedings XIX FIG Congress, Helsinki/Finland June 1990,
Commission 5, pp. 152-163

DlertjA. (1988) Automatic Recognition of Texts and Symbols in Scanned Maps.
Proceedings EUROCARTO SEVEN, Enschede, The Netherlands
Sept.88, ITC Publication No.8, pp.32-41

Illert,A. (1990) Automatische Erfassung von Kartenschrift, Symbolen und Grun-
drifiobjekten aus der Deutschen Grundkarte 1:5000
Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen
der Universitat Hannover, Nr.166, 1990

Lichtner,W. (1987) RAVEL Complex software for Raster-to-vector-conversion.
Proceedings EUROCARTO VI, Brno/ Czechoslovakia 1987

Lichtner, Dlert (1989) Entwicklungen zur kartographischen Mustererkennung.
in: Geo-Informationsystems, Applications New Trends.
Edited by Schilcher/Fritsch, Wichmann-Verlag, Karlsruhe 1989,
pp. 283-291

Meng,L. (1990) Potentialities of Quintus PROLOG in Cartographic Pattern Re
cognition. Proceedings EUROCARTO VIII, Palma de
Mallorca / Spain, April 1990

Yang,J. (1990a) Automatische Erfassung von Hohenlinien mit Verfahren der Mu
stererkennung. Nachrichten aus dem Karten- und Vermessungs
wesen, Series I, No. 105, Frankfurt am Main 1990

Yang,J. (1990b) Automatic data capture for polygon maps from scanned data.
Proceedings XIX FIG Congress, Helsinki/Finland June 1990,
Commission 5, pp. 522-531

Zahn,Roskies (1972) Fourier Descriptors for Plane Closed Curves. IEEE Transac
tions on Computers, Vol C-21, No.3, March 1972 ,pp. 269-281

122

THEMATIC MAPPING FROM IMAGERY:
AN ASPECT OF AUTOMATED MAP GENERALIZATION

Minhua Wang1 , Peng Gong2 and Philip J. Howarth 1
Earth-Observations Laboratory,

Institute for Space and Terrestrial Science
at

Department of Geography, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1 and

24850 Keele Street, North York, Ontario, Canada M3J 3K1

ABSTRACT

Map generalization, as a means of portraying the complex real
world, has to date been confined to the manipulation of map data. With
the advent of new data acquisition techniques, particularly remote
sensing, data sources for spatial analysis have greatly increased.
However, map generalization from image data is a challenging
problem. In this paper, the conceptual and technical problems in
generalizing cartographic objects from remote sensing imagery are
addressed. A two-stage generalization framework is proposed for
thematic mapping from imagery. Specific interest is focused on
mapping land use from SPOT satellite imagery.

INTRODUCTION

Thematic mapping is a major activity in both cartography and
remote sensing. However, due to independent developments in remote
sensing and cartography, the theoretical bases for thematic mapping
are considerably different. In cartography, thematic mapping is
considered as a process of generalization in which the spatial context
and attributes of objects from a source map are transformed into a target
map. This is done according to a scale change through generalization
operators such as selection, simplification, symbolization and
classification (Robinson 1984; Shea and McMaster 1989). In remote
sensing, however, thematic mapping is considered to be a process of
pattern recognition in which the spectral responses of pixels are
grouped into a number of defined classes using statistical modeling
techniques. The process is also called image classification or pixel
allocation (Burrough 1986). A problem with this process is that because
of the complexity of the real world, spectral responses for a high
resolution image show great spatial variability (Woodcock and Strahler
1988). From such heterogeneous data, it is difficult to directly generate
homogeneous polygons, such as those presented in conventional maps.
It is suggested that the concept of map generalization can be introduced
to solve this problem.

It is well known that map generalization involves
transformations in both the spatial domain and the thematic domain
(McMaster 1989). In the spatial domain, map generalization refers to
the transformation of points, line and polygons; in the thematic domain,
it refers to attribute transformation. Traditional numerical

123

generalization has focused on spatial transformation, specifically line
generalization (Douglas and Peucker 1973; Shea and McMaster 1989;
Muller 1990). This primarily involves a scale change.

In thematic mapping from remote sensing images, the key issue
is the change in thematic representation. This may not involve
procedures used in traditional map generalization, e.g., simplification.
However, it could include other functions associated with raster
representation, e.g., feature selection and feature smoothing
(Monmonier 1983). At the same time, the process may not involve a
scale change. We wish to argue that the classes obtained from image
classification may not correspond to certain cartographic objects, as
their spatial appearances are usually heterogeneous and their class
membership may be uncertain (Robinson and Frank 1985). In this
paper, we use the term 'entity' to describe the classes obtained from
image classification. Map generalization, therefore, is concerned with
the transformation of entities to cartographic objects.

In this paper, the aim is to extend the traditional map
generalization concept into land use mapping from remote sensing
imagery. To do this, a new procedure for mapping land use from
satellite imagery has been devised. In this procedure it is assumed that
land uses are highly generalized objects. As a result, they cannot be
generalized directly from remote sensing imagery. The procedure has
to be undertaken in two steps: image-to-entity generalization and entity-
to-land-use generalization.

A CONCEPTUAL FRAMEWORK FOR MAPPING FROM IMAGERY

Map generalization is a complex mental process involving
perception, cognition and other intellectual functions. "It focuses on the
extraction of the general, crucial elements of reality" (Brassel and
Weibel 1988, p.230). It is usually related to the functions of selection,
simplification, emphasis, classification, etc., by which observed reality
is structured into a number of individual entities; then important
entities are selected and represented on the map. Brassel and Weibel
(1988) proposed a five-step conceptual framework for map
generalization:

 Structure Recognition aims at the identification of objects,
understanding their spatial relations and the establishment of
measures of relative importance. It is the basic understanding
of the essential structures of the spatial information available
in the original database.

 Process Recognition is to establish the relationships between
source objects and generalized objects (e.g., linguistic
relations, spatial relations and statistical relations), based on
the structure of the original database and the control
parameters (e.g., objective).

 Process Modeling can be considered as a compilation of rules
and procedures derived from a process library and the pre
setting of the process parameters that were established during
process recognition.

 Process Execution and Data Display are operational
procedures (e.g., classification, simplification and
symbolization) which convert database and information
structures into the target and generalized databases. These

124

procedures have been addressed in many existing approaches
(McMaster 1989; Steward 1974).

Mapping from imagery is a generalization, which represents a
process of transformation from the digital (spectral) domain to thematic
and spatial domains. This process, however, is different from
conventional cartographic generalization because the spatial units for
generalization are not cartographic objects. In other words, they are not
points, lines and polygons, but rather they are pixels which do not have
any thematic meaning.

A two-stage procedure for mapping from imagery can be
structured: statistical generalization and cartographic generalization.
In statistical generalization, the original imagery is divided into a
number of entities derived under statistical control. This represents
processes of data reduction and transformation. The result is not a map
but an entity image which shows basic spatial structures and thematic
components of the remote sensing imagery. In cartographic
generalization, the object is highly generalized, selective and subjective.
Relationships between information entities and cartographic objects are
modeled to produce a smooth, uniform map. A conceptual framework
for mapping from remote sensing imagery is shown in Figure 1.

Statistical Generalization Cartographic Generalization

Figure 1 A conceptual framework for mapping from imagery.

125

In statistical generalization, the imagery should first be
examined according to the mapping objectives. From this examination,
a list of entities should be prepared. There are two types of entity: 'pure'
entity and 'fuzzy' entity. A 'pure' entity is one which is homogeneous
and can be clearly identified on the image, while a 'fuzzy' entity consists
of mixtures of 'pure' entities and is ambiguous when observed on the
image. The original image can be transformed into an entity image
containing the two types of entity. These entities constitute the basic
information for a cognitive model in cartographic generalization. In the
process modeling stage, sampling procedures can be employed to extract
spectral signatures in order to link the spectral values of the image with
entities. In the process execution stage, a classifier can be used to
assign each image pixel to an entity label, based on the results of the
sampling.

In cartographic generalization, the relationships between entities
and cartographic objects (such as logical relation, spatial relation and
statistical relation) need to be identified in order to develop a cognitive
model. Based on this model, a rule base for the generalization can be
designed. The rule base may be constructed as a simple logical
operation or as a more sophisticated expert system, depending on the
complexity of the mapping task. In the final stage, process execution, a
map is generalized from the input entity image.

A CASE STUDY

Based on the conceptual framework presented above, a case study
of land-use mapping from SPOT imagery was carried out. The land-use
mapping procedure was divided into two steps: entity extraction and
land-use map generation.

Study Area and Data Description
The test site selected for the study is part of the city of

Scarborough, one of the fastest-growing municipalities in Metropolitan
Toronto, Canada. The study area is dominated by residential areas at
different stages of development; industrial and commercial land uses
are also prevalent. The image used for study was a subscene (256 x 256
pixels) from a multispectral SPOT image with 20 m x 20 m spatial
resolution pixels. It was acquired on June 4, 1987 (Figure 2).

Entities and Land Uses Identifiable from the Image
Based on the generalization concept, two types of entity in the

image, the 'pure' entity and the 'fuzzy' entity, were identified. 'Pure'
entities have a distinct spectral appearance on the image and have
relatively narrow spectral distributions (i.e., the digital values have
relatively low standard deviations). A 'fuzzy' entity is not defined
precisely, but it has a relatively wide range of spectral values. In Table
1, eight entities which were recognized on the image are listed. Asphalt
surface, concrete surface, bare surface, and the two types of trees are
'pure' entities; the other three are 'fuzzy' entities.

The objective of the case study was to map land use from the
image. Six land uses were categorized (Table 2). As can be seen, each
land use is composed of several land-cover entities (Campbell 1983). It
should also be noted that the relationships between land-use types and
entities are quite complicated and that many land uses have similar
entity components.

126

= 600 Metres

Figure 2 A SPOT image of northern Scarborough, Ontario, Canada
recorded on June 4,1987.

Modeling Generalization from Entity Image to Land-Use Map
Modeling the generalization from entity image to land-use map

involves establishing relationships between entities and cartographic

Table 1. Entities and Their Descriptions

Code Entity Description Gray Level

1
2
3
4
5
6
7
8

Asphalt surface
Concrete surface
Bare surface
Soil surface
Deciduous trees
Coniferous trees
Low-density grass
High-density grass

roads, house roof, parking lot
building, warehouse, parking lot
land cleared for construction
wasteland, non-cultivated surface
deciduous trees
coniferous trees
grassland, lawn
grassland, lawn

1
2
3
4
5
6
7
8

127

Table 2. Land Uses and Entities Contributing to Them

Code

A
B
c
D
E
F

Land Use

Old residential
New residential
Industrial/Commercial
Land under construction
Open space
Woodland

Composition*

1, 2, 4, 5, 6, 7, 8
1, 2, 4, 7, 8
1,2,4,5,6,7,8
1, 2, 3, 4, 7, 8
4,7,8
5,6

Gray Level

1
2
3
4
5
6

^Numbers represent codes in Table 1

objects (i.e., building a cognitive model). However, the relationships
between entities and land uses are complex; there is no one-to-one
correspondence between them. It is, therefore, important to select the
key factors or parameters to model the generalization. A simple
arithmetic aggregation of entities into a specific land-use type, such as
land use A = entity 1 + entity 3 + entity 5, is insufficient to accomplish
the generalization process from entities to land use. Fortunately, the
proportional distributions of different entities vary from one land use to
another. Therefore, it is possible to model the generalization process
from entity-image to land-use map using the spatial frequency of each
entity as a parameter (Gong 1990). For example, high-density grass
(entity 8) has contributions to both residential (land use A and land use
B) and open space (land use E), but the spatial frequency of high-density
grass in open space is much higher than in residential areas. Based on
the different spatial frequencies and entity compositions, the various
land uses can be distinguished.

Entity-Image Generation
The procedure used to produce the entity image was a supervised

maximum-likelihood classification. First, spectral signatures of the
eight entities were obtained using a supervised training algorithm. The
entire image was then classified according to these spectral signatures
using a maximum-likelihood classifier. Figure 3 shows the entity
image obtained using this method; gray levels are listed in Table 1.

Generalization from Entity Image to Land-Use Map
Two procedures were employed to carry out the generalization

from entity image to land-use map. The first procedure, based on
differentiating entity frequencies, was used to derive old residential
(land use A), new residential (land use B), industrial and commercial
(land use C) and land under construction (land use D). The second
procedure, arithmetic aggregation, was used to extract open space (land
use E) and woodlot (land use F).

In the entity-frequency-based procedure, a pixel window (9 x 9)
was first moved over the entity image to extract an entity-frequency

128

600 Metres

Asphalt surf

Concrete surf.
Bare surface

Soil surface

Decid. trees

Con if. trees
L-dens. grass

I I H-dens. grass

Figure 3 An entity image generalized from the SPOT image.

vector F(iJ) = (fjdj), f2(ij), •••, f8dJ)}T- f(ij) was associated with the
center pixel of each pixel window at row i column j on the image.
Q^fffdJ) <81 (k = 1, 2, ..., 8) denotes the occurrence frequency of entity k in
a pixel window. To determine whether pixel (ij) belonged to one of the
land-use types A - D, a city-block distance measure was used:

where dm(ij) is the distance from the entity frequencies at pixel (ij) to

the average entity frequency cm =(cmj, cmg, ..., cmg/r for land use m (m =
A, B, C, D) ; cm was obtained from supervised training on the entity

i(ij) was obtained, it was compared with a threshold B
image.

Once
(0<C<81). If dm (iJ)</3, pixel (i,j) was a candidate for land use m.
Otherwise, pixel (ij) was rejected from land use m. If more than one
land use was a candidate, pixel (i j) belonged to the land-use type for
which the distance was the shortest. A detailed description of entity-
frequency extraction and land-use identification based on entity

129

frequencies can be found in Wharton (1982), Zhang et al. (1988) and Gong
(1990).

In arithmetic aggregation, two aggregation rules were used:
land use E = entity 4 + entity 7 + entity 8
land use F = entity 5 + entity 6.

However, entities 4, 5, 6, 7, and 8 are also components of land uses A - D.
Therefore, a conflict will arise when an entity label at pixel (ij) belongs
to one of the land uses A - D and one of the land uses E - F. Under such
circumstance, pixel (i j) was assigned to one of the land uses A - D. This
is reasonable because in the first procedure both entity information from
pixel (ij) and neighborhood entity information from a pixel window
were included in the identification.

After the two procedures, a number of pixels remained unlabeled.
These unlabeled pixels were relabeled using the entity-frequency-based
method, but without thresholding the distances dm(ij).

= 600 Metres

Old resid.
New resid.
Ind./com.

HHH Land- const.
Eiiiii Open space
I I Woodland

Figure 4 A land-use map generalized from the entity image.

Results and Discussion
The map in Figure 4 is a result from this preliminary study. It

shows homogeneity in polygon distribution, which is consistent with a
conventional cartographic product. By visual comparison, most land
uses on the map have corresponding locations on the image. The

130

results show the potential for mapping from remote sensing imagery
using the generalization concept. However, there are still some
problems to be overcome:

 The old residential land use is confused with open space,
because there is high spatial frequency of grass cover in the old
residential area.

 There are still some "salt-and-pepper" patterns on the map;
smoothing is required.

 The selection of land uses is restricted. Some land uses, which
can be identified by visual interpretation (e.g., recreational
land use), are not generalized.

These problems result from modeling during the generalization.
In modeling, only component factors were considered, while in human
perception, spatial features such as shape, size, linearity and spatial
adjacency are also important. It may not be possible to represent these
factors by a statistical model; a fuzzy model or a logical model may be
more appropriate. It is apparent, however, that more sophisticated
models are required in the entity-to-map generalization procedure, such
as an expert system. In future studies of entity-to-map generalization, a
fuzzy-set-theory approach and a knowledge-based approach should also
be considered.

CONCLUSIONS

It is concluded that thematic mapping from remote sensing data
is a challenging issue in numerical map generalization. It involves a
process of thematic information extraction and entity-to-cartographic-
object generalization, during which a scale change may not be involved.
Research on this topic is limited. In this paper, we proposed a
conceptual framework for mapping from imagery, based on the
generalization concept. The aim of this approach was to extend the
conventional cartographic generalization concept to remote sensing
data, and to rethink the theoretical foundations for mapping from
remote sensing. A case study of land-use mapping was undertaken to
verify the theoretical model. A homogeneous land-use map was
presented as a preliminary result for this procedure. Although the
result is still not as good as that in human perception, it demonstrates
the potential of the new methodology for mapping from remote sensing
imagery. Further work involving more sophisticated models is justified.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of SPOT
Image Corporation of France and the Canada Centre for Remote
Sensing in supplying the SPOT data used in this study. This research is
funded by a Centre of Excellence grant from the Province of Ontario to
the Institute for Space and Terrestrial Science, and NSERC Operating
Grant A0766 awarded to Dr. P. J. Howarth. Thanks to Denis Gratton for
assistance with preparing the figures.

131

REIFEIRENCES

Brassel, K. E. and R. Weibel 1988, A review and conceptual framework
of automated map generalization, International Journal of
Geographic Information Systems. Vol. 2, No. 3, pp. 229-244.

Burrough, P. A. 1986, Principles of Geographical Information Systems
for Land Resources Assessment. Clarendon Press, Oxford.

Campbell, J. B. 1983, Mapping The Land - Aerial Imagery for Land
Use Information, Resource Publications in Geography, The
Association of American Geographers, Washington, D. C.

Douglas, D. H. and T. K. Peucker 1973, Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature, The Canadian Cartographer. Vol. 10, No. 2, pp. 112-123.

Gong, P. 1990, Improving Accuracies in Land-Use Classification with
High Spatial Resolution Satellite Data: a Contextual Classification
Approach, Unpubl. Ph.D Thesis, Department of Geography,
University of Waterloo.

McMaster, R. B. 1989, Introduction to 'Numerical Generalization in
Cartography', Cartographica. Vol. 26, No. 1, pp. 1-6.

Monmonier, M. S. 1983, Raster-mode area generalization for land use
and land cover maps, Cartographica. Vol. 20, No. 4, pp. 65-91.

Muller, J. C. 1990, The removal of spatial conflicts in line
generalization, Cartography and Geographic Information Systems.
Vol. 17, No. 2, pp. 141-149.

Robinson, A. H. 1984, Elements of Cartography. John Wiley and Sons,
Inc., New York.

Robinson, V. B. and A. U. Frank 1985, About different kinds of
uncertainty in collections of spatial data, AutoCarto 5. Washington,
D.C. pp 440-449.

Shea, K. S. and R. B. McMaster 1989, Cartographic generalization in a
digital environment: when and how to generalize, AutoCarto 9.
Baltimore, MD, pp. 56-67.

Steward, H. J. 1974, Cartographic generalization: some concepts and
explanation, Cartographica Monograph. No. 10.

Wharton, S. W. 1982, A context-based land-use classification algorithm
for high-resolution | remotely sensed data, Journal of Applied
Photographic Engineering. Vol. 8, No. 1, pp. 46-50.

Woodcock, C. E. and A. H. Strahler 1987, The factor of scale in remote
sensing, Remote Sensing of Environment. Vol. 21, pp. 311-332.

Zhang, Z., H. Shimoda, K. Fukue, and T. Sakata 1988, A new spatial
classification algorithm for high ground resolution images,
Proceedings of IGARSS'88. Edinburgh, Scotland, pp. 509-512.

132

PRODUCING ANSWERS TO SPATIAL QUESTIONS

Gail Langran
Intergraph Corporation

2051 Mercator Drive
Restorv VA 22091

ABSTRACT

This discussion explores alternatives to standard GIS command procedures.
The goal is for the user to describe the information he or she seeks rather
than the data manipulations that should be performed so the system can
provide appropriate display content and format. If the same information
model were used for both user input and display generation, then spatial,
temporal, or thematic questions could be matched to tabular or graphic
answers. Using a model of geographic information, the potential for an
artificial language that would permit a user to phrase geographic questions
using English-like grammar and language is examined.

INTRODUCTION

Since their inception, GISs have become increasingly more sophisticated in
terms of standardization, data structuring, error control, and analytical
options. However, ease of use is still a major obstacle to the full exploitation
of GIS technology. Many systems force new users to enter the world of GIS by
navigating a maze of command-line interfaces, voluminous documentation,
and user-built displays. This initial investment in learning a new tool may be
beyond the means of busy analysts with other options for performing their
analyses. It also speaks ill of the GIS discipline; if the main responsibility of
an information system is communication of information, it follows that no
mattter how sophisticated the storage and analytical capabilities, these systems
somehow fail unless communicative powers are developed (Webber 1986b).

The harshness of the GIS user environment is gradually softening. On-line
help sequences and self-explanatory point-and-click input forms are changing
the book-on-the-knees posture so common to users of command-line GISs.
Special-purpose systems that address the specific needs of a particular
application (for example, oil exploration) tend to be simpler to use because
they are geared to users whose expertise is expected to be in areas other than
GIS. But the difficulty of formulating a set of commands in a multi-purpose
GIS and the tedium of selecting an appropriate display format for responding
to queries to the system remains.

Special-purpose cartographic query languages do exist. Nyerges (1980)
developed a query language geared specifically to cartographic purposes that
permitted users to request information via a grammar and keywords that the
system could decode. Frank (1980) developed a query language that could
automatically produce a display of the data selected if relational logic alone

133

were used. Broekhuysen and Dutton (1983) describe the design of the Odyssey
command language and their efforts to achieve the effect of a dialog with the
computer. Morse (1987) describes an expert system for forest resource
management that accepts if-then statements from a user, translates those into
GIS commands, and produces a standard report.

Shortcomings of the present approach
A universal problem among current approaches is the intuitive barriers that
users face when combining relational and spatial logic to describe a course of
action to the computer. Egenhofer et al. (1989) have addressed this problem
by augmenting the query language style with "point and click" methods of
indicating the objects involved. While this approach will ease the plight of
the user, it does not change the fundamental fact that so-called "query
languages" are essentially ways of defining a subset of data to retrieve without
indicating the purpose of the retrieval. In contrast, the ideal mode of
discourse with a GIS is for a user to describe what information is sought
rather than how the system should manipulate the data to produce the
information. Compare a high-level programming language to assembly
language.

High-level: Add 2 + 3 and store the results in A.

Assembler: Place the values 2 and 3 in registers, add the registers, place the
result in another register, whose number the user must track for
subsequent manipulations of the result.

Today's GISs users express their information needs in the semantic
equivalent of assembly language. A preferable mode of discourse with the
system would provide the user with a means to express his or her
information needs, as opposed to data-manipulation steps. Compare the
following dialogs.

Ideal: Tell me where cow pastures border this stream.

Current: Build a narrow buffer around the stream, overlay the buffer with
the data, select cow pastures from within the buffer, create a map
whose extent covers the stream, shade the agricultural areas in a
selected pattern or tint.

The fact that the logic of data retrieval and spatial overlay is slippery to many
GIS users does not imply that GIS users are slow when compared to users of
other information systems. Rather, the methods we presently use to interact
with computers are designed to be straightforward to computers rather than
to humans. Katzeff (1989) tested novice database users on their ability to
construct a query and predict a response. Most of the users did correctly
predict the response, but only one-fifth were able to construct a correct query.
A question and a desired answer may be clearly in mind, but translating that
question into a command sequence that produces the desired answer is a
challenge.

134

Given that questions and answers are clear, while the precise data
manipulations needed to obtain an answer are not, it is worthwhile to
investigate whether an information system could be designed to receive
"raw" questions and produce comprehendable answers without involving
the user in the specification of data manipulations. Information needs are
easily expressed as questions to the system. Where are all the slopes steeper
than 10%? Who owns this parcel? When did this parcel last change hands
and who was its previous owner? If a user could inform a system of the
information being sought, the system would have the raw materials to
provide more helpful help sequences, on-line documentation, and default
displays. A move toward this ideal requires two major enhancements to the
current approach: users need a more straightforward way to express their
information needs and GISs need an automated method of choosing a display
format.

Natural language is one route to facilitating human/computer dialogs. But
practical considerations demand that we proceed to investigate a higher level
of human-machine discourse without waiting for natural language
processors, since work in that area is still in its infancy (see Quillian 1985,
Schank and Rieger 1985, and Webber 1986a for surveys of the natural
language approach; see Morse 1987 and McGranaghan 1989 for geographic
applications of natural language). A simple artificial language that operates at
a similarly high semantic level could produce results comparable to a natural
language, since it appears that syntactical constraints do not impede users if
the underlying logic of the discourse is clear. Borenstein (1986) compared the
learning abilities of users equipped with natural-language help sequences to
those who used a verb-noun artificial command language and found no
significant difference. Thus, this work investigates the design of an artificial
language to describe geographic questions.

The next section describes the problem in more detail and is followed by a
presentation of a theoretical basis for designing a high-level question-answer
mode of discourse for users of GISs. Later sections examine the elements of
an artificial language to express geographic questions in such a way that the
computer can answer with default displays, and summarize the goals and
findings of this study.

STUDY GOALS

A high-level method of human/computer dialog that describes information
needs rather than data-processing instructions is evidently desirable. The
issues that must be addressed for such an improvement to become a reality
are

What syntax would the artificial language use?

How would questions be linked to data-manipulation commands?

How would the system choose appropriate display formats?

The first and last of the three issues are open questions. The second issue,
while equally challenging, has been treated to some degree. Wu et al. (1989)

135

describe a frame-based GIS that can receive an expression in a high-level
formal language, translate the expression into primitive data manipulation
procedures, order the primitives by predefined optimization rules, and
execute the commands. The query language developed by Nyerges (1980) also
had a multi-level structure comprised of a query language, query decoder, and
query processor. While enhancements are always useful, the work of Wu
and Nyerges demonstrates the premise that GISs can be informed with
sufficient intelligence to match high-level commands to low-level procedures
(Table 1).

Table 1. Producing answers to geographic questions. An event sequence
includes intermediate dialog between the human and the computer to verify the
treatment of a question.

Human Computer
Frame a question or questions. Match the questions to a set of commands.
Verify the command structure. Propose a default display format.
Verify display format. Perform requested data manipulations.

Produce display format.

To address the questions of syntax and display selection, it is useful to form
some preliminary requirements. The query syntax should implicitly embed
the information needed to select the appropriate content and format of a
response display. If that were the case, standardized answers to questions
could be produced in a range of formats without burdening a user with
cartographic decisions, either at the micro (e.g., color or gray scale, pattern,
shape, generalization, font) or macro (e.g., map type, geographic window,
scale selection, entities depicted) level. Several interesting attempts have
been made to automate the type of decisions referred to here as "micro" (see
Robinson and Jackson 1985, Muller 1986, Mackeness 1987, and Weibel and
Buttenfield 1988). It is the "macro" decisions that remain unaddressed.
Macro decisions are linked less to legibility than to semantic integrity; in
other words, a person may respond to a question in well-modulated tones
and correct grammar, but if the answer is off target, the effort is in vain.

If questions are straightforward (e.g., "Where are all the forests in this area?")
a display is relatively easy to produce automatically. Frank (1982) describes a
GIS query system that could match simple queries with displays by
automatically determining a window and scale, then selecting the requested
relational entities that would appear. But as demands on GISs become more
intricate and GISs themselves become more complex (e.g., by incorporating
temporal information), the selection of default displays s becomes
correspondingly more complex. Entities may be mentioned in a question that
are not included in the display that answers it. More complex questions
require more complex syntax and a broader system vocabulary. And many
output formats become possible and needed (Table 2).

136

Table 2. Different questions require different formats for answering.

Question
Where are the pastures

in this watershed?

What are the different types
of agricultural land use
in this watershed?

Who owns the pastures
that border the stream?

What is the grazing density of
the pastures beside the stream?

Where does the stream border
pastures?

What pastures have changed from
nonagricultural use?

When did they change?

How many acres changed?

Format Content
Map Highlight pastures

Map Color or list by
Listing agricultural type

Map Color or list by owner
Listing

Map Shade or list by density
Listing

Map Highlight stream segments

Map Highlight or list pastures
Listing

Map Shade or list by years
Listing

Value Number of acres

The problem of default displays becomes more complex when a GIS includes
temporal data, since, in addition to spanning space, the queries can span time
and space/time. For example, the simple question of where a given feature or
attribute type occurs becomes more complex when the question of occurrence
concerns a time in the past (i.e., where it occurred ten years ago); a timespan
(i.e., where it has occurred any time during the past ten years); flows, motion,
or trends (which imply a timespan when the movement occurred); or a
change over time (i.e., where it has changed from one feature or attribute to
another over a given timespan). Vasiliev (1990) discusses different forms of
temporal maps and provides examples of the many methods available for
expressing spatial change in graphic terms.

Current GISs place the onus for specifying how the reply should look on the
user (Figure 1). Will it be graphic or tabular? If graphic, will it be an outline
map dotted with point symbols or a choropleth map? What colors, shapes,
and patterns should be used? If the display is tabular, what are the rows and
columns? How wide should they be? Ideally, the next generation of GISs will
shoulder this responsibility unless a user specifically asks to share it.

137

What display would best
answer the question?/ ^

listing?
\
What should be the
rows and columns?

map?

What type of map?
What should appear on
the map?

What precision and codes What colors, shapes, or patterns
should be used? should be used?

\

Figure 1. Display options for answering a question posed to a spatial database.

THEORETICAL BASIS

Evidently, some mechanism must exist for mapping questions to formats for
answers. Two general approaches are possible: enumerate high-level
information requests and map each to a default display, or develop a
classification scheme for questions and answers and a means of recognizing
what class of question has been posed.

Enumerating GIS operations
Many different attempts have been made to enumerate GIS operations. The
capabilities that different authors describe as useful to a GIS can be divided
into two groups: information desired, and functions available. Table 3 is an
aggregated listing of these two classes that was collected from Nystuen (1968),
Salmen (1977), Honeycutt et al. (1980), White (1984), Wu et al. (1989), and
Guptill (1989).

Table 3. Types of GIS information and functions.

information desired
multi-scale analysis
multi-map compositing
spatial clustering and aggregation
edge detection
direction of flow
comparison
precedence
coincidence
proximity
adjacency
interpolation
corridor delineation
slope and aspect
optimum path
feature recognition from geometry
weighting
intervisibility

functions available
windowing
rotate, shift, scale
attribute aggregation
map overlay - union
map overlay - intersection
map overlay - negation
calculate area, length, volume
calculate aximuth, bearing, coordinates
calculate statistics from tabular data
buffer zoning: erode and dilate
search (locate all)
line smoothing or simplification
point in polygon
point in line
line in polygon

138

The problems of enumeration become apparent when one investigates the
enumerations that exist: no two enumerators have arrived at identical
listings, the completeness of any given enumerations is debatable, and none
include a temporal dimension. Given the immaturity of GISs in general, and
temporal GISs in particular, few would argue that any enumeration of
information needs could be considered exhaustive. A question-to-answer
mapping built on this approach would need to be adjusted or expanded
continually.

Classification of operations
The alternative to "hardwiring" questions to answers is to adopt a
classification scheme for both that permits questions to be mapped to answers
of the same class. Logically, a classification scheme must be built on a
reasoned understanding of the information involved. This follows the
thinking of Booth (1989) and Jarke and Vassiliou (1985), who argue that
establishing a mutual conceptual framework aids in arriving at a mutual
understanding of the topics being discussed. Even in the very restrictive
setting of a human/computer dialog, a common view of the information
being treated seems fundamental. Various authors offer conceptual
frameworks concerning the nature of geographic information and operations.
None was designed to be used as a semantic basis for a human-computer
dialog; however, each has merit.

The first framework considered was that of Tomlin (1983), who names three
types of geographical modeling operations.

- The output value is a function of a point.
- The output value is a function of neighborhood or adjacency.

Neighborhoods can be immediate, extended, or indeterminate (i.e., the
neighborhood must be computed or estimated after the process is
underway)

- The output value is a function of a vicinity or region.

These three types of operations would be multiplied in a temporal database,
since each type of data could exist at a point in time or in a trajectory through
time, and each modeling operation could consider a point in time or a
trajectory through time.

A second prospective framework is that of Rucker (1987), who describes a
mathematical treatment of reality that could serve as a basis for a model of
geographic information. As stated by Rucker, the five archetypical patterns of
mathematics are number, space, logic, infinity, and information. A
geographical region can be used to illustrate these concepts.

- Number. A region contains a certain number of buildings and a certain
number of wetlands. The buildings have a certain height and length that
can be measured numerically; the wetlands have measurable moisture,
animal populations, and acreage. The area of the region itself can be
measured, as can its population.

139

- Space. A region is not flat, as it might appear on a map. It exists in four-
dimensional space/time. It has no holes (as defined here), and it connects
to other regions. It follows the curvature of the earth, its stream network
branches in a one-dimensional pattern, and the earth's relief forms roughly
conical bulges in three dimensions. The region has subregions, which
might by accessed by White's (1984) windowing, buffering, boundary, and
endpoint operators. Subregions also may intersect, coincide, or be included
within one another.

- Logic. The subregions within a region are interconnected. The region also
reacts to external changes. A dammed stream floods land upstream. A
zoning change alters land use. Tax disparities between regions cause
outmigration or unpredictable settlement. Interconnections and reactions
also exist that are unknown or poorly understood.

- Infinity. By zooming out from the region, one might see that it forms a
pattern with other regions. By zooming in, one might notice greater detail
and apparent structure within that detail and cells, and then atoms come
into focus. What meets the eye when examining a region relates closely to
the scale at which the region is examined.

- Information. Over time, a region is subject to random influences that
leave their mark. Rucker suggests two ways to measure the information
content of an entity: by the number of questions required to build a replica
of the entity, or as the length of the shortest computer program required to
answer any possible question about it.

As one might expect, this mathematical model addresses conceptual units
and measurements, which could be useful in selecting map formats.
However, it is not linked to the components of geographic information and
hence would need to be extended considerably to meet the needs expressed in
this discussion.

A more promising framework is that of Sinton, whose 1978 work on spatial
data representation is useful for organizing spatiotemporal information
because it addresses all three components of spatial information: attribute,
location, and time. Sinton argues that traditional representation methods can
measure only one of these attributes. A second is fixed to a constant value,
and the third is controlled to a range of values or a set of categories (Table 4).

Sinton starts with a map and classes it according to how the map treats the
various components. If it were possible to start with a question and class it
according to how the question treated each component, then Sinton's
framework provides a likely starting point for addressing issues one and three
because questions could be matched to the appropriate formats for answers.

140

Table 4. The representation of geographic data in various formats (extended
from Sinton 1978).

	Fixed
Soils data time
Topographic map time
Census data time
Raster imagery time
Weather station reports location
Flood tables location
Tide tables location
Airline schedules location
Moving objects attribute

Controlled
attribute
attribute
location
location
time
time
attribute
attribute
location

Measured
location
location
attribute
attribute
attribute
attribute
time
time
time

Sinton's framework revolves around the components of the information
itself, rather than functions or measures alone. In addition, the framework is
tied naturally to graphic forms, so an artificial language that is structured to
express what components are fixed, controlled, or measured could also
indicate what output form is appropriate. Returning to the goal of a dialog
based on questions and answers, we can see that Sinton's framework can be
mapped readily to question words.

Attributes: what, who, how many, how much

Location: where

Time: when, how long

Using that mapping, a tie between question and answer is already evident,
since the "question word" indicates the measured variable.

AN ARTIFICIAL LANGUAGE FOR POSING GEOGRAPHIC QUESTIONS

A high-level artificial language built upon questions designed to elicit
answers would alleviate the difficulty of using a GIS. Today's GISs force the
user at the helm to express information needs using a combination of
relational and spatial logic. Questions are not asked directly, so the system
has few options for providing meaningful help sequences or display formats.

How it would work
The high-level language would be designed to sit atop of the attribute and
spatial command languages that dictate data manipulations. High-level
commands would call lower-level commands, just as a high-level
programming language decomposes to machine language before functions
are performed. This concept is similar to the methods adopted by Nyerges
(1980) and Wu et al. (1989), although in those two implementations, the top-
level query language did not disassociate the user from data-manipulation
commands, as supported here. As demonstrated by Wu et al., the effect of the
high-level layer on performance is negligible; the translation of question-to-

141

command occurs before commands are executed, and a language can be
designed for direct translation into commands.

The high-level language would be comprised of a limited set of verbs, nouns,
and modifiers and a grammar to describe sequence within an expression. The
system would parse the expression and select the appropriate data retrieval
and manipulation commands to execute. At the same time, the sequence in
which entities are mentioned would indicate which elements of the
expression were fixed, controlled, or measured. That information, and
identifying whether the data types are point, line, or area, would indicate
what output format to select.

Although this study has not defined a query language that meets the goals
listed above, certain patterns in the sequence of words in questions indicate a
possible syntax. It is useful to note the natural syntax of English questions to
ensure that an artificial language is truly "English-like" and easy to learn.
Using the questions from Table 2 (above), Table 5 describes how natural
English grammar contains clues concerning measured components, content
desired, and window.

Table 5. Common English grammar used to
indication of the format required to answer,
examples of Table 2. In all cases, the region of

frame questions gives a basic
Questions are taken from the

interest in "this watershed."

Measured
component

Where are

What is

Who is the

What is

Where does

What

When did

How many

Primary
subject

pastures

agriculture

owner

grazing density

stream

pastures

pastures

acres

Attribute
modifier

by type

of pastures

of pastures

changed from
nonagriculture

change from
nonagriculture

changed from
agriculture to
nonagriculture

Relative Period of
location interest

now

now

by stream now

by stream now

border pastures now

past
ten years

ever

past
ten years

To map from a question to an output format is not entirely straightforward,
even when the natural-language version appears so easily parsed. Aside
from the question "where...," which is answered most naturally via a map,

142

most "question words" can be answered in either map or tabular format.
Accordingly, a user should be able to select either a map or a listing as output
unless one is patently inappropriate. Ideally, the system can recognize when
only one ouput format will do. Use of the word "where" is one clue. Others
also exist; the single question listed in Table 5 that requires a listing has a unit
of measurement as its primary subject.

A second problem of selecting a map design by default is informing the
computer of the data types involved. Attributes can use nominal, ordinal,
interval, or ratio measures, and the mapped entities can be points, lines,
areas, or surfaces. Each combination has a set of appropriate mapping
techniques. The logic required to select an output format would follow the
lines offered in Table 6. Once again, criteria for each decision will be collected
from different parts of the question. The question word combined with the
subject indicates the level of measurement. For example, a "where" question
requires only nominal symbols to answer, but a "what" can require an
ordinal, interval, or ratio answer depending on the subject. What is the
agriculture by type? requires a different map response than What is the
grazing density? A reasonable approach to automating this decision is to
include the level of measurement for each data attribute in the data
dictionary.

Table 6. Deducing an appropriate output format given a question to answer.

Select entities to appear on the map using the region and period of interest, the
primary subject and attribute modifiers, and constraints on relative location.

Determine whether the primary subject is point, line, or area.
Determine whether the measure is nominal, ordinal, interval, or ratio.
Select format.

Although Table 5 decomposes the questions only to a coarse level of detail,
more information exists in the natural expressions that help describe the
desired manipulations and output format to the computer. For example, the
verbs include tense, which indicate a temporal map and an excursion into the
past-tense database. In addition, certain words (e.g., "border..." and
"change...") are keywords that describe a buffering and a temporal operation,
respectively.

Possible enhancements
Several measures are possible to move the dialog to yet a higher level of
discourse. Specialized views or objects could be developed to express to the
system combinations of data that have special meaning to the user. Using
Table 5's example, the watershed could be stored as a named MBR in the
database so it could be referenced by name and a window automatically
selected. Alternately, a user could indicate the region of interest on the
screen, as described in Egenhofer et al. (1989).

Other enhancements to a question-oriented query language could include
using expert system techniques to shorten the instructions necessary to
describe certain concepts to the computer. Two excellent examples of "mini"

143

expert systems are found in the temporal information system literature.
Overmyer and Stonebraker (1985) describe the development of a "time
expert" within a relational database that permits the system to interpret such
terms as "lunch," "today/1 incomplete dates, and ranges of dates. Kahn and
Gorry (1977) describe a "time specialist" that interprets temporal constructs
needed in problem solving. The Overmyer and Stonebraker system operates
within an INGRES QUEL environment, while Kahn and Gorry's system is
designed to interpret natural language expressions. Input method could
equally well be query-by-example, graphics, or a fourth-generation language.

Additional bonuses
The focal purpose of developing a question-oriented query system is to
relieve users of the task of specifying data-manipulation procedures to the
computer, and to permit the computer to produce default displays
automatically in response. The latter in particular is most effective if the
computer understands the information sought.

If the human-computer dialog informed the computer of what information is
sought by the user, conceivably the system could supply more useful help
sequences. These would include model questions that the user could choose
from and edit, and listings from the data dictionary. Incorrect syntax could be
corrected through gentle feedback from the computer regarding correct
options and the results they would produce.

Assuming that the high-level query language were built on the georelational
architectures in common use today, the high-level question would be
decomposed by the system into a series of SQL and spatial commands. One
option for experienced users would be to list these commands and permit
them to be edited for greater control over output. New users also could
employ such a listing as a learning tool.

SUMMARY AND CONCLUSIONS

This discussion does not introduce a finished high-level query language. It
does, however, supply a basis for continuing investigation into the topic. It
argues the following.

- The next generation of GISs should relieve users of the burden of
specifying data manipulations and output formats by permitting them to
specify their information needs (rather than data-processing needs) in an
English-like artificial language supplemented by point-and-click inputs.

- The design of any cartographic query language should be linked to the
problem of how a query's response should be formatted. At present,
systems permit users to design and save an output format, and reference
that format as the desired output for a query. Arguably, this level of
automation can be increased and system designers can relieve users of the
burden of map specification altogether.

144

- Sinton's theory of geographic representation provides a possible starting
point for developing a conceptual framework for questions and answers
that the human and computer can share.

Continuing research in this area can take two parallel tracks by attacking the
problem from its two ends: the query language and the output format.
Development of a query language requires an investigation of the natural
phrasing of geographic questions and how their elements decompose and
map to data manipulations, and further examination of how Sinton's theory
applies to geographic questions. Development of default output formats
requires a better understanding of what formats best answer what questions,
and how the components of the question indicate the composition of the
format.

Many have argued for the importance of cartographers in the GIS discipline.
Given the current state of human/GIS communication, however, one might
wonder at how involved cartographers have been to date; the cartographer's
purported interest in communication has not apparently improved the state
of affairs for GIS users. Until now, much of the harshness of the GIS
environment could be attributed to the immaturity of hardware and software
systems. But the raw materials do exist now to better the lot of GIS users
considerably; it is our understanding of geographic questions and answers
that lags behind.

REFERENCES

Biskuo, Joachim; Ra'sch, Uwe; and Stieteling, Holger. 1990. "An Extension of
SQL for Querying Graph Relations." Computer Languages 15,2, 65-82.

Booth, Paul. 1989. An Introduction to Human-Computer Interaction. East
Sussex: Lawrence Erlbaum Associates Ltd.

Borenstein, Nathaniel S. 1986. "Is English a Natural Language?" Foundation
for Human-Computer Communication, K. Hopper and I. A. Newman,
editors. North-Holland: Elsevier Science Publishers BV, 60-72.

Broekhuysen, Martin and Dutton, Geoffrey. 1983. "Conversations with
Odyssey." Proceedings of Auto-Carto 6, Ottawa, November, Vol. 2, 15-24.

Egenhofer, Max J.; Frank, Andrew U.; and Hudson, Douglas L. 1989. "User
Interfaces for Geographic Information Systems." Abstracts of the 14th
World Conference of the International Cartographic Association, August,
Budapest, 162.

Embley, David W. 1989. "NFQL: The Natural Forms Query Language."
ACM Transactions on Database Systems 14, 2, 168-211.

Frank, Andre. 1982. "MAPQUERY: Data Base Query Language for Retrieval
of Geometric Data and their Graphical Representation." Computer Graphics
16, 3, July, 199-207.

Guptill, Stephen C, editor. 1988. "A Process for Evaluating Geographic
Information Systems." Federal Interagency Coordinating Committee on
Digital Cartography, U.S. Geological Survey Open-File Report 88-105.

Honeycutt, Dale; Brooks, Kristina; Kimerling, Jon. 1980. "GIS: a review of
selected operational and functional capabilities." Department of Geography,
Oregon State University, January.

145

Hoppe, Heinz Ulrich. 1990. "A Grammar-Based Approach to Unifying Task-
Oriented and System-Oriented Interface Descriptions." Mental Models and
Human-Computer Interaction, D. Ackermann and M. J. Tauber, editors.
North-Holland: Elsevier Science Publishers BV, 353-373.

Jarke, Matthias and Vassiliou, Yannis. 1985. "A Framework for Choosing a
Database Query Language." Computing Surveys 17, 3, 313-340.

Jarke, Matthias. 1986. "Current Trends in Database Query Processing." On
Knowledge Base Management Systems, Michael L. Brodie and John
Mylopoulos, editors. New York: Springer-Verlag, 111-119.

Kahn, Kenneth and Gorry, G. Anthony. 1977. "Mechanizing Temporal
Knowledge." Artificial Intelligence 9, 87-108.

Katzeff, Cecilia. 1989. "Strategies for Testing Hypotheses in Database Query
Writing." Man-Computer Interaction Research, F. Klix, N. A. Strietz, Y.
Waern, and H. Wandke, editors. North-Holland: Elsevier Science
Publishers B.V., 125-147.

Mackaness, William and Fisher, P. F. 1987. "Automatic Recognition and
Resolution of Spatial Conflicts in Cartographic Symbolization." Proceedings
of Auto-Carto 8, Baltimore, 709-718.

McGranaghan, M. 1989. "Context-Free Recursive-Descent Parsing of
Location-Descriptive Text." Proceedings of Auto-Carto 9, Baltimore, April,
580-587.

Morse, Bruce W 1987. "Expert System Interface to a Geographic Information
System." Proceedings of Auto-Carto 8, Baltimore, March, 535-541.

Muller, J.-C, Johnson, R. D., and Vanzella, L. R. 1986. "A Knowledge-Based
Approach for Developing Cartographic Expertise." Proceedings of the
Second International Symposium on Spatial Data Handling, Seattle, July,
557-571.

Nyerges, Timothy L. 1980. "Modeling the Structure of Cartographic
Information for Query Processing." Unpublished PhD dissertation, Ohio
State University, Columbus.

Nystuen, John D. "Identification of Some Fundamental Spatial Concepts." In
Spatial Analysis, edited by Brian J. L. Berry and Duane F. Marble.
Englewood Cliffs, NJ: Prentice-Hall Inc., 1968.

Overmyer, Ricky and Stonebraker, Michael. 1982. "Implementation of a
Time Expert in a Database System." SIGMOD Record 12, 3, 51-59.

Robinson, G. and Jackson, M. 1985. "Expert Systems in Map Design."
Proceedings of Auto-Carto 7, Baltimore, 430-439.

Schank, Roger C. and Rieger, Charles J. 1985. "Inference and the Computer
Understanding of Natural Language." Readings in Knowledge
Representation, Ronald J. Brachman and Hector J. Levesque, editors. Los
Altos, California: Morgan Kaufmann Publishers, Inc., 119-140.

Plumb, Gergory A. 1988. "Displaying CIS Data Sets Using Cartographic
Classification Techniques." Proceedings of GIS/LIS '88, San Antonio,
December, Vol. 1, 340-349.

Quillian, M. Ross. 1985. "Word Concepts: a Theory and Simulation of some
Basic Semantic Capabilities." Readings in Knowledge Representation,
Ronald J. Brachman and Hector J. Levesque, editors. Los Altos, California:
Morgan Kaufmann Publishers, Inc., 98-118.

146

Rucker, Rudy. 1987. Mind Tools: the Five Levels of Mathematical Reality.
Boston: Houghton Mifflin Company.

Salmen, Larry J. 1978. "Natural Resource Analysis Techniques - Their Impact
for DBMSs." Harvard Papers on CIS, Vol. 2, edited by G. Dutton. Reading,
Massachusetts: Addison-Wesley.

Sinton, David. 1978. "The Inherent Structure of Information as a Constraint
to Analysis: Mapped Thematic Data as a Case Study." Harvard Papers on
CIS, Vol. 7, edited by G. Dutton. Reading, Massachusetts: Addison-Wesley.

Tomlin, Data. 1983. "Digital Cartographic Modeling Techniques in
Environmental Planning." Unpublished PhD dissertation, Yale University.

Vasiliev, Irina. 1990. "Examples of the Treatment of Time as a Variable on
Maps." Paper presented at the 1990 Conference of the Association of
American Geographers.

Walshe, A. 1989. "Formal Methods of Database Language Design and
Constraint Handlings." Software Engineering Journal, January, 15-24.

Webber, Bonnie Lynn. 1986a. "Natural Language Processing: A Survey." On
Knowledge Base Management Systems, Michael L. Brodie and John
Mylopoulos, editors. New York: Springer-Verlag, 353-364.

Webber, Bonnie Lynn. 1986b. "Questions, Answers, and Responses." On
Knowledge Base Management Systems, Michael L. Brodie and John
Mylopoulos, editors. New York: Springer-Verlag, 365-402.

Weibel, Robert and Buttenfield, Barbara P. 1988. "Map Design for Geographic
Information Systems." Proceedings of GIS/LIS '88, San Antonio, December,
Vol. 1, 350-359.

White, Marvin S. 1984. Technical Requirements and Standards for a
Multipurpose Geographic Data System. American Cartographer 11, 1,15-26.

Wu, Jian-Kang; Chen, Tao; and Yang, Li (1989). "A Versatile Query Language
for a Knowledge-Based CIS." International Journal of CIS 3,1, 51-57.

147

Qualitative Spatial Reasoning about Cardinal
Directions 1

Andrew U. Frank
National Center for Geographic Information and Analysis (NCGIA)

and
Department of Surveying Engineering

University of Maine
Orono, ME 04469 USA

FRANK@MECAN 1 .bitnet

Abstract
Spatial reasoning is very important for cartography and GISs. Most known
methods translate a spatial problem to an analytical formulation to solve
quantitatively. This paper shows a method for formal, qualitative reasoning
about cardinal directions. The problem addressed is how to deduce the
direction from A to C, given the direction from A to B and B to C. It first
analyzes the properties formal cardinal direction system should have. It
then constructs an algebra with the direction symbols (e.g., {N, E, S, W})
and a combination operation which connects two directions. Two examples
for such algebras are given, one formalizing the well-known triangular
concept of directions (here called cone-shaped directions) and a projection-
based concept. It is shown that completing the algebra to form a group by
introducing an identity element to represent the direction from a point to
itself simplifies reasoning and increases power. The results of the
deductions for the two systems agree, but the projection bases system
produces more 'Euclidean exact' results, in a sense defined in the paper.

1. Introduction
Humans reason in various ways and in various situations about space and
spatial properties. The most common examples are navigational tasks in
which me problem is to find a route between a given starting point and an
end point. Many other examples, such as decisions about the location of a
resource, which translates in a mundane household question like "where
should the phone be placed?", or the major problem of locating a nuclear
waste facility require spatial reasoning. Military applications using spatial
reasoning for terrain analysis, route selection in terrain, and so on. (Piazza
and Pessaro 1990) are frequent. Indeed, spatial reasoning is so widespread
and common that it is often not recognized as a special case of reasoning.

Spatial reasoning is a major requirement for a comprehensive GIS and
several research efforts are currently addressing this need (Abler 1987, p.
306, NCGIA 1989, p. 125, Try and Benton 1988). It is important that a
GIS can carry out spatial tasks, which include specific inferences based on

i Funding from NSF for the NCGIA under grant SES 88-10917, from
Intergraph Corp. and Digital Equipment Corp. is gratefully
acknowledged.

148

spatial properties, in a manner similar to a human expert and that there are
capabilities that explain the conclusions to users in terms they can follow
(Try and Benton 1988, p. 10). In current GIS systems, such spatial
reasoning tasks are most often formalized by translating the situation to
Euclidean geometry then using an analytical treatment for finding a
solution. This is admittedly not an appropriate model for human reasoning
(Kuipers 1978, p. 143) and thus does not lead to acceptable explanations,
but Euclidean geometry is a convenient and sometimes the only known
model of space available for rigorous analytical approaches. A similar
problem was found in physics, where the well known equations from the
textbook were not usable to build expert systems. Using more qualitative
than quantitative approaches, a formalization of the physical laws we use in
our everyday lives was started, the so called 'naive physics' (Hayes 1985,
Hobbs and Moore 1985, Weld and de Kleer 1990).

This paper addresses a small subset of spatial reasoning, namely qualitative
reasoning with cardinal directions between point-like objects. We assume a
2-dimensional space and exclude radial reference frames, as is customary
in Hawaii (Bier 1976). We want to establish rules for inference from a set
of directional data about some points to conclude other directional relations
between these. We follow McDermott and Davis (1984, p. 107) in
assuming that such basic capabilities are necessary for solving the more
complex spatial reasoning problems. A previous paper with the terms
'qualitative reasoning' in its title (Dutta 1990) is mostly based on analytical
geometry. In contrast, our treatment is entirely qualitative and we use
Euclidean geometry only as a source of intuition in Section 4 to determine
the desirable properties of reasoning with cardinal directions.

Similarly, the important field of geographic reference frames in natural
language (Mark, et al. 1987) has mostly been treated using an analytical
geometry approach. Typically, spatial positions are expressed relative to
positions of other objects. Examples occur in everyday speech in forms like
"the church is west of the restaurant". In the past these descriptions were
translated into Cartesian coordinate space and the mathematical
formulations analyzed. A special problem is posed by the inherent
uncertainties in these descriptions and the translation of uncertainty into an
analytical format. McDermott and Davis (1984) introduced a method using
'fuzz' and in (Dutta 1988) and (Dutta 1990) fuzzy logic (Zadeh 1974) is
used to combine such approximately metric data.

The problem addressed in this paper, described in practical terms, is the
following: In an unknown country, one is informed that the inhabitants use
4 cardinal directions, by the names of 'al' "bes 1 'eel' and 'des', equally
spaced around the compass. One also receives information of the type

Town Alix is al of Beta, Celag is eel of Diton, Beta is des of Diton,
Efag is eel of Beta, etc.

We show how one can assert that this is sufficient information to conclude
that Alix is al of Efag.

Our concern is different from Peuquet (Peuquet and Zhan 1987), who gave
'an algorithm to determine the directional relationship between arbitrarily-
shaped polygons in the plane'. She started with two descriptions of the

149

shape of two objects given in coordinate space and determined the
directional relationship (we say the cardinal direction) between the two
objects. We are here concerned with several objects. Cardinal directions
are given for some pairs of them and we are interested in the rules of
inference that can be used to deduce others.

This paper lists a set of fundamental properties cardinal directions should
have and defines what exact and approximate qualitative spatial reasoning
means. It then gives two possible methods to construct a system of cardinal
directions. They seem quite different, one based on a cone shaped or
triangular area for a direction, the other based on projections, but they
result in very similar conclusions. The projection based is slightly more
powerful and easier to describe. The set of desirable properties are
formally contradictory and contain some approximate rules, but these seem
to pose more of a theoretical than a practical problem; however, clearly
more research is necessary to clarify this point.

An approach that is entirely qualitative, and thus similar to the thrust in
this paper, is the work on symbolic projections. It translates exact metric
information (primarily about objects in pictures) in a qualitative form
(Chang, et al. 1990, Chang, et al. 1987). The order in which objects
appear, projected vertically and horizontally, is encoded in two strings, and
spatial reasoning, especially spatial queries, are executed as fast substring
searches (Chang, et al. 1988).

This work is part of a larger effort to understand how we describe and
reason about space and spatial situations. Within the research initiative 2,
'Languages of Spatial Relations' of the NCGIA (NCGIA 1989) a need for
multiple formal descriptions of spatial reasoning both quantitative-
analytical and qualitative became evident (Frank 1990, Frank and Mark
1991, Mark and Frank 1990, Mark, et al. 1989). Terence Smith presented
some simple examples during the specialist meeting .

"The direction relation NORTH. From the transitive property of
NORTH one can conclude that if A is NORTH of B and B is NORTH
of C then A must be NORTH of C as well (Mark, et al. 1989)"

The organization of this paper is as follows: In Section 2 we introduce the
concept of qualitative reasoning and relate it to spatial reasoning using
analytical geometry; we define 'Euclidean exact' qualitative reasoning
based on a homomorphism. In the following section, we list the properties
of cardinal directions and in Sections 4 and 5 we discuss two different
systems for reasoning with directions and compare them. We conclude the
paper with some suggestions for future research.

2. Qualitative approach

2.1. Qualitative reasoning
In this paper, we present a set of qualitative deduction rules for a subset of
spatial reasoning, namely reasoning with cardinal directions. In qualitative
reasoning a situation is characterized by variables which 'can only take a
small, predetermined number of values' (de Kleer and Brown 1985, p.
116) and the inference rules use these values and not numerical quantities

150

approximating them. It is clear that the qualitative approach loses some
information, but this may simplify reasoning. We assume that a set of
propositions about the relative positions of objects in a plane is given and
we have to deduce other spatial relationships (Dutta 1990, p. 351)

"Given: A set of objects (landmarks) and
A set of constraints on these objects.

To find: The induced spatial constraints".
The relations we are interested in are the directions, expressed as symbols
representing the cardinal direction.

Without debating whether human reasoning follows the structure of
prepositional logic, we understand that there is some evidence that human
thinking is at least partially symbolic and qualitative (Kosslyn 1980, Lakoff
1987, Pylyshyn 1981). Formal, qualitative spatial reasoning is crucial for
the design of flexible methods to represent spatial knowledge in GIS and
for constructing usable GIS expert systems (Buisson 1990, McDermott and
Davis 1984). Spatial knowledge is currently seldom included in expert
systems and is considered 'difficult' (Bobrow, et al. 1986, p.887).

In terms of the example given in the introduction, the following chain of
reasoning deduces a direction from Alix to Efag:

1. Use 'Alix is al of Beta' and 'Efag is eel of Beta', two statements
which establish a sequence of directions Alix - Beta - Efag.

2. Deduce 'Beta is al of Efag' from 'Efag is eel of Beta'
3. Use a concept of transitivity: 'Alix is al of Beta 1 and 'Beta is al of

Efag' thus conclude 'Alix is al of Efag'.
We shall formalize such rules and make them available for inclusion in an
expert system.

2.2. Advantage of qualitative reasoning
A qualitative approach uses less precise data and therefore yields less
precise results than a quantitative one. This is highly desirable (Kuipers
1983, NCGIA 1989, p. 126), because

 precision is not always desirable, and
 precise, quantitative data is not always available.

Qualitative reasoning has the advantage that it can deal with imprecise data
and need not translate it to a quantitative form. Verbal descriptions are
typically not metrically precise, but are sufficient for finding the way to a
friend's home, for example. Imprecise descriptions are necessary in query
languages where one specifies some property that the requested data should
have, for example a building about 3 miles from town. It is difficult to
show this in a figure, because the figure is necessarily overly specify or
very complex. Qualitative reasoning can also be used for query
simplification to transform a query from the form in which it is posed to
another, equivalent one that is easier to execute.

151

o
A town

Figure 1: Overspecific visualization Figure 2: Complex visualization

In other cases, the available data is in qualitative form, most often text
documents. For example, (Tobler and Wineberg 1971) tried to reconstruct
spatial locations of historic places from scant descriptions in a few
documents. Verbal information about locations of places can leave certain
aspects imprecise and we should be able to simulate the way humans deduce
information from such descriptions, (for example in order to automatically
analyze descriptions of locations in natural science collections)
(McGranaghan 1988, McGranaghan 1989, McGranaghan 1989).

2.3. Exact and approximate reasoning
We compare the result of a qualitative reasoning rule with the result we
obtain by translating the data into analytical geometry and applying the
equivalent functions to them. If the results are always the same, i.e., if we
have a homomorphism, we call the qualitative rule Euclidean exact. If
the qualitative rule produces results, at least for some data values, which
are different from the ones obtained from analytical geometry, we call it
Euclidean approximate.

I- !•
dir

Figure 3: Homomorphism

This is a general definition, which applies to the operation to combine two
directions and deduce the direction of the resultant (introduced in 4.3, see
figure 5). We establish a mapping from analytical geometry to symbolic
directions using a function dir (PI, P2), which maps from a pair of points
in Euclidean space to a symbolic direction (e.g., west). Vector addition,
with the regular properties is carried to (i.e., replaced with) the symbolic
combination oo.

DEFINITION: a rule for qualitative reasoning on directions is called
Euclidean exact (for short 'exact') if dir (Pi, P2) is a homomorphism
(Figure 3).

dirCPi.Pi) oo dir (P2 , P3) = dir ((P,, P2) + (P2 , P3))

152

2.4. Formalism used
Our method is algebraic (specifically, a relation algebra) and the objects we
operate on are the direction symbols S for south, E for west, not the points
in the plane. Arguments involving pairs of points, standing for line
segments between them, are used only to justify the desirable properties we
list.

An algebra consists of
 a set of symbols D, called the domain of the algebra - comparable to

the concept of data type in computer programming languages (e.g., D
= {N, E, W, S)

 a set of operations over D, comparable to functions in a computer
program (primarily operations to reverse and to combine directions),
and

 a set of axioms that set forth the basic rules explaining what the
operations do (Gill 1976, p. 94).

Specifically, we write (Pi, P2) for the line segment from PI to P2, and dir
(Pi,Pa) = di for the operation that determines the direction between two
points PI and P2, with di the direction from P! to P2 expressed as one of
the cardinal direction symbols.

3. General properties of directions between points
We are interested in two types of operations applicable to direction:

 the reversing of the order of the points and thus the direction of the
line segment (the inverse operation), and

 the combination of two directions between two pairs of consecutive
points (the combination operation).

Using geometric figures and conclusions from manipulations of line
segments, we deduce here properties of these two operations. These
properties form then the basis for the qualitative reasoning systems defined
in the next two sections.

We define direction as a function between two points in the plane that maps
to a symbolic direction:

dir: p x p -> D.
The symbols available for describing the direction depend on the specific
system of directions used, e.g., {N, E, S, W} or more extensive {N, NE,
E,SE, S, SW,W, NW).

In the literature, it is often assumed that the two points must not be the
same, i.e., the direction from a point to itself is not defined. We introduce
a special symbol, which means 'two points too close that a meaningful
direction can be determined', and call it the identity element 0. This makes
the function total (i.e., it has a result for all values of its arguments),

for all P dir(P, P) = 0.
3.1. Reversing direction
Cardinal directions depend on the order in which one travels from one
point to the other. If a direction is given for a line segment between points

153

PI and P2, we need to be able to deduce the direction from P2 to PI (Figure
4). Already (Peuquet and Zhan 1987) and (Freeman 1975) have stressed
the importance of this operation: "Each direction is coupled with a
semantic inverse". We call this 'inverse' (this name will be justified in
4.3.5) written as 'inv' .

inv: d -> d such that inv (dir (P^ P2)) = dir (P2 , PI)
and

inv (inv (d)) = d because inv (inv (P1,P2)) = inv (P2 , PI) =
(P1,P2).

P2
"^

P3
P1

Figure 5: Combination

3.2. Combination
Two directions between two contiguous line segments can be combined into
a single one. The combination operation is defined such that the end point
of the first direction is the start point of the second.

comb : d x d -> d , always written in infix format: di d2 = da
with the meaning:

dir (Pi,P2) o dir (P2 , P3) = dir (Plt P3).
This operation is not commutative, but is associative, and has an identity
and an inverse.

Combinations of more than two directions should be independent of the
order in which they are combined (associative law) and we need not use
parenthesis:

aoo(booc) = (a b) c = a ob oc (associative law)
This rule follows immediately from Figure 6 or from the definition of
combination:

dir (P t , P2) oo (dir (P2, P3) dir (P3 ,P4)) =
dir (P,, P2) oo dir (P2 , P4) = dir (P,, P4).
(dir (Pi, P2) oo dir (P2, P3)) oo dir (P3 ,P4) =
dir (P,, P3) oo dir (P3 , P4) = dir (P t , P4).

P3

P1
Figure 6: Associativity

154

The definition of an identity element states that adding the direction from a
point to itself, dir (Pi,PI) to any other direction should not change it.

doo() = 0ood = dfor any d.
In algebra, an inverse to a binary operation is defined such that a value
combined with its inverse, results in the identity value. From Figure 4 it
follows that this is just the inverses of the given line segment:

dir (Pi, P2) oo dir (P2 , P,) = dir (P l5 P,).
In case that two line segments are selected as in Figure 7, such that

dir (Pi, P2) = d! and dir (P2 , P3) = d2 = inv (dj)
computing the combination

dir (Pi, P2) oo dir (P2 , P3) = di inv (di) = 0
is an approximation and not Euclidean exact. The degree of error depends
on the definition of 0 used and the difference in the size of the line
segments - if they are the same, the inference rule is exact.

This represents a type of reasoning like New York is east of San Francisco,
San Francisco is west of Philadelphia; thus the direction from New York to
Philadelphia is 'too close' in this reference frame to determine a direction
different from 'the same point' (which is defined here as an additional
element of the possible values for a cardinal direction).

• P2

Figure 7: d inv (d)

We find that this combination is 'piece-wise' invertable:
inv (a oo b) = inv (a) oo inv (b).

Combinations of directions must have the special property that combining
two line segments with the same direction results in the same direction. In a
relation-oriented approach, this is a transitivity rule (as quoted in the
introduction).

dir (P,, P2) = dir (P2 , P3) = d then dir (Pt , P3) = d
or short: d °° d = d, for any d.

3.3. Summary of Properties of Cardinal Directions
The basic rules for cardinal directions and the operations of inverse and
combination are:

 The combination operation is associative (I 1).
 The direction between a point and itself is a special symbol 0, called

identity (1) (2')
 The direction between a point and another is the inverse of the

direction between the other point and the first (2) (3').
 Combining two equal directions results in the same direction

(idempotent, transitivity for direction relation) (3).
 The combination can be inverted (4).
 Combination is piece-wise invertible (5).

155

dir(Pi,PO = 0 (1) d o(dood) = (d od)ood (I 1)
dir (?!, P2) = inv (dir (P2 , PI)) (2) dooO = 0 d = d (2 1)
d d = d (3) dooinv(d) =
for any a, b in D exist unique x in D

such that
a oo x = b and x oo a = b (4)

inv (a oo b) = inv (a) oo inv (b) (5)

Properties of direction Group properties
Several of the properties of directions are similar to properties of algebraic

groups or follow immediately from them. Unfortunately, the idempotent
property (transitivity for direction relation) (3) is in contradiction with the
remaining postulates, especially the definition of identity (3'). Searching for
an inverse x for any d oo x = 0, we find x = d (using (3)) or x = 0 (using 3'),
which contradicts the uniqueness of x (4). It is thus impossible to construct a
system which fulfills all requirements at the same time. Human reasoning
seems not to insist on associativity.

4. Cardinal directions as cones
The most often used, prototypical concept of cardinal directions is related
to the angular direction between the observer's position and a destination
point. This direction is rounded to the next established cardinal direction.
The compass is usually divided into 4 major cardinal directions, often with
subdivisions for a total of 8 or more directions. This results in cone shaped
areas for which a symbolic direction is applicable. We limit the
investigation here to the case of 4 and 8 directions. This model of cardinal
direction has the property that 'the area of acceptance for any given
direction increases with distance1 (Peuquet and Zhan 1987, p. 66) (with
additional references) and is sometimes called 'triangular'.

4.1. Definitions with 4 directional symbols
We define 4 cardinal directions as cones, such that for every line segment,
exactly one direction from the set of North, East, South or West applies.

for every PI, P2 (Pi * P2) exist d (Pi, P2) with d in D4 ={N, S, E,
W}.

South

Figure 8: Cone-shaped directions

An obvious operation on these directions is a quarter-turn, anti-clock-wise
(mathematically positive) q, such that >

q: d -> d, with q(N) = E, q(E) = S, q(S) = W, q (W) = N

156

and four quarter turns are an identity:
q (q (q (q (d))))= q< (d) = d.

Reversing a direction is equal to 2 quarter turns (or one half turn)
inv (d) = q2 (d).

Finally, we just define the combination of two directions, such that
transitivity holds

d ood = d
but every other combination remains undefined.

These definitions would fulfill the requirements for the direction except
that we did not define a symbol for identity. Very few combinations of
symbols produce results.

4.2. Completion with identity
Introducing an identity element, we eliminate the restriction in the input
values for the direction function

for every PI, P2 exist d (Plf P2) with d in D5 = {N, S, E, W, 0}.
A quarter turn on the identity element 0 is 0

q(0)=0
and thus

inv (0) = 0 from q(q(0)) = q (0) = 0
dooO = 0«>d = d from group properties
0 oo 0 = 0 from d oo d = d.

The inverse must further have the property that a direction combined with
its inverse is 0

d oo inv (d) = 0.
These definitions contain the previously listed ones as subset D4 (not
subgroup, because identity is not in the subset). Both the set D5 and the
subset IXj is closed under the operations 'inverse' and 'combination'.

From the total of 25 different combinations, one can only infer 13 cases
exact and 4 approximate; other combinations do not yield an inference
result with these rules. Summarized in a table (lower case indicate
approximate reasoning):

N
E
S
W
0

N
N

o

N

E

E

o
E

S
o

S

S

W

0

W
W

0
N
E
S
W
0

4.3. Directions in 8 or more cones
One may use a set of 8 cardinal directions D9 = {N, NE, E, SE, S, SW, W,
NW, 0}, using exactly the same formulae. In lieu of a quarter turn, we
define a turn of an eighth:

157

e (N) = NE, e (NE) = E, e (E) = SE, , e (NW) = N, e (0) = 0
with 8 eighth turns being the identity

e8 (d) = d
and inverse now equal to 4 eighth turns

inv (d) = e4 (d).
All the rules about combination of direction, etc., remain the same and one
can also form a subset {N, NE, E, SE, S, SW, W, NW} without 0.
An approximate averaging rule combines two directions that are each one
eighth off. For example, SW combined with SE should result in S, or N
combined with E should result in NE.

e (d) oo _e (d) = d
with -e (d) = e7 (d), or one eight turn in the other direction)

One could also assume that if two directions are combined that are just one
eights turn apart, one selects one of the two (S combined with SE results in
S, N combined with NW results in NW).

e(d) oo d = d and d e(d) = d
Human beings would probably round to the simple directions N, E, W, S,
but formalizing is easier if preference is given to the direction which is
second in the turning direction. This is another rule of approximate
reasoning.

This rule can then be combined with other rules, for example to yield
(approximate)

e(d) oo inv d = 0 and e(d) oo e (inv (d)) = 0.
In this system, from all the 81 pairs of values (64 for the subset without 0)
combinations can be inferred, but most of them only approximately. Only
24 cases (8 for the subset) can be inferred exactly; 25 result in a value of 0
and another 32 give approximate results. We can write it as a table, where
lower case denotes Euclidean approximate inferences:

N
NE
E
SE
S
SW
W
NW
0

N
N
n
ne
0

o
0

nw
n
N

NE
n
NE
ne
e
o
o
o
n
NE

E
ne
ne
E
e
se
0

o
o
E

SE
0

e
e
SE
se
s
o
o
SE

S
o
o
se
se
S
s
SW

0

S

SW
0
0

0

s
s
SW
SW

W

SW

W
nw
o
o
o
SW

SW

W
W

W

NW
n
N
o
0

o
W

W

NW
NW

0
N
NE
E
SE
S
SW
W
N-W
0

5. Cardinal directions defined by projections

5.1. Directions in 4 half-planes
Four directions can be defined, such that they are pair-wise opposites and
each pair divides the plane into two half-plains. The direction operation
assigns for each pair of points a combination of two directions, e.g., South

158

and East, for a total of 4 different directions. This is an alternative
semantic for the cardinal direction, which can be related to Jackendoff s
principles of centrality, necessity and typicality (Jackendoff 1983, p. 121).
Peuquet pointed out that directions defined by half-planes are related to the
necessary conditions, whereas the cone-shaped directions give the typical
condition (Mark, et al. 1989, p. 24).

North
West

South

NW
East

SW

NE

SE
Figure 9: Two sets of half-planes Figure 10: Directions defined by half-planes

Another justification for this type of reasoning is found in the structure
geographic longitude and latitude imposes on the globe. Cone directions
better represent the direction of 'going toward', whereas the 'half-plane1
(or equivalent parts of the globe) better represents the relative position of
points on the earth. However, the two coincide most of the time. To reach
an object which is northhaif-piane on the globe one has to go northco^.

For half-plane directions, one defines the cardinal directions as different
from each other and E - W and N - S pair-wise inverse (Peuquet and Zhan
1987, p. 66). In this system, the two projections can be dealt with
individually. Each of them has the exact same structure and we describe
first one case separately and then show how it combines with the other.

The N-S case, considered the prototype for the two cases E-W and N-S has
the following axioms:

for every P,, P2 (P, * P2) dirns (P,, P2)= dns with dns in {N,S}
The inverse operation is defined such that inv (inv (d)) = d holds:

inv (N) = S, inv (S)= N.
Next we define the combination of two directions, such that transitivity
holds:

for all d in {N,S} d o d = d (which is N N = N, S S = S)
We now combine the two projections in N-S and E-W to form a single
system, in which we have for each line segment one of 4 combinations of
directions assigned.

D4 = { NE, NW, SE, SW}
We label the projection operations by the directions they include (not the
direction of the projection):

pns : d4 -> dns , dns in {N, S}
pew :d4->dew, dew in {E, W}

and a composition operation
c: dns x dew -> d9 such that c (pns (d), pew (d)) = d.

The rules for dew are the same as for dns explained above, replacing N by E
and S by W:

159

inv (E) = W, inv (W) = E
E E = E, W o\V = W.

The inverse operation is defined as the inverse applied to each projection:
inv (d) = c (inv (d^), inv (dew))

and combination is similarly defined as combination of each projection
dl oo d2 = C (dns (dl) oo dns (d2), dew (dl) oo dew (d2)).

Unfortunately, combination is defined only for the four cases
NE oo NE = NE NW oo NW = NW
SE oo SE = SE SW oo SW = SW

and others, like
NEooNW

which should approximately result in N, cannot be computed. This system,
lacking an identity, is not very powerful, as only 4 of the 16 combinations
can be inferred.

5.2. Directions with neutral zone
We can define the directions such that points which are near to due north
(or west, east, south) are not assigned a second direction, i.e., one does not
decide if such a point is more east or west. This results in a division of the
plane into 9 regions, a central neutral area, four regions where only one
direction letter applies and 4 regions where two are used.We define for N-
S three values for direction dns {N, P, S} and for the E - W direction the
values dew {E, Q, W}.

NW

W

SW

NE

SE
Figure 11: Directions with neutral zone

It is important to note, that there is no determination of the width of the
'neutral zone' made. Its size is effectively decided when the directional
values are assigned and a decision is made that P2 is north (not north-west
or north-east) of PI. We only assume that these decisions are consistently
made. Similar arguments apply to the neutral zone of cone shaped
directions, but they are not as important.

Allowing a neutral zone, either for the cone or projection based directions
introduces an aspect of 'tolerance geometry'. Strictly, whenever we assign
identity direction dir (Pi, P2) = 0 for cases where PI * P2 we violate the
transitivity assumption of equality.

dir (Plf P2) = 0 and dir (Pi, P3) = 0 need not imply dir (P2 , P3) = 0
A tolerance space (Zeeman 1962) is mathematically defined as a set (in this
case the points P) and a tolerance relation. The tolerance relation relates
objects which are close, i.e., tol (A, B) can be read A is sufficiently close to
B that we can or need not differentiate between them. A tolerance relation

160

is similar to an equality, except that it admits small differences. It is
reflexive and symmetric, but not transitive (as an equality would be)

tol (A, B)
tol (A, B) = tol (B, A).

A tolerance relation can be applied to geometric problems (Robert 1973).
Using the same methods as in 5.1 for the definition of the operations in
each projection first and then combine them, we find for the inverse
operation the following table:

d= NE N NW E WO SE S SW
inv(d)= SW S SE W E 0 NW N NE

The combination operation, again defined as the combination of each
projection, allows one to compute values for each combination. Written as
a table (again, lower case indicates approximate reasoning):

N
NE
E
SE
S
SW
W
NW
0

N
N
NE
NE
e
o
w
NW
NW
N

NE
NE
NE
NE
e
e
o
n
n
NE

E
NE
NE
E
SE
SE
s
o
n
E

SE
e
e
SE
SE
SE
s
s
o
SE

S
o
e
SE
SE
S
SW
SW
w
S

SW
w
o
s
s
SW
SW
SW
w
SW

W
NW
n
o
s
SW
SW
w
NW
W

NW
NW
n
n
o
w
w
NW
NW
NW

0
N
NE
E
SE
S
SW
W
NW
0

The system is not associative, as
(N oo N) oo S = N oo S = 0 but N oo (N oo S) = N oo N = N.

In the half-plane based system of directions with a neutral zone, we can
deduce a value for all input values for the combination operation (81 total),
56 cases are exact reasoning, not resulting in 0, 9 cases yield a value of 0,
and another 16 cases are approximate.

6. Assessment
The power of the two systems which lack an identity element, the 4
direction cone-shaped and the 4 half-plane directional system, is very
limited; most combinations cannot be resolved. The two systems with 8
direction and identity, the 8 direction cone-shaped and the 4 projection
based directional system, are comparable. Each system uses 9 directional
symbols, 8 cone directions plus identity on one hand, the Cartesian product
of 3 values (2 directional symbols and 1 identity symbol) for each
projection on the other hand. The reasoning process in the half-plane based
system uses fewer rules, as each projection is handled separately with only
two rules. The cone-shaped system uses two additional approximate rules
which are then combined with the other ones. An actual implementation
would probably use a table look-up for all combinations and this would not
make a difference.

161

Both systems violate some of the desired properties. One can easily observe
that associativity is not guaranteed, but the differences seem to not be very
significant.

An implementation of these rules and comparison of the computed
combinations with the exact value was done and confirms the theoretical
results. Comparing all possible 106 combinations in a grid of 10 by 10
points (with a neutral zone of 3 for the projection based directions) shows
that the results for the projection based directions are correct in 50% of the
cases and in only 25% for cone-shaped directions. The result 0 is the
outcome of 18% of all cases for the projection based, but 61% for the
cone-shaped directions. The direction-based system with an extended
neutral zone produces a result in 2% of all cases that is a quarter turn off,
otherwise the deviation from the correct result is never more than one
eighth of a turn (namely in 13% of all cases for cone-shaped and 26% for
projection based direction systems). In summary, the projection based
system of directions produces a result in 80% of all cases that is within 45
and otherwise the value 0.

7. Conclusions
This paper introduces a system for inference rules for completely
symbolic, qualitative spatial reasoning with cardinal distances. We have
first stressed the need for symbolic, qualitative reasoning for spatial
problems. It is important to construct inference systems which do not rely
on quantitative methods and need not translate the problem to analytical
geometry, as most of the past work did. The systems investigated are
capable of resolving any combination of directional inference using a few
rules. Returning to our example in the introduction, we cannot only assert
that Alix is al of Efag, but also that Alix is al-des from Diton and Celag,
etc.
We used geometric intuition and the definition of a direction as linking two
points. From this we deduced a number of desirable properties for a
system to deal with cardinal directions. We use an algebraic approach and
define two operations, namely inverse and combination. We found several
properties, e.g.,

- the direction from a point to itself is a special value, meaning 'too
close to determine a direction'

- every direction has an inverse, namely the direction from the end
point to the start point of the line segment

- the combination of two line segments with the same direction result in
a line segment with the same direction.

We defined the notion of 'Euclidean exact' and 'Euclidean approximate' as
properties of a qualitative spatial reasoning system. A deduction rule is
called 'Euclidean exact' if it produces the same results as Euclidean
geometry operations would.

We then investigated two system for cardinal directions, both fulfilling the
requirements for directions. One is based on cone-shaped (or triangular)
directions, the other deals with directions in two orthogonal projections.

162

Both systems, if dealing with 4 cardinal directions, are very limited and
when dealing with 8 directions, still weak. The introduction of the identity
element simplifies the reasoning rules in both cases and increases the power
for both cone and projection based directional systems. The deductions in
this section use only the algebraic properties and does not rely on
geometric intuition or properties of line segments.

Both systems yield results for all the 81 different inputs for the
combination operation. But the projection based system more often yields
an Euclidean exact result than the cone based one (49 vs. 25 cases). It also
produces the value 0 less often (9 vs. 25 cases).

Another important result is that the two systems do not differ substantially
in their conclusions, if definite conclusions can be drawn, i.e., not the value
0. This reduces the potential for testing with human subjects to find out
which system they use, observing cases where the conclusion to use one or
the other line of reasoning would yield different results.

We have implemented these deduction rules and compared the results
obtained for all combinations in a regular grid. The projection based
system results in 53% of all cases in exact results and in another 26% in
results which are not more than 45 off. In 18% of all cases the application
of the rules yields a value of 0. The results for the cone-shaped directions
are less accurate. It will be interesting to see how this accuracy compares
with human performance but also if it is sufficient for expert systems and
for query and search optimization. The methods shown here can be used to
quickly assess if the combination of two directions yields a value that falls
within some limits and thus a more accurate and slower computation should
be done.

There is not much previous work on qualitative spatial reasoning and
several different directions for work remain open:

- Qualitative reasoning using distances,
- Combining reasoning with distances and directions,
- Hierarchical system for qualitative reasoning,
- Directions of extended objects, and
- Reasoning systems, human beings use.

Qualitative reasoning using distances - There is a good,
mathematically based definition for distance measures expressed as real
numbers. This can probably be carried over to qualitative distance
expression, e.g., {Near, Far} or {Near, Intermediate and Far}, and rules
for symbolic combinations similar to the one listed here deduced.

Combining reasoning with distances and directions - Combining
the reasoning with directions and distances can be more than just
combining two orthogonal systems; there are certainly interesting
interactions between them (Hemandez 1990). Most of the approximate
reasoning rules are based on the assumption that the distances between the
points discussed are about equal. This is not as unreasonable as it may
sound, as directional reasoning is probably more often carried out
regarding objects of the same import and thus at about the same distance.

163

Nevertheless, it is a weak assumption and further work should approach
spatial reasoning on distances and then combine the two.

Hierarchical systems for qualitative reasoning - A system for
reasoning with distances differentiating only two or three steps of farness is
quite limited. Depending on the circumstances a distance appears far or
near compared to others. One could thus construct a system of
hierarchically nested neighborhoods, wherein all points are about equally
spaced. Such a system can be formalized and may quite adequately explain
some forms of human spatial reasoning.

Distances and directions of extended objects - The discussion in this
paper dealt exclusively with point-like objects. This is a severe limitation
and avoided the difficult problem of explaining distances between extended
objects. Peuquet in (Peuquet and Zhan 1987) tried to find an algorithm that
gives the same result than Visual inspection'; however, visual inspection
does not yield consistent results. It might be useful to see if sound rules,
like the above developed ones, may be used to resolve some of the
ambiguities.

What system of qualitative reasoning do humans use? - We can
also ask, which one of the systems proposed humans use. For this, one has
to see in which cases different systems produce different results and then
test human subjects to see which one they employ. This may be difficult for
the cone and projection based direction system, as their deduction results
are very similar. Care must be applied to control for the area of
application, as we suspect that different types of problems suggest different
types of spatial reasoning.

Acknowledgements
Comments from Matt McGranagham and Max Egenhofer on a draft
contributed considerably to improve the presentation and I appreciate their
help. The thoughtful notes and suggestions from the reviewers are also
greatly appreciated.

References

R. Abler. 1987. The National Science Foundation National Center for
Geographic Information and Analysis. International Journal of
Geographical Information Systems 1 (4): 303-326.

J. A. Bier. 1976. Map ofO'ahu: The Gathering Place. Honolulu, HI:
University of Hawaii Press.

D. G. Bobrow, S. Mittal and M. J. Stefik. 1986. Expert Systems: Perils and
Promise. Communications of the ACM 29 (9) : 880-894.

L. Buisson. 1990. "Reasoning on Space with Object-Centered Knowledge
Representation". In Design and Implementation of Large Spatial
Databases. Edited by A. Buchmann, O. Gunther, T. R. Smith and Y.-
F. Wang. 325 - 344. New York NY: Springer Verlag.

S.-K. Chang, E. Jungert and Y. Li. 1990. "The Design of Pictorial
Databases Based Upon the Theory of Symbolic Projection". In
Design and Implementation of Large Spatial Databases. Edited by A.

164

Buchmann, O. Gunther, T. R. Smith and Y.-F. Wang. 303 - 324.
New York NY: Springer Verlag.

S. K. Chang, Q. Y. Shi and C. W. Yan. 1987. Iconic Indexing by 2-D
String. IEEE Transactions on Pattern Analysis and Machine
Intelligence 9 (3): 413 - 428.

S. K. Chang, C. W. Yan, T. Arndt and D. Dimitroff. 1988. An Intelligent
Image Database System. IEEE Transactions on Software Engineering
(May): 681 - 688.

J. de Kleer and J. S. Brown. 1985. "A Qualitative Physics Based on
Confluence". In Formal Theories of the Commonsense World.
Edited by J. R. Hobbs and R. C. Moore. 109 - 184. Norwood NJ:
Ablex Publishing Corp.

S. Dutta. 1988. "Approximate Spatial Reasoning". In First International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems. 126 - 140. Tullahoma, Tennessee:
ACM Press.

S. Dutta. 1990. "Qualitative Spatial Reasoning: A Semi-quantitative
Approach Using Fuzzy Logic". In Design and Implementation of
Large Spatial Databases. Edited by A. Buchmann, O. Gunther, T. R.
Smith and Y.-F. Wang. 345 - 364. New York NY: Springer Verlag.

A. U. Frank. 1990. "Spatial Concepts, Geometric Data Models and Data
Structures". In GIS Design Models and Functionality. Edited by D.
Maguire. Leicester, UK: Midlands Regional Research Laboratory,
University of Leicester.

A. U. Frank and D. M. Mark. 1991. "Language Issues for Geographical
Information Systems". In Geographic Information Systems:
Principles and Applications. Edited by D. Maguire, D. Rhind and M.
Goodchild. London: Longman Co. (in press).

J. Freeman. 1975. The modelling of spatial relations. Computer Graphics
and Image Processing 4 : 156-171.

A. Gill. 1976. Applied Algebra for the Computer Sciences. Englewood
Cliffs, NJ: Prentice-Hall.

P. J. Hayes. 1985. "The Second Naive Physics Manifesto". In Formal
Theories of the Commonsense World. Edited by J. R. Hobbs and R.
C. Moore. 1 - 36. Norwood NJ: Ablex Publishing Corp.

D. Hernandez. 1990. Relative Representation of Spatial Knowledge: The 2-
D Case. Report FKI-135-90. Munich FRG: Technische Universitat
Miinchen.

J. Hobbs and R. C. Moore ed. 1985. Formal Theories of the Commonsense
World. Norwood HJ: Ablex Publishing Corp.

R. Jackendoff. 1983. Semantics and Cognition. Cambridge, Mass.: MIT
Press.

S. M. Kosslyn. 1980. Image and Mind. Cambridge Mass.: Harvard
University Press.

B. Kuipers. 1978. Modeling Spatial Knowledge. Cognitive Science 2 : 129
- 153.

B. Kuipers. 1983. "The Cognitive Map: Could it have been any other
way?". In Spatial Orientation. Edited by H. L. Pick and L. P.
Acredolo. 345 - 359. New York NY: Plenum Press.

165

G. Lakoff. 1987. Women, Fire, and Dangerous Things: What Categories
Reveal About the Mind. Chicago, IL: University of Chicago Press.

D. M. Mark and A. U. Frank. 1990. Experiential and Formal
Representations of Geographic Space and Spatial Relations.
Technical Report (in press). : NCGIA.

D. M. Mark, A. U. Frank, M. J. Egenhofer, S. M. Freundschuh, M.
McGranaghan and R. M. White. 1989. Languages of Spatial
Relations: Initiative Two Specialist Meeting Report. Technical
Report 89-2. : National Center for Geographic Information and
Analysis.

D. M. Mark, S. Svorou and D. Zubin. 1987. "Spatial Terms and Spatial
Concepts: Geographic, Cognitive, and Linguistic Perspectives". In
International Geographic Information Systems (IGIS) Symposium:
The Research Agenda. 11-101 -11-111. Arlington, VA: NASA.

D. McDermott and E. Davis. 1984. Planning routes through uncertain
territory. Artificial Intelligence 22 : 107-156.

M. McGranaghan. 1988. "Prototyping an Herbarium Mapping System". In
ACSM-ASPRS Annual Convention. 232 -238. St. Louis: ACSM.

M. McGranaghan. 1989. "Context-Free Recursive-Descent Parsing of
Location-Descriptive Text". In Auto-Carto 9. 580 - 587. Baltimore
MD: ACSM.

M. McGranaghan. 1989. "Incorporating Bio-Localities in a GIS". In
GIS/LIS '89. Orlando FL: ACSM.

NCGIA. 1989. The U.S. National Center for Geographic Information and
Analysis: An overview of the agenda for research and education.
International Journal of Geographic Information and Analysis 2 (3)
: 117-136.

D. Peuquet and C.-X. Zhan. 1987. An algorithm to determine the
directional relationship between arbitrarily-shaped polygons in a
plane. Pattern Recognition 20 : 65-74.

P. A. Piazza and F. Pessaro. 1990. "A Cognitive Model for a "Smart"
Geographic Information System". In GIS World Annual Source
Book. GIS World.

Z. Pylyshyn. 1981. The Imagery Debate: Analogue Media versus Tacit
Knowledge. Psychological Review 87 : 16-45.

F. S. Robert. 1973. Tolerance Geometry. Notre Dame Journal of Formal
Logic 14 (1) : 68-76.

W. R. Tobler and S. Wineberg. 1971. A Cappadocian Speculation. Nature
231 (May 7) : 39-42.

P. D. Try and J. R. Benton. 1988. Critical Investment Strategy Guidance
for Artificial Intelligence Development in support of the Realistic
Battlefield (Terrain/Weather/Obscurants) - A report of the
Workshop on Artificial Intelligence Research for Exploitation of the
Battlefield Environment. STC Technical Report 3087. Hampton VA:
Science and Technology Corp.

D. S. Weld and J. de Kleer ed. 1990. Qualitative Reasoning about Physical
Systems. San Mateo, CA: Morgan Kaufmann Publishers, Inc.

L. A. Zadeh. 1974. "Fuzzy Logic and Its Application to Approximate
Reasoning". In Information Processing.: North-Holland Publishing
Company.

166

E. C. Zeeman. 1962. "The Topology of the Brain and Visual Perception'
In The Topology of 3-Manifolds. Edited by M. K. Fort. 240 -256.
Englewood Cliffs, NJ: Prentice Hall.

167

Improving Spatial Analysis in GIS Environments

Geoffrey Dutton
Spatial Effects

150 Irving Street
Watertown MA 02172 USA

qtm@cup.Portal.Com
Abstract

Current GIS technology tends to impede problem-solving for
many of its users and is difficult for vendors to develop and
support. Why this may be the case and what might be done about it
is explored in this paper. Three problems shared by most
commercial GIS' are identified and examined: inadequate data
models; inferior application development tools; insufficient on-line
expertise. It is argued that each factor inhibits robust spatial
analysis, and limits the usability of analytic and cartographic GIS
outputs. Suggestions based on recent research directions and
emerging software engineering practices are given for addressing
deficiencies in these three realms. Certain properties of and
synergies among data models, application toolkits and expert
systems are explored as keys to improving data and knowledge
management, user interaction and spatial analysis in geographic
information systems.

Introduction

Geographic Information Systems (GIS) are a protean
emerging technology involving many primary data sources
(spatially sampled measurements of the natural and human
environment, surveying and photogrammetric data, digitized maps
and remotely-sensed images), diverse data structures (points,
polygons, networks, rasters, quad - or whatever - trees), complex
databases (geometric, topological, attribute and metadata,
relational, hierarchical, distributed and hypermedia), evolving
analytic methods (network and surface synthesis and analysis,
feature extraction, spatial overlay, temporal change and other
attribute analysis), high-quality cartography (2+D rendering, what-
if graphics, engineering plans, thematic maps) and high sensitivity
to data quality (positional accuracy, feature coding, resolution and
scale effects, and spatial/temporal aliasing). GIS emerged from
laboratory gestation in the mid-1980's to confront an explosion of
environmental challenges and applications. But while computing
hardware capable of manipulating complex spatial data is
increasingly within the reach of users, GIS developers do not

168

completely agree about how spatial software should best be built,
spatial data structured, applications wrought and spatial analysis
conducted. This is in part due to a lack of high-level tools, but also
is a consequence of relying upon low-level constructs that are
proving increasingly inadequate. Twenty-five years of GIS progress
should not prevent us from re-evaluating our basic assumptions
and prevailing models. Doing this might broaden our perspectives
and invigorate our technology.

Solving spatial problems

GIS evolved from early attempts to conduct spatial analysis
using digital cartographic data in vector and raster form. Success
has always been limited by the amount of information encoded into
cartographic databases. Sets of points, lines and polygons, while
fully defining entities in a "geographic matrix" (Berry, 1964), fail to
model spatial relationships among them. To such descriptions
topology has been added (Corbett, 1977), defining how
cartographic entities connect to one another. Other, potentially
valuable capabilities not now in use have been proposed: data
quality documentation (Chrisman, 1984); global hierarchical spatial
indexing (Dutton, 1989; Goodchild and Yang, 1989; Fekete, 1990);
temporal data management (Langran, 1989). While these
approaches could be incorporated into existing systems, the effort
and cost required would be formidable; a new generation of
software may be needed instead.

In any case, alternatives to current spatial data models are
already needed. In the author's view, if academia and industry are
to meet the challenge of supporting global environmental science,
developers will have to retool GIS databases at a rather basic
level. This is because so many of the "coverages", "partitions" and
"projects" by which GIS's administrate databases are modeled as
planar, cartesian chunks of the world, represented as maps.
Although many systems can perform transformations between
projections and into latitude and longitude, this is usually only done
to "register" coverages by mapping coordinates into a preferred
planar projection. Certain special-purpose and in-house GIS's store
spherical coordinates in their databases, and thus are in principle
capable of working on a global scale. But the mathematics involved
in manipulating such data can be costly, and the ambiguities
inherent in attempting to positively identify points and their loci
will continue to confound applications, especially when data quality
information is lacking or goes unused.

Despite the fact that most vendors heavily promote "solutions"
(sets of niche applications) GIS isn't really the sum of vertical
markets; it's a technical infrastructure (like DBMS) upon which

169

applications may be erected. While different applications of spatial
data have unique if not conflicting analytical requirements (what
methods do crop assessment and network analysis have in
common, for example), their implementation usually insures that
their data will remain incompatible. It may be that geographic data
deserves support at the system level, commensurate to the facilities
hardware vendors now provide for manipulating text, numbers,
tables, images, abstract datatypes and user interfaces. Given
sufficiently capable data structures, methodologies, and advice
packaged in forms accessible to end-users, more robust and
specialized GIS applications could be generated more easily; these
would effectively combine known spatial analytic and cartographic
methods with canonical ways of storing, retrieving and
manipulating spatial data, guided by facts about data domains and
rules that apply to them.

Solutions beget problems

In a recent paper describing a systems-level architecture for
supporting use of hypertext within and across diverse applications,
Kacmar (1989) identifies several problems that existing hypertext
implementations exacerbate:

Current hypertext systems have attempted to a provide an all-inclusive
work environment for the user. However, few systems have been able to
realize this goal. Thus, users are required to utilize several applications
for their activities and must enter and exit applications in order to
accomplish specific tasks. The hypertext system becomes yet another
application and other user interface mechanism which must be learned
and used. (Kacmar, 1989, p. 98)

One can substitute "GIS" for "hypertext system" in this text
without changing its sense, just its context. In contrast to hypertext
authors, however, GIS users must be more than casually aware of
the nature of the database and .data structures their systems
manipulate, due to the various special properties of spatial entities
that they model (hypertext data mainly consists of text fields linked
as a semantic net having abstract, user-imposed and self-specified
"spatial" relationships). That is, while all the semantics of a
hypertext database are user-specified, much of the semantics of
spatial information is given or constrained by physical laws,
common law, administrative regulations, data structures and
measurement theory. When a GIS is used to model spatial
semantics, the ways in which rules are applied and information is
communicated to users tend to vary greatly in completeness,
consistency and complexity.

When enhancing their systems, GIS vendors tend to maintain
compatibility with earlier versions (to safeguard users'

170

investments), even though it might be technically advisable to
radically redesign applications. One result is that new commands
or modules tend to be added on top of or alongside of existing
ones; this can steepen the learning curve for affected applications,
and still not assure that the tools provided will serve users'
purposes. Only highly-motivated users may exercise the more
complex applications and options, often to discover that useful
features or parameters in enhanced applications aren't available in
other, related contexts. As GIS data grows more complete and
complex (that is, as systems incorporate more information about
spatial semantics), the "span of control" confronting users will also
increase, and vendors will have to work hard to make systems
uniformly and consistently usable. This will be necessary regardless
of what type of user interface is involved (command lines, menus,
direct manipulation, hypermedia).

Problems (sort of) fade away

Like hypertext, GIS is not yet a mature technology. This should
not, however, be used as an excuse for perpetuating difficulties
involved in learning and applying GIS. Cooke (1989) argues that
we are about to enter the "post-GIS era", in which the bulk of data
capture activities will have already been accomplished or become
relatively automated. In such a milieu, our attention will naturally
turn toward modeling and analyzing spatial phenomena; much of
the output from GIS will be non-graphic (such as inventories of
property, estimations of resource acquisition and operating costs,
environmental status of specified areas, or the address of the
nearest elementary school), and users will demand error reports,
confidence limits and sensitivity analyses for data they analyze.
They will also need assistance in browsing through ever-larger
spatial inventories, in formulating queries to extract data relevant
to their purposes and in specifying the steps necessary to perform
particular analyses. Still, progress will inevitably occur, in Cooke's
view, leading to a flourishing of environmental applications:

171

Technical issues of digitizing, coordinate conversion, map-edge
matching and topological editing will fade into history. We finally will
be able to turn our creative energies to solving real problems, of which
we have plenty. Pollution, ozone depletion, the greenhouse effect, all
are exacerbated by the inefficient logistical operations resulting in
unnecessarily burning fossil fuel. (Cooke, 1989, p. 55)

But will data maintenance tasks and data quality problems
ever fade away, and if so, what will cause this to happen? Major
users of GIS and CADD, such as local governments, seem unable
to keep up with the pace of change in their jurisdictions, and it is
hard to imagine that their digitizing activity will ever cease. New
versions of TIGER and other base files will be issued, but it may
never become trivial to integrate them with an organization's
database. It seems apparent that spatial data is not going to get
easier to handle just because it is growing more complete and
accurate, and can be obtained in digital form, even though much
drudgery may be eliminated for users. Integrating spatial data isn't
inherently difficult; it has been made difficult by a plethora of local
coordinate systems, differing (and inadequate) data models and
data structures, primitive data interchange standards, insufficient
data quality information and a disinclination to use it.
Metaphorically speaking, we have built a maze of datatypes, tools,
techniques and topology, and are getting frustrated because we
can't find our way out. Perhaps a good sales slogan for our
industry would be "Lose yourself in GIS (it's easy)!"

Retooling GIS

To save GIS from crippling itself and to help users meet the
challenges that their work presents, GIS researchers and
developers need to take a critical look at the factors that limit the
effectiveness, reliability and usability of current technology. In the
author's view, such reexaminations should focus on three problem
,areas, which seem to map to three scales of software engineering
and involve three groups of actors. These key problem areas, or
realms, are:

1. Data models; How spatial data is represented for computation
2. Application toolkits; Better ways of constructing custom software
3. On-line expertise. Access to knowledge about data and methodology

Table 1 describes an operational context for these realms.

172

Table 1

Three Critical Realms of GIS Technology and Application

REALM SCALE ACTORS CURRENT PROBLEMS

Data models Micro Researchers Need to improve, standardize
Application toolkits Meso Developers More flexible, customizable
On-line expertise Macro Users et al Better help, reports, advice

"Scale" refers to the extent of software modules that reify the
realms (e.g., functions, libraries, subsystems). "Actors" are those
professionals who are most central to implementing the realms. As
many GIS professionals have played all the above roles at one time
or another, they should be aware of the impact of each of the
realms on actors' activities. This is not to exclude the effects of
related topics (such as object-oriented software, numerical
algorithms, hypermedia and user interface design) on the state of
the art. But these and other realms are receiving attention not only
in the GIS community but in software engineering in general. The
three realms listed in Table 1 pose direct challenges to GIS, and
will have to be addressed by both our industrial and research
enterprises.

Data Models

Most GIS employ data models (the conceptual organization
used for spatial and aspatial data) inherited from computer
cartography, CADD and civil engineering, image processing and
management information systems. They tend to be, as Cooke (1989)
points out, based on the "map-as-graphic" paradigm rather than
"map-as-database". The variety of data models (e.g., image, object,
network, layer) and many variations in the data structures used to
implement them (arc-node, grids, quadtrees, TINS) has led to
difficulties in comparing and exchanging datasets, even when
"standard" interchange formats are used; some relationships may
not be encodable, hence are lost, unless they are later reconstructed
 often at great expense. It has also bred a somewhat cavalier
attitude that encourages incompatible data structures to coexist,
even within the same database. Thus, the decades-old "vector v.
raster" debate, having never been resolved, has been made moot by
concessions that each structure has unique strengths; as one may
always be converted to the other, there is no need to make a choice
other than for tactical expedience.

While vector- and raster-encoded spatial data may in some
sense be equally good (both are certainly useful), they can also be
considered to be equally bad. Raster files tend to be bulky,
unstructured and insensitive to variations in data density. Vector
data structures can be cryptic and complex to manipulate, and

173

often fail to express variations in data quality. Both models tend to
ignore or filter out important aspects of spatial structure in
abstracting geographic data. To compensate for these losses,
ingenious and sophisticated methods have been built into GIS's:
"fuzzy overlay", "rubber-sheeting", and resampling and filtering in
both the spatial and spectral domains. But rarely are the
tribulations that these methods are designed to overcome traced
back to their source: loss of information in exchanging, digitizing
and scanning maps and images due to impoverished data models.

Remote sensing technology has succeeded in recovering
remarkably useful data from rather imperfect platforms, and has
developed a canon of tools and techniques for correcting geometric
and radiometric errors and finding structure in image data, often
implemented as black-box functions which are tricky to integrate
and easy to misuse.1 Cartographic digitizing methods have also
improved, especially in terms of avoiding, identifying or
compensating for operator blunders and errors (White and Corson-
Rikert, 1987). Most GIS's still express the quality of digitized data
rather simplistically, relying on a few global parameters (such as
U.S. map accuracy standards express), which fail to express local
variations in spatial uncertainty inherent to the phenomena being
captured. Even if this information were to be provided, prevailing
GIS data models tend to have no place to put it, and their analytic
procedures generally make little use of data quality information in
their deliberations.

This state of affairs represents an ironic twist of autocarto
evangelism2 : After SYMAP and other software enabled digital
thematic mapping, a lot of effort went into explaining to
cartographers what polygons were, and this eventually instilled in
them an abiding attachment to coordinates, which for awhile they
resisted, then embraced just around the time they were told that
polygons weren't enough, and they needed to learn about topology.
After DIME (A.D.) embedded map networks in a rigorous
mathematical framework (Cooke and Maxfield, 1967), it seemed
for awhile that topology would solve most spatial data-handling
problems, because coverages could now be verified to be complete
and correct. The naivete of this presumption was made evident by
the advent of GIS; as soon as analysts began to merge and overlay

1 Beard (1989) identifies use error as the "neglected error component" in GIS
applications. While human error is difficult to quantify, it seems apparent
that the more commands, options and parameters that a user confronts at a
given moment, the greater the likelihood that (s)he will make a mistake.

2 Many highlights and sidelights of the development of computer carto
graphy and GIS are related in a recent issue of The American Cartographer (vol.
15, no. 3, July 1988), subtitled "Reflections on the revolution: the transition
from analogue to digital representations of space, 1958-1988".

174

map data derived from different sources they found that while
their computer could connect complex mazes of dots and lines into
a single network and name all the objects therein, many if not most
of these often turn out to be artifacts that have no basis in reality.

Today, c. 24 A.D., the source of such hassles is widely ack
nowledged to stem from failures to maintain data quality inform
ation within spatial databases. What is not as widely appreciated is
that this may directly issue from twenty-five years of representing
spatial locations as two- and three-dimensional coordinate tuples
that have no inherent scale, only precision. This peculiar myopia
has been termed the fallacy of coordinates (Dutton, 1989b), the (often
unconscious) leap of faith that coordinates actually exist. It
describes, but fails to explain, how entire professions and much
software have come to accept point coordinates as if they were
natural phenomena, like pebbles or protons. Still, it is not
surprising that coordinates are reified in a culture which regards
land as real estate, in which inches of frontage can cost dearly and
where boundaries need not hew to visible landmarks. It is odd and
rather distressing to have to preach the heresy that coordinates are
the antichrist of spatial data handling, given that computer
cartography and GIS have been around for a quarter of a century.
But there are times in any walk of life when conventional wisdom
bears reexamination.

Part of the reason why coordinates prevail is due to the view
that digital spatial data represents maps, which in turn represent
the world. It seldom seems to occur to GIS developers that they
might better serve users by regarding maps as products of, rather
than as the basis for their systems. As a result, most GIS's use
"cartographic data structures" (Peucker and Chrisman, 1975),
which are good at encoding features on maps, but which eventually
fail to represent much of the evidence available about distributions
of things and events on our planet. Failure to handle temporality is
one resultant problem (Langran, 1989), but there are others.
Goodchild (1988) offers an example of how technical factors have
shaped and constrained the development of computer cartography
and GIS:

175

In the case of forest inventory maps, the need for accurate inventory
clearly overrides any question of cartographic clarity and ease of
perception. However forest inventories continue to be mapped using
bounded areas to portray homogeneous forest stands, suggesting in this
case that technological constraints, specifically the inability to show
transition or heterogeneity, have outweighed any more abstract
cartographic principles. ... The consequences of those constraints can be
rationalized as intelligent choices, and are so fundamental that it is
difficult to consider alternatives, but they are in actuality severely
restricting, and influence not only the way we portray the world but also
the way we observe it. (Goodchild, 1988, ps. 312 & 317)

While acknowledging that any data model has limitations,
Goodchild points to emerging alternative spatial data structures
which might overcome problems inherent in electronic emulations
of pen-and-paper technology:

In one sense, [quadtrees] represent a departure from fixed scale in the
form of fixed pixel size in rasters or fixed levels of spatial generalization
in vectors. They are non-intuitive in that they correspond to no
conventional pictorial view, but have meaning only as digital
representations. In quadtree data structures we are beginning to see the
emergence of a genuinely new technology in which methods have no
obvious conventional analogues. At the same time the constraints im
posed by the technology are radically different. (Goodchild, 1988, p. 316)

It is worth stressing again that limitations of map-as-graphic and
point-line-area paradigms cannot be overcome without purging
ourselves of the notion that locations in the real world are
dimensionless points; neither will we make real progress by
continuing to pretend (at least in our databases) that the Earth is
flat and that we occupy its lower left-hand corner. The former
prejudice prevents us from modeling spatial distributions in ways
that capture their indeterminate and scale-dependent qualities. The
latter assumption inhibits development of GIS databases and
techniques that can deal with information from diverse sources and
operate at continental or global scales. Such databases are being
built (often haphazardly) at accelerating rates, and global GIS
issues can no longer be swept under cartesian rugs. According to
Tomlinson:

The ability to integrate data with a variety of formats (raster, vector,
street address and tabular) from different sources, at different levels of
reliability, at different scales, by people with different skills, using
different computers, in different countries, connected by communica
tion networks, is a very real requirement in the foreseeable future.
(Tomlinson, 1988, p. 259).

176

One recent approach to meeting these challenges is to design
spatial databases that represent locations hierarchically, by
indexing to positions occupied by vertices and faces of nested
polyhedra, successively approximating the surface of a planet.
While polyhedral map projections are not new (going back at least
to the time of the artist Albrecht Diirer), the idea of tessellated,
polyhedral data storage hierarchies is probably less than a decade
old and still relatively unexplored (Peuquet, 1988); few schemes
specific to CIS have been proposed (Dutton, 19843, 1989a4;
Goodchild and Yang, 1989s; Fekete, 1990), and none of these have
been demonstrated in fully operational contexts.

While not nearly enough research as been undertaken to verify
expectations, one can anticipate a number of benefits that might
flow from implementing such data models. Casting coordinates
into hierarchical planetary tessellations might mitigate many of the
data-handling problems that plague current GIS technology and
short-circuit spatial analysis: using such methods, any planetary
location can be canonically encoded, regardless of where it is or the
resolution at which it is identified; features could be modeled more
readily, matched and integrated more easily, with certifiable
accuracy; different datasets encoding diverse locations could be
merged with greater confidence and ease. Multi-resolution storage
lets primitive data elements specify their inherent accuracy;
collections of such elements can model complex objects, which can
be retrieved at a variety of appropriate scales. Such collections may
be cast into both raster and vector formats, but will have other

3 The geodesic elevation model (GEM) is a dual (cube-octahedron) polyhedral
tessellation designed to encode terrain relief of planets using two alternating
ternary hierarchies. This horizontal organization was coupled with
difference-enoding of elevations to provide a compact, self-calibrating and
scale-sensitive representation of topographic relief. GEM was simulated, but
never implemented.

4 The Quaternary Triangular Mesh (QTM) scheme derives from GEM.
QTM is a region quadtree composed of triangles. It represents a planet as an
octahedron comprised of 8 quaternary triangular grids, and can encode lo-
cational data both as hierarchies and sequences. Collections of such codes can
be structured to represent geographic objects at specific scales. QTM has fractal
properties, which may be exploited by modeling locations as basins of
attraction (attractors), hexagonal regions centered on QTM grid nodes and
composed of six adjacent triangular tiles, to which all locations in their
domain alias at some level of detail. Attractors knit together adjacent QTM
domains, and may aid in identifying and preventing "slivers" when
overlaying vector-encoded map features.

5 Goodchild and Yang's Triangular Hierarchical Data Structure (THDS) is a
variation of QTM. What distinguishes THDS from QTM is the simplicity of
(a) its facet numbering scheme (which ignores attractors), (b) its geodesic
computations (all subdivision occurs on planar octahedron facets), and (c) its
indexing algorithms (although transformations between the two orderings
have been developed).

177

qualities (deriving from the properties of recursive geodesic
tessellations) that may be exploited by new species of data
structures and algorithms.

Application Toolkits

Spatial analysis tasks range from primitive computations such
as nearest-neighbor identification and interpolation of point sets to
multi-stage simulations of urban growth and multi-layer land
suitability studies. Analysts often engage in ad hoc explorations of
data before (or in lieu of) settling down to a standard methodology.
Many vendors hasten to fulfill requests from users for new analytic
capabilities, resulting in ever-greater arrays of GIS applications,
commands and options. Some systems let end users cobble together
the functionality they need as procedures coded in a macro
language provided by the vendor, similar to the way most
spreadsheet applications are built. Larger vendors have application
consultants who extend existing applications by writing source
code modules and linking them in as new commands. Such
customization activity is commonplace for any number of reasons,
including:

 GIS, like CADD systems, must operate in many diverse environments;
 Many spatial analysis procedures are sensitive to details of data models;
 Data items (e.g., "attributes") may reside in various foreign databases;
 GIS applications and analytic methodologies are still evolving.

As GIS's and their applications proliferate, the pace and economics
of software development make it difficult for vendors to keep up
with analysts' demands for new functionality, and new users face
steeper learning curves, requiring increasing amounts of
documentation, training and time in order to become productive. In
such a milieu, costs of developing and enhancing applications tend
to increase, regardless of who performs the work. These seem to be
problems generic to all applications software systems, and are by
no means unique to GIS. They do, nevertheless, represent real
impediments to improving GIS analytic capabilities.

Segments of the software industry have begun to adopt a
variety of computer aided software engineering (CASE) tools to
manage various stages of the software lifecycle, from requirements
analysis and functional specification to user interface construction
and code generation. In addition, end-user environments for
building microcomputer applications are gaming in popularity,
particularly those that provide direct-manipulation visual
interactive programming (VIP) capabilities (Sabella and Carlbom,
1989). Many such tools are based on object-oriented (OOP), rather
than procedural programming styles (Cox, 1987). Proponents of

178

this approach maintain that it reduces the need for debugging,
clarifies program structure, speeds development and increases
software reusability. Even if these claims are true, OOP method
ology may not help developers create better algorithms, not be as
computationally efficient as traditional procedural code, and may
prove hard to interface with the miscellany of data structures
typically found in GIS environments.

The jury is still out concerning the utility of CASE, VIP and
OOP to software developers and end-users. But it is apparent that
many of the tasks traditionally assumed by developers and vendors
are, by economic necessity and by popular demand, shifting to user
domains. It also seems apparent that spatial analysis in a GIS
environment is most effectively conducted when people most
familiar with the problem domain actively participate in software
development. This points to the provisional conclusion that GIS
vendors ought to be encouraged to provide visual programming
environments in which users can craft analytic software and other
finicky functions, such as database interfaces, data filters and
thematic maps. Such modules should be made as easy as possible to
create, and this implies that objects in GIS databases need to
represent themselves with appropriate data structures and
manipulate themselves with appropriate methods, in transparent
ways.

An informative account of modeling and visualizing geological
reservoir data (Sabella and Carlbom, 1989) describes a set of tools
called Gresmod, a laboratory testbed for rendering heterogeneous
collections of geometric objects. In this prototype, users at a Xerox
workstation worked with Gresmod's OOP modeling environment
and diagrammatic interface to specify a data base of geometric
structures (curves, planes, and solids encoded as octrees,
representing oil reservoirs), perform limited analysis, and render it
in 3D on a high-performance graphic display. Gresmod was written
in an OOP language called Strobe, which builds a set of knowledge
bases for class hierarchies, attributes and methods. Gresmod's
direct-manipulation user interface (also knowledge-based), was
.built with the Grow toolkit for customizing the Impulse-88 UIMS
used by Sabella and Carlbom. Strobe, in turn, is implemented in
Interlisp-D; it includes a graphic editor for objects, a run-time
environment, and manages knowledge bases. The study provides
an "object lesson" in how diverse forms of spatial data can be
manipulated in unified fashion in a visual interactive environment.
It shows how spatial analysis can be enhanced when tools for data
modeling, application building and knowledge management are
provided.

Commercial GIS technology can't do this yet, but is headed in

179

these directions. Providing such environments will propel funda
mental conceptual and architectural changes in system design. It is
both technically possible and commercially expedient to transfer
responsibility for application development to user communities,
rather than continuing to place this staggering burden on vendors.
This means that vendors must move away from offering solutions
and toward providing toolkits that enable users to solve their
particular, idiosyncratic problems. This approach is being adopted
by vendors of high-performance workstations for data
visualization (Upson et al, 1989); users may create or modify visual
models by editing on-screen dataflow diagrams and property
sheets, without the need for much if any program coding.

On-line Expertise

Printed and on-line documentation for most applications
software packages generally include tutorials on how to get
started, detailed command descriptions and one or more examples
of data processing using sample datasets. As a GIS may include
dozens of functions (ranging from map digitizing and topological
editing, through feature and attribute definition, analytic
procedures and display formatting, not forgetting project
management activities), each of which may have dozens of
commands, and its printed documentation can easily fill a four-foot
shelf. While the general workflow at most GIS installations has
many common and predictable aspects (digitize, edit, structure,
extract, merge, overlay, analyze, report, map), the details of system
configurations and users' data and applications differ enough to
limit the utility of vendors' printed documentation and on-line help.

While users can normally refer to manuals to find information
that answers certain types of questions ("What does command X
do?"; "What commands do Y to data of type Z?"), they often can't
find answers to many other kinds of questions ("What do I do
next?"; "How will executing command X affect my database?";
"How much error might attribute I of object / have?"). The number
of paths users can follow through a complex application is
essentially unlimited. Certain paths may yield equivalent results
with some data, but produce quite different results with other data;
such discrepancies may derive from the content and quality of data
being processed, parameters and options selected by users, the
order in which commands are invoked, software bugs or be totally
inexplicable and unreplicatable (known to hackers as the POM
Phase of the Moon effect). And while the underlying database
machinery may be able to roll back transactions that go awry, the
amount of processing and operator time wasted in doing this can
be, a great drain on users (GIS transactions are typically quite
lengthy, and all work performed between a check-out and a roll-

ISO

back may have to be sacrificed, even if most of it produced correct
results). While such unpleasant surprises may be the results of
encountering software bugs or pathological data, most stem from
the impossibility of grasping all the normal consequences of
executing particular commands in particular sequences on
particular sets of data.

The sheer complexity of working in a GIS environment is likely
to increase as applications become more analysis-intensive. Printed
and on-line documentation cannot even in principle address this
problem, because most of the complexity is combinatorial, most of
the questions context-sensitive. And while there are people who are
skilled at dealing with such matters, such knowledge takes a long
time to acquire and tends to be idiosyncratic and difficult to
transfer to others. Even though the population of GIS gurus is
growing, expertise of this type will remain a scarce resource for
both vendors and users for the foreseeable future.

Many data-handling decisions are made automatically by
software, based on options and parameters input by users (or their
default values) and variables and constants stored in datasets (or
their estimates). These are applied either on a case-by-case basis in
the course of processing data items, or less frequently, to select a
processing strategy for performing a given task (rarely do they help
to decide what task to do next). In deciding what to do to data and
how to do it, specifications received from users may prove insuffic
ient, and certain system defaults may be inappropriate. Intelligent
subsystems are needed to navigate such situations.

GIS users need help in whittling away options that aren't
useful at given stages of their work, and could use advice on how
to specify the options they decide to use. Attempts at providing such
advice have been made using logic programming and expert system
shells. Most applications of AI technology to GIS, however,
attempt to automate data manipulations, such as deciding the size,
format and placement of feature labels on maps (which may be the
most popular testbed). This usually involves referring to a set of
phenomena- and technique-based rules which are evaluated and
weighed together to make tactical data processing decisions.
Williams (1989) offers a good description how geographic (or any)
expertise is cast into AI rules and tools:

Intelligence can be achieved via two fundamental, but integrated
sources. These sources are those of data relationships and structure, and
techniques and procedures for manipulating and analyzing the data
relationships. These sources can be considered as forming expertise.
Expertise consists of knowledge about a particular domain (real-world
geographic structures), understanding of the domain problems, and
skill at solving some of these problems. Knowledge (in any speciality) is

181

usually of two sorts: public and private. Public knowledge includes the
published definition, facts, and theories of which textbooks and
references in the domain of study are typically composed. But expertise
usually involves more than just this public knowledge. Human experts
generally possess private knowledge that has not found its way into the
published literature. This private knowledge consists largely of rules of
thumb that have come to be called heuristics. Heuristics enable the
human expert to make educated guesses when necessary, to recognize
promising approaches to problems, and to check effectively with
errorful or incomplete data. Elucidating and reproducing such
knowledge is the central task of building expert systems. (Williams, 1989,
p. 558)

There is little difference between providing expert advice to users
and applying this knowledge to automated procedures. Deciding,
what-to-do-next and how-to-do-it can be informed by consulting
expert systems; it is a matter of style whether users choose to
adjudicate this information themselves or let software handle such
decisions. Capacities to exercise these options should be built into
toolkits provided to users. While providing such capabilities may
increase the possibility of "use error" (Beard, 1989), it can also help
to avoid them by advising users of the nature and consequences of
their assumptions, choices and actions.

The native intelligence of a GIS is highly conditioned by what
information it maintains to qualify data items. The more such
metadata about objects, locations and attributes that a GIS
maintains, the more confidently it can be used. But how many
GIS's document the level of encoding (Boolean, nominal, ordinal,
interval, ratio, etc.) used for a given variable? How many store,
much less can interpret, units of measure (e.g., persons per square
mile, hectares, pH, ppm, BTUs, furlongs per fortnight) for items
they maintain? Information can be lost, misinterpreted or made
spurious unless appropriate operations are applied to data items,
which requires that variables be qualified by their levels and units
of measure, properties rarely included in GIS data models and
definitions. As a result, it may be difficult for GIS users to switch
between English and Metric units in thematic maps or reports they
generate, or be warned that attributes created by adding or
subtracting ordinal values may be meaningless. Users may not be
sure what the units of a variable are, whether a given datum
represents a percent, a category or a scalar; analytic functions may
not "know" that multiplying income per capita with population
density yields units of income density. Ignoring data quality
information generates wrong results and incurs missed
opportunities. In most cases, the mechanisms for handling properly
qualified data are rudimentary; perhaps the fact that it is
inconvenient for procedural languages to include metadata in
function arguments has begged the problem, leading us to believe

182

that dealing with it requires artificial rather than innate
intelligence.

What might help GIS software deal with data quality better
than it now does? Procedures need some additional intelligence to
enforce metadata-based constraints, and will need to reference a
few new data structures in order to do this. Implementations
should avoid both transfer of large data objects between storage
units and storage of seldom-used fields. OOP architecture may
help in this regard: attributes of data objects such as parcels or
rivers can be implemented as instances of classes of data, each of
which has specific levels and units of measure, spatio-temporal and
accuracy measures, and rules and methods for their manipulation.
Because the same attribute class may be shared by otherwise
unrelated data objects, any OOP environment which handles
metadata in terms of classes must support multiple inheritance
(non-hierarchical object composition, as when describing the
wetlands contained in a lot or the parcels occupying a swamp).

Summary and Conclusions

Geographic Information Systems have been a commercial com
modity for nearly a decade. This technology has proven its value in
land record systems, environmental impact analysis, facility man
agement, land development, urban planning and other areas of
application. Trained GIS users are in short supply, partly because
so many of their skills are improvised and so much of the
knowledge required to run GIS applications is undocumented. But
as GIS databases grow larger and the features they encode become
more complex, the pathways of spatial analysis tend to multiply
and results become more equivocal. Unless we can bring more
intelligence to bear, our GIS applications may not continue to yield
as useful, interpretable and replicatable findings as we might wish.

To effectively apply geographic information systems, users
need better tools for constructing, navigating and processing
databases. Vendors cannot hope to provide users with "solutions"
to very many geoprocessing problems in the form of full-featured
and fully-documented applications. Rather, they should concentrate
on adopting data models that better express spatial structure and
process, software tools that extend both system functionality and
ways to apply it, and advisory subsystems that can identify
semantic subtleties when users query and analyze spatial-temporal
data. GIS architecture will have to change at micro, meso and
macro levels to enable these capabilities. New paradigms,
unfamiliar data structures and relatively unproven techniques may
have to be deployed. In the process, researchers, developers and
users will have to alter their modes of operation. Geographic

183

Information Systems have already changed the ways in which we
think about maps; the time has come to change how we think
about, build and use this potent but imperfect technology.

References

Beard, Kate (1989). Use error: The neglected error component.
Proc. Autocarto 9. Falls Church, VA: ACSM, pp. 808-817.

Berry, Brian (1964). Approaches to regional analysis: a synthesis.
Annals, Assoc. of American Geographers, v. 54, pp 2-11.

Chrisman, Nicholas (1984). The role of quality information in the
long-term functioning of a geographic information system.
Cartographica, vol. 21, nos. 2&3, pp. 79-87.

Cooke, Donald (1989). TIGER and the "Post-CIS" ERA.
CIS World, vol. 2 no. 4, ps. 40 //.

Cooke, Donald and William Maxfield (1967). The development of a
geographic base file and its uses for mapping. Proc. URISA.

Corbett, James (1977). Topological principles in cartography.
Proc. Autocarto II. Falls Church, VA: ACSM, pp. 61-65.

Cox, Brad (1987). Object Oriented Programming: An Evolutionary
Approach.

Reading, MA: Addison-Wesley, 274 p.

Dutton, Geoffrey (1984). Geodesic modelling of planetary relief.
Cartographica. vol. 21. nos. 2 & 3, pp. 188-207.

Dutton, Geoffrey (1989a). Planetary modelling via hierarchical tessellation.
Proc. Autocarto 9. Falls Church, VA: ACSM, pp. 462-471.

Dutton, Geoffrey (1989b). The Fallacy^ of Coordinates.
Multiple Representations: Scientific report for the specialist meeting.
B. P. Buttenfield and J. S. DeLotto, eds. National Center for Geographic
Information and Analysis, tech. paper 89-3, pp. 44-48.

Fekete, Gyorgy (1990). Rendering and managing spherical data with Sphere
Quadtrees. Proc. Visualization 90. New York: ACM.

Goodchild, M. (1988). Stepping over the line: Technical constraints and the
new cartography. The American Cartographer, vol. 15, no. 3, pp. 311-319.

Goodchild, Michael and Yang Shirin (1989). A hierarchical data structure for
global geographic information systems. Santa Barbara, CA: National
Center for Geographic Information and Analysis, tech. paper 89-5.

Kacmar, Charles (1989). A process-oriented extensible hypertext architecture.
ACM SIGCHI Bulletin, vol. 21 no. 1, pp. 98-101.

184

Langran, Gail (1989). Accessing spatiotemporal data in a temporal GIS.
Proc. Autocarto 9. Falls Church, VA: ACSM, pp. 191-198.

Peucker, Thomas and Nicholas Chrisman (1975). Cartographic Data
Structures. The American Cartographer, vol. 1, pp. 55-69.

Peuquet, Donna (1988). Issues involved in selecting appropriate data models
for Global databases. Building Databases for Global Science. H. Mounsey
and R. Tomlinson (eds.). London: Taylor & Francis, pp. 187-260.

Sabella, P. and I. Carlbom, (1989). An object-oriented approach to the solid
modeling of empirical data. IEEE Computer Graphics & Applications.
vol.9, no. 5, pp. 24-35.

Tomlinson, Roger (1988). The impact of the transition from analogue to
digital cartographic representation. The American Cartographer,
vol. 15, no. 3, pp. 249-261.

Upson, Craig, Thomas Faulhaber, David Kamins, David Laidlaw, David
Schlegel, Jeffery Vroom, Robert Gurwitz, Andries van Dam (1989). The
Application Visualization System: A computational environment for
scientific visualization. IEEE Computer Graphics and Applications,
vol. 9, no. 4, pp. 30-42.

White, Denis and Jonathan Corson-Rikert (1987). "WYSIWYG" map
digitizing: Real time geometric and topological encoding.
Proc. Autocarto 8. Falls Church, VA: ACSM, pp. 739-743.

Williams, Robt. (1989). Geographic Information: Aspects of phenomenology
and cognition. Proc. Autocarto 9. Falls Church, VA: ACSM, pp. 557-566.

185

CHARACTERIZATION OF FUNCTIONS REPRESENTING
TOPOGRAPHIC SURFACES

Gert W. WOLF
Department of Geography, University of Klagenfurt
Universitaetsstrasse 65, A-9010 Klagenfurt, Austria

e-mail: WOLF@EDVZ.UNI-KLAGENFURT.ADA.AT

ABSTRACT

During the past years it has become apparent that a general framework
of spatial data management resting on formal methods is indispensable. One
aspect of such an analytic framework is the adequate characterization of
functions so that they may be regarded as abstract models of real topogra
phic surfaces. The importance of a precise mathematical description like this
results from the fact that the theoretical requirements of differentiability and
continuity of the derivatives, which are commonly employed in practical ap
plications, do not, suffice for functions to represent realizable topographic sur
faces. The reason for this failure is that continuously differentiate mappings
may still be endowed with some pecularities which are extremely unlikely to
appear in reality and thus prevent the functions from being suitable models
for the topography of a given area. It will be demonstrated that a great
many of these pecularities are due to structural instability - a phenomenon
which can easily be explained by the presence or absence of degenerate criti
cal points and saddle connections. Since it can be proved that any function
possessing degenerate critical points may be approximated accurately enough
by another one without such points, mappings of the latter type (so-called
Morse functions) which have, in addition, no saddle connections should de
scribe topographic surfaces in an appropriate way. The results arrived at in
this paper, however, are valid not only for functions defined on the plane
but also for mappings defined on differentiable manifolds and thus help to
diminish the deficiency of theoretical knowledge concerning curved surfaces
as has been complained recently.

1 .INTRODUCTION

As a consequence of the numerous applications of computers in cartogra
phy during the past years it has become apparent that a general framework
of spatial data management and analysis is indispensable. This realization
has given rise to an increasing number of publications concerning the formal
foundations of numerous cartographic concepts. The different approaches
covered a wide portion of the field of cartography ranging from the develop
ment of analytic tools for cartographic generalization (e.g. WOLF 1988a,b,
1989, WEIBEL 1989) to the design of databases for geographic information
systems (e.g. PEUCKER 1973, PEUCKER/CHRISMAN 1975, PEUQUET
1983, BOUDRIAULT 1987, SALGE/SCLAFER 1989).

186

The subject of the present paper is the formal analysis of another point
of interest in computer cartography, namely the adequate characterization of
functions so that they may be regarded as abstract models of real topogra
phic surfaces. The importance of a formal characterization like this is derived
above all from the following four facts: First of all, theoretical results ob
tained for functions describing topography hold also for functions describing
phenomena like population density, accessibility, pollution, temperature, pre
cipitation etc. 1 ; secondly, topographic surfaces represent the underlying con
tinuous model of DTMs whereby DTM may stand as abbreviation for 'digital
terrain model' or 'discrete terrain model' respectively; thirdly, a great many
of the results derived for mappings from jR2 > R are also true for real-valued
mappings defined on curved surfaces - so-called differentiate manifolds. As
it has been pointed out just recently especially this point deserves our special
attention '(since) geographical data (are) distributed over the curved surface
of the earth, a fact which is often forgotten ... (However,) we have few me
thods for analyzing data on the sphere or spheroid, and know little about how
to model processes on its curved surface ...' (GOODCHILD 1990, p.5f.). The
final and perhaps the most important fact why topographic surfaces should
be characterized in a formal way is that a formal characterization clearly
reveals those concepts which are commonly used in practice but which are
seldom or never explicitely stated.

2.TOPOGRAPHIC SURFACES

In almost any geographic or cartographic application functions /(x,y)
describing the topography of a given area and associating with each point
(x,y) its respective altitude are presumed to be at least twice continuously
differentiable. This concept, however, is just an ideal one since, for example,
overhanging rocks imply that there is no definite correspondence between
certain points and their altitudes or breaklines prevent f(x,y) from being
differentiable. In order to apply the powerful tool of calculus, nevertheless,
the original concept has to be modified by assuming that the continuously
differentiable functions are not the terrain itself but rather sufficiently close
approximations of it 2 (cf. WOLF 1988a, 1990).

The question remaining, which seems to be deceptively simple in ap
pearance but which, however, leads rather deeply into abstract mathematics
is whether the theoretical requirements of differentiability and continuity of
the derivatives suffice for functions to represent realizable topographic sur
faces. As will be shown within the next chapters, this must not always be
true because such mappings may be endowed with a number of pecularities
like degenerate critical points or saddle connections which are extremely un
likely to appear in real-world applications and thus prevent the functions

1 In order to achieve substantial results in non-topographic applications one will, how
ever, have to ensure that data points are not too scarcely distributed.

2 This supposition is also valid for mappings describing socio-economic, physical and
other phenomena.

187

from being suitable models for the topography of a given area3 .

Since the detailed investigation of these pecularities requires several
concepts from multidimensional calculus, it seems appropriate to repeat some
basic definitions and theorems before continuing with the analysis of the
addressed phenomena.

Definition 2.1 A function (mapping) f : Rn —» R is a rule associating
with each (xi,x 2 ,.. . ,xn) G Rn a unique element /(xi,x2 ,.. -,xn) G R.

Though the previous definition has been given for the n—dimensional
case we will restrict ourselves in most instances to two dimensions since
this is the commonest case in practical applications. A further advantage
of the restriction to functions f(x,y) of only two variables is the fact that
these mappings can be easily visualized, thus offering the chance to prefer
a geometric approach rather than an abstract one. As a consequence, we
will give - whenever possible - not only formal definitions but also geometric
interpretations of the concepts being introduced. To start with, let us draw
our attention to

Definition 2.2 The partial derivative fx of a function f(x,y) with respect
to the variable x is the derivative of f with respect to x while keepig y constant.
The partial derivative fy of f with respect to y is defined in an analogous way.
The partial derivatives evaluated at the particular point (x0 ,y0) are denoted
by fx (xo,yo) and fy (x0 ,y0) respectively.

Geometrically speaking, fx (x0 ,yo) specifies the tangens of the angle bet
ween the tangent to the intersecting curve f(x,y0) and the line y = y0 parallel
to the x-axis. To phrase it differently, fx (x0 ,y0) indicates the slope of the
surface /(x,y) at the point (x0 ,yo) in direction to the x axis. It is hardly
necessary to point out that fy (x0 ,y0) can be interpreted in a similar way.

Provided that /(x,y) has partial derivatives at each point (x,y) e R2 ,
then /x and fy are themselves functions of x and y which may also have
partial derivatives. These second derivatives (derivatives of order two) are
defined recursively by (fx)x = fxx , (fx)y = fxy , (fy)x = fyx and (fy)y = fm . For
partial derivatives of order two the following theorem, which is important
from a theoretical as well as from a practical point of view, holds4 .

Theorem 2,1 If the partial derivatives fxy and fyx of a function f(x,y)
are continuous in R2 then fxy = fyx in R2 .

Partial derivatives of order higher than two are defined recursively in
an analogous way. We will, however, desist from giving their exact definition
since partial derivatives of first and second order are sufficient for the purpose
of this paper. Instead we will turn our interest to another point which is
of utmost importance for the following chapters and concerns the special
arrangement of the partial derivatives of order two in form of a matrix, the
so-called Hessian matrix.

3 For the sake of simplicity we will illustrate these phenomena by examining mappings
which are given explicitly and not in form of sparsely distributed data points in combina
tion with an interpolation rule.

4 For a proof cf. ENDL/LUH (1976, p.!85f.).

188

Definition 2.3 Let f(x,y) be a function whose partial derivatives fxx ,

fxy, fyx and fvy exist. The matrix Hf = I fxx *y I is termed the Hessian
\ Jyx Jyy /

matrix of f.
The Hessian matrix evaluated at a point (x0 ,y0) is defined by

xx(x0 ,yo) fxy(xo,yo) \ d . . j L vaenozea oy

The determinant det(Hf) of the Hessian matrix Hf is called the Hessian de
terminant; when evaluated at the point (x0 ,y0) it is denoted by det(Hf)\(XOiyo).

With the aid of partial derivatives it is now possible to characterize
those functions precisely which have been commonly employed for the appro
ximation of topographic surfaces. These mappings are the so-called A; fold
continuously differentiable functions whereby in almost any application a
value of k = 2 has been chosen.

Definition 2.4 A function f(x,y) is termed k-fold continuously differen
tiable, or of class Ck , if the partial derivatives up to order k exist and are
continuous.
A smooth function is a function of class C°°.

3.NONDEGENERATE CRITICAL POINTS AND MORSE
FUNCTIONS

Critical points5 representing the peaks, pits and passes of surfaces play
a major role not only in cartography but also in a great deal of other scientific
applications where they represent either the extrema or the saddles of func
tions to be maximized or minimized. The importance of the critical points,
which are also termed surface-specific points in computer cartography, for
this field of research results from the fact that they contain significantly
more information than any other point on the surface because they provide
information about a specific location as well as about its surrounding (cf.
PEUCKER 1973, PFALTZ 1976, PEUCKER/FOWLER/LITTLE/MARK
1978). As a consequence, their employment does not only ease the charac
terization and visual analysis of the topography of a given area but their
application within digital terrain models also results in considerable savings
in data capture and data management. Before stating two theorems which
allow the classification of the critical points their formal description will be
given.

Definition 3.1 A point (x0 ,y0) is a (relative, local) maximum of f(x,y)
if and only if f(x,y) < f(x0 ,y0) for all (x,y) <E Ue (x0 ,yo).
A point (x0 ,yo) is a (relative, local) minimum of f(x,y) if and only if f(x,y) >
f(%o,yo) for all (x,y) <E Ue (x0 ,y0).
A point (x0 ,j/o) is a saddle of f(x,y) if and only if f(x,y) has a local maximum
along one line leading through (zo,2/o) ana a local minimum along another
line leading through (xo>yo)-

5 Unless stated otherwise critical points will be assumed to be nondegenerate.

189

According to the above definition saddle points are only those points
with exactly two ridges (lines connecting passes with peaks) and exactly
two courses (lines connecting passes with pits) emanating from them, thus
excluding monkey saddles or the like. The following theorem6 enables the
computation as well as the classification of the critical points of a function
f(x,y) by applying the concepts of the partial derivatives and the Hessian
determinant of f(x,y).

Theorem 3.1 (x0 ,t/o) is a local maximum of a function f(x,y), which is
twice continuously differentiate in R2 , if and only if fx (x0 ,y0) = fy (x0 ,yo) = 0,
det(Hf)\ {xQM) > 0 and fxx (x0 ,y0) < 0 (or equivalently fyy(x0 ,y0) < 0).
(x0 ,y0) is a local minimum of a function f(x,y), which is twice continuously
differentiate in R2 , if and only if fx (x0 ,y0) - fy (x0 ,y0) = 0, det(Hf)\(Xo<yo) > 0
and fxx (x0 ,y0) > 0 (or equivalently /yy (zo,2/o) > 0)-
(x0 ,t/o) is a saddle point of a function f(x,y), which is twice continuously diffe
rentiate in R2 , if and only if fx (x0 ,y0) = fy (x0 ,yQ) = 0 and det(H f)\(XOiVo) < 0.
(£o>2/o) is a nondegenerate critical point of a function f(x,y), which is twice
continuously differentiate in R2 , if and only if fx (x0 ,y0) = fy (x0 ,y0) = 0 and
det(Hf)\ (x0iW) + 0.

An equivalent characterization of the critical points of a function f(x,y)
can be given by examining the eigenvalues of the corresponding Hessian
matrix (cf. NACKMAN 1982, p.65 or NACKMAN 1984, p.444f.). The
application of eigenvalues has moreover the advantage that they can also
be used for the precise mathematical description of ridges, courses, flats,
slopes as well as convex and concave hillsides of topographic surfaces (cf.
LAFFEY/HARALICK/WATSON 1982, HARALICK/WATSON/LAFFEY
1983). We will, however, refrain from discussing all of these topographic
phenomena since this would go far beyond the scope of the present paper.

Theorem 3.2 Let f(x,y) be twice continuously differentiate in R2 and
(#0,2/0) R2 - Further let fx (x0 ,y0) = fy (xQ ,y0) = 0 and the determinant of the
Hessian matrix Hf evaluated at (x0 ,y0) be unequal to zero. Then there is
a (local) maximum at (x0 ,yo) if the number of negative eigenvalues of Hf\(XoM)
is two,
a saddle at (x0 ,yo) if the number of negative eigenvalues of #/|(IO ,yo) is one
and
a (local) minimum at (x0 ,y0) if the number of negative eigenvalues of Hf\(xo>yo)
is zero.

The number of negative eigenvalues of Hf\(xo ,yo) is also termed the index
of (x0 ,j/o); thus a maximum is a critical point of index two, a saddle is a
critical point of index one, and a minimum is a critical point of index zero.
The so-defined index of a critical point may be also interpreted as an 'index of
instability (since) a ball displaced slightly from a relative minimum "will roll
back" to that minimum. It is a point of stable equilibrium; ... A ball displaced
from a saddle point may or may not return to that point of equilibrium,
depending on the direction of displacement; while a ball displaced from a

6 A proof can be found in any standard book on elementary calculus as e.g. in COU-
RANT (1972, p.!59f.).

190

relative maximum is completely unstable' (PFALTZ 1976, p.79, cf. also
PFALTZ 1978, p.7f.) 7 .

Another advantage of the employment of the eigenvalues of Hf is the
fact that this concept may be transferee! to n—dimensional differentiate ma
nifolds which represent generalizations of the Euclidean n space. Formally
a manifold is characterized by

Definition 3.2 An n-dimensional topological manifold is a separable6
metric space in which each point has a neighbourhood homeomorphic9 to Rn .

An n dimensional manifold thus represents nothing more than a to
pological space with the same local properties as the Euclidean n-space.
MASSEY (1967, p.l) gives a vivid illustration of the two-dimensional case of
this analogy when describing an intelligent bug crawling on a surface (two-
dimensional manifold) and being unable to distinguish it from a plane (R*)
due to his limited range of visibility.

The previously defined manifolds, however, must be given some addi
tional structure so that the concept of differentiability has meaning, thus
yielding to differentiable manifolds. For the sake of simplicity and because
only the concept itself is needed we will drop their formal definition10 and
imagine them as something looking like Rn but being smoothly curved.
Examples of two-dimensional differentiable manifolds are the sphere or the
torus whereas the cube, the cone or the cylinder are none. With differentiabi
lity being specified for mappings defined on manifolds11 it is possible to inve
stigate not only functions defined on the plane (7?2) but moreover mappings
defined on surfaces (two-dimensional manifolds) as e.g. functions describing
the distribution of precipitation over the globe because a lot of theoretical
results for such mappings can be easily obtained due to the homeomorphic
relationships between differentiable manifolds and Euclidean space12 . Thus
the concept of a differentiable manifold as it has been sketched above offers
the chance to diminish the deficiency of theoretical knowledge concerning
curved surfaces as it has been complained by GOODCHILD (1990, p.5f.)
and to counteract his criticism.

Since practice has shown that degenerate critical points are extremely
unlikely to occur in real-world applications, functions possessing exclusively

7 An intuitive classification of the critical points according to their degree of

(un)stability has been given by PEUCKER (1973, p.28f.) and WARNTZ/WATERS (1975,

p.485f.).
8 In a topological space, a set A C B is dense in a set B if A = B. A topological space

C is termed separable if some countable set is dense in C.
9 Two topological spaces A and B are called homeomorphic if there exists a bijective

function / : A » B such that both / and f~ l are continuous.
10 The precise mathematical characterization of a differentiable manifold can be found

e.g. in GAULD (1982, p.54) or PALIS/de MELO (1982, p.4).

11 For an adequate definition cf. GAULD (1982, p.60).
12 For example, it is possible to characterize the critical points by their partial derivatives,

to make a distinction between degenerate and nondegenerate ones as well as to classify the

latter into maxima, saddles and minima according to the number of negative eigenvalues

of the associated Hessian matrix.

191

nondegenerate critical points have been studied comprehensively by nume
rous authors 13 .

Definition 3.3 A smooth function is termed a Morse function if all of
its critical points are nondegenerate.

For Morse functions the folllowing four theorems, whose importance
will become obvious in the next chapters where the concepts of structural
stability and the problem of approximating functions possessing degenerate
critical points by mappings without such points will be discussed, hold (cf.
ARNOL'D 1972, p.83, PFALTZ 1976, p.83, GAULD 1982, p.118, PALIS/de
MELO 1982, p.89, FOMENKO 1987, p.SOf.):

Theorem 3.3 Each Morse function on a compact manifold has only a
finite number of critical points; in particular, all of them are distinct.

Theorem 3.4 The critical points of a Morse function are always iso lated14 .

Theorem 3.5 The set of Morse functions is open and dense in the set
of all k-fold differentiate functions defined on a manifold.

Theorem 3.6 Let f be a Morse function, which is defined on a simply-
connected domain bounded by a closed contour line, then the number of mi
nima of f minus the number of saddles of f plus the number of maxima of f
equals two.

The concept of Morse functions - though not explicitly mentioned - has
been employed in almost every geographic application since they represent -
with one restriction, which will be discussed in Chapter five - the prototype
of mappings eligible to characterize topographic surfaces. One exception,
however, constitutes the work of PFALTZ (1976, 1978) whose graph theoretic
model for the characterization and generalization of topographic surfaces is
based explicitly on attributes of Morse functions and thus represents the
first attempt to describe those mappings formally which may be regarded as
abstract models of the topography of a given area.

4.STRUCTURAL STABILITY

Modern philosophy of science requires that natural science accepts only
those theories which can be verified at any time. As a consequence of this
metatheoretical view the concept of repeatability saying that the same ex
periment must give the same result under the same conditions has become
fundamental in modernrsciences although, strictly speaking, the idea is just
an ideal one. Ideal, because it is never possible to guarantee exactly the same
conditions by abandoning all external factors even in the most carefully de
signed experiment. To an even greater extent one is confronted with the

13 A great deal of the theoretical work is due to Morse (cf. MORSE/CAIRNS 1969).
14 A critical point is called isolated if sufficiently close to it there exists no other critical

point.

192

problem of repeatability in sciences like geography or cartography. For ex
ample, physical-geographic theories are based on measurements taken outside
where side-effects are much less controllable than in the physicists' labora
tories, or digital terrain models rest on digitized data which are affected by
errors due to machine inaccuracy and/or human intervention.

Since the rigorous interpretation of repeatability would make any scien
tific work impossible the previously described idealized concept has been
weakened by tolerating small changes in the conditions under which an ex
periment is carried out provided that these changes do not affect the result
significantly. To phrase it differently, 'what we really expect is not that if
we repeat the experiment under precisely the same conditions we will obtain
precisely the same results, but rather that if we repeat the experiment under
approximately the same conditions we will obtain approximately the same
results. This property is known as structural stability ...' (SAUNDERS
1982, p.17). Mathematically, deviations from the ideal experiment which
are caused by external factors are represented by perturbation functions and
structural stability is the insensitiveness of the mapping or the familiy of
mappings describing the experiment to these perturbation functions. The
impact of this concept of structural stability for geography and cartography
is that in these disciplines questions like the following ones have to be answe
red: Is a function describing a geographic phenomenon insensitive to small
measurement errors and thus structurally stable? Is a family of functions
describing a geographic phenomenon over time insensitive to temporal chan
ges and thus structurally stable? Is a mapping representing the underlying
continuous model of a digital terrain model insensitive to measurement errors
and thus structurally stable?

When using the term 'structural stability', however, one has to distin
guish between 'structural stability of a function' (cf. POSTON/STEWART
1978, p.63) and 'structural stability of a family of functions' (cf. POSTON/
STEWART 1978, p.92f., SAUNDERS 1982, p.!7f.). In the above-mentioned
geographic and cartographic applications of 'structural stability' the first in
terpretation of the term applies to the first and third examples while the
second interpretation applies to the second example. Since in the present
paper only the concept of a structurally stable function is of importance we
will confine ourselves to this aspect of structural stability and proceed with
an example in order to explain it 15 .

Let us consider the functions fi(x) = x 2 and /2 («) = x 2 + ex with ex
representing a perturbation function. For the derivatives of /i(x) and /2 (x)
holds:

f S r \ _ T 2 f I \ _ 1
Jl\X) — X J2\&) — X

fi(~,\ — 9™ fi (~,\ — 9,
J^JUj — fiX J 2\) — "

/?(*) = 2 /»(*) = 2

15 For the sake of simplicity we will restrict ourselves thereby to functions of a single
variable.

193

In order to obtain the critical points of the two functions we set the
first derivatives to zero, solve the resulting equations with respect to x and
examine the second derivates which represent the one-dimensional analogue
of the Hessian matrix.

2x = 0
x = 0

0 = 2>0

= 0
£

2
2>0

x = —-

The above calculations indicate that the perturbation function moves
the minimum from x = 0tox = | in a way depending smoothly on e (with
e being an arbitrary small number). The type of the critical point, however,
as well as the structure of the graph of /i(x) in a surrounding of x = 0 are not
affected by the perturbation (see also Fig. 4.1) and therefore the function is
structurally stable at x = 0.

(a) (6)

Fig. 4.1 Graphs of the functions (a) /i(x) = as 2 and (b) /2 (x) = x 2 + ex.

Next let us examine the two mappings gi(x) = x3 and g^(x) = x3 + ex
with ex representing again a perturbation function. For the derivatives of
gi(x) and g2 (x) holds:

9i(x) = x3
g[(x) = 3x2

* = 6x g'J(x) = 6x

In order to determine the critical points of g\(x] and gz(x) we again set
the first derivatives to zero, solve the resulting equations with respect to x

194

and inspect the second derivatives.

3x 2 = 0
x = 0

= 0

3a: 2 + e = 0

The previous calculations yield to the following interesting result: While
the function #i(x) has a degenerate critical point at x = 0, the mapping #2 (x)
- which is obtained from #i(x) by adding the term ex - has no critical points
for positive e but two critical points, namely a local minimum at xi = +v/ f

and a local maximum at « 2 = ~\/3' ^or ne§a^ve £ ^nus showing an irregular
unstable behaviour. Illustrations of the function gz(x) = x3 + ex for different
values of e are depicted in Fig. 4.2.

Fig. 4.2 Graphs of the function #2 (x) = x 3 + ex for (a) e < 0, (b) e = 0 and
(c) e > 0.

The different behaviour of the two functions /i(x) and #i(x) in a sur
rounding of x = 0 can be explained by the following theorem (cf. PO-
STON/STEWART 1978, p.63f.).

Theorem 4.1 A critical point is structurally stable if and only if it is
nondegenerate.

In the above example f\(x) has a nondegenerate critical point at x = 0
while gi(x) has a degenerate one at this location. In the first case, as a
consequence of the structural stability induced by the nondegenerate critical
point the perturbation function does not change the type of the point but
only moves its location. In the second case, however, the degeneracy of the
critical point causes structural instability resulting in a change of the type

195

of the critical point.

A direct consequence of the last theorem is the following one which
shows once more the importance of Morse functions (cf. POSTON/STE-
WART 1978, p.70f.).

Theorem 4.2 Morse functions are structurally stable.
At the beginning of this chapter the importance of structural stability

for scientific work in general has been indicated. At this point its importance
for geography and cartography will be demonstrated in the light of some pos
sible applications. The most essential one will certainly concern those fields
in geographic and cartographic research where the systems approach is al
ready well established as e.g. in ecology, climatology, demography etc. and
functions or families of functions are used to describe ecosystems, weather,
population dynamics etc. The major question to be answered in the above
examples is whether a given system is stable or unstable over time and in
the latter case if it will explode or collapse. A second field of applications
comprises the analysis of functions describing cartographic and geographic
phenomena like terrain, population density, accessibility, temperature and
the like. The question to be answered in this context is which data points
are best selected so that the functions obtained are structurally stable. It
can be assumed, however, that those mappings that are derived from surface-
specific points which are taken to be nondegenerate will produce results being
superior to all others. Finally, a third point worth mentioning in this connec
tion is the analysis of structural stability due to measurement errors caused
by machine inaccuracy and/or human intervention - a problem which will
have to be tackled in combination with the aid of statistics.

5.DEGENERATE CRITICAL POINTS AND SADDLE
CONNECTIONS

Degenerate critical points form - besides saddle connections - part of
those phenomena which prevent continuously differentiable mappings from
being suitable models for the topography of a given area. The reason is
that degenerate critical points are - according to Theorem 4.1 - structurally
unstable and thus unlikely to appear in real-world applications since any
perturbation would immediately destroy them.

Formally, a degenerate critical point (x0 ,j/o) is characterized by the fact,
that the partial derivatives fx (x0,y0) and fy (x0 ,y0) as well as the Hessian
determinant det(Hf)\(xo ,yo) are zero. Some examples of functions possessing
degenerate critical points are depicted in Fig. 5.1.

Though its definition sounds deceptively simple, degeneracy is a multi-
faceted phenomenon with different levels to be distinguished. A first subdi
vision can be made into isolated degenerate critical points and non-isolated
ones with the latter being extremely uncommon16 (cf. POSTON/STEWART

16 For this reason they are excluded from further consideration.

196

1978, p.53.). From the above sketched functions f(x,y) has an isolated de
generate critical point at (0,0) while g(x,y) has non-isolated ones along the
a; axis and h(x,y) along the x— and the y— axes. Besides this subdivision
of the critical points another one can be made according to their degree of
degeneracy (cf. FOMENKO 1987, p.80) which is explained next.

(a)

197

Fig. 5.1 Some functions having degenerate critical points: (a) f(x,y) = x3 -
3jct/ 2 (monkey saddle at (0,0)); (b) g(x,y) = x 2 (pig-trough with
degenerate critical points occuring along the x axis); (c) h(x,y) =
z2 t/2 (crossed pig-trough with degenerate critical points occuring
along the x- and the y-ax.es).

Definition 5.1 The degree of degeneracy of a critical point (xQ ,y0) is
equivalent to the number of zero eigenvalues of Hf\(XOiyo).

To illustrate this concept let us examine the two functions f(x,y) =
x 3 — 3xy2 and g(x,y) = ^ — £-. By setting the first partial derivatives to
zero and inspecting the second partial derivatives it can be shown that both
f(x,y) and g(x,y) possess a degenerate critical point at (0,0).

f(x,y) = x3 -3xy2
fx (x,y) = 3x 2 -3j/2

fv(*,y) = -fay
fxx(x,y) = Qx

fxy(x,y) = fyx (x,y) = -Qy

gm (x,y) = x 2
9v(x,y) = -y

gxx (x,y) = 2x
= gyx (x,y) = 0

9yy(x ,y) = -1

The Hessian matrices of the two mappings run therefore

198

Hf = ' -6y -(

and when evaluated at the critical point (0,0)

2x 0
0 -1

#/l(o,o) = (o 0) ##1(0,0) =
0 0
0 -1

In order to obtain the eigenvalues of the two matrices we solve the
corresponding characteristic polynoms

(0-A)(0-A) = 0

yielding

Ai, 2 = 0

(0-A)(-1-A) = 0

A! = 0
A 2 = -1

Thus, in the first case the number of zero eigenvalues and therefore the
degree of degeneracy of the critical point (0,0) is two, whereas in the second
case the degree of degeneracy of (0,0) is one. Illustrations of the two functions
in a surrounding of this location can be found in Fig. 5.2.

(a)

199

Fig. 5.2 Graphs of the functions (a) f(x,y) = a; 3 - 3zy2 and (b) g(x,y) =
2 '

Another point of interest concerning degeneracy is the question whether
functions possessing degenerate critical points can be approximated accura
tely enough by mappings without such points, or in other words if it is
possible to substitute degenerate critical points by nondegenerate ones. In
order to answer this question let us recall that degenerate critical points are
structurally unstable and that the set of Morse functions is open and dense
in the set of all differentiable mappings defined on a manifold. It can be
proved that due to these two properties the question asked earlier can be
answered affirmatively since the following theorem 17 holds.

Theorem 5.1 // a function has a degenerate critical point, then by an
arbitrarily small shift of the function it can be ensured that the complicated
singularity is dispersed into several nondegenerate ones.

The above theorem, however, does not provide any information about
the number nor about the types of the nondegenerate critical points one
obtains when splitting a degenerate one. The following examples illustrate
two possible cases that might occur when mappings are interfered by per
turbation functions by means of the two mappings f(x,y) = x3 - 3xy 2 and
g(x,y) = ^ - ̂ both possessing a degenerate critical point at (0,0) (see Fig.
5.2). Deformations of /(«, y) and g(x,y) by the perturbation functions ey and
ex respectively yield f(x,y) = x3 - 3xy2 - ey and g(x,y) = ^ - ̂ - ex. When

17 An exact proof of this theorem which is rather complicated and requires several
concepts like transversality, jet-spaces etc. from such branches of abstract mathematics
as differential topology or catastrophy theory can be found in ARNOL'D (1972, p.65).

200

(*)

Fig. 5.3 Graphs of the functions (a) f(x,y) = x3 — 3xy2 — ey and (b) g(x,y) =
*1 _id _
3 2 ex.

setting the first partial derivatives of / and g to zero, solving the resulting
systems of equations with respect to x and y, and inspecting the second

201

partial derivatives it becomes apparent that the degenerate critical point
(0,0) of f(x,y) is substituted by two nondegenerate saddles with locations at
(v/f> v/f) and (./I,./|) respectively, whereas the degenerate critical point
(0,0) of g(x,y) is substituted by a nondegenerate saddle at (\/e>0) and a
local maximum at (^,0). The visualization of the effect of approximating
a function having a degenerate critical point by a mapping without such
points can be achieved by comparing Fig. 5.2 and Fig. 5.3 with the latter
depicting the graphs of f(x,y) and g(x,y).

It can easily be demonstrated that degenerate critical points are not
the only phenomena inducing structural instability but saddle connections
will cause it, too. However, it has been proven that saddle connections may
always be broken up by perturbation functions which have to be chosen in a
convenient way (cf. GUCKENHEIMER/HOLMES 1983, p.60ff.). As a con
sequence of this result and Theorem 5.1 it can be concluded that Morse func
tions without saddle connections are the most suitable mappings to describe
topographic surfaces because, on the one hand, they possess only structural
stable elements like nondegenerate critical points but are, on the other hand,
also eligible to approximate accurately enough structural unstable elements
like degenerate critcal points and saddle connections.

6.CONCLUSION

In the present paper the characterization of those mappings which may
be regarded as abstract models of topographic surfaces has been attempted.
The importance of a characterization like this is derived from the fact that dif
ferentiability and continuity of the derivatives do not suffice for functions to
represent realizable topographic surfaces because continuously differentiable
mappings may nevertheless be endowed with pecularities which are unlikely
to appear in reality. An analysis of these pecularities, however, reveals that
they are primarily due to structural instability of the respective functions -
a phenomenon induced by degenerate critical points or saddle connections.
Therefore it has been concluded that mappings describing the topography of
a given area should be Morse functions without saddle connections. It should
be emphasized, however, that the results obtained in this article represent
only the first step in the formal characterization of the topography of a given
area because a great deal of important phenomena like junctions of channels
and ridges have not been considered. The analysis of these phenomena and
its incorporation into a general framework of spatial data management will
have to be the subject of future research.

7.REFERENCES

ARNOL'D, V. I., 1972. Lectures on Bifurcations in Versa! Families. In:
Russian Mathematical Surveys, p.54 - 123.

202

BOUDRIAULT, G., 1987. Topology of the TIGER File. In: Proceedings of
AUTOCARTO 8, p.258 - 263.

COURANT, R., 1972. Vorlesungen ueber Differential- und Integralrechnung
2. Berlin, Heidelberg, New York.

ENDL, K./LUH, W., 1976. Analysis II. Wiesbaden.

FOMENKO, A. T., 1987. Differential Geometry and Topology. New York,
London.

GAULD, D. B., 1982. Differential Topology. An Introduction. New York,
Basel.

GOODCHILD, M. F., 1990. Spatial Information Science. In: Proceedings
of the Fourth International Symposium on Spatial Data Handling, p.3 - 12.

GUCKENHEIMER, J./HOLMES, P., 1983. Nonlinear Oscillations, Dynami
cal Systems, and Bifurcations of Vector Fields. New York, Berlin, Heidelberg,
Tokyo.

HARALICK, R. M./WATSON, L. T./LAFFEY, T. J., 1983. The Topogra
phic Primal Sketch. In: The International Journal of Robotics Research,
p.50 - 72.

LAFFEY, T. J./HARALICK, R. M./WATSON, L. T., 1982. Topographic
Classification of Digital Image Intensity Surfaces. In: Proceedings of the
IEEE Workshop on Computer Vision, Theory and Control, p.171 - 177.

MASSEY, W. S., 1967. Algebraic Topology: An Introduction. New York,
Chicago, San Francisco, Atlanta.

MORSE, M./CAIRNS, S. S., 1969. Critical Point Theory in Global Analysis
and Differential Topology. New York, London.

NACKMAN, L. R., 1982. Three-dimensional Shape Description Using the
Symmetric Axis Transform. Ph.D. dissertation. Department of Computer
Science, University of North Carolina, Chapel Hill.

NACKMAN, L. R., 1984. Two-Dimensional Critical Point Configuration
Graphs. In: IEEE Transactions on Pattern Analysis and Machine Intelli
gence, p.442 - 450.

PALIS, Jr. J./de MELO W., 1982. Geometric Theory of Dynamical Systems.
New York, Heidelberg, Berlin.

PEUCKER, T. K., 1973. Geographic Data Structures. Progress Report
After Year One. Technical Report #1, 'Geographic Data Structures' Project,
ONR Contract N00014-73-C-0109.

PEUCKER, T. K./CHRISMAN, N., 1975. Cartographic Data Structures.
In: The American Cartographer, p.55 - 69.

PEUCKER, T. K./FOWLER, R. J./LITTLE, J. J./MARK, D. M., 1978.
The Triangulated Irregular Network. In: Proceedings of the American So
ciety of Photogrammetry. Symposium on Digital Terrain Models (DTM), St.
Louis, p.516 - 540.

203

PEUQUET, D., 1983. A Hybrid Structure for the Storage and Manipulation
of Very Large Spatial Data Sets. In: Computer Vision, Graphics, and Image
Processing, p. 14 - 27.

PFALTZ, J. L., 1976. Surface Networks. In: Geographical Analysis, p.77 -
93.

PFALTZ, J. L., 1978. Surface Networks, an Analytic Tool for the Study of
Functional Surfaces. Final report on NSF Grant OCR-74-13353.

POSTON, T./STEWART, I., 1978. Catastrophy Theory and Its Applica
tions. London, San Francisco, Melbourne.

SALGE, F./SCLAFER, M. N., 1989. A Geographic Data Model Based on
HBDS Concepts: The IGN Cartographic Data Base Model. In: Proceedings
of AUTOCARTO 9, p.110 - 117.

SAUNDERS, P. T., 1982. An Introduction to Catastrophe Theory. Cam
bridge.

WARNTZ, W./WATERS, N., 1975. Network Representations of Critical
Elements of Pressure Surfaces. In: Geographical Review, p.476 - 492.

WEIBEL, R., 1989. Konzepte und Experimente zur Automatisierung der
Reliefgestaltung. Dissertation. Philosophische Fakultaet, Universitaet Zue-
rich.

WOLF, G. W., 1988a. Generalisierung topographischer Karten mittels Ober-
fiaechengraphen. Dissertation. Institut fuer Geographic, Universitaet Kla-
genfurt.

WOLF, G. W., 1988b. Weighted Surface Networks and their Application to
Cartographic Generalization. In: BARTH, W. (ed.), 1988. Visualisierungs-
techniken und Algorithmen. Berlin, Heidelberg, p. 199 - 212.

WOLF, G. W., 1989. A Practical Example of Cartographic Generaliza
tion Using Weighted Surface Networks. In: DOLLINGER, F./STROBL, J.
(eds.), 1989. Angewandte Geographische Informationstechnologie (= Salz-
burger Geographische Materialien, Heft 13), p.125 - 143.

WOLF, G. W., 1990. Metric Surface Networks. In: Proceedings of the
Fourth International Symposium on Spatial Data Handling, p.844 - 856.

204

SIMULATION OF THE UNCERTAINTY OF A VIEWSHED

Peter F. Fisher/

Department of Geography,
Kent State University/

Kent/ Ohio 44242-0001, U.S.A.
PFISHER1@KENTVM.BITNET

SUMMARY

One of the most widely available procedures packaged with
CIS for the analysis of a Digital Elevation Model (DEM)
is the identification of the viewable area, or the
viewshed. The elevations recorded in the DEM do,
however, contain error, and the USGS, for example,
publishes a Root Mean Squared Error (RMSE) for each DEM.
Research reported here assesses the uncertainty of
locations being within a viewshed, given the published
error for the DEM. In this research, repeated error
fields are simulated with variable spatial
autocorrelation, and added to the original DEM. The
viewshed is then determined in the resulting noisy DEM.
Results show that using the basic assumption of spatial
independence in the error which is implicit in the RMSE
remarkably few points are reliably within the viewshed.
With spatially autocorrelated noise, the reliability is
higher, but still should be cause for concern to many
using viewshed procedures.

INTRODUCTION

Research on the propagation of error within CIS
operations has focused upon the polygon overlay operation
(MacDougall, 1975; Newcomer and Szajgin, 1984; Chrisman,
1989; Maffini et al., 1989; Veregin, 1989), at the
expense of other CIS data types and functions. The
experiments reported here examine one aspect of the
propagation of error from a Digital Elevation Model (DEM)
into the derivative product showing visible locations,
sometimes known as a viewshed (see also Felleman and
Griffin, 1990; Fisher, 1990).

This paper starts by briefly discussing the viewshed
operation, and the nature of error in DEM data. The
general methodology of simulating error is then
discussed, followed by its application to a real
location.

205

VIEWSHEDS AND DBMS

The basic algorithm in establishing the viewshed examines
the line-of-sight between two points (the viewpoint and a
target), and assesses whether any land or object rises
above that line-of-sight. If it does then the target is
not within the viewshed of the viewing location, but if
no land rises above the elevation, then the target is
within the viewshed. In establishing the viewshed either
all possible targets in the area of a database (Clarke,
1990, 227-228), or only those within some constrained
portion of the area (Aronoff, 1989, 234), may be
considered. Several studies have explored differences in
viewshed algorithms (Anderson, 1982; DeFloriani et al.,
1986; Sutherland et al., 1974), and Felleman and Griffin
(1990) have compared the output of four different CIS-
based implementations of the viewshed operation. They
show the viewsheds delimited to be very different. This
difference is not particularly surprising given the
multiple decisions to be made in designing the
implementation of the viewshed operation. For example,
decisions have to be made as to whether the viewpoint in
a gridded DEM is anywhere within the viewpoint gridcell,
or is just the mid-point; similarly, should the surface
be treated as the stepped phenomena it is coded as, or an
interpolated surface? The outcome of such algorithm-
design decisions may produce dramatically different
viewshed results in some DEMs.

The viewshed is invariably reported as a binary product,
a target location is either within or without the
viewshed of the viewpoint. No shades of uncertainty are
admitted; neither the likelihood nor the probability of a
point being within, or of being without the viewshed is
reported. In the light of the considerable interest in
database accuracy this seems remarkable, especially when
each DEM is required to be accompanied by an error report
(USGS, 1987).

The USGS has adopted the Root Mean Squared Error (RMSE)
for reporting accuracy in their DEM products (USGS,
1987). The RMSE for any one DEM is based on the
comparison between the elevations of at least twenty
locations on the map, and their elevations recorded in
the database. It should be noted that most USGS source
maps are stated to conform to the National Map Accuracy
Standards, which themselves state that "at no more than
10 percent of the elevations tested will contours be in
error by more than one half the contour interval", as
established by comparison with survey data (Thompson,
1988, p 104). In generating a DEM from a map, therefore,
at least two stages are present when error may be
introduced: map compilation and DEM generation from the
map. The error reported for the DEM only refers to the
second of these, and it is only that error that is
examined here. Some DEMs are generated directly from
aerial photographs by the Gestalt Photo Mapper II, and,

206

in this case, the error may only be introduced in one
stage.

Error in DEMs is then widely acknowledged, and has been
the subject of some study. That study has, however,
concentrated on the nature and description of the error,
not its propagation into any derivative products. The
only work known to the current author which provides any
evaluation of error propagation is by Felleman and
Griffin (1990). They have compared implementations of
the viewshed operation, and simulated error in the DEM
before calculating the viewshed, as is reported here.
They examined 3 viewpoints in 2 test areas for each of
which 10 error simulations were run. Results are,
however, only reported for one test location.

METHOD

SIMULATING ERROR

A Monte Carlo simulation and testing approach is taken to
studying the propagation of DEM error here. In this
approach, randomizing models of how error occurs are
established, and then coded as computer procedures. The
resulting computer program may be used to generate
multiple realizations of the random process. Many
workers have used original data in combination with
realizations of the defined random process to establish
the statistical significance of the original data with
respect to the random process (Besag and Diggle 1977).
Thus Openshaw et al. (1987) executed 499 realizations of
the random process to locate two significant clusters of
incidents of childhood leukemia in northern England.

How the error is distributed across the area of any one
DEM is currently unknown, and factors that may effect the
distribution of error is largely unresearched. The
inference of the error reporting used by the USGS is that
the error at any point occurs independently of that at
any other point (i.e. the error is not spatially
autocorrelated). Therefore, the following algorithm may
be implemented (Fisher, in press):

1. Define a standard deviation of a normal
distribution (S = RMSE);

2. Read Original_Value for the current cell:
2.a Using the Box-Muller (or some other)

algorithm generate a random number drawn
from a normal distribution with mean = 0
and standard deviation = S;

2.b Add the random number to the
Original_Value for the current cell, to
give the New_Value;

3. Repeat 2 for all cells in the Map_File.

207

This assumes that the standard deviation of a normal
distribution is equivalent to the RMSE. In the absence
of any other information on error structure, this may not
be unreasonable. Such independent error is, however,
very likely to contribute only a small portion of the
overall error. High spatial autocorrelation is probably
present, and banding can often be seen in the DEM data.
To accommodate the occurrence of spatial autocorrelation,
a version of the algorithm given by Goodchild (1980) was
implemented, using Moran's I to measure the
autocorrelation (Goodchild 1986; Griffith 1987). It
works thus:

1. Define a target autocorrelation (!+-)/ and a
standard deviation of a normal distribution (S
= RMSE) ;

2. For each cell in the DEM generate a random
value, with a normal distribution with mean = 0
and standard deviation = S (see first
algorithm) ;

3 . Calculate the Spatial Autocorrelation of the
field

Randomly identify two cells in the DEM:
4. a Swap the values in the two cells;
4.b Calculate the new spatial autocorrelation

4.c IF lt > I I AND I2 > !]_ THEN retain the
swap, and 1^ = I2

OR
IF It < I-L AND I2 < IJL THEN retain the

swap, and I x = I,
ELSE swap the two cells back to their

original values;

5. Repeat 4 until (I^-l-jJ is within some
threshold.

6. For each cell in the original DEM, add the
value in the corresponding autocorrelated
field.

This algorithm is simple and can be made computationally
efficient, and it will be noted is an extension of the
first algorithm listed.

The random number generator used in programming the
algorithms was also tested, since like all such
implementations it is truly a pseudo-random number
generator (Ripley, 1986) . The generator included with
Turbo Pascal 5.5 was used here. The runs test was used
to check for serial autocorrelation, the chi-squared test
was used to check for a uniform distribution, and serial
autocorrelation was tested for all lags to check for
cycling in the generator. The generator performed

208

satisfactorily for all cases, when number sequences up
to 10,000 long were tested (corresponding to the 100 by
100 array used in the generation of autocorrelation).

MEASURING UNCERTAINTY

Each realization of the random process then resulted in a
new DEM. The viewshed was calculated for each, and for
any one view point, all the viewsheds in which the noise
term had the same RMSE and spatial autocorrelation were
summed to yield a summation image which describes the
uncertainty of the viewshed, or the fuzzy viewshed.
Since the viewshed is reported as a raster image coded as
0 or 1, the maximum value in the fuzzy image is 20, the
number of realizations. It is possible to define the
viewshed with a particular likelihood (probability).
Thus, with 20 realizations, cells with value 19 in the
resulting image, have probability, p = 19/20 = 0.95 of
being within the viewshed, and, similarly, those with
value 10 have probability, p = 10/20 = 0.5.

THE STUDY AREA

A 200 x 200 cell subset of the USGS Prentiss, NC, 7.5
minute DEM was acquired covering the Coweeta Experimental
Watershed (Fig. 1). This DEM has been the subject of
considerable research on DEM products (Band, 1986;
Lammers and Band, 1990). Within the area of the DEM two
test viewing locations (viewpoints) were arbitrarily

Figure 1

The Digital elevation model of the Coweeta Experimental
Watershed, N.C. The two test locations are shown, and the

1 km zone around each indicated.

209

identified, one near an interfluve (Point 1), and one in
a valley bottom (Point 2). All viewsheds calculated in
the research reported here were only to within 1km of the
viewpoint, and from an elevation of 2m above the
viewpoint (corresponding to approximately the near-view,
and the eye level of an individual, respectively).

The DEM was read into a format compatible with Idrisi
(Eastman, 1989), a PC based package for Geographic
analysis, and all further processing was done with either
Idrisi modules, or implementations of the above
algorithms written by the author in Turbo Pascal version
5.5. The VIEWSHED module of the Idrisi package is
crucial to the research reported here, and so some simple
test situations were established to examine the veracity
of the viewable area calculated by that module. In every
test, the module performed satisfactorily. The module
operates on a DEM of any size, by using random access
files, but at great expense in processing time. Only
examining locations within 1 km of the viewpoint also
made the processing time required for the research
realistic.

RESULTS

Tables 1 and 2 report the frequencies of occurrence of
values in the fuzzy viewsheds derived from the noisy
OEMs, and those fuzzy viewsheds are shown in Figures 2
and 3. For each set of viewsheds with a specific spatial
autocorrelation in the noise, and for a particular
viewpoint, the tables record in the first column the
frequencies of cells which are outside the viewshed in
the original DEM, but inside those in simulated elevation
models, the second column records those that are in both
viewsheds, and the last column records the sum of the
first two. The results all refer to applications of
noise with variable spatial autocorrelation and with RMSE
= 7, the value specified for this DEM. Table 1 and
Figure 2 show results for Point 1, while Table 2 and
Figure 3 show results for Point 2.

DISCUSSION

It is apparent in both Tables 1 and 2 that when there is
no spatial autocorrelation in the noise, there are very
low frequencies of cells with high cell counts in the
viewsheds of either test viewpoint. 8 and 9 cells occur
within all 20 of the viewsheds of the two points (i.e.
the nearest neighboring cells plus 1 in 1 case), and in
the case of Point 2 only 16 cells have cell counts of 18
or greater. The viewshed of the higher, ridge-top
location (Point 1) appears to be more stable, however,
with higher frequencies of cells with count greater than
10 (giving p > 0.5 of being within the viewshed), 706 as
opposed to 443 for Point 2.

210

TABLE 1

Frequencies of occurrence of values between 1 and 20 in
the image resulting from summing all noisy viewsheds, for
Point 1 where the autocorrelation in the noise varies
from 0 to 0.9. All points within 1 km of the viewpoint
are included.

Cell
Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1=0
Out In
View

1456
192
142
122
92
76
60
37
21
15
3
6
4
3

1

9
18
31
45
60
78
97

123
120
94
74
93
80
75
90
81
73
24
9

Sum

1457
192
151
140
123
121
120
115
118
138
123
100
78
96
80
75
90
81
73
24
9

1=0.
Out In
View

1425
226
123
117
81
90
63
47
23
21
4
6
3

1
3
1
3
9

14
30
49
66
87
73
73
78

104
84
85
93
86

123
142
71

7
Sum

1426
229
124
120
90

104
93
96
89

108
77
79
81

104
84
85
93
86

123
142
71

1=0.
Out In
View

1574
204
100
68
72
47
35
35
34
31
14
5
7
3

3
2
3
6

16
15
29
32
35
49
48
57
61
63
73
90
82

110
92

101
308

9
Sum

1577
206
103
74
88
62
64
67
69
80
62
62
68
66
73
90
82

110
92

101
308

The distribution of cell count frequencies becomes
progressively less skewed towards the low frequencies as
the autocorrelation in the noise increases. Indeed, in
the case of Point 1, the distribution becomes strongly
bimodal when I = 0.9. When the noise perturbing the DEM
has high autocorrelation, the frequency of cells with
high counts increases, so that as the value of I for the
noise increases the number of cells with count 20
increases dramatically for both Point 1 (9, 71, and 308
for 1=0, 0.7 and 0.9), and Point 2 (8, 38, and 112).
There are, however, only slight, but probably useful,
rearrangements of frequencies in many of the other cell
counts, and an increase in the number of cells with only
a count of 1 can be noted in the case of Point 1. At
Point 2, the number of cells with count 1 is reduced by
nearly a third, but the number of cells with count 20
does not increase by nearly as much as in the results for
Point 1. There is, however, an evening of frequencies
corresponding to counts from 5 to 20, which is not
observed in the results for Point 1.

As the spatial autocorrelation increases the number of
cells that are identified as not even possibly being
within the viewshed, but within the search distance of

211

the viewpoint, does increase with autocorrelation, but
the change is not continuous in both cases. From Point
1, the counts are 1456, 1425 and 1574 when 1=0, 0.7,
and 0.9 respectively, and at Point 2, the values are
1109, 918, and 897. Furthermore, the number of cells
that may be within the viewshed (>0 in the fuzzy
viewshed) but were not in the viewshed in the original
DEM, increases with autocorrelation at Point 2, (822,
1013, and 1034 for 1=0, 0.7, and 0.9 respectively), but
at Point 1 the reverse is true (733, 804, and 655
respectively). The upper frequencies of cells outside
the original viewshed changes very little either between
or within viewpoints (frequencies of 12 to 15 can be
noted).

TABLE 2

Frequencies of occurrence of values between 1 and 20 in
the image resulting from summing all noisy viewsheds, for
Point 2 where the autocorrelation in the noise varies
from 0 to 0.9. All points within 1 km of the viewpoint
are included.

Cell
Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1=0
Out In
View

1109
319
179
122
73
46
47
14
8
5
1
5
1
1

1

16
33
89
90

119
122
132
152
137
135
85
99
82
78
64
42
36
18
7
1
8

Sum

1125
352
268
212
192
168
179
166
145
140
86

104
83
79
64
42
36
18
7
1
8

1=0.
Out In
View

918
265
205
143
100
83
64
42
45
27
25
10
4

3
12
21
33
46
63
81
76
85
97

101
109
116
107
106
120
97
93
91
49
38

7
Sum

921
278
226
176
146
146
145
118
130
124
126
119
120
107
106
120
97
93
91
49
38

1=0
Out In
View

897
255
177
137
124
88
60
64
45
39
25
9
4
3
4

1
2
6

13
19
29
39
59
66
89

113
88

100
115
113
119
111
109
125
117
112

.9
Sura

898
257
183
150
143
117
99

123
111
128
138
97

104
118
117
119
111
109
125
117
112

SPATIAL ARRANGEMENT OF UNCERTAINTY

The spatial distribution of these fuzzy values are shown
in Figures 2 and 3, together with the viewshed in the
original DEM, the elevation map of the immediate area,
and a viewshed image derived from the fuzzy image where I

212

Figure 2

DEM and Viewsheds of Point 1: A) the elevations in the
near-view; B) the viewshed image from the original DEM;
fuzzy viewsheds where C) 1=0, D) 1=0.7, and E) 1=0.9; and

F) an image showing the viewshed where p>=0.5 from E.

213

Figure 3

DEM and Viewsheds of Point 2: A) the elevations in the
near-view; B) the viewshed image from the original DEM;
fuzzy viewsheds where C) 1=0, D) 1=0.7, and E) 1=0.9; and

F) an image showing the viewshed where p>=0.5 from E.

214

in the error = 0.9, and value in the fuzzy viewshed >= 10
(probability of being within the viewshed >= 0.5). In
those figures therefore, the spatial arrangements of the
tabulations presented and discussed above can be seen.

In both areas, the application of increasing
autocorrelation to the noise progressively increases the
certainty of similar areas being within the viewshed.
Thus the nucleus of the zones with high probability
identifiable in those viewsheds where the noise term had
I = 0.9 are identifiable in images where the noise had I
= 0.

The ridge-top location, Point 1 (Fig. 2), has a higher
frequency of high counts in the image. The areas of high
likelihood of belonging to the viewshed are more
contiguous for this location than for Point 2 (see Fig.
3); most of the high likelihood values are in three
blocks of land, one immediately to the northeast of the
viewpoint, one to the north, and the other to the
southwest. From Point 2 (Figure 3), the areas of greater
certainty are by contrast highly disjoint, although one
large area does exist to the southwest.

Particularly, it should be noted that in neither test
location is it possible to identify those areas that are
of high likelihood in the fuzzy images from properties of
the viewshed as calculated in the original DEM (Fig 2b,
and 3b). For example, elevations both above and below
the viewpoint may contain both high and low certainty.

CONCLUSION AND CONTINUING WORK

Firstly, it is possible to observe that no absolute
certainty can be placed on the viewshed. Depending on
the spatial autocorrelation that is applied to the noise
term, it is apparent that the likelihood of cells being
in the viewshed, can be very low. Indeed, with the
assumption of spatial independence (where 1=0, the only
assumption that is acceptable given the method of
calculation and publication of the USGS error statement)
very little if any certainty can be placed upon the
standard viewshed calculated. Fortunately, perhaps, the
viewshed from an elevated location seems to be more
reliable than one in a depression, but work presented
here is only exploratory.

Although the method used here is too computationally
intensive for widespread implementation, it does yield
alternative fuzzy viewsheds from a particular viewpoint.
In this paper alternative fuzzy viewsheds derived from
simulated OEMs with variable spatial autocorrelation are
discussed. The algorithms can already accommodate
variable RMSE, and can be receded to accommodate
variability in other parameters.

215

This paper points to further work in three main areas,
the effect of the error, the source of it, and terrain
control on the stability of the viewshed. In the first
of these, it is necessary to develop a method to predict
the fuzzy viewshed, which derives results similar to
those generated by simulation, but which is more
computationally efficient, and so possible to use in
regular CIS operations. To achieve this it is necessary
to explore further, probably by simulation, the
relationships between error structures in OEMs, and
fuzziness in viewsheds. The effects in the middle and
far view should also be explored. In the area of error
sources, considerable need exists for more information on
the structure of the error in the DEM, and the
relationship between error derived from digitization (the
only error studied here), and that derived from original
map compilation. Finally, aspects of relative elevation,
other relief properties, and further aspects of terrain
on patterns of fuzziness and the nature of error need to
be explored.

ACKNOWLEDGEMENT

I wish to thank Larry Band, University of Toronto, who
supplied the digital elevation data when it was needed,
and Ron Eastman, Clarke University, for allowing me to
examine the code of the Idrisi Viewshed module. John
Felleman, Mike Goodchild, Dave Mark, and Dan Griffith all
commented on aspects of the research, and Audrey Clarke
assisted and advised on figure preparation. The work was
conducted on a 386 PC, and I also wish to thank all those
students who also wished to use it for their patience.

REFERENCES

Anderson, D.P., 1982, Hidden line elimination in
projected grid surfaces: ACM Transactions on Graphics.
Vol.1, pp.274-291.

Aronoff, S., 1989, Geographic Information Systems: A
Management Perspective. WDL Publications, Ottawa.

Band, L.E., 1986, Topographic partition of watersheds
with digital elevation models: Water Resources Research.
Vol.22, pp.15-24.

Besag, J. and P.J.Diggle, 1977, Simple Monte Carlo
tests for spatial patterns: Applied Statistics, Vol.26,
pp.327.

Chrisman, N.R., 1989, Modeling error in overlaid
Ccitegorical maps, in M.F.Goodchild and S.Gopal (Eds.),
The Accuracy of Spatial Databases,, Taylor and Francis,
London, pp.21-34.

216

Clarke, K.C., 1990, Analytical and Computer
Cartography. Prentice Hall, Englewood Cliffs, NJ.

DeFloriani, L., Falcidieno, B., and Pienovi, C., 1986,
A visibility-based model for terrain features, in
Proceedings of the Second International Symposium on
Spatial Data Handling, pp. 235-250.

Eastman, R., 1989, IDRISI; A Grid-based Geographic
Analysis System, Version 3.1. Graduate School of
Geography, Clark University, Worcester, Mass.

Felleman, J., and Griffin, C., 1990, The role of error
in CIS-based viewshed determination - A problem analysis.
US Forest Service, North Central Experiment Station,
Agreement No. 23-88-27.

Fisher, P.F., 1990, Simulation of Error in Digital
Elevation Models, Papers and Proceedings of the 13th
Applied Geography Conference.

Goodchild, M.F., 1980, Algorithm 9: Simulation of
autocorrelation for aggregate data, Environment and
Planning A. Vol.12, pp.1073-1081.

Goodchild, M.F., 1986, Spatial Autocorrelation. CATMOG
47, Geo Books, Norwich, UK.

Griffith, D.A., 1987, Spatial Autocorrelation; A
Primer. Association of American Geographers, Washington,
DC.

Lammers, R.B. and L.E.Band, 1990, Automating object
representation of drainage basins, Computers and
Geosciences P Vol.16, pp.787-810.

MacDougall, E.B., 1975, The accuracy of map overlays:
Landscape Planning. Vol. 2, pp.23-30.

Maffini, G., Arno, M., and Bitterlich, W., 1989,
Observations and comments on the generation and treatment
of error in digital CIS data, in M.F.Goodchild and
S.Gopal (Eds.), The Accuracy of Spatial Databases.
Taylor and Francis, London, pp.55-67.

Newcomer,, J.A., and Szajgin,J., 1984, Accumulation of
thematic map errors in digital overlay analysis: The
American Cartographer, Vol. 11, pp.58-62.

Openshaw, S., M.Charlton, C.Wymer and A.Craft, 1987, A
Mark 1 Geographical Analysis Machine for the automated
analysis of point data sets: International Journal of
Geographical Information Systems. Vol. 4, pp.335-358.

Ripley, B.D., 1987, Stochastic Simulation. John Wiley,
New York.

217

Sutherland, I.E., Sproull, R.F., and Scumaker, R.A.,
1974, A characterization of ten hidden-surface
algorithms, Computing Surveys, Vol. 6, pp.1-55.

Thompson, M.M., 1988, Maps for America. Third Edition,
USGS, Reston, Va.

USGS, 1987, Digital elevation models. Data Users Guide
5, USGS, Reston Va.

Veregin, H., 1989, Error modeling for the map overlay
operation,iln M.F.Goodchild and S.Gopal (Eds.), The
Accuracy of Spatial Databases, Taylor and Francis,
London, pp.3-18.

218

Dynamic Maintenance of Delaunay
Triangulations

Thomas Kao*
David M. Mount t

Department of Computer Science and
Institute for Advanced Computer Studies

University of Maryland

Alan Saalfeld
Bureau of the Census

Abstract

We describe and analyze the complexity of a procedure for computing and
updating a Delaunay triangulation of a set of points in the plane subject to
incremental insertions and deletions. Our method is based on a recent algo
rithm of Guibas, Knuth, and Sharir for constructing Delaunay triangulations
by incremental point insertion only. Our implementation features several meth
ods that are not usually present in standard GIS algorithms. Our algorithm
involves:

Incremental update: During point insertion or deletion only the portion of
the triangulation affected by the insertion or deletion is modified.

Randomized methods: For triangulation building or updates involving large
collections of point, randomized techniques are employed to improve the
expected performance of the algorithm, irrespective of the distribution of
points.

Persistence: Earlier versions of the triangulation can be recovered efficiently.

1 Introduction

The Voronoi diagram and its dual, the Delaunay triangulation, are among the most
useful structures that can be derived from a finite set of n points in the plane. These
structures have long been recognized as being very useful in automated cartographic
applications [6, 8]. Although it is known that these structures can be computed in

worst case O(nlogn) time [2, 5], it is widely felt that the implementation of these
algorithms involves a significant amount of programming effort. As a consequence
many implementors have settled for a simple incremental algorithm, which builds the

"The work of this author was partially supported by the Bureau of the Census under giant 3SA
9-32.

^The work of this author was partially supported by the Bureau of the Census under grant JSA
9-32 and by the NSF under grant CCR-8908901.

219

diagram site by site [3, 5]. Although there are instances in which this algorithm runs
in O(n2) worst case time, it is often observed that the performance of the incremental
algorithm is rarely as bad as this quadratic bound suggests.

Recently Guibas, Knuth, and Sharir have given a theoretical explanation of this
phenomenon [4j. They analyzed the complexity of the simple incremental algorithm
for Delaunay triangulations combined with an novel technique for locating the triangle
of the triangulation which contains a given point. They showed that, irrespective
of the distribution of points, this algorithm operates in O(n log n) expected time
provided that the points are inserted in random order. (Here the expectation is over
the possible insertion orders.) We extend their result by giving an algorithm which
can incrementally maintain a Delaunay triangulation through a sequence of insertions
as well as deletions.

A.n incremental algorithm is said to have an amortized time complexity of f(n) if
the total cost of any sequence of N operations divided by N is 0(/(n)), even though
a single operation may have cost much greater than /(n). We show that, given a base
set of points, any sequence of insertions and deletions to the Delaunay triangulation
can be performed on-line in expected amortized time 0(log n) per insertion or deletion
under the assumptions that (1) for insertion, each of the base points not present in
triangulation is equally likely to be inserted, and (2) for deletion, each of the points
present in the triangulation is equally likely to be deleted. Here n reflects the number
of points present in the triangulation at the time of the update. No assumptions are
made about the distribution of the base points.

Our algorithm has an interesting type of persistence property. In particular, we
are able to reconstruct any earlier version of the triangulation more efficiently than
the naive method of simply reversing the recent history of insertions and deletions.

We have implemented our algorithms in order to establish the actual efficiency,
which was established theoretically by Guibas, Knuth and Sharir. We present a num
ber of observations on the algorithm and its practical performance, and in particular
we consider how the algorithm performs when the assumption of random insertion
and deletion is violated.

The remainder of the paper is organized as follows. In Section 2 we describe the
incremental insertion of Guibas, Knuth, and Sharir (for the sake of completeness). In
Section 3 we describe the deletion algorithm and analyze its expected case complexity
and in Section 4 we consider the complexity of sequences of insertions and deletions
and how to keep the search structure balanced through such a sequence. In Section 5
we discuss our implementation of the algorithm and provide a number of graphs
displaying the essential elements of the algorithm which determine its complexity.

2 Incremental Insertion

In this section we review the basic incremental algorithm as presented by Guibas,
Knuth, and Sharir [4]. The algorithm is quite simple. Let P = {pi,p2, ,pn } be a
set of points and let D(P] denote the Delaunay triangulation of this point set. For
points a, b, c £ P, let Aafec denote the triangle (not necessarily in the triangulation)
determined by these points. We consistently label the vertices of triangles in counter
clockwise order. For simplicity, we make the usual general position assumptions that
no three points are colinear and that no four points are cocircular. These assumptions
are handled in our implementation, but we omit discussion of them here since they
clutter the presentation with undue detail.

220

We assume that the point coordinates have been normalized so that they lie within
the interior of the unit square. It is assumed that the four corners of the unit square
are always elements of P, and these four points are not eligible for deletion. When
the algorithm is initiated, the Delaunay triangulation consists of two triangles formed
by adding a diagonal through the unit square. (These four points actually violate
our general position assumption, implying that either of the two diagonals could be
used.)

The insertion procedure operates as follows. Suppose that p is a new point to
be added to the triangulation. By a point location method (to be described later)
determine the triangle Aabc of D(P) which contains this point. Replace the triangle
Aabc with three triangles Apai, Ap&c, and Apca (see Fig. l(a)). This operation is
called augmentation.

(a) (b)

Figure 1: Incremental point insertion.

To determine whether e'ach of these three new triangles, say Apa6, is a Delaunay
triangle we perform the following Delaunay test. Let Aqba be the triangle on the
"other side" of the edge ab. If either (1) no such triangle exists (because edge ab is
an edge of the unit square) or (2) if the triangle does exist but p does not lie within
the circumcircle of Ag&a, then Apa6 is Delaunay and no further updating is needed.
Otherwise replace the two triangles Apafr and Aqba with the two triangles Apa<? and
Apqb (see Fig. l(b)). This is equivalent to swapping the edges ab and p<?, and hence
is called an edge swap. Continue the test, this time with the triangles Apa<? and Apgfe
until all triangles pass the Delaunay test. The Delaunay test is then performed for
the for the other two triangles Ap&c and Apca. The correctness of this algorithm is
well known (see, e.g. [5]).

Pseudocode for this algorithm is given below. Guibas, Knuth, and Sharir actu
ally describe an elegant nonrecursive implementation of this algorithm [4]. We have
presented the algorithm in this recursive form to emphasize its symmetry with the
incremental deletion algorithm, which we present in the next section. The procedure
invokes the primitive in(u,t>,u;,p) which determines whether the point p lies within
the circumcircle of the triangle Auvw (where u, v and w are given in counterclockwise
order). The argument p is the point to be inserted, and D is the existing triangulation.

procedure Insert(p, D);
begin

Find the triangle Aa&c of D containing p;
Replace Aofec by the three triangles Apafe, Ap&c, and Apca in D;
SwapTest(a&, D);
SwapTest(k, D);

221

SwapTest(ca, D);
end;

procedure Swap Test (xJ, D);
begin

if Tz is an edge of the unit square then return;
Let y be the third vertex of the triangle to the right of ~xz in D;
if in(a;,?/,2,p) then begin

Replace triangles Axj/2, Apxz with Apyz, Apxy in D;
SwaPTest(zy, D);
SwapTest(yz, D);

end;
end;

Letting (ux ,uy) denote the coordinate of the point u, the primitive in(
is implemented by evaluating the following determinant.

in(u,v,w,p) = det
Wx

\ Px Py Px +Py 1

The data structure used for storing the triangulation can be chosen from any
number of standard structures for storing subdivisions of the plane, such as the quad-
edge data structure [5] or the winged-edge data structure [7]. These data structures
are both edge-based in the sense that the primitive objects of the data structure
are the edges. In our implementation a triangle-based data structure was employed.
This is particularly convenient for the triangle-based point location techniques which
discussed below. The fundamental property required of any data structure for this
problem is that it be able to move from one triangle of the triangulation to each of
its three neighboring triangles in constant time.

One important aspect of this algorithm is the particular order in which the tri
angles are deleted from the triangulation. Consider the set of triangles of the origi
nal triangulation which were replaced during insertion and let R(p) denote the dual
graph of this set of replaced triangles (where each vertex of this graph corresponds to
a deleted triangle, and two vertices are adjacent if and only if these triangles share a
common edge)

LEMMA 2.1 The dual graph R(p) is a tree. Further, if we take the root to be the
triangle of the original triangulation which contains p, Aa&c, then the sequence of
deleted triangles forms a counterclockwise preorder traversal of this tree.

PROOF: The dual graph is a tree because the union of the set of new triangles (those
having p as a vertex) defines a simple polygon. (In fact this polygon is star-shaped
with respect to p.) This polygon contains no other points of the point set in its
interior. Thus the set of deleted triangles forms a triangulation of this polygon. It is
well known that the triangulation of a simple polygon is a tree.

The fact that the deleted triangles define to a counterclockwise preorder traversal
of this tree is an immediate consequence of the facts that (1) the edge swap is per
formed before either recursive call is made, and (2) the two recursive calls made in

222

the algorithm are made in counterclockwise order relative to p. D

To analyze the complexity of the algorithm, Guibas, Knuth, and Sharir proved the
following result [4]. Observe all of the triangles introduced by the insertion algorithm
are adjacent to the new point p. Thus a triangle never "reappears" once it has been
replaced (assuming insertions only).

THEOREM 2.1 (Guibas, Knuth, Sharir) Let P be a set ofn points in the plane, which
are inserted in random order into a Delaunay triangulation using the above procedure.
The expected number of triangles that appear at any time the construction is 0(n).

Because the algorithm performs only a constant amount of work with each newly
created triangle, it would follow that the expected running time of the algorithm is
0(n). However, the important missing element is the time required to determine
which triangle the newly added point p lies in. It will be this point location problem
which drives the total expected running time up to 0(n log n). We describe two ways
in which this point location can be performed.

The first method involves simple bucketing. Let us assume that the set of points
P is known in advance. When the algorithm is initiated, the triangulation consists
of a decomposition of the unit square into two triangles. We partition the initial
point set into two groups, or buckets, depending on which triangle they lie in. As
the triangulation is updated, we iteratively redistribute the points into finer and finer
partitions, so that each triangle of the triangulation is associated with the set of
points which lie within this triangle. (Our general position assumptions allow us to
ignore the case in which a point lies on the edge of a triangle. In general this is
handled by devising a rule which consistently forces all such points into one of the
adjacent triangles. See also [5].) When a triangle is replaced by augmentation, only
the points contained within this triangle need be rebucketed into one of three new
triangles. When two triangles are replaced by two others through an edge swap, only
the points in the original two triangles need be rebucketed into one of the two new
triangles. (See Fig. 2(a).)

The second method was introduced by Guibas, Knuth, and Sharir. The history
of the triangulation updates is stored. In particular, whenever a triangle Aa&c is
replaced by two or more new triangles, Aafrc remains as part of the structure and
marked as "old", and pointers are added from Aafec to each of the newly generated
triangles. The newly added triangles are called the children of the old triangles, and
the old triangles are the parents of the new triangles. The number of children is either
three (which occurs when an augmentation is performed) or two (which occurs when
an edge swap is performed). Thus each node has a constant number of children.

Initially the data structure consists of a single node which implicitly represents the
unit square (the only node which does not correspond to a triangle), and the insertion
of the initial diagonal produces two triangular children. This process defines a rooted
directed acyclic graph, which we call the history graph. The history graph is not a
tree, because a given node may have as many as two parents in this structure (and
the deletion algorithm of the next section may produce three parents).

In order to locate the triangle containing a newly added point, we start from
root node representing the unit square, and trace through the chronological chain
of "old" triangles containing this point until arriving at the triangle of the current
triangulation which contains the point. At each "old" triangle there are at most three
triangles at the next level which could contain the point, thus constant time suffices
to determine the next triangle of the chain in which the point lies. (See Fig. 2(b).)

223

Figure 2: Point location.

Under the assumption that all points of the base set are inserted into the triangu-
lation, the total time required by the bucketing and the history methods are identical,
since the same discriminating tests are made for each point, and each point moves
through the same sequence of triangles in each method. This history approach can
be viewed as a sort of lazy evaluation of the bucketing scheme since it is only applied
to the points which are indeed added to the triangulation. Thus if not all of the
points are added to the final triangulation, the history method has an advantage over
bucketing with respect to execution time. In addition this method need not know
all the points in advance. The number of times a point is moved from one triangle
to another can be as large as 0(n) per insertion. However, Guibas, Knuth, Sharir
show that the number of triangles through which a point moves, when averaged over
all the points and all insertions, is only O(log n) in the expected case. From this it
follows that the incremental algorithm runs in O(n log n) time in the expected case,
irrespective of whether the bucketing or history method is used.

One disadvantage of the history method is that its space usage is dependent on
the number of edge swaps performed by the algorithm. Although this number is O(n)
in the expected case, it could be as large as 0(n2) (although the probability of this
occurring for large n is extremely small under the assumption of random insertion.)
The bucketing method has the advantage that it never requires more than 0(n) space
in the worst case even if the point insertion violates the randomness assumption. This
is true because only the current triangulation is stored.

One big advantage of the history method is a type of persistence. Persistence
refers to the ability of a data structure to maintain its history. In this case, by
storing history of the data structure it is an easy matter to restore a recent version
of the data structure. This is done quite simply by reversing the sequence of edge
swaps by walking backwards through the history graph. Since the number of edge
swaps per insertion is expected to be a constant (and we will see that the same holds
true for deletion), the time needed to restore an earlier version of the triangulation

224

is proportional to the number updates performed between the earlier version and the
present one. This is a logn factor savings in running time over the naive method
of reversing the string of recent operations. This same persistence will apply for
deletions also as we shall see in the next section.

3 Incremental Deletion

In this section we introduce a simple incremental algorithm for deleting a point from a
Delaunay triangulation. It seems inherently harder to implement a purely incremental
deletion algorithm in the spirit of the insertion algorithm given in the previous section.
Our deletion algorithm applies the insertion algorithm of the previous section in
an off-line mode to compute an intermediate Delaunay triangulation, which it then
uses to guide an incremental sequence of edge swaps to perform the actual deletion.
Our algorithm has the interesting property that, with careful implementation (and
assuming that points are in general position), it swaps edges in essentially the reverse
order from the insertion algorithm. Thus, by calling the deletion algorithm on the
points in the reverse order of insertion, the algorithm will incrementally disassemble
the triangulation in exactly the reverse order of its assembly.

As before, let P — {pi,p2, ,Pn} denote a set of points in the plane (including
the vertices of the unit square) and let D(P) denote the Delaunay triangulation of
this point set. Let p G P be the point to be deleted. We assume that p is not one of
the vertices of the unit square. We make the same general position assumptions of the
previous section that no three points are colinear and no four points are cocircular.

Let T denote the set of triangles incident to p in the Delaunay triangulation.
Because p is not a vertex of the unit square, p does not lie on the convex hull of
P, and hence the union of the triangles of T is a star-shaped polygon containing
the point p in its interior (and in fact within its kernel). Let F denote this polygon.
Observe that any triangle in T cannot be part of the triangulation after the deletion
of p, and that any triangle in D(P) — T (i.e. any triangle which is not incident to p)
is still empty after the deletion of p. Thus, only the region of the plane covered by
the polygon F need be retriangulated.

We begin by outlining a nonincremental algorithm, which we will shortly modify
to give an incremental algorithm. By a cyclic enumeration of the triangles of T,
determine the boundary vertices of the star-shaped polygon F. Compute the Delaunay
triangulation Dr of the polygon F by any algorithm (see the remark below). Replace
the triangles of T by the triangles of Dr giving the new Delaunay triangulation
D(P ~{p}}.

Unfortunately, this algorithm is not incremental, and it is unclear how to modify
the point location algorithms to deal with the sudden replacement of potentially 0(n)
triangles by 0(n) new triangles. However, imagine that p were the last point of the
triangulation to be inserted, prior to this deletion. The insertion of p would induce a
particular sequence of edge swaps mapping D(P — {p}) to D(P}. Since we know both
triangulations, it is a relatively simple matter to perform the edge swaps in reverse
order to transform D(P) incrementally to D(P — {p}).

We solve this problem by a simple leaf pruning method. Recalling the discussion
preceding Lemma 2.1, a triangle of Dr is a leaf of the dual graph of Z?r if and only if
at least two of its sides lie on the boundary of F. From this lemma we know that by
the preordering of replaced triangles, the edge swaps are performed in such an order
that the leaves of F are the last triangles to be replaced in the triangulation. Thus,

225

D(P)

Figure 3: Leaf Pruning.

to "undo" the effects of the insertion algorithm we locate a leaf triangle &xyz of the
Dp and remove this triangle first. Let us assume that the vertices of Axyz are given
so that x and z are neighbors of y along the boundary of F). Assuming that £\xyz
does not contain p, swap the edges ~xz and py in the triangulation T (see Fig. 3). As
a consequence, the vertex y is no longer adjacent to p. We can eliminate y from F,
by connecting x to 2, and apply the algorithm iteratively to the remaining polygon.

The complete deletion algorithm is given below. The argument p is the point to
be deleted, and D is the existing triangulation. Leaf pruning is performed recursively,
to emphasize its symmetry with the insertion algorithm. (Although, as in Guibas,
Knuth, and Sharir [4], there does exist a purely iterative solution.)

procedure Delete(p, £>);
begin

Find the set of triangles T C D incident to p;
Let F be the polyon denned by the union of T;
Compute £>r, the Delaunay triangulation of F;
Let Aa6c be the triangle of Dp which contains p;
UnSwap(ca, Dp, D);
UnSwap(6c, Dp, D)]
UnSwap(a6,Z)r,£>);
Replace the three triangles Apab, Apfec, and Apca by Aa6c in Z>;
Delete the triangulation Dr',

end;

procedure UnSwap(aTz, Dr, D);
begin

if ~xz is an exterior edge of Dp then return;
Let y be the third vertex of the triangle to the right of afz;
UnSwapd/z', Dp, D);
UnSwap(xj/, Dp, D);
Replace triangles Apyz, Apxy with Axi/2, Apxz in D;

end;

REMARK: The most efficient way to construct the Delaunay triangulation of F
theoretically is by the rather sophisticated linear time algorithm by Aggarwal, Guibas,
Sha,xe, and Shor [1]. (Although this algorithm is designed for computing the Delaunay

226

triangulation of a convex polygon, it is shown in [1] that it can be applied to patch up
a Delaunay triangulation when a point is deleted.) A much simpler but theoretically
less efficient way to compute this Delaunay triangulation is to apply the incremental
insertion algorithm of the previous section to the vertices of F given in random order.
It is quite easy to show that the boundary of F remains intact in this triangulation
(because each edge of F was Delaunay prior to the deletion of p), thus the triangulation
of the interior of F can be determined by discarding all triangles which lie outside of
the polygon.

This expected case 0(n log n) algorithm is theoretically slower than the linear
time algorithm. However, since the expected degree of a vertex in a planar graph is
less than six (by Euler's formula), practically speaking the minute loss of asymptotic
running time is more than compensated for by the lower constant of proportionality of
the simple incremental algorithm together with the significant savings of programming
effort.

Our practical experience has shown that for many natural point distributions,
the maximum degree in a Delaunay triangulation rarely exceeds 16, independent
of n. Thus, it may not be entirely unreasonable to apply an O(n^) triangulation
algorithm. We decided against this approach because (1) the incremental algorithm
is already available for our use, and (2) if there is even one vertex of degree J7(n) in
the triangulation, then the expected running time of the deletion. algorithm would
grow to 0(n}. This is considerably worse than the O(logn) expected case bound,
which we show below.

Given the structure of the deletion algorithm, it is relatively easy to see that it
creates triangles in exactly the reverse order of the insertion algorithm, namely in
a clockwise postorder traversal of the dual tree of Dp. If the points are in general
position, and the choice of the orientation of the triangle Aaftc in procedure Delete
is chosen to be identical to the triangle Aa6c of procedure Insert, then the deletion
algorithm effectively swaps edges in the reverse order as the insertion algorithm (as
suming that the point deleted is the last point inserted). If the points are not in
general position (in particular, if four or more points are cocircular) then there may
be multiple final Delaunay triangulations for F, thus we cannot guarantee that se
quence of edge swaps is the same. We can force the orientation of the triangle Acz&c
to be identical in both cases by selecting the point a in some canonical manner (e.g.
by taking the point whose coordinates are lexicographically maximal).

Observe that the deletion algorithm does not need to deal with point location
(except perhaps at the level of the user-interface in order to determine which point
is to be deleted). However, if subsequent insertions are to be performed, the point
location structures described in the previous section must be updated to reflect the
change in the triangulation.

When each edge swap is performed we handle it in exactly the same way that
we handled an edge swap in the case of insertion. For point bucketing the points
contained within the affected triangles are redistributed among the new triangles.
For the history graph the affected triangles are marked as "old" and pointers are
added to the new overlapping triangles. The final step of the deletion algorithm, in
which the triangles Apa6, Ap&c, and Apca are replaced by AG&C, is the inverse of
the augmentation step seen in the insertion algorithm. For the bucketing method,
the three sets of buckets are merged into a common bucket for Aa&c. For the history
graph method, we store a single pointer from each of the three old triangles to the
newly created containing triangle.

227

Our next task is to analyze the complexity of the deletion algorithm. This task
is complicated by the fact that the analysis of the insertion algorithm was based on
the assumption that only insertions are performed and that all points are eventually
added to the triangulation. To appreciate the difficulties arising when insertions and
deletions can be combined, consider the case in which a single point is inserted into
the triangulation and then it is deleted. This process is repeated a large number of
times, N. If the bucketing method of point location is used, then when a single point
is inserted all the points in the base set must be rebucketed, requiring 0(n] time.
If the history method is used then the history graph degenerates into a structure of
depth 0(N). Thus the expected running time in either case is much worse than the
desired O(logra).

In the next section we show how to deal with the question of point location in
such dynamic situations. For now, we analyze the expected running time of one
deletion. This running time follows almost directly from the analysis of the insertion
algorithm. Because the particular edge swaps and point movements (arising from
point location) for deletion are just the reverse of those for insertion, the expected
number of edge swaps and point movements needed to delete a random point p from
a triangulation D(P], is identical to the expected number of edge swaps and point
movements needed to insert the random point p into the triangulation D(P — {p}).
Under our assumptions of random point insertion and deletion, the sets P and P — {p}
are random point sets. Thus, this portion of the cost of deleting a random point from
a triangulation n points is O(log n) in the expected case.

The only other aspect of the complexity of deleting a point p is the cost of com
puting the Delaunay triangulation of F, the polygon of neighboring vertices. The
number of vertices in F is equal to the degree of p in the triangulation. To establish
the expected cost of this operation, let c?i, c?2 ,..., dn denote the degrees of each of the
n vertices of the triangulation. By Euler's formula we know that the sum of degrees,
which equals twice the number of edges in the graph, is at most 6n. By the analysis
of the previous section, the expected time to compute the Delaunay triangulation of
a set of di points is O(d{ log dt). Thus, the expected time needed to compute one such
Delaunay triangulation, under the assumption that each point is equally likely to be
deleted is

1 n 1 / n \ Qn
- Y^(dt log dt) < - [^ dt log n < — log n = 6 log n.n ,=i n \,=i / n

Thus, the expected time to delete a point from the triangulation is O(logn), from
which we have our main result.

THEOREM 3.1 Given the above deletion algorithm (ignoring point location issues) a
point can be deleted from a Delaunay triangulation of n points in expected 0(log n)
time, under the assumption that each point of the triangulation is equally likely to be
deleted.

4 Sequences of Insertions and Deletions

As we mentioned in the previous section, in the worst case, where long sequences of
insertions and deletions are made, the expected case running time of the algorithm
can be much larger than O(logrc). In this section we consider how to deal with the
problem.

228

Our first observation is that in certain relatively benign cases (which may be
quite common in many practical applications) there is really no problem at all. For
example, if insertions are more common than deletions (in the sense that the ratio
of the number of insertions to deletions is strictly greater than unity) then it follows
that over a long sequence, the cost of updating the triangulation is dominated by
the costs of the insertions. Although the deletions cause an increase in the size of
the history graph, the assumption of randomness implies that these variations in the
history graph are distributed evenly throughout the graph, and it was shown in the
previous section that the local effect of each deletion on the structure is essentially
equivalent to the effect of an insertion.

In steady state situations, where the number of active points in the triangulation
reaches an equilibrium, a direct application of the deletion and insertion algorithms is
rather unpredictable. If the number of active points is a roughly a constant fraction
of the total number of base points, then the randomness of insertion and deletion,
combined with Guibas, Knuth, and Sharir's arguments about the widths of triangles,
imply that only a constant number of points will be rebucketed with each change to
the triangulation. However, if the number of active points is significantly less than
the total number of base points, then nearly all of the nonactive base points may
be rebucketed with each update. The history method will fair even worse, because
irrespective of the number of active points, the history graph grows without bound
as updates are made.

In this section we will consider how to periodically rebalance the history graph
so that these problems can be avoided. The idea is that from time to time, we will
completely reconstruct the history graph from scratch for only the current set of
active points, and destroy the old graph. (Observe that this will have the unfortu
nate consequence of destroying the persistence property provided by the unpruned
structure.) We refer to this process as reorganization. Let n denote the number of
active (triangulation) points. We show that by applying reorganization at appropri
ate times, we can maintain an O(logn) expected time cost for insertion or deletion,
when amortized over sequences of insertions and deletions. The expectation here is
over possible random choices of which point to insert or delete. The choice of whether
to insert or to delete is arbitrary.

We assume initially that the triangulation is trivial (consisting only of the four
vertices and two triangles of the unit square). Let t denote the total number of inser
tion/deletion requests which have been performed, and let n(t) denote the number of
active points in the triangulation after the i-th request. Thus, n(0) = 4. Let t0 be
the time (i.e. the request number) of the last reorganization. After performing the
£-th operation we test whether

t - t0 > n(t).

If this is the case then reorganization is performed. Reorganization consists of first
discarding the existing history graph and triangulation, and then constructing a new
history graph and Delaunay triangulation by inserting (in random order) each of the
current active points.

THEOREM 4.1 Using this reorganization scheme, the expected amortized time for pro
cessing an insertion or deletion request for a random point is 0(log n), where n is the
number of active points at the time of the insertion or deletion.

PROOF: The theorem follows from two observations. The first is that if periodic
reorganization is applied, then the execution time of insertion or deletion at any time

229

(ignoring reorganization) is 0(\ogn). The second observation is that reorganization
is performed infrequently enough that it does not increase the asymptotic running
time of the algorithm.

To prove the first observation, let n0 denote the number of active points at the
time of the most recent reorganization. Because this is the first point at which we have
performed a reorganization since to, it follows that for all s, t0 < s < t, n(s) > s — to.

The number of nodes in the history graph increases by an expected constant
amount with each insertion or deletion (since the expected number of new edge swaps
is constant). Thus the expected size of the history graph after the s-th request is
roughly proportional to n0 + (s — to).

Since we can lose at most one point at each insertion/deletion request, we have
n(a) + (s- t0) > no. Thus

n0 + (s - t0) < n(s) + 2(s - t0) < n(s) + 2n(s) = 3n(s).

In other words, at no time is the expected size of the history graph significantly larger
than the number of active points. Because changes to the history graph are made
randomly throughout its structure, it follows that the cost of searching the graph does
not increase asymptotically, so the search time is O(log(n0 + s — t0)) — 0(logn(s)).
All other aspects of the insertion and deletion routines are 0(\ogn(s)) running time.
This establishes the first observation.

To establish the second observation, observe that the expected time to perform re
organization is 0(n log n), where n is the number of active points. Since the expected
case of insertion or deletion ignoring reorganization is 0(log n), it follows that the
cost of reorganization will not dominate the overall cost if the number of insertions
or deletions since the last reorganization is at least as large as n = n(t). However,
in order to perform reorganization it must be the t — to > n, thus the number of
requests which have been processed since the last reorganization is at least as large
as the number of active points. This establishes the second observation. D

5 Implementation Experience

In this section we discuss our implementation of the algorithm. The algorithm has
been implemented in the C programming language, under the Unix operating sys
tem. (Currently the reorganization scheme has not been implemented.) It has been
designed to provide statistics on the execution of the algorithm for the purposes of
evaluating its efficiency. Rather than measuring execution time by CPU seconds,
because of its dependence on the particular machine and compiler, we have measured
two quantities which we feel give a strong indication of the algorithm's general per
formance. First, we have measured the number of times that a point moves from
one triangle to another in the bucketing algorithm (equivalently, the number of levels
that each point travels through the history graph), and second we have measured the
number of edge swaps which were performed.

We have run the following experiments involving point insertion. (The reasons
that we did not consider deletion are (1) the number of edge swaps and point move
ments for deletion are identical in the expected case to insertion, and (2) we have not
yet implemented the reorganization scheme described in the previous section.)

230

Uniform Data: Points were sampled from a uniform distribution over the unit
square and inserted into the triangulation. Point sets of size 50, 100, 200,
400, 800, 1600, 3200, and 6400 were considered.

Gaussian Data: Points were sampled from a Gaussian distribution whose center is
at the center of the unit square and whose standard deviation was 0.2 in each
of the x and y directions. Point sets of the same sizes as in the uniform case
were considered.

Sorted Data: To test the sensitivity of the algorithm to violations of the randomness
assumption, we ran an experiment in which points were selected uniformly from
the unit square, but were inserted in order of increasing x-coordinate.

Partially Random Data: In this variant of the previous experiment, we inserted
points in which the first p points were inserted randomly (out of a total of 6400),
and the remaining points were inserted in order of increasing x-coordinate. The
values of p tested were 25, 50, 100, 200, 400, 800, 1600, 3600, and 6400.

The results of the these experiments are given below.

Uniform Data: Fig. 4(a) shows a plot of the number of edge swaps performed by
the algorithm versus n, the number of points. The regression line fitted to the
data is 2.97n 68.0. Fig. 4(b) shows a plot of Iog10 n versus the average number
of point movements per point. Standard deviations are indicated by vertical
lines. The regression line fitted to the data is 9.021og 10 n 3.75.

17500'

15000'

125001

10000-

7500-

5000-

2500'

1000 2000 3000 4000 5000 6000 1.5

Figure 4: Uniform data: Total edge swaps and average point moves.

Gaussian Data: Analogous results for Gaussian data are shown in Figs. 5(a) and (b).
In the first case the regression equation is 3.01n 77.4, and in the second case it
is 9.661og 10 n 6.32. Both cases are in close agreement with the uniform case,
although the number of edge swaps is slightly larger in the Gaussian case.

Sorted Data: Fig. 6(a) shows a plot of the total number of edge swaps performed
versus n in the case that points are inserted in sorted order. The regression line
fitted to the data is 4.72n 494. The slope is greater than the previous cases,
however this supports the observation made by Tipper [9] that the average
number of edge swaps per point is independent of n. However, the plot of
Iog 10 n versus the number of point moves showed a striking nonlinear behavior
(see Fig. 6(b)). It is clear that the assumption of randomness is critical to the
analysis of the point location schemes.

231

15000

10000'

5000

1000 2000 3000 4000 5000 6000 H———^———$———fTs3" 3.5

Figure 5: Gaussian data: Total edge swaps and average point moves.

500-

400-

300-

200-

100

1.: 2.5 3.5

1000 2000 3000 4000 5000 "600 0 -100

Figure 6: Sorted data: Total edge swaps and average point moves.

Partially Random Data: The results of the previous experiment lead us to the
question of how many initial points need be inserted randomly in order to
guarantee fairly good performance in point location. Fig. 1 shows Iog 10 p versus
the average number of movements per point. Interestingly, with as few as 200
of the 6400 points inserted randomly (about .03% of the total) the performance
is within a factor of 2 of the totally random case.

140

120-1

100'

8 fl-

40-

t I t t i
1.5 2.5 3 3.5

Figure 1: Partially random data: Average point moves.

6 Conclusions

We have presented and analyzed the complexity of a procedure for computing and
updating Delaunay triangulations for point insertion and deletion. The algorithm

232

is randomized and incremental, based on a recent algorithm of Guibas, Knuth, and
Sharir. The algorithm has the nice feature that it is asymptotically as efficient (in the
expected case) and yet much simpler than standard divide-and-conquer algorithms.
Its expected running time is independent of the distribution of the points, only on
the order in which the points are inserted or deleted. We have implemented a portion
of the algorithm for the purpose of empirical analysis. Our studies seem to indicate
that the running time is quite good even if the assumption of random insertion order
is violated as long as an initial fraction of the points are inserted randomly.

One interesting open problem raised by this research is whether these results
can be applied to more general types of triangulations. In particular, in geographic
information systems, it is quite common to require that certain edges be present in the
Delaunay triangulation, giving rise to a constrained Delaunay triangulation. It would
be of interest to develop and analyze the performance of a randomized incremental
algorithm for constrained triangulations.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, P. W. Shor, A linear-time algorithm for com
puting the Voronoi diagram of a convex polygon, Discrete and Computational
Geometry 4 (1989), 591-604.

2. S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987),
153-174.

3. P. Green and R. Sibson, Computing Dirichlet tesselation in the plane, Comput.
J. 21 (1977), 168-173.

4. L. Guibas, D. Knuth, and M. Sharir, Randomized incremental construction of
Delaunay and Voronoi diagrams, Unpublished manuscript (1990), also appeared
in the Proceedings of 1C ALP, 1990.

5. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams, ACM Trans. on Graphics, 4 (1985),
74-123.

6. M. Heller, Triangulation algorithms for adaptive terrain modelling," 4th Sym
posium on Spatial Data Handling, 1990, 163-174.

7. M. Mantylla, An Introduction to Solid Modeling, Computer Science Press,
Rockville, Maryland, 1988.

8. T. K. Peucker, R. J. Fowler, J. J. Little, and D. D. Mark, Digital representation
of three dimensional surfaces by triangulated irregular networks. Tech. Report
#10, ONR Contract N00014-75-C-0886, 1976.

9. J. C. Tipper, A straightforward iterative algorithm for the planar Voronoi dia
gram, Information Proc. Letters 34 (1990), 155-160.

233

ADAPTIVE HIERARCHICAL TRIANGULATIONf

Lori Scarlatos
Grumman Data Systems

1000 Woodbury Rd.
Woodbury, NY 11797

Theo Pavlidis
State University of New York

Dept. of Computer Science
Stony Brook, NY 11794

ABSTRACT

Numerous cartographic applications rely on triangulated surface models for accurate
three-dimensional representations of real-world data. Some applications require a series
of triangulations to represent a single surface at progressively finer levels of detail. Past
work has emphasized techniques relying on plane geometry using little or no surface
data. We propose a technique that adapts the triangulation to surface characteristics.
Because our adaptive hierarchical triangulation focuses on the topology of a surface, it
reduces the number of triangles required for a good approximation. It also produces
fewer long and slivery triangles within each level of detail. Our structure guarantees the
accuracy of each level of detail. Our structure only retains important triangles, thereby
reducing the total number of triangles that must be stored and searched. Furthermore,
the tree-like structure of our hierarchy is well-adapted to multiple resolution views,
allowing smooth transitions between levels of detail in flight simulators. These advan
tages add up to a triangulation that provides great accuracy in a model that can be
rapidly searched, rendered, and otherwise manipulated. Tests on data with digital eleva
tion input have confirmed the above theoretical expectations. On eight such sets the
average "sliveriness" with the new method was between 1/5 and 1/10 of old triangula
tions and number of levels was about one third. Although the number of descendants at
each level increases slightly, the total number of triangles is lower, implying faster spa
tial search.

INTRODUCTION

Geographic information systems, flight simulators, and numerous other cartographic
applications rely on digital terrain models for simulation, visualization, and analysis.
Increasingly, these applications require both greater accuracy and data compression
from these models. Triangulated models are popular because triangles are simple to
manipulate and render. Triangulated Irregular Networks (TINs) offer the additional

t Portions of this paper were included in a paper presented at Visualization '90. For further details
and examples of this work, interested readers should request a technical report entitled "Hierarchical
Triangulation Using Terrain Features" from Lori Scarlatos.

234

advantage of not being bound by regularity constraints. TINs can therefore approximate
any surface at any desired level of accuracy using a very small number of polygons.
Organizing TINs in a level of detail hierarchy provides accurate generalizations meeting
different application requirements. Hierarchical organization allows easy implementa
tion of such operations as zooming when viewing the surface. It also facilitates search
ing and other geometrical operations such as finding the intersection of two surfaces.
Furthermore, it makes real-time simulation and visualization possible for applications
that can represent less important areas with less detail in mixed-resolution models.

This paper describes a hierarchical triangulation built from a digital elevation model in
grid form. Each level in the hierarchy corresponds to a different level of detail that
approximates the surface within a given tolerance (i.e. maximum error), The top level is
the coarsest, containing the fewest triangles and approximating the surface within the
greatest tolerance value to. The i+l'h level in the hierarchy is related to the i th level as
follows. Tolerance ti+i is smaller than tt . Each triangle T} of the i th level is split into n
descendent triangles 7/t 1 , ''' , Tf+i at the i'+l'* level, where n can be any positive
integer.

In the following section, we provide a background of past work on triangulation and
hierarchical triangulation. We then describe our adaptive hierarchical triangulation
methodology, and discuss its advantages over other methods. Next, we outline the
implementation of this algorithm and the resulting data structure. We conclude with a
discussion of test results obtained from running this implementation.

BACKGROUND

Triangulation

Triangulation algorithms generally fall into two groups: those that efficiently triangulate
a given polygon, and those that use triangulation to approximate surfaces. In the former
category, the primary issues are computational complexity (Aho et al 1974, Garey et al
1978, Clarkson et al 1989, Fournier and Montuno 1984) or size and shape of the result
ing triangles (Baker et al 1988). We are more interested in the latter category where the
primary goal is to produce the best possible surface approximation. This surface
approximation should contain as few triangles as possible while still meeting given
accuracy requirements. At the same time, it must minimize the number of very thin,
slivery triangles which can produce artifacts in renderings of surface models.

Surface triangulation algorithms may be further categorized by the input data they tri
angulate. Surface triangulation produces a planar graph by adding edges, and sometimes
even points, to an initial graph. This initial graph, comprised of points (nodes) on the
surface, may or may not include connecting edges (critical lines) that further define that
surface.

In the first sub-category of surface triangulation algorithms, the initial graph contains no
initial edges. Although some of these triangulation algorithms rely on alternate tech
niques (Mirante and Weingarten 1982, Manacher and Zobrist 1979) most are a variation
on the Delaunay triangulation scheme (Watson 1981, Dwyer 1987, Preparata and
Shamos 1985, Watson and Philip 1984 are only a few). Algorithms based on Delaunay
triangulation have the advantage of producing few slivers. However, Delaunay's
method was developed to find nearest neighbors on a plane, not approximate surfaces.
These algorithms tend to ignore the third dimension, and may therefore produce triangle
edges that contradict the topology of the actual surface (Christensen 1987).

235

The second sub-category of algorithms assumes that all points in the initial graph have
at least one connecting edge. These edges correspond to the linear patterns that charac
terize many surfaces, particularly natural ones such as terrain. Because these edges
describe surface topology, they are retained in the final triangulation to maximize model
accuracy. Some papers such as (Christiansen and Sederberg 1978, Dennehy and
Ganapathy 1982) deal with triangulating cross-sections from tomographic scans,
although the methods of both of these papers require human intervention when the con
tours get complex. Other algorithms for triangulating cartographic critical lines have
been recently published (Christensen 1987, Scarlatos 1989, Chew 1989).

Hierarchical Triangulation

Hierarchical triangulations provide both multiple levels of detail and a structural order
ing for fast spatial search. Recent papers (Goodchild 1989, Fekete 1990) propose to
represent the entire planetary surface with a quadtree-like hierarchy of regular triangular
tessellations. This is an excellent scheme for dividing huge data bases into manageable
areas of interest which may be georeferenced in constant time. However, as shown in
(Scarlatos 1990b), the placement of points in a regular tessellation is independent of the
surface topology. Hence coarser levels of detail can distort or entirely miss important
terrain features, and finer levels of detail can cause unnecessary bottlenecks by produc
ing large numbers of triangles where a few would do as well.

Previous work by one of the authors has researched techniques to find critical points
and lines (Scarlatos 1990a), triangulate them (Scarlatos 1989) and then refine those tri
angulations to produce a hierarchy of detail levels for fast spatial search with maximum
accuracy (Scarlatos 1990b). These algorithms represent significant improvements over
other algorithms, producing good triangulations. However, the above algorithms do not
allow for refinement down to a specified level of accuracy.

Although several refinement techniques have been suggested in the literature (Fowler
and Little 1979, DeFloriani et al 1984, DeFloriani 1989), these algorithms can introduce
artifacts to a terrain model because they consider only the locality of points in a 2D
plane instead of actual terrain topology. Consider, for example, DeFloriani's first algo
rithm for triangle refinement (DeFloriani et al 1984) which splits a triangle by connect
ing its corners to a selected interior point (usually, the point of maximum distance
between the surface and the plane defined by the vertices of the triangle). The algorithm
ignores the coherence of cartographic features such as valleys or ridges which have a
linear structure.

Figure 1 shows the results of ignoring such coherence. We assume that a ridge (its
points marked by small circles in (a)) crosses the triangle, (b) shows that the maximum
point triangulation will produce an unreasonably large number of triangles. Even worse,
the triangles will have very sharp angles, which is an undesirable property (Baker et al
1988). Such triangulations may cause numerical stability problems in finite element
methods and also produce undesirable display artifacts. In contrast, if we realize that we
deal with a ridge and introduce a dividing line along it as shown in (c) we will end up
with fewer triangles, none of them slivery. We should point out that triangles with very
sharp angles may be inevitable for some types of data. For example, if we have a steep
cliff we will see large differences in the value between adjacent elevation points. Then
triangles with very sharp angles cannot be avoided.

236

(a) (b) (c)

Figure 1. A ridge passing through a triangle has (a) points along that ridge
that are farthest from the triangle which may be triangulated using

(b) the maximum error point to split each triangle, or (c) cartographic
coherence to approximate the ridge line.

METHODOLOGY

Our goal is to reduce the number of splits or refinements required to achieve a desired
level of detail and limit the number of slivery triangles in the results. A generalization
of the critical line method could produce better accuracy with fewer triangles. We have
implemented such a strategy as follows. We start with a coarse triangulation. This may
be carefully produced by techniques outlined in Scarlatos' three papers, or it may be as
simple as a rectangular area split in two. We then refine this triangulation by adding
points from the original digital elevation grid and connecting edges. Our refinement
technique pays particular attention to terrain characteristics, approximating critical lines
at each step.
To accomplish this, we determine the best places to split each triangle by calculating
four error values: one inside the triangle, and one on each of the three edges. All error
values measure the difference between original grid point elevations and their projec
tions to the surface of the triangulated model. To avoid quantization artifacts, grid
points near a triangle edge are considered to be on that edge.

Figure 2 shows the five ways that a triangle may be refined. If an isolated peak or pit
resides within the triangle, it is split at that central peak or pit point as shown. If a sin
gle ridge or channel line travels up to that peak or pit, the triangle is split where that
line crosses the edge of the triangle and at the central peak or pit point. If, however, a
single ridge or channel line enters the triangle and ends at a saddle point or flat, then
the center point is insignificant and the triangle is split by one edge as shown. If a ridge
or channel line passes through the triangle, significant errors will be found on two edges
of the triangle. A line connecting these points approximates the topographical line, and
an additional edge splits the remaining quadrilateral. Finally, if a triangular patch
corresponds to a rapidly fluctuating surface, many points are likely to have significant
errors. Splitting this type of triangle on all edges segments the high-frequency regions
which may then be further refined.

237

Split in center Split on 1 edge
(significant center)

Spb't on 1 edge
(insignificant center)

Split on 2 edges Split on 3 edges

Figure 2. Split strategies for preserving cartographic coherence.

We repeatedly split the triangles until they all meet the given accuracy requirements for
the current level of detail. Intermediate triangles, used to produce but not included in
the final triangulation for the current level of detail, are discarded. This reduces the
number of levels in the hierarchy and the number of triangles within each level, making
faster search, display, and processing possible. If polygon constraints are more impor
tant than the level of error, we can easily check the polygon count and terminate a level
when the limit is approached.

IMPLEMENTATION OF THE ALGORITHM

We implemented our adaptive hierarchical triangulation algorithm as follows. A main
program retrieves the input data, calls the appropriate triangulation routines, and writes
out the results to a data base. Input parameters include an initial triangulation, the
number of levels to create in the hierarchy, and a tolerance for each level. A main loop
generates each level of detail. At the start of the loop, the current triangulation
represents level i in the hierarchy. At the conclusion of the loop, the current triangula
tion represents level i+l in the hierarchy. The body of the loop splits triangles in the
current triangulation until all errors lie within the given tolerance for that level.

Data Structures

We generate our adaptive hierarchical triangulation from a digital elevation matrix
which covers a rectangular area of interest. The region outside the area of interest is
represented by four neighboring "triangles". These extend infinitely to the north, east,
south, and west of the area of interest. Points within the area of interest provide the
endpoints of ~ and are entirely covered by — an initial triangulation. Each point may
therefore be associated with zero, one, or two triangles. Points acting as triangle ver
tices have no triangle associations. If the distance from a point to a triangle edge is less
than the distance between grid posts in the original matrix, then that point is considered
near that edge. A point on or near a triangle edge is associated with the two triangles

238

that share that edge. Otherwise, the point is within a single triangle. A Membership list
contains records of each point's two associated triangles and a distance to their shared
edge. When a point is near more than one edge, the membership records form a linked
list in order of increasing distance values.

A triangle in the hierarchy is defined by three points from the original elevation matrix.
Each triangle is associated with a level of detail and contains pointers to its parent, its
children, and three neighboring triangles that share its edges. In addition, triangles have
temporary structures keeping track of their splitting points, the maximum error found
within them, and the number of edges to be split. A flag indicates whether the triangle
meets the accuracy standards of the current level.

Splitting Triangles
For each specified level of detail, our program repeatedly splits triangles until the tri
angular mesh approximates the surface within the given tolerance. We find errors
within a triangle by taking all grid points within the boundaries of that triangle, project
ing them to the surface of the triangle, and comparing the results to the original eleva
tion values. Errors are found in four regions on a triangle: on each of the three edges,
and within the triangle. These errors determine if and how the triangle will be split.

Next, we find the point producing the maximum error in each of the four regions for
each triangle. Notice that the point with maximum error on one triangle's edge will also
be the point with maximum error for the other triangle sharing that edge. If the error is
significant, then that point will split the triangle(s) it belongs to. Significance may be
calculated in two ways. First, if the given value is greater than the threshholded error
for the current level of detail, then that point is significant. Alternatively, if the given
value is more than some percentage of the maximum error found within a triangle, then
that point is significant. In either case, a point is insignificant if its error falls at or
below the threshhold for the current level of detail.
After all splitting points have been found, we ensure that the splitting point on an edge
of one triangle is also a splitting point for the triangle sharing that edge. Then we split
all the triangles. Although each of the five regular triangulation algorithms is different,
they all follow the same pattern of steps. First the outer edges of the triangle are split.
If the splitting point does not lie exactly on the outer edge, this will introduce a minor
bend in the triangle. Extremely thin triangles produce special cases which must be han
dled separately. Our technical report discusses the necessary special triangulation in
depth. In the next step we add all the new interior edges. As we modify and add edges,
we update the point membership list indicating what triangle(s) each point belongs to.
Finally, new triangle records are added, and triangle neighbor values are updated.
Data Base Structure

This algorithm produces all of the information required to both render the 3D surface
and search for spatial relationships. A header record includes information such as a
ground position for the lower-left corner of the triangulation; spacing between posts in
the original grid; elevation ranges in the triangulation; number of levels. This is fol
lowed by the level records. Each level has a threshhold of allowable error, used to pro
duce the triangulation. It also has a number of points, number of triangles, and a list of
triangles. Each triangle is defined by 3 point indices, and has a parent pointer, child
pointers, and neighbor pointers. All this is followed by a single point list. Only points
that appear in the triangulation are written to the data base; all others are unnecessary.
Points are ordered such that if level L uses N points, then it uses points 1, • • • Jf. This
reduces retrieval time for a level of detail.

239

RESULTS

We tested our algorithm on eight (8) areas of interest (AOI) representing four very
different types of terrain. AOI 1-2 contains numerous plateas; AOI 3-4 is a relatively
flat region; AOI 5-6 contains mountains rising out of the foothills; and AOI 7-8
represents a portion of the Cascade mountain range. Our data comes from the Defense
Mapping Agency's Digital Terrain Elevation Data (DTED) Level 1 which has three
seconds of an arc between posts. Each test AOI covers 75x75 elevation points. A tri
angulation employing all 5625 points in an AOI would contain 10,952 triangles.

We implemented the adaptive hierarchical triangulation algorithm with varying parame
ters to see which behaved best. The first parameter is how we determine the
significance of point p 's error ep . Error ep may be considered significant compared to
1) tolerance value tt for level /, so that ep ^tt , or 2) a percentage N of the maximum
error etmm found for current triangle t, so that ep & etmai . The second parameter deter
mines when we split a triangle at one edge and a significant center (as shown in Figure
2). Center point c may be considered significant compared to 1) the error ev of split
ting point v on the edge of the triangle, so that ec ^ev , or 2) the significance value
used to determine the significance of all other points, as determined by the first parame
ter. Hence we ran four optional programs. Option 1 uses tolerance to determine
significance, and requires a center point to be at least as significant as an edge point in
order to be used. Option 2 uses 75% of the maximum error within a triangle to deter
mine significance, and also requires a center point to be at least as significant as an
edge point. Options 3 and 4 are like options 1 and 2 respectively, except that a center
point's significance is determined by the usual measures. As a basis of comparison, we
implemented DeFloriani's first algorithm (DeFloriani et al 1984) and ran it with the
same test data.

We executed DeFloriani's algorithm and all four options for our algorithm using the
eight AOIs as input, producing triangulations with a minimum error of 10 meters. All
tests demonstrated that adaptive hierarchical triangulation works well. Tables 1-4 show
some of our results.

A better triangulation will produce fewer slivery triangles. The table shows how slivery
the resulting triangles were. We measured sliveriness with the following ratio, calcu
lated for each triangle in the triangulation: ^TXrtjger2 • The best possible ratio is
approximately 20.78 for an equilateral triangle. Larger values represent thinner trian
gles, so smaller numbers are better. We summed all of these ratios together and divided
by the total number of triangles to get an average sliveriness figure. We then divided
that result by the sliveriness ratio for an equilateral triangle. Note that on the average
most of the triangles have much sharper angles than sixty degrees. Using DeFloriani's
algorithm, some angles are as small as 0.25 degrees. Notice how much better adaptive
hierarchical triangulation performed, using all four options. Options 1 and 2 seem to
work about equally well, indicating that the best measure of point significance is deter
mined by data characteristics. Options 3 and 4 consistently performed a little worse.
This leads us to conclude that a center point should only be included in the division of
a triangle if it is more significant than the edge point.

240

Table 1

Measures of Sliveriness*
AOI

1

2

3

4

5

6

7

8

DeFloriani-1

32.294

52.487

35.889

50.682

56.835

40.932

51.261

39.925

Option 1

5.086

9.645

5.934

11.315

14.843

5.305

4.352

5.949

Option 2

5.113

11.882

5.672

10.969

8.757

5.371

4.932

6.200

Option 3

6.301

11.074

6.398

12.581

14.329

7.376

6.089

6.805

Option 4

6.578

11.107

5.998

12.854

8.676

7.437

7.367

7.153

* normalized to 1 for an equilateral triangle

Table 2

Comparison of Hierarchies

AOI

1

2

3

4

5

6

7

8

Number of
Levels*

DeFloriani-1

15

17

17

17

19

18

17

18

Option 1

5

5

5

5

5

5

5

5

Average Number
of Children**

DeFloriani-1

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

Option 1

2.8

2.4

3.6

3.6

2.4

2.5

2.4

2.3

* number of levels specified for new algorithm
* * number of children assumed to be 2.5 for old algorithm

241

A better triangulation will permit fast spatial search. The time required for a search is
determined by the number of levels that must be searched, and the number of child
nodes that must be examined at each level. DeFloriani's algorithm, which always splits
a parent triangle into 2 or 3 children, has an average of about 2.5 children per parent
node. The number of levels in a hierarchy depend on the number of iteration levels
required to build the triangulation. Adaptive hierarchical triangulation, on the other
hand, guarantees a fixed number of levels in the hierarchy, but can split a parent trian
gle into any number of children. Although one may presume that a very large number
of children will be produced, table 2 shows that this is not the case. Table 2 shows that
search times using an adaptive hierarchical triangulation will be as fast as, or faster
than, the other. Additional results can be found in our technical report.

A better triangulation will result in fewer triangles. Table 3 shows the total number of
triangles in the hierarchy. Notice that the options that produced the fewest total trian
gles also produced the least slivery triangles. Table 4 shows the number of triangles at
the highest level of detail, with a maximum error of 10 meters at each point. Compare
this to 10,952 triangles for the original grid. Although the difference in values is not
striking, the adaptive hierarchical triangulation usually produced fewer triangles than
DeFloriani's algorithm.

Figure 3 demonstrates the significance of the improvements made by the adaptive
hierarchical triangulation. Figure 3 a shows a view of AOI 1 using the original grid
data. Figure 3 b shows the same view of the data triangulated with DeFloriani's algo
rithm for a maximum error of 10 meters. Figure 3 c shows the same view of the data
triangulated with our algorithm (using option 1) for a maximum error of 10 meters. All
three views were rendered with Gouraud shading. Notice the severe artifacts caused by
very thin triangles in the DeFloriani model.

While Delaunay triangulations have been proposed as means for reducing the number
of very sharp triangles within hierarchical structures (DeFloriani 1989), Delaunay tri
angulations have serious drawbacks as discussed in (Christensen 1987). In some cases,
using Delaunay triangulation to add points can actually increase error levels in the
model, even though the model contains more triangles. The algorithm of Baker et al
(1988) while it avoids generating obtuse triangles, it generates far too many points and
triangles for our purposes.

242

Table 3

Total Number of Triangles
in the Hierarchy

AOI

1

2

3

4

5

6

7

8

DeFloriani-1

2918

4198

2576

2007

5433

3935

4908

7962

Option 1

2866

3964

1862

1551

5339

3283

4655

7927

Option 2

2876

4124

1806

1525

5179

3289

4735

8125

Option 3

3208

4344

2022

1737

5508

3624

4995

8312

Option 4

3195

4364

2055

1757

5372

3604

5109

8516

Table 4

Number of Triangles*
in Highest Level of Detail
(Tolerance = 10 meters)

AOI

1

2

3

4

5

6

7

8

DeFloriani-1

1741

2474

1547

1211

3185

2318

2883

4568

Option 1

1852

2330

1353

1123

3072

1979

2745

4418

Option 2

1858

2380

1309

1111

3062

1992

2769

4414

Option 3

1942

2442

1439

1196

3127

2167

2899

4436

Option 4

1935

2452

1470

1237

3135

2137

2901

4586

compare to 10952 triangles in grid

243

Figure 3. Perspective views of AOI 1 modeled with
(a) DTED, (b) DeFloriani's algorithm, (c) Adaptive Hierarchical Triangulation.

244

CONCLUSIONS

Adaptive hierarchical triangulation, presented in this paper, has the following advan
tages over other algorithms currently used. First, because our algorithm focuses on the
topology of a surface, it reduces the number of triangles required to accurately approxi
mate the surface and produces fewer long and slivery triangles within each level of
detail. Second, our structure guarantees the accuracy of each level of detail. This may
be easily extended to impose a polygon limit at each level. Third, our structure only
retains important triangles, thereby reducing the total number of triangles that must be
stored and searched. Fourth, the tree-like structure of our hierarchy is well-adapted to
multiple resolution views, allowing smooth transitions between resolutions in anima
tion. Because adaptive hierarchical triangulation pays attention to surface topology, this
transition from low to high levels of detail will cause only minor terrain features to
appear. Finally, adaptive hierarchical triangulation algorithm is fully automated, requir
ing only the area of interest and a series of tolerance levels to be defined. This algo
rithm can also be shown to run in O(n Inn) time. These advantages add up to a triangu
lation that provides great accuracy in a model that can be rapidly searched, rendered,
and otherwise manipulated.

REFERENCES

Aho, A.V., Hopcroft, I.E. and Ullman, J.D., 1974. The Design and Analysis of Com
puter Algorithms, Addison-Wesley, Reading, Mass.

B. S. Baker, E. Grosse and C. S. Raferty, 1988. Nonobtuse triangulation of polygons,
Discrete Computational Geometry, 3, 147-168.

Chew, L.P., 1989. Constrained Delaunay triangulations, Algorithmica, 4, 97-108.

Christensen, A.H.J., 1987. Fitting a triangulation to contour lines, Proceedings of
AUTO-CARTO8,57-61.

Christiansen, H.N. and Sederberg, T.W., 1978. Conversion of complex contour line
definition into polygonal element mosaics, Proceedings of SIGGRAPH '78, 187-192.
Clarkson, K.L., Tarjan, R.E. and Van Wyk, C.J., 1989. A fast Las Vegas algorithm for
triangulating a simple polygon, Discrete and Computational Geometry, 4(5), 432-432.

DeFloriani, L., Falcidieno, B., Nagy, G., and Pienovi, C., 1984. A hierarchical structure
for surface approximation, Computers and Graphics, 8(2), 183 - 193.

DeFloriani, L., 1989. A pyramidal data structure for triangle-based surface description,
IEEE Computer Graphics & Applications, 9(2), 67-78.

Dennehy, T.G., and Ganapathy, S., 1982. A new general triangulation method for planar
contours, Proceedings of SIGGRAPH '82, 69-74.
Dwyer, R.A., 1987. Faster divide-and-conquer algorithm for constructing Delaunay tri
angulations, Algorithmica, 2(2), 137-151.

Fekete, G., 1990. Rendering and managing spherical data with sphere quadtrees,
Proceedings of Visualizaion '90, 176-186.

Fournier, A., and Montuno, D., 1984. Triangulating simple polygons and equivalent
problems, ACM Transactions on Graphics, 3(2), 153 - 174.

Fowler, R.J. and Little, J.J., 1979. Automatic extraction of irregular network digital ter
rain models, Proceedings of SIGGRAPH '79, 199-207.

245

Garey, M. R., Johnson, D. S., Preparata, F. P. and Tarjan, R. E., 1978. Triangulating a
simple polygon, Information Processing Letters, 7, 175-180.

Goodchild, M.F., 1989. Optimal tiling for large cartographic databases, Proceedings of
AUTO-CARTO 9 , 444-451.

Manacher, O.K. and Zobrist, A.L., 1979. Neither the greedy nor the Delaunay triangu-
lation of a planar point set approximates the optimal triangulation, Information Process
ing Letters, 9, 31-34.

Mirante, A. and Weingarten, N., 1982. The radial sweep algorithm for constructing tri
angulated irregular networks, IEEE Comuters Graphics & Applications, 2, 11-21.

Preparata, P.P. and Shamos, M.I., 1985. Computational Geometry, Springer-Verlag,
New York.

Scarlatos, L.L., 1989. A compact terrain model based on critical topographic features,
Proceedings of Auto-Carto 9, 146-155.

Scarlatos, L.L., 1990(a). An automated critical line detector for digital elevation
matrices, Proceedings of the 1990 ASPRSIACSM Annual Convention, 43-52.

Scarlatos, L.L., 1990(b). A refined triangulation hierarchy for multiple levels of terrain
detail, Proceedings of the IMAGE V Conference, 115-122.

Watson, D.F., 1981. Computing the n-dimensional Delaunay tessellation with applica
tions to Voronoi polytopes, The Computer Journal, 167-172.

Watson, D.F. and Philip, G.M., 1984. Survey: systematic triangulations, Computer
Vision, Graphics, and Image Processing, 26, 217-223.

246

STRUCTURING THE KNOWLEDGE OF CARTOGRAPHIC
SYMBOLIZATION - AN OBJECT-ORIENTED APPROACH

Feibing Zhan
Center for Computer Graphics and Mapping

Faculty of Geodesy, Delft University of Technology
Thijsseweg 11, 2629 JA Delft, The Netherlands

ABSTRACT

Knowledge-based systems for cartographic symbolization concerned
with GIS's output have been suggested by a number of researchers.
The structuring of the knowledge with a proper knowledge
representation scheme is one of the key issues for the development
of such a system. The specific requirements for the knowledge
representation scheme are specified. It is argued that the
conventional knowledge representation schemes such as rules,
semantic networks, conceptual graph, object-attribute-value and
frames are not rich and powerful enough to meet the requirements.
Then it is suggested to use an object-oriented knowledge
representation (OOKR) scheme to construct the knowledge. It meets
the requirements and overcomes major problems of the
conventional knowledge representation schemes. Further, examples
are given to demonstrate the power and flexibility of the object-
oriented knowledge representation scheme.

1. Introduction

The analysis results of a GIS are usually represented by maps which are, at
present, generated through the relevant facilities of a GIS automatically or
interactively. The maps are subsequently used as a major tool for decision
making and communication. Currently, none of the GIS systems includes
mechanisms to ensure the correct use of graphic functions. This may lead to
poor use of graphics as GIS systems are widespread, and many of the users
of GIS's are not professional cartographers. Indeed, many poorly designed
maps can be observed (Muller and Wang, 1990). To solve this problem,
considerable investigations on using knowledge-based system technology
have been conducted and some achievements have been made (Mark and
Buttenfield, 1988; Muller and Wang, 1990; Weibel and Buttenfield, 1988).
However, no comprehensive and truly intelligent system has been
constructed up to now.

Many issues should be addressed for developing a full-scale map design
knowledge-based system (Mackaness and Fisher, 1986; Weibel and
Buttenfield, 1988). Among these issues, a proper knowledge representation
scheme that can be used to organize the relevant knowledge and facilitate
the relevant issues concerned is fundamental for the development of such
a system. In the Artificial Intelligence (AI) community, commonly used
knowledge representation schemes are rules, semantic networks,

247

conceptual graph, object-attribute-value(OAV) and frames. Each of them
has certain advantages and disadvantages. Muller and Wang (1990) used a
frame-based knowledge representation scheme for cartographic symbol
design. Wang (1990) proposed a conceptual graph based representation
scheme for cartographic information representation.

In this paper, it is suggested to use object-oriented knowledge
representation (OOKR) scheme for a knowledge-based system for
cartographic symbolization concerned with GIS's output (hereafter we will
only call it cartographic symbolization). In next section, the specific
requirements for the knowledge representation scheme are specified. In
Section 3, it is argued why the conventional schemes are not rich and
powerful enough to meet the requirements, and why object-oriented
knowledge representation scheme is suitable. The representation of the
knowledge of cartographic symbolization by the object-oriented
representation scheme is illustrated by examples in Section 4. Discussions
and future work are given in Section 5.

2. The Requirements for the Knowledge Representation Scheme

A knowledge representation scheme is the way in which the facts and
relationships of the domain knowledge are organized. It is an issue of key
importance for developing a knowledge-based system. General
requirements of a knowledge representation scheme can be found, for
example, in Luger and Stubblefield (1989). Up to now, there has been no
comprehensive knowledge representation scheme which can be used to
organize every kind of knowledge. The choice of the knowledge
representation scheme depends on the characteristics of the domain
knowledge under consideration. The first question then is: what are the
requirements of the knowledge representation scheme for cartographic
symbolization?

First, let us have a look at an example. Suppose a geographic information
system contains information about the buildings of a municipality. A user
of the system wants to have the statistical information of each district about
area of buildings used for residential and industrial purposes respectively,
and the statistic information must be represented on a map. The common
procedure for the generation of the map, at present, is: First, one groups the
two kinds of information on each district (e.g. by SQL) to produce a data file.
Second, one designs the map type and relevant symbols for representing the
information based on cartographic symbolization principles. In this step,
besides the rules used for decision making, some calculation is often
necessary, for instance, to determine the value and size of a symbol. Then
the designed map parameters are passed to a package (e.g. GIMMS) to
generate the map. If a cartographic symbolization knowledge-based system
is attached to the GIS, it is natural and desirable that the knowledge
representation scheme could facilitate the issues concerned with the three
steps mentioned above.

248

More generally, the following issues are essential requirements for a
knowledge representation scheme when developing a knowledge-based
system for cartographic symbolization.

a. Like any knowledge representation scheme, the scheme must have the
capabilities to describe the objects and model the relationships between
the objects concerned with cartographic symbolization. The objects in
cartographic symbolization are those concerning the interpretation of
the spatial information to be mapped, the cartographic symbolization
principles, and the relevant cartographic semiology.

b. An important feature of spatial information, and the relevant
cartographic symbolization principles is their organization into class
hierarchies (e.g. Egenhofer and Frank, 1990; Muller and Wang, 1990).
Thus the ability of the knowledge representation scheme to represent
the inheritance between a class and its instance objects, and between a
class and its superclass is essential.

c. As it is believed that the development of a map design knowledge-based
system should be started from a limited domain (Muller and Wang,
1990), and thus knowledge may then be gradually acquired in an
"amplified intelligence" strategy (Weibel and Buttenfield, 1988), it is
desirable that the knowledge representation scheme should be well
structured and be able to support modularity and reusability. Hence,
when the size of the knowledge base increase significantly, the
knowledge is still manageable, and can be extended and reused.

d. When the knowledge base grows and changes, consistency checking
becomes important. Moreover, judging from the issues concerned with
map design knowledge-based systems (e.g. Muller and Wang, 1990), one
can see that map design and generation are problems that mix logical
deduction, rule-based inference, and procedure execution (e.g. graphics
generation). The solution of these problems demands a knowledge
representation scheme that effectively combines rules and procedures,
and provides a vehicle for implementing graphics I/O, consistency
checking, and interactions between objects.

e. When using GIS, spatial information to be mapped is usually from the
database of a GIS, this information is then used for deduction, reasoning
and map generation. Therefore the knowledge representation scheme
should not only be able to support data input through consultation, but
also be able to facilitate automatic feeding of data from a spatial database.
This should be considered as an essential feature of the knowledge
representation scheme.

These issues may be partially addressed by combining existing technologies
such as database, conventional knowledge representation scheme and
mapping packages (e.g. Muller and Wang, 1990). However, what is desirable
is that the issues could be accommodated by a knowledge representation
scheme in a uniform way. We will see how object-oriented approaches can
be used to facilitate the issues.

249

3. Why an OOKR Scheme is Suitable for Structuring the Knowledge

We will see, in this section, why the conventional knowledge
representation schemes can not meet the requirements discussed in Section
2, and describe the promises of the object-oriented knowledge
representation scheme.

3.1 Object-oriented knowledge representation

Follow Luger and Stubblefield (1989), and Meyer (1988), an object-oriented
knowledge representation scheme may be defined as the organization of
knowledge as structured collections of abstract data type implementations.
In this scheme, everything is defined as an object or system of objects. An
object can be defined as an independent entity represented by some
declarative data and a set of methods (such as routines and rules) that
operate on the object. Relationships between objects and the overall
problem specification are implemented as messages between objects. In
addition, objects are abstracted into a hierarchy of classes, allowing the
inheritance of properties and methods.

For other basic concepts concerned with object-oriented knowledge
representation such as classes, inheritance, attributes, methods, controls,
message passing, encapsulation, redefinition, polymorphism, dynamic
binding, modularity and reusability, we refer to Leung and Wong (1990) and
Meyer (1988).

It should be noted that object-oriented knowledge representation scheme is
different from conventional knowledge representation schemes (except
frames) in that knowledge is abstracted to classes which are instantiated by
objects. It differs from commonly-called object-oriented approach for
software construction in that rules are included in methods.

To adequately model a complex system in reality, abstraction mechanisms
are necessary. The fundamental abstraction mechanisms from the database
paradigm can be used. These abstract mechanisms are classification,
generalization and aggregation (Smith and Smith, 1977). Classification is
the abstraction from individuals with common properties and behavior to
a class, by which 'instance-of relation is modeled. Generalization is the
combination of several classes to a more general superclass, by which 'is-a'
relation is modeled. A class that references one or more other classes is
called an aggregation of those other classes. By using aggregation, a 'has-a'
relation between classes is modeled. Using types in the various relations
and message passing, any kind of specific relations can be modeled (Meyer,
1988).

3.2 Conventional versus object-oriented knowledge representation

Conventional knowledge representation schemes, such as rules, semantic
networks, conceptual graph, object-attribute-value triples and frames, are

250

commonly used in traditional knowledge-based systems (Luger and
Stubblefield, 1989; Townsend, 1986). Each of them has its own advantages
and disadvantages (Leung and Wong, 1990).

As pointed out by Leung and Wong (1990), a common shortcoming in
rules, semantic networks, conceptual graph and OAV representations is
that they are not structured enough. Because the knowledge cannot be
modularized, the interactions among rules and objects become too complex
when the number of objects or rules in the system increases significantly.
Thus the system becomes very difficult to manage. When the value of an
attribute is modified, it is difficult to pinpoint the effects on the whole
system. Therefore, such knowledge representations are difficult to develop
and maintain, especially for a large knowledge base like cartographic
symbolization.

Frames are more structured than rules, semantic networks, conceptual
graph and OAV knowledge representations, since related attributes and
rules can be grouped into frames hierarchically. However, modularity of
knowledge represented in frames can not be clearly defined, and frame
representation lacks flexibility. In a frame system, relationships between
frames may be member or subclass links and thus are not unique.
Moreover, in some systems, a rule is represented by a frame linked to
another frame with special relationship. These factors greatly reduce the
structure in a frame system (Leung and Wong, 1990).

Another shortcoming of the conventional knowledge representation
schemes is that the objects represented in the schemes are not active. Thus
operations through message passing between objects are not possible.
Although frames allow the creation of complex objects and the integration
of procedural and declarative representations, they are passive data
structures that must be acted on by external procedures. The execution of
attached procedures requires that the procedure definition be retrieved and
evaluated by some external agent (Luger and Stubblefield, 1989).

Object-oriented knowledge representation scheme has the following
advantages over the conventional schemes.

Firstly, like semantic networks and conceptual graph, it is flexible. In object-
oriented knowledge representation, by storing the names of other objects as
the attributes of an instance object, relations between instance objects can be
established dynamically (Leung and Wong, 1990). These relationships have
the same power as links in semantic networks, and relationships in
conceptual graph. In fact, the object-oriented construct can be viewed as
dynamic semantic network. The 'is-a' links of semantic network can be
implemented in object-oriented representations by relationships between
classes and subclasses or between classes and instances. The 'has-a' links can
be implemented by the relationships between classes and attributes.

Secondly, object-oriented knowledge representation supports classes and
inheritance. In a pure object-oriented system, everything is an object; all
objects are abstracted to a certain number of classes. This allows inheritance

251

of attribute names, values, and methods. In addition, each class defines
instance variables, which must be instantiated when an individual member
of that class is created. Instance objects bind these variables to all the
particular information, such as size and location, that distinguishes
individuals from each other. The behavior of the members of the class, or
the set of all messages to which the class responds, is called the protocol of
the class (Luger and Stubblefield, 1989).

Thirdly, it supports modularity and reusability. Modularity and reusability
are of prime importance for any truly flexible system. A true modularized
system should facilitate modular decomposability, modular composability,
modular understandability, modular continuity and modular protection.
To achieve these modular capabilities, modules must correspond to
syntactic units in the language used, every module should communicate
with as few others as possible, exchange of information between modules
should be as little as possible, interfaces between modules must be explicit
and all information about a module should be private to the module unless
it is specifically declared public. Five issues must be solved before we can
hope to produce practically reusable modules. These issues are: variation in
types, variation in data structure and algorithms, related routines,
representation independence and commonality within subgroups (Meyer,
1988). Object-oriented approach satisfies the criteria and principles of
modularity, and provides a remarkable set of answers to the set of
reusability issues (Meyer, 1988).

Finally, declarative and procedural knowledge can be integrated, and the
objects are active. Objects in a object-oriented knowledge representation
scheme are active in the sense that the methods are bound to the object
itself, rather than existing as separate procedures for the manipulation of a
data structure. Objects thus have characteristics of both data and programs
in that they retain state variables as well as react procedurally in response to
appropriate messages. Objects execute their methods directly in response to
a received message. It is the active nature of objects that makes the message
passing, execution of methods (rules, routines, etc.) possible. Such methods
provide the vehicle for consistency checking, implementing graphics I/O,
and combining rules and procedures.

3.3 How OOKR scheme facilitates the requirements

Based on the observations in the last two subsection, we then discuss how
the OOKR scheme facilitates the specific requirements which are specified
in Section 2.

a. Objects and their relationships can be represented in both passive form,
and active form by a mixture of attributes, rules, routines, 'is-a'
relations, 'has-a 1 relations and messages. Therefore declarative and
procedural knowledge can be integrated in a uniform way, and complex
knowledge can be adequately organized.

b. Inheritance exists between classes and subclasses. Thus, knowledge can
be represented in an abstracted form with common features generalized

252

in a superclass. Existing classes can be extended and reused by using
relevant techniques in object- oriented approaches.

c As object-oriented approach facilitates modularity, related rules can be
well grouped in a class or a module that is independent of other classes
or modules. This enhances manageability, understandability and
maintainability.

d. Rules and procedure executions can be defined in methods, thus rules
and procedures are naturally combined. Routines can be defined by any
language which produces routines in an executive form, and then
bound to the objects, hence routines such as graphics generation and
parameter calculation can be conveniently performed.

e. Data can not only be input through consultation but also be
automatically feed from a spatial database through the execution of
relevant methods, therefore a knowledge-based system based on this
scheme can be naturally attached to a GIS.

Hence it can be concluded that the object-oriented knowledge
representation scheme provides a set of answers to the specific
requirements, and gives the promises to fully address the issues concerned
with cartographic symbolization in a uniform way.

4. Examples of Knowledge Structuring for Cartographic Symbolization

In this section, first an example is used to demonstrate how object-oriented
knowledge representation scheme can be used to address the issues
concerned with cartographic symbolization. Then the abstraction of the
knowledge, the capability of the scheme to support reusability and
extendibility are discussed.

4.1 Knowledge structuring of cartographic symbolization for
representing statistical building information from GIS - the example

Let us see how object-oriented knowledge representation scheme can be
used to address the issues concerned with the example mentioned in
section 2. To solve the problem, classes 'building', 'statistical_map',
'graphics_map' are defined. The definition of each class is illustrated as
below. For the convenience of illustration, the definition of the classes is
condensed. The notation used is those from Luger and Stubblefield (1989),
except that rules are also included in the methods.

253

Class name: building
Superclass:
Instance variables: district_identifier, building_identifier,

building_type, area, ...
Instance methods: ...

groupQ: begin
message(district_identifier, building_type, total_area)

end

end
Class methods: ...

Class name: statistical_map
Superclass: thematic map
Instance variables: mapjype, info_property, title, legend, ...
Instance methods:

info_input(): begin
for i:= 1 to N do begin

message(info_property(i))
end

end
end

map_type(): begin
rule: IF info_property = <quantitative> & <absolute> & <multiple>

THEN mapjype = <graphics_map>
end

end

Class methods:
begin
message(map_type l symbol)

map_generation(title, map_type, symbol, legend)
end

Class name: graphicsjnap
Superclass: ...
Instance variables: symbol_type, no_of_variables, variable_color,

variable_size, ...
Instance methods:

symbol_type(): begin
rule: IF mapjype = <graphics_map>

THEN symbol_type = <bar_graphs> or <pie_charts>
end

end
no_of_variables(): begin

message(no_of_variables)
end

end
variable_color(): begin

for i:=1 to <no_of_yariables> do begin
message(variable_color(i), color)

end
end

end
size(): begin

for i:=1 to <no_of_variables> do begin

254

message(variable_size(i), size_calculation)
end

end
end

Class methods: ...

After these classes have been defined, the cartographic symbolization can be
effected by message passing. Through assembling the classes together by
message passing, building information can be grouped from relevant
database; consultation can be conducted; the map type can be inferred
(graphic maps); the symbol can be determined (bar graphs) and the visual
variables can be calculated (two elements, color and size), and finally the
statistical map can be generated.

It is easy to see from the example that all issues such as procedures, rules,
data (described by attributes) can be addressed in a uniform way with the
scheme. But, this simple example can not completely show the power of the
scheme. The power of the scheme is the abstraction of complex knowledge,
the capability to support extendibility and reusability for constructing a
system in the large, in our case, the construction of knowledge-based system
for cartographic symbolization. We discuss these issues in the following
sub-section.

4.2 Abstraction, extendibility and reusability

Although the above example has shown the flexibility and power of the
object-oriented knowledge representation scheme, one can not see from it
how the complexity of the knowledge of cartographic symbolization can be
modeled. In this section, we will first discuss how the knowledge of
cartographic symbolization can be abstracted by classification, generalization
and aggregation. We will then illustrate the extendibility and reusability of
the abstracted knowledge.

Aspects concerned with cartographic symbolization are generally the
interpretation of spatial information concerned, the choice of map type and
the design of symbols. These aspects can be sketched as in Figure 1.

cartographic symbolization

building ... population ... land_use ... graphicsjnap ... point_ area_
symbol symbol

Figure 1 Sketched aspects of cartographic symbolization

255

To model these aspects in an abstract form, abstraction mechanisms are
often used. One can see from Figure 1, information contained in a GIS may
be classified as 'building', 'population1 , 'land use' and so on; these classes
can then be generalized to a superclass- 'spatial information'. Likewise, map
symbols are often classified as 'point symbol' and 'area symbol 1 , the
common property of these classes can be generalized in an abstract form in a
superclass - 'symbol'.

Let us take the symbol module and go into depth. All point symbols can be
considered as instance objects of class 'point_symbol' which is defined as
follows:

Class name: point_symbol
Superclass: symbol
Instance variables: form, orientation, color, texture, value, size
Instance methods:

form(): begin
message(form, circle)

end
end
orientation(): begin

message(orientation, 45)

end
end
color(): begin

message(color, green)

end
end
textureQ: begin

message(texture, 1/5)

end
end
valueQ: begin

message(value, value_calculation)

end
end
sizeQ: begin

message(size, size_calculation)

end
end

Class methods: ...

Class 'point_symbol' can be regarded as subclass of class 'symbol'. By
generalization, the above definition can be revised as follows:

256

Class name: symbol
Superclass: ...
Instance variables: orientation, color, texture, value
Instance methods:

orientation(): begin
message(orientation, 45)

end
end
color(): begin

message(color, green)

end
end
texture(): begin

message(texture, 1/5)

end
end
valueQ: begin

message(value, value_calculation)

end
end

Class methods: ...

Class name: point_symbol
Superclass: symbol
Instance variables: form, size
Instance methods:

form(): begin
message(form, circle)

end
end
size(): begin

message(size, size_calculation)

end
end

Class methods: ..

The above two definitions are abstractive in the sense that any point symbol
can be generated through the definitions. They are generalized because
common visual variables such as orientation, color, texture and value are
defined in the superclass 'symbol'. This ensures that common behaviors
across several subclasses (point and area symbols) will indeed have
common definition, and instance variables and methods in class 'symbol'
can be inherited by its subclass 'point_symbor.

We then discuss how the definitions can be extended and reused. Suppose
that a knowledge base only contain the above two classes about symbol, and
now one wants to add class 'area_symbol' into the knowledge base. The
question becomes how the definitions can be reused and extended without
modifying the existing two classes. In this case, the answer is very simple:

257

use inheritance and redefinition to define a new class 'area_symbol' as
illustrated below. In the class 'area_symbol', 'color', 'texture' and 'value'
are redefined. Only orientation is inherited from the superclass 'symbol'.

Class name: area_symbol
Superclass: symbol
Instance variables: color, value, texture
Instance methods:

color(): begin
for i:=1 to N do begin
message(color(i), color)
end
end

end
texture(): begin

for i:=1 to N do begin
message(texture(i), texture)
end
end

end
valueQ: begin

for i:=1 to N begin
message(value(i), value_calculation)
end
end

end
Class methods: ...

After the examples, one can immediately see that knowledge concerned
with the interpretation of spatial information and determination of map
type can be abstracted in a similar way. And then can be reused and
extended by using inheritance, redefinition, polymorphism and dynamic
binding (Meyer, 1988).

5. Discussion and Further Work

Based on the specification of the requirements of the knowledge
representation scheme for representing the knowledge of cartographic
symbolization concerned with GIS's output, it is argued that the
conventional knowledge representation schemes such as rules, semantic
networks, conceptual graph, object-attribute-value and frames are not rich
and powerful enough to meet the requirements. Then it is suggested to use
the object-oriented knowledge representation scheme to represent the
spatial knowledge concerned with cartographic symbolization. Discussions
show that the object-oriented approach meets the specific requirements and
overcomes the major problems of the conventional schemes.

The flexibility and the power of the OOKR scheme are only partially
illustrated with examples. The work reported in this paper is still far from
fully structuring the comprehensive knowledge of cartographic
symbolization. However, as an approach, the object-oriented knowledge

258

representation scheme offers greater potentials for capturing, organizing,
processing the knowledge and applying it in the digital domain.

Once a reasonable amount of knowledge is specified and structured with
the scheme, the knowledge base and inference engine can be implemented
by a suitable media (e.g. a suitable knowledge-based system shell supporting
object-oriented knowledge representation). Our opinion is that the object-
oriented approach in general is a whole paradigm, in which object-oriented
analysis, object-oriented design and object-oriented programming can be
distinguished (see e.g. Coad and Yourdon, 1990). As far as only analysis and
design (in this case high level knowledge structuring) are concerned, the
object-oriented knowledge representation scheme is regarded as a high
level construct.

To fully structure the knowledge of cartographic symbolization, a number
of issues are still subject to further investigation.

Firstly, further investigation on the object-oriented knowledge
representation scheme itself is still necessary, for example, multiple
inheritance, and semantics to ensure correctness and robustness. These are
the particular interests of the author and will be investigated in the near
future.

Secondly, the interpretation of spatial information from a GIS should be
addressed in detail as it is the fundamental step for the subsequent
symbolization. Several issues are concerned with this aspect, for example,
the encapsulation of knowledge in spatial database (this is effected through
methods in the OOKR scheme), the rules for the interpretation of the
spatial information, and the relationships between the two. These issues are
currently under investigation.

Thirdly, much work needs to be done to use the scheme to structure the
comprehensive knowledge of cartographic symbolization. To address this,
the comprehensive knowledge concerned should be specified first. After
sufficient knowledge is specified and captured, the knowledge then can be
abstracted into classes by using the object-oriented knowledge
representation scheme. The complicated relationships can be represented by
'is-a' relations, 'has-a' relations and messages. New knowledge can be
captured gradually, and added to the knowledge base by defining new
classes and/or subclasses of existing classes. A full scale knowledge-based
system for cartographic symbolization then can be eventually achieved.

6. Acknowledgements

I sincerely thank Prof. Dr. Ir. M.J.M. Bogaerts for his stimulating discussions
and guidance, and for his arrangement which made this investigation
possible. Almost all of our colleagues in the Group of Land Information
and Cartography, Faculty of Geodesy, Delft University of Technology, read
an earlier version of this paper and gave their comments; I wish to thank
all of them. Valuable comments from the anonymous referees are
gratefully acknowledged.

259

7. References

Coad, P. and E. Yourdon, 1990, Object-Oriented Analysis, Yourdon Press
Computing Series.

Egenhofer, M.J. and A.U. Frank, 1990, LOBSTER, Combining AI and
Database Techniques for GIS. Photogrammetric Engineering and Remote
Sensing, Vol. 56, No. 6, pp. 919-926.

Leung, K.S. and M.H. Wong, 1990, An Expert System Shell Using Structured
Knowledge - An Object-Oriented Approach, IEEE Transactions on
Computer, Vol. 23, No. 3, pp.38-47.

Luger, G.F. and W.A. Stubblefield, 1989, Artificial Intelligence and the
Design of Expert Systems, Benjemmin/Cummings Publishing
Company, Inc.

Mackaness, W.A. and P.P. Fisher, 1986, Towards a Cartographic Expert
System, In Proceedings of Auto Carto London, pp.578-587.

Mark, D.M. and B.P. Buttenfield, 1988, Design Criteria for Cartographic
Expert System, In Proceedings of the 8th International Workshop on
Expert Systems, Avignon, France, Vol.2, pp.413-425.

Meyer, B., 1988, Object-Oriented Software Construction, Prentice-Hall.

Muller, J.-C. and Wang Zeshen, 1990, A Knowledge Based System for
Cartographic Symbol Design, The Cartographic Journal, Vol. 27, No. 2,
pp. 24-30.

Smith, J.M. and D.C.P. Smith, 1977, Database Abstractions: Aggregation and
Generalization, ACM Transactions on Database Systems, Vol. 2, No.2,
pp.105-133.

Townsend, C, 1986, Mastering Expert Systems with Turbo Prolog, Howard
W. Same & Company.

Wang, Z.S., 1990, A Representation Scheme for Cartographic Information,
In Proceedings of the 4th International Symposium on Spatial Data
Handling, Zurich, pp. 782-791.

Weibel, R. and B.P. Buttenfield, 1988, Map Design for Geographic
Information Systems, In Proceedings of GIS/LIS'88, San Antonio, Texas.

260

Are Displays Maps or Views?
WERNER KUHN
National Center for Geographic Information and Analysis
and Department of Surveying Engineering
University of Maine
Orono, Maine 04469 (USA)
Bitnet: Kuhn@mecanl

Abstract

Metaphors are powerful means to design and learn user interfaces for computer
systems. This paper discusses metaphors for display operations in Geographic
Information Systems (CIS). Specifically, the metaphor DISPLAYS ARE VIEWS is
proposed and analyzed. It is presented as an antithesis to the metaphor DISPLAYS ARE
MAPS, which is consciously or unconsciously adopted by designers and users of most
GIS interfaces. Displays are understood here as graphic screen presentations of
geographic space, maps as static (paper) maps and views as visual fields, containing
what humans see in a given situation. The major advantage of the visual field as a
metaphor source is that it naturally accommodates scale changes. Thus, analyzing its
structure also sheds new light on the generalization problem for displays.

1. Introduction

Metaphors have had a significant impact on general user interface design practice and
are now established as a powerful means to control complexity in human-computer
interaction [Carroll, Mack, and Kellogg 1988]. Their potential for improving user
interfaces of Geographic Information Systems (GIS) is also rapidly gaining
recognition, as indicated by a series of recent publications dealing with the subject
[Gould and McGranaghan 1990, Jackson 1990a, Kuhn 1990, Mark 1989, Wilson
1990]. A common theme of these studies is the selection of appropriate metaphors for
GIS user interfaces. Currently, map metaphors dominate, but it has been suggested that
they fail to organize GIS operations adequately [Gould and McGranaghan 1990].

This paper discusses the metaphor question for GIS display functions, where the
map idea is least controversial and most entrenched, as exemplified by the common
expressions "virtual map", "screen map", or "CRT map". The paper contends that map
metaphors are deficient even for display purposes and proposes the contrasting
metaphor DISPLAYS ARE VIEWS. It shows that human vision provides a rich and
powerful source of metaphors for retrieving and displaying information. In particular, it

261

focuses on the capacity of the visual system to deal with resolution and scale changes.
Research in cognitive science has established that humans perceive, conceptualize

and deal with the world at multiple levels of detail [Marr 1982, Minsky 1985]. A CIS
should support this capacity, by representing data at multiple resolutions and offering
operations appropriate to scale [Buttenfield and Delotto 1989]. Yet, while there has
been considerable interest in database representations and manipulations at multiple
levels of resolution [Guptill 1989, Oosterom 1991, Samet 1989], the same cannot be
said for user interface representations.

Cartographers and GIS specialists are still struggling for a satisfactory
understanding of the concepts of scale and resolution. There appear to be two
dominating lines of thought: the "pragmatists" understand resolution in terms of map
scale, acknowledging the limits of this concept, and the "objectivists" look for
geographic scale or dimensions in the real world.

Since resolution is also a concept of human vision [Marr 1982], a third way could
be to explain scale in terms of vision and its properties. Such an "experientialist"
approach [Lakoff 1987] based on human perception of and interaction with the world
[Arnheim 1969] is taken here. Specifically, the fundamental relation of scale and scale
changes to viewing distance is explored. The goal is to apply this elementary human
experience to GIS user interfaces through metaphors.

The remainder of the paper contains a discussion of interface metaphors for GIS in
section two, preparing for an analysis of the DISPLAYS ARE VIEWS metaphor in section
three, after which conclusions are drawn and further work is suggested in section four.

2. Metaphors and GIS interfaces

2.1. Metaphors and image-schemas in human-computer interaction
Johnson [1987, p. XIV] has characterized metaphor as

...a pervasive mode of understanding by which we project patterns from one
domain of experience in order to structure another domain of a different kind.

The two domains are commonly called the source and target domains of a metaphor and
the metaphorical projection can be seen as a mapping (in the mathematical sense) from
source to target. Johnson's characterization expresses a projective view of metaphor:
the metaphor imposes a structure on the target domain, rather than assuming similarities
between source and target.

Lakoff and Johnson have argued convincingly that ordinary (i.e., non-poetic)
thought, action, and language are structured by metaphor [Lakoff and Johnson 1980].
It seems reasonable to presume that this is true for thought, action, and language in
human-computer interaction as well. Interface metaphors are doing far more than just
helping novices to learn a new application. They structure the application domain and

262

organize the user's tasks. The designer's choice of metaphor(s) determines what
concepts the users will have to deal with, how the labor is distributed between users
and system, and in what terms users and system will communicate.

Since metaphorical projections can be described as mathematical mappings between
domains, what remains invariant under them? Lakoff s invariance hypothesis [Lakoff
1990] claims that it is the image-based reasoning patterns of the source domain, the so-
called image-schemas [Johnson 1987, Lakoff and Johnson 1980]. These are idealized
cognitive structures, consisting of a small number of parts and relations, made
meaningful by human sensori-motor experience. Examples are the CONTAINER, PATH,
LINK, NEAR-FAR, PART-WHOLE, and CENTER-PERIPHERY schemas. Image-schemas are
more abstract than mental images, being essentially reduced to topology, but less
abstract than logical propositions, being related to sensori-motor experience.

It has been suggested that image-schemas play a fundamental role in user interfaces
and that they are likely to be especially relevant for GIS interfaces, since many image-
schemas are spatial, particularly topological, in nature [Mark 1989]. General GIS
metaphors are further discussed by Gould and McGranaghan [1990]. An extended
discussion of the role of metaphors and image-schemas in user interfaces, including a
formalization, can be found in [Kuhn 1991].

2.2. Map metaphors and GIS
Most of today's GIS interfaces have been designed explicitly or implicitly with
(hardcopy) maps and mapping operations in mind. Consequently, mapping concepts
dominate the whole spectrum of GIS functions, from data acquisition through analysis
to display.

Some generic problems with map metaphors have been discussed in the literature
[Downs 1981, Gould and McGranaghan 1990]: Maps may not be understood well
enough to serve as a useful source domain, they provide little guidance beyond display
operations, they tend to hide uncertainty in the data, and they are two-dimensional
representations of a three- or four-dimensional reality.

At any rate, maps are unlikely to be adequate sources of GIS metaphors for all the
different kinds of functions which paper maps fulfill, serving at the same time as data
storage and presentation devices, and as analysis and design tools. For example, maps
and map sheets are now widely recognized as inappropriate analogues for the data
storage function of a GIS. The main reason is that maps lead to undesirable
partitionings of data, both horizontally (sheets) and vertically (layers) [Chrisman 1990,
Frank 1988]. The evolution from layered mapping systems to seamless geographic
databases with integrated topological data structures is practical evidence for this
movement away from the map metaphor in data storage.

What about data presentation functions? GIS displays are generally understood as
"screen maps", implying the metaphors DISPLAYS ARE MAPS and DISPLAYING IS

263

MAPPING. Thereby, they inherit not only useful conventions on symbolisms and the
goal of graphic excellence, but also some limitations and problems. For instance, paper
maps handle multiple resolutions in a rigid way through series of scales and pose the
difficult problem of cartographic generalization, i.e. adapting information and its
presentation to scale [Brassel and Weibel 1988]. While many aspects of this problem
will also have to be dealt with for displays no matter what metaphors are chosen, it is
worth looking for possible differences between requirements for maps and displays.

One way to do this is by asking how the visual system copes with generalization:
For example, why does one never see a cluttered world (at least not in the sense of a
cluttered map or display)? Controlling data density, one of the hardest problems in
generalization, seems no problem at all in human vision. Understanding how the visual
system achieves this could help solving the problem for displays. Also, objects which
are too small to recognize are acceptable in visual fields: we ordinarily see things of
which we cannot make sense because they are too small. On maps:, such
unrecognizable objects are not tolerable. Displays as well as views, however, can allow
users to "zoom" in and see more detail (see 2.4. for more detail on this).

2.3. Visual interfaces and CIS
Clearly, electronic screens offer far more possibilities for GIS data presentation than
paper maps [Moellering 1984, Robertson 1988], despite their yet inferior resolution.
For example, they allow for reactive, dynamic, and three-dimensional displays
[Goodchild 1990]. Thereby, an entirely new kind of communication about geographic
phenomena becomes possible, where users can interact directly with suitable and
adaptive representations of these phenomena [Mark 1989].

This direct communication between user and system is not limited to the visual
channel; non-visual means are rapidly gaining importance [Negroponte 1989]. State-of-
the-art user interface technology, however, favors visual over auditory and tactile
interaction. GIS interfaces are generally not disadvantaged by this emphasis, given the
highly spatial nature of vision.

It is well established by now that seeing is more than passive perception [Arnheim
1969] and typically involves categorizing what is seen [Lakoff 1987]. An entire chapter
of "The Nature of Maps" [Robinson and Petchenik 1976] is devoted to the discussion
of how theories of visual perception and cognition relate to geographic data
presentation. It emphasizes that our visual system is not a neutral input device and that
seeing is an active process: we make sense of what we see by attempting to construct
meaningful shapes.

The notion of "visual interfaces" [Tauber 1987] implies such an active involvement
of the user. Apart from pointing gestures and actions like "dragging" [Apple Computer
1987], visual interfaces often contain metaphors related to special visual experiences
like seeing through frames, lenses, and other optical instruments. Examples of these

264

metaphors are "windows" [Smith et al. 1982], "panning" and "zooming" [Jackson
1990a], or "fisheye views" [Furnas 1986].

The widespread occurrence of these viewing metaphors suggests a more literal
interpretation of the notion of "visual interfaces", exploring metaphors based on the
human visual system as such, independent of optical instruments. The visual field not
only offers the logic and functionality expected from displays - being a bounded,
connected region which can be moved to see something else - it also deals very
effectively with changes of scale (see 3.1.).

Geometric aspects of visual perception have been discussed, for example, by [Marr
1982, Zeeman 1962] or, in relation to geography, by [Tobler 1976]. For metaphors
based on vision, the effects of these geometric properties on visual cognition are of
interest. An important case of such an effect is the phenomenon that, by moving closer
to a scene, we not only get to see enlarged objects, but different kinds of objects. For
example, we may see a house across the street as consisting of walls, windows, a
door, and a roof and from its front yard, we can identify individual planks and bricks in
the walls, but don't see the house as a whole anymore (Figure 1).

Figure 1: Getting to see different things by moving closer

265

This basic property of visual cognition, imposing lower and upper bounds on the level
of detail perceived at a given viewing distance, is the source of many metaphors. In
everyday language, it is often combined with the metaphor UNDERSTANDING IS SEEING
to produce expressions like "let's take a closer look at this idea" or "he can't see the
forest for the trees". In technical as well as colloquial language it is sometimes referred
to as the "zoom" effect. The connection between levels of detail and the concepts of
"close" and "distant" is also touched on in the final paragraphs of [Robinson and
Petchenik 1976]:

"Scale" also refers to the level or depth with which one contemplates or
analyzes something, as for example whether one "looks closely" at something
or contemplates it "from a distance."

2.4. Zooming in on "zooming"
The term "zooming" is used in cinematography, photography, computer graphics and
everyday language to describe getting "close-up" views of something. In the context of
GIS, Burrough [1986, p. 79] states, for example, that "most graphics systems allow
the user to zoom in and display an enlarged part of the database". This description
leaves it open whether "an enlarged part" means "the same, but enlarged" or "a part of
the database that becomes only visible at a larger scale", or both.

The notion of a "cartographic zoom" proposed in [Bj0rke and Aasgaard 1990]
applies the concept of zooming to the generalization of map displays. It implies that
zooming allows a user to see different things at different scales, but the idea of zooming
is not further explored.

Zooming and panning operations on digital images and map displays have been
studied and described, independently from the generalization problem, by Jackson
[1990b]. The main conclusion from this work was that intuitive and effective interface
tools require a deeper understanding of zooming and panning than one in terms of
cameras or other optical instruments.

The Oxford English Dictionary (second edition, 1989) defines the original meaning
of "zoom" as follows:

To make a continuous low-pitched humming or buzzing sound;
to travel or move (as if) with a "zooming" sound; to move at speed, to hurry.

The use of the term in photography and cinematography is, thus, already doubly
metaphorical: It explains the variation of the focal length by a (fictive) motion of
"rapidly closing in on a subject" which, in turn, is metaphorically related to the
corresponding sound effect. (Note that one of the key metaphors in visual interfaces is,
therefore, rooted in auditory perception).

Combined with our visual experience that the viewing distance influences what we

266

see, zooming naturally acquires a stronger interpretation than "seeing the same, but
enlarged". It becomes a mechanism to change the scale or level of detail at which one
perceives and conceptualizes the world or a computer model.

This understanding of zooming suggests the more general metaphor DISPLAYS ARE
VIEWS, which also accommodates additional transformations of the visual field. One of
them is "panning", i.e. moving the view to another part of a "panorama" without
changing the level of detail. Since transformations of the visual field correspond to

... basic cognitive processes such as focusing, scanning, superimposition,
figure-ground shifting, vantage-point shifting [Lakoff 1988, p. 121]

they are ideal candidates for metaphor sources.

3. The metaphor DISPLAYS ARE VIEWS

3.1. Image-schematic structure
While a general notion of interface "views" has been around for some time [Goldberg
and Robson 1981], the richness of visual fields as a source domain for interface
metaphors has not yet been analyzed. The discussion of GIS "user views" in [Mark
1989] relates views to image-schemas, but concentrates on the notion of database views
rather than displays.

In order to make the DISPLAYS ARE VIEWS metaphor applicable to user interface
design, its image-schematic structure needs to be analyzed [Kuhn 1991]. Determining
the image-schemas underlying views allows designers to define the functionality of
display operations based on the metaphor.

The basic image-schema involved in the visual field is the CONTAINER schema
[Lakoff 1987]. It structures the visual field as a bounded space, consisting of a
boundary, an interior, and an exterior: In a first approximation, things are either in or
out of sight and they come into or go out of sight.

The visual field has also a center of attention and a surrounding region. Thus, the
CONTAINER schema is combined with the CENTER-PERIPHERY schema [Johnson
1987], which provides for distinguishing foveal and peripheral vision.

In addition, and less obviously, the visual field is structured by an interaction of the
PART-WHOLE with the NEAR-FAR schema. We experience objects in the world as
configurations of parts, forming wholes. Our perception has evolved so that it can
distinguish these elements. Visual perception, in particular, requires motion of the body
or of the objects to extend this distinction beyond the limited range of configurations
present in one view: Getting certain parts into view involves moving nearer and vice
versa. This connection is the essence of scale changes and of the zooming mechanism
described above.

The combination of the PART-WHOLE and NEAR-FAR schemas enters the visual field

267

in a second way: Moving nearer entails that only a part of the things one saw before
remains within the visual field. Thus, the visual field shrinks with respect to the scene
viewed. This property can be applied to simulate the relative motion of observer and
objects in interactive zooming operations. By shrinking a frame of reference
corresponding to the visual field, the user simulates a close-in motion (figure 2) after
which the system displays a part of the scene at a larger scale.

Figure 2: Combining the PART-WHOLE and NEAR-FAR schemas:
Shrinking the visual field simulates motion in zooming operations.

From [Jackson 1990b].

An interesting deviation from the "normal" behavior of containers defined by Lakoff
and Johnson is that visual fields are not transitive: It is not necessarily true that, if A is
in B and B is in sight, then A is in sight, too (even if one excludes the trivial cases
where "in" means "enclosed by"). For example, if a wall is in sight and it is made from
bricks, then it does not follow that individual bricks can be seen. Other examples are
raster dots in an image or leaves in trees.

The superimposition of the PART-WHOLE and NEAR-FAR schemas on the
CONTAINER schema explains this paradox: It allows a more specific interpretation of "A
is in B" as "A is part of B" and lets the combination of PART-WHOLE and NEAR-FAR
determine whether A is in sight or not.

DISPLAYS ARE VIEWS is a metaphor and not a literal equivalence. The matching
between the two domains of a metaphor is by definition partial. Lakoff s invariance
hypothesis suggests that some of the image-schematic structure in the two domains
must correspond to support the metaphorical mapping. In the case of displays and
views, this correspondence can be established for a combination of, at least, the
CONTAINER, CENTER-PERIPHERY, PART-WHOLE, and NEAR-FAR schemas. Aspects
which are non-topological and not image-schematic, such as the shape of the container
boundary (elliptic vs. rectangular) or the type of optical projection involved (central vs.
parallel), need not be equal or even comparable. Furthermore, some important features
of displays, like symbolizations and their explanation, are obviously not accounted for
by this partial correspondence with views.

268

3.2. Metaphor combinations and extensions
The DISPLAYS ARE VIEWS metaphor is both extensible and open to combinations with
other metaphors in a GIS user interface. For example, GIS displays have to show
properties and relations of phenomena which are invisible, such as borders, land
values, or population densities. This situation requires the same additional metaphors as
it does to explain why maps can represent them.

An extension of the visual field metaphor for displays is the previously mentioned
idea of "fisheye views". Fisheye views of spatial phenomena are actually just an
exaggeration of human views, which already have the property that the visual acuity
lapses toward the periphery [Zeeman 1962]. This property provides a straightforward
extension of the DISPLAYS ARE VIEWS metaphor. It has rarely been adopted for GIS
displays, presumably because it violates the idea of a (roughly) constant scale inherent
in the DISPLAYS ARE MAPS metaphor.

Fisheye views of non-spatial phenomena [Furnas 1986] and proposals for
"conceptual" (logical, semantic) zooming [Mohan and Kashyap 1988, Tanaka and
Ichikawa 1988] are all based on the same metaphor extension and combination: The
idea that concepts are resolution dependent gets extended beyond spatial phenomena.
The additional metaphor involved is that ABSTRACT SPACE IS PHYSICAL SPACE. Such
an abstract space can, for example, be a hierarchy or a lattice. Thus it becomes possible
to zoom in on an organization chart of a company from top-level divisions to individual
workers.

Another direction of metaphor extension and combination leads beyond displays
towards interface metaphors for manipulating GIS models. Such an approach is David
Zubin's proposal to differentiate object classes based on object sizes relative to human
experience [Mark et al. 1989]. Zubin discusses how shifting our viewpoint results in
objects of different sizes becoming accessible to vision and manipulation. For example,
a city which cannot be perceived as a unit when we are in it becomes a scene which we
can scan when we drive away from it, and part of a single perspective when we are far
away or flying over it. Zubin's classes of objects or spaces, thus, imply the notion of
viewing distance and its influence on what object classes humans deal with. However,
they are defined in terms of physical object sizes which become irrelevant for
interaction with computer models. Further developing Zubin's ideas, Eric Bier has
suggested editing paradigms for manipulating objects based on their relative sizes
[Kuhn and Egenhofer 1991].

A promising extension of a perception-oriented understanding of displays are
virtual realities [Conn et al. 1989]. GIS are probably the computing systems which
come closest to dealing with actual three- or four-dimensional reality (although still too
often only through two-dimensional projections). Thus, they should be ideal
forerunners to systems which transcend the limitations of physical reality and allow

269

users to experience motion through different scales by sight, sounds, and tactile cues,
e.g. flying over territories or diving into atoms [Brooks 1988].

4. Conclusions

This paper has proposed human vision as a source domain for GIS interface
metaphors. Specifically, it has argued for interfaces based on the metaphor DISPLAYS
ARE VIEWS. The analysis of the image-schematic structure of visual fields, particularly
of the fundamental connection between viewing distance and visible object classes,
suggests that seeing is in some respects more powerful than mapping as a source
domain for interface metaphors.

What does it mean to adopt the metaphor DISPLAYS ARE VIEWS? First, it involves
the user in an active process of viewing rather than observing static maps. Second, it
acknowledges the key role of the user's point of view in defining display contents.
Here, "point of view" is still meant spatially. Social, political, and other viewpoints
may, however, come to play an explicit role in future GIS applications. They are likely
to fit this framework by direct metaphorical extension. Third, the metaphor allows the
viewpoint to move conceptually closer to or further apart from a scene, supporting a
notion of zooming which goes beyond magnification by relating different concepts to
different scales.

WYSIWYG interfaces, where What You See Is What You Get, will clearly become
more intuitive and more powerful when you have the kind of control over what you see
that you have in ordinary visual experience. Spatial query and manipulation languages
can become entirely different from today's awkward formalisms when they employ
visual metaphors. A generalized zooming mechanism, for example, naturally integrates
data retrieval and display operations. These are two aspects of querying which have
been separated so far, in accordance with the idea that displays are maps, but to the
disadvantage of the user [Egenhofer 1990].

For the sake of the argument, the notions of maps and views have been contrasted
rather than integrated in this paper. An alternative approach to improved user interface
metaphors would be to expand the notion of maps with visual concepts, taking today's
display technology into account. It is equally valid and potentially leads to the same
improvements. However, starting with visual concepts forces designers to evaluate
more radically the role traditional mapping concepts should play in displays.

The contentions of the paper are not meant to imply that cartography has no role to
play in visual displays. There are indeed many common concerns in the design of
displays and maps and there is a lot to be learned from mapping and graphic excellence
for data presentation on screens [Tufte 1983, 1990]. Arguing against the paper map as
a dominating metaphor source is also not necessarily arguing against symbolization or

270

against features like labels, legends, north arrows, and scale indications in displays.
The point made here is that there are important differences between requirements for

good dynamic (display) and static (map) presentations. They are mainly due to the
reactive character of electronic display media which supports a direct visual
communication between user and system. These differences may allow for displays to
relax some of the constraints on maps, like those on minimal dimensions and
separations, which make automatic map generalization such a troublesome problem
[Beard and Mackaness 1991].

It should be kept in mind that a metaphor such as DISPLAYS ARE VIEWS is never a
literal equivalence. Thus, choosing human vision as a source domain does not restrict
the scale range of displays to that of human views. The metaphor, establishing only a
partial correspondence, takes some aspects of visual perception and uses them to
structure displays. The possibility of zooming is one of these aspects, but restrictions
of scale range, perspective, and thematic flexibility are certainly not.

The paper has touched on a few possible and actual extensions of the DISPLAYS
ARE VIEWS metaphor as well as on combinations with other metaphors. While more
should be said about these and other examples could be given, the point is that they all
rely on perception-oriented rather than mapping-oriented metaphors. The fact that
mapping itself is based on perception is not enough. GIS users need powerful dynamic
control over what they perceive, rather than being presented with more or less static
results of what a designer thought they want to perceive.

Finally, in order to become applicable to interface design, image-schematic analyses
of interface metaphors like the one presented for the visual field need to be formalized.
An approach based on algebraic specifications has been proposed in [Kuhn 1991]. At
the same time, prototypes of interface tools which implement and visualize the
metaphors have to be developed, like the ones proposed by Jackson [1990a] for
zooming and panning in displays of images and maps. Current research addresses the
question of how these tools can be extended to deal with zoom and pan operations in
the conceptual domain.

Acknowledgements

Parts of this research have been supported by NSF under NCGIA grant No. SES 88-
10917, by Intergraph Corporation, and by Digital Equipment Corporation under grant
No. TP-765536. The author is also grateful for discussions about the topic with
Andrew Frank, Max Egenhofer, and Jeffrey Jackson.

271

References

Apple Computer, Inc. 1987. Human Interface Guidelines: The Apple Desktop
Interface. Reading, MA: Addison-Wesley.

Arnheim, R. 1969. Visual Thinking. Berkeley, CA: University of California Press.
Beard, K., and W. Mackaness. 1991. Generalization Operations and Supporting

Structures. Proceedings, Auto Carlo 10. Edited by D.M. Mark and D. White.
(This volume.)

Bj0rke, J.T., and R. Aasgaard. 1990. Cartographic Zoom. Proceedings, Fourth
International Symposium on Spatial Data Handling. Edited by K. Brassel and H.
Kishimoto. 1: 345-353.

Brassel, K.E., and R. Weibel. 1988. A review and conceptual framework of automated
map generalization. International Journal of Geographical Information Systems 2
(3): 229-244.

Brooks, F. 1988. Grasping Reality Through Illusion: Interactive Graphics Serving
Science. Proceedings, ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI'88). Edited by E. Soloway, D. Frye, and S.B.
Sheppard. 1-11. Reading, MA: Addison-Wesley.

Burrough, P. A. 1986. Principles of Geographical Information Systems for Land
Resources Assessment. Edited by P. H. T. Beckett. Monographs on Soil and
Resources Survey. Oxford, UK: Clarendon Press.

Buttenfield, B.P., and J. Delotto. 1989. Multiple Representations: Report on the
Specialist Meeting. National Center for Geographic Information and Analysis;
Santa Barbara, CA: Report 89-3.

Carroll, J.M., R.L. Mack, and W.A. Kellogg. 1988. Interface Metaphors and User
Interface Design. In Handbook of Human-Computer Interaction. Edited by M.
Helander. 67-85. New York, NY: North-Holland, Elsevier Science Publishers.

Chrisman, N.R. 1990. Deficiencies of sheets and tiles: building sheetless databases.
International Journal of Geographical Information Systems 4 (2): 157-167.

Conn, C, J. Lanier, M. Minsky, S. Fisher, and A. Druin. 1989. Virtual Environments
and Interactivity: Windows to the Future. Proceedings, SIGGRAPH '89 Panels.
Edited by R.J. Beach. 7-18. New York, NY: ACM Press.

Downs, R.M. 1981. Maps and Metaphors. The Professional Geographer 33 (3): 287-
293.

Egenhofer, M.J. 1990. Manipulating the Graphical Representation of Query Results in
Geographic Information Systems. Proceedings, IEEE Workshop on Visual
Languages. Edited by S.-K. Chang. 119-124.

Frank, A. U. 1988. Requirements for a Database Management System for a GIS.
Photogrammetric Engineering & Remote Sensing 54 (11): 1557-1564.

Furnas, G.W. 1986. Generalized Fisheye Views. Proceedings, ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI'86). Edited by M.
Mantei and P. Orbeton. 16-23. Reading, MA: Addison-Wesley.

Goldberg, A., and D. Robson. 1981. The Smalltalk-80 System. BYTE 6 (8): 14ff.

272

Goodchild, M.F. 1990. Spatial Information Science. Proceedings, Fourth International
Symposium on Spatial Data Handling. Edited by K. Brassel and H. Kishimoto. 1:
3-12 (Keynote Address).

Gould, M.D. and M. McGranaghan. 1990. Metaphor in Geographic Information
Systems. Proceedings, Fourth International Symposium on Spatial Data Handling.
Edited by K. Brassel and H. Kishimoto. 1: 433-442.

Guptill, S.C. 1989. Speculations on Seamles, Scaleless, Cartographic Data Bases.
Proceedings, Auto Carlo 9. Edited by E. Anderson. 436-443.

Jackson, J.P. 1990a. Developing an Effective Human Interface for Geographical
Information Systems using Metaphors. Proceedings, ACSM/ASPRS Annual
Convention. 3: 117-125.

Jackson, J.P. 1990b. Visualization of Metaphors for Interaction With Geographic
Information Systems. Masters of Science Thesis, University of Maine,
Department of Surveying Engineering. Orono, ME.

Johnson, M. 1987. The Body in the Mind. Chicago, IL: The University of Chicago
Press.

Kuhn, W. 1990. Editing Spatial Relations. Proceedings, Fourth International
Symposium on Spatial Data Handling. Edited by K. Brassel and H. Kishimoto.
1: 423-432.

Kuhn, W., and A.U. Frank. 1991. A Formalization of Metaphors and Image-Schemas
in User Interfaces. In Cognitive and Linguistic Aspects of Geographic Space.
Edited by D. M. Mark and A. U. Frank. NATO ASI Series. Dordrecht, The
Netherlands: Kluwer Academic Press; in print.

Kuhn, W., and M.J. Egenhofer (Eds.). 1991. Visual Interfaces to Geometry. Report
on a Two-Day Workshop at CHI'90. National Center for Geographic Information
and Analysis; Santa Barbara, CA: Report in print.

Lakoff, G. 1987. Women, Fire, and Dangerous Things. Chicago, IL: The University
of Chicago Press.

Lakoff, G. 1988. Cognitive Semantics. In Meaning and Mental Representations. Edited
by U. Eco, M. Santambrogio and P. Violi. 119-154. Bloomington, IN: Indiana
University Press.

Lakoff, G. 1990. The Invariance Hypothesis: is abstract reason based on image-
schemas? Cognitive Linguistics 1 (1): 39-74.

Lakoff, G., and M. Johnson. 1980. Metaphors We Live By. Chicago, EL: University
of Chicago Press.

Mark, D.M. 1989. Cognitive Image-Schemata for Geographic Information: Relations
to User Views and GIS Interfaces. Proceedings, GIS/LJS'89 : 551-560.

Mark, D.M., A.U. Frank, MJ. Egenhofer, S.M. Freundschuh, M. McGranaghan,
and R.M. White. 1989. Languages of Spatial Relations: Initiative Two Specialist
Meeting Report. National Center for Geographic Information and Analysis; Santa
Barbara, CA. Report 89-2.

Marr, D. 1982. Vision. New York, NY: W.H. Freeman.
Minsky, M. 1985. The Society of Mind. New York, NY: Simon & Schuster.
Moellering, H. 1984. Virtual Maps, Real Maps, and Interactive Cartography. In

Models and Spatial Statistics. Edited by Wilmott and Gaille.

273

Mohan, L., and R.L. Kashyap. 1988. An Object-Oriented Knowledge Representation
for Spatial Information. IEEE Transactions on Software Engineering 14 (5): 675-
681.

Negroponte, N. 1989. An Iconoclastic View Beyond the Desktop Metaphor.
International Journal of 'Human-Computer Interaction 1 (1): 109-113.

Oosterom, P. van. 1991. The Reactive Tree - A Storage Structure of a Seamless,
Scaleless Geographic Database. Proceedings, Auto Carto 10. Edited by D.M.
Mark and D. White. (This volume.)

Robertson, P.K. 1988. Choosing Data Representations for the Effective Visualisation
of Spatial Data. Proceedings, Third International Symposium on Spatial Data
Handling. Edited by D.F. Marble. 243-252.

Robinson, A.H., and B.B. Petchenik. 1976. The Nature of Maps: Essays toward
Understanding Maps and Mapping. Chicago, IL: University of Chicago Press.

Samet, H. 1989. The Design and Analysis of Spatial Data Structures. Reading, MA:
Addison-Wesley.

Smith, D.C.S., C. Irby, R. Kimball, B. Verplank, and E. Harslam. 1982. Designing
the Star User Interface. BYTE 7 (4): 242-282.

Tanaka, M., and T. Ichikawa. 1988. A Visual User Interface for Map Information
Retrieval Based on Semantic Significance. IEEE Transactions on Software
Engineering 14 (5): 666-670.

Tauber, M.J. 1987. On Visual Interfaces and their Conceptual Analysis. In
Visualization in Programming. Edited by P. Gorny and M. J. Tauber. 106-123.
New York, NY: Springer-Verlag.

Tobler, W.R. 1976. The Geometry of Mental Maps. In Spatial Choice and Spatial
Behavior. Edited by R. G. Golledge and G. Rushton. 69-81. Columbus, OH:
Ohio State University Press.

Tufte, E.R. 1983. The Visual Display of Quantitative Information. Chesire, CT:
Graphics Press.

Tufte, E.R. 1990. Envisioning Information. Chesire, CT: Graphics Press.
Wilson, P. M. 1990. Get your Desktop Metaphor off my Drafting Table: User Interface

Design for Spatial Data Handling. Proceedings, Fourth International Symposium
on Spatial Data Handling. Edited by K. Brassel and H. Kishimoto. 1: 455-464.

Zeeman, E.G. 1962. The Topology of the Brain and Visual Perception. In The
Topology of 3-Manifolds. Edited by M. K. Fort. 240-256. Englewood Cliffs, NJ:
Prentice-Hall.

274

UGIX: A GIS INDEPENDENT USER INTERFACE ENVIRONMENT

J.F. Raper and M.S. Bundock
Dept. of Geography,
Birkbeck College,

7-15 Gresse St., London W1P 1PA

ABSTRACT

Work has begun on the design and specification of a Standard User
Interface Environment for use with Geographic Information Systems.
The work was prompted by the recognition that many of todays
commercially available GIS products are firstly difficult to learn and
use, secondly are difficult and time-consuming to customise, and
thirdly the knowledge gained in using one product is not readily
transferable or applicable to another. Consequently the aims of the
research are to produce a prototype environment which is independent
of the underlying GIS, provides high level analysis, design and
customisation facilities, and presents the user with an adaptable,
extensible, easy to learn and easy to use interface. In order to
satisfy these aims, the research has the following specific
objectives:

- to identify the common functional components that must be
supported within a generic spatial language for GIS operations

- to define the form of a generic spatial language processor to
support the functions while permitting input from a variety of
sources such as voice, WIMP and command line interfaces

- to build a prototype generic user interface environment with
interfaces to a number of commercially available GIS products

- to test user response to the interface.

This paper outlines the work performed to date and discusses in
more detail the architecture of the user interface environment, the
conceptual model proposed within the graphical user interface, the
identification of a "standard" set of common GIS functions and the
approach taken for interface customisation.

INTRODUCTION

Expansion of the Problem
The Use Environment The user environment is a vital element of

any GIS. Long ignored as an esoteric aspect of GIS design while GIS
development was driven by the need to extend functionality, the user
environment is now beginning to attract its due attention. The
development of the Universal Geographic Information executive (UGIX)
(Rhind, Raper and Green 1989) is a response to the widely expressed
need to improve the usability of GIS, especially through the
improvement and extension of the user interface. However, the
implementation of a GIS user environment involves considerably more
than the improvement of the human-computer interaction (HCI) process.
Since GIS are conceptually complex and involve diverse operations
ranging from data modelling to geometric transformations, improving
the HCI cannot be a complete solution to the improvement of GIS use.

275

A number of general problems afflict many commercially available
GIS which can be characterised as failings of the user environment.
One of the most pervasive is the blurring of the distinction between
goals, tasks and system functions in the language and process of
interaction with the system. This means that the user cannot easily
comprehend the structure of the user environment. In the design of
UGIX the following definitions are used, and the concepts implemented
in the interface:

GOAL a user target for spatial data manipulation expressed in
terms of application-specific outcomes
e.g. finding which stands of trees in a forest will come
to maturity in each of the next 5 years

TASK a spatial data manipulation procedure expressed in terms
of system implementable steps
e.g. searching for certain spatially referenced items in
a database and displaying the results in a map

FUNCTION a low-level system operation to manipulate spatial data
e.g. plotting a symbol at specified X,Y coordinates on
an output device.

In this scheme tasks and functions refer to system operations,
while goals apply to conceptual operations which are conceived of
without reference to a computing environment.

Using this terminology, most GIS offer a command language composed
of functions which are spatial tools and algorithms of various kinds.
These commands are often modifiable with arguments and the complete
expressions used are complex and often obscure. As part of a general
movement to improve this situation a number of commercial systems have
begun to offer graphical user interfaces (GUI's) built using window-
icon-mouse-pointer (WIMP) techniques. However, these developments
have illustrated the difficulties inherent in assigning icons or menu
items to functions i.e. while the range of options available is now
stated, the system structure is still no easier to understand. In
particular, it is difficult to convert a goal into a task made up of
the appropriate functions. Added to these implicit difficulties are
the problems of overfilling the screen with icons or creating very
long menus, the use of inappropriate screen metaphors and the lack of
activity indicators to indicate the status of an operation to the
user.

A further problem is that there are many different user languages
for space in use, such as those defined by professionals working with
spatial data (see examples in table 1) . The table (with reference to
two contrasting applications) shows how the relationship between
objects in the application domain, user descriptions of space and the
basic spatial data types supported by GIS products can be complex and
difficult to understand.

The process by which the user links the concept and implementation
can lead to confusion and to users making errors in they way they
specify operations. A well designed user environment requires an
interface which permits the customiser or expert user to link the
appropriate user language for space to the system architecture in a
way which is transparent to the end users. In other words the
interface should allow the user to manipulate objects that are
meaningful in terms of the application, like sub-divide a parcel
rather than split a polygon.

276

Application
Entity Types

Land surveyino/
Monument
Centroid
Mates
Bounds
Strip
Abuttal
Easement
Parcel
Aliquot
Tract

Ml T* Surveyincr
Face
Entry
Cross-cut
Pillar
Room

Spatial
Data Type

Point
Point
Line
Line
Line
Line
Line/polygon
Polygon
Polygon
Polygon

Line
Line/polygon*
Line/polygon*
Polygon
Polygon*

Comment

Fixed point located by physical mark
Centre point to which reference code is linked
Boundaries of parcel defined by distance & direction
Boundaries defining position of adjoining parcels
Corridor of fixed width either side of a centreline
Boundary of a parcel on an adjoining parcel
Corridor or area of land parcel set aside
Unit of land ownership
Subdivision of parcel
land segregated by resurvey

Section of mine boundary used for excavation
Centreline/section of tunnel forming access to face
Centreline/section of tunnel at right angle to entry
Area of unexcavated material within mine
Section of tunnel ending in face

* Polygon defined by closure of an open polygon in specified
circumstances e.g across end of a tunnel

Table 1
Examples of user language for space for land and mine surveying

User environments of all forms have long lacked good visualisation
tools for the spatial database data model. Ideally the user should be
able to see the entity types and their interrelationships graphically
expressed so that they can formulate queries more easily. Finally,
the poor quality of help systems for many GIS has also become a major
drawback for many use environments. Frequently the help is simply a
formal statement of the command syntax and arguments, and not an
explanation of its wider usage.

Customisability Commercial GIS software packages are normally
designed to be fairly general purpose in nature - they are not
designed for a specific well-defined application within a particular
organisation. Consequently, they need to be adapted to fit the
specific application and user requirements of the organisation within
which they are implemented. This adaptation of the as-supplied system
is termed customisation. The term customisability is used to describe
the ease and extent to which a system may be customised.

The objectives of the customisation process are to provide a system
for the user that supports both the data model and functionality
demanded by the application requirements, that presents to that user
an interface specific to the user's application, language and
experience, which is uncluttered by non-required functions, icons and

menus, is easy to learn and easy to use.

At present the base products delivered by GIS vendors are little
more than a box of low-level spatial tools. These general purpose
tools do not directly satisfy the user's functional requirements which

are determined by organisational and application specific objectives.
Furthermore, the tools will often have little meaning or applicability
to the end user who must be educated in the language, interface and
conceptual model supported by the product. The customisability of
existing GIS products is poor, especially in the areas of database

277

design and implementation, task definition and user interface design
and development. The result is that effective customisation of a CIS
product to satisfy corporate CIS requirements involves enormous
expense and effort. This problem is so acute that it is not unusual
to see organisations struggling to use a system that is uncustomised
and uncustomisable with the available resources. Effectively, the
application requirements are largely discarded so that the functions
the CIS supports become the application.

The customisation process incorporates all the normal stages of the
familiar systems development life-cycle, including planning, analysis,
design, construction, implementation and operation. The analysis
stage incorporates both data analysis (resulting in the development of
data models) and function analysis which involves both process and
event analysis. The design phase incorporates logical and physical
database design, task design and user interface design. Construction
refers to the actual development of the physical database, tasks and
user interfaces, while implementation is concerned with delivering the
working system to the user environment.

Non-Transferability of Skills. Each CIS product on the market
today incorporates its own distinctive environment, being
substantially different from virtually all other available products.
Each system tends to have its own unique command language, icon set,
menu organisation and form layouts. The methods of interaction with
the system vary considerably, even for such simple actions as
selecting an object, obtaining help information or indicating
confirmation of an action. Each vendor tends to use their own set of
jargon, often in a manner which is inconsistent with other GIS
vendors.

Even worse, the underlying system architectures show through and
must be understood by the user before effective system usage is
possible. In the absence of any other strong conceptual model for the
system (as might be presented in a fully customised environment), the
underlying architecture (files, layers, coverages, points, lines and
polygons) forms the basis of the mental model developed by the user.
The application problem (e.g. forest resource management) becomes
mapped to the problem of manipulating the components of the CIS
architecture (i.e., the coverages, polygons etc.). Consequently the
skill set acquired by a user is specific to the jargon and
architecture of a particular product. Since each GIS uses different
jargon and different architectures, the user's knowledge of one system
is not readily transferable to another.

Expansion of the Objectives
Identification of Common Functional Components The first phase of

the research involved identification of a set of common (generic)
functions that should be supported within the UGIX interface. These
functions must be independent of any underlying GIS implementation
strategy (e.g. object, relational or sheet based) and dependent rather
on the goals of the user. These functions will be accessed via a set
of icons, menus and forms within the GUI, and as a set of commands,
operators and procedures within the command language. A "standard"
set of icons and command names will be provided for the generic
functions which may be modified (when required) within the customised
environment. It should be noted that the generic functionality will
not be implemented within UGIX, but rather, it will be accessible

278

through UGIX. This distinction is important, since it restates the
concept of separating the application from the user interface.

By identifying the functions required to satisfy tasks, and tasks
to satisfy generic goals, and providing access to these via icons and
commands, the interface should become more consistent and less
dependent on the underlying CIS data structures and architecture. It
is believed that this will make the system easier to learn and use,
and once learned will provide the user with knowledge that should be
more readily transferable to other systems.

Definition of a Generic Spatial Language Processor A command
language for interaction with the GIS database that supports the
generic functions is being developed. It is intended that the spatial
language will be embedded within both 3GL and 4GL languages which will
provide the program logic and control structures. A spatially
extended form of SQL (SQL-SX) has been designed to provide a standard,
transportable language suitable for database definition, query,
insertion, deletion and update. SQL-SX is to be supplemented by the
set of generic CIS functions identified above. The overall
architecture for the spatial query processor has now been sketched
out. It includes layers for SQL-SX, an equivalent iconic query
language, an inter-process communications interface and a
customisation environment.

Development of a Prototype Generic Use Environment To test the
feasibility of the concepts described here and the usability of such
an interface, a prototype use environment must be developed. Further,
it must be interfaced to a number of commercially available GIS
products to prove that the user interface can be detached from the
underlying GIS product architectures. The more difficult aspects of
the development are likely to be:

- creating an efficient system to map between the functions
supported within the generic spatial language and the matching
functions supported by the underlying GIS,

- hiding the user interface supplied with the underlying GIS.

Testing User Response The resulting prototype must be evaluated
to determine that it does indeed provide a superior user interface
environment to the standard interfaces provided by each of the
underlying GIS products. To test the acceptability of the UGIX
environment, a number of trials are proposed. Methods for evaluation
of user interfaces include:

- formal analytical methods where the interface is evaluated in
isolation from users (Grudin 1989)

- empirical methods where users are requested to perform the same
tasks using different interfaces, and the performances measured
and compared

- ethnographic methods where actual users are observed and the
context and users observations are elicited (Crellin, Horn and
Preece 1990).

During design of the graphical user interface we propose to
explicitly adopt accepted guidelines (e.g. proposed ISO guidelines
Williams 1989, Strijland 1990) as an aid to user interface
specification. Analytical methods, operating on data gathered by
automated monitoring of user interaction, may be used subsequently to
determine interface effectiveness, identify frequent command usages,

279

common errors and the relationships between use patterns and error
occurrences. Chen (1990) describes the use of monitoring facilities
built into the Xt toolkit to automatically gather appropriate
information. Empirical studies are also proposed to compare the
effectiveness of the new environment in direct comparison to the
interface provided by the underlying GIS. Finally, user acceptability
will be evaluated based on user interviews. It is intended that this
evaluation will lead to suggestions for improvement for subsequent
developments.

Background to UGIX
System Overview The UGIX system design as described by Rhind,

Raper and Green (1989) contains 3 main modules, viz. (A) containing
the screen interfaces, dialogues and command processor; (B) containing
a help and information system for a GIS; and (C) an expert system
shell or high level system access module. The structure of UGIX is
illustrated in figure 1. This section describes the approach taken in
the UGIX project, through first and second generation implementations.
The major distinction between the generations is that the first aims
to improve the usability of a specific GIS implementation, while the
second aims to provide a generic user environment supporting transfer
of skills between GIS and allowing easier customisation.

Figure 1. The three primary modules of the UGIX architecture.

UNIVERSAL GEOGRAPHIC INFORMATION EXECUTIVE
u

INTERFACE
A

SER

GUI

CUSTOMISATION

COMMAND

COMMAND

^
G

LANGUAGE

MAPPING

— *
*4 ——

——— *
•4- ——

rEs

HELP
B CONCEPTS

SYS ENVIR.

DIRECTORIES

EXPERT SYSTEMc MAP DESIGNER

MODEL MAKER

The first generation approach to interface design within the UGIX
project has been to prototype using HyperCard for the Apple Macintosh,
where the HyperCard application (complete with in-built communications
software) acts as a client to a host processor running the GIS
application software (Raper, Linsey and Connolly 1990). This approach
is similar to the one used by Cowen and Love (1988) to create an
interface to the South Carolina Historic Preservation Office GIS
database. HyperCard with its standard set of buttons, scrolling boxes
and cards makes use of the GIS less daunting for the less technically-
aware user. In addition, with the rich graphics environment available
in HyperCard it is possible to show a graphic to illustrate the effect
of various options available at any one point. It is also desirable
to display all the commands available to the user in one place, with a
pop-up explanation for each option.

280

Screen design has involved the standardisation of button and text
field formats as well as card and background layout for different
areas of activity such as:-

- Introduction and explanation (using a map guide);
- Map and file selection (using standard Macintosh file selection

dialogue);
- Session screens for command processing;
- Help environment (UGIX (B) based on GISTutor version 2) ;
- A Gallery for maps and images generated in the GIS (along with

button to redraw them).

Screen metaphors have been developed for each of these areas to
make location in the system a graphical attribute. The interface also
displays an activity index to give continuous feedback to the user on
the status of the session. Currently this system interface 'shell' is
being implemented for the GIS ARC/INFO, and is known as 'HyperArc': it
is currently under test with users at 'novice 1 and "competent 1 levels
of expertise. In addition to feedback on the use of the system, the
aim of the evaluation phase is to define a core area of functionality
in common use to help optimise the UGIX system structure.

An important early objective in the development of HyperArc was the
creation of file handling procedures to harmonise the user's concept
of maps with that of ARC/INFO. This establishes that maps are both
'views' of spatial data and sheets within a series i.e., spatial
tiles. Thus, search routines to find maps with particular names, to
sort maps by type (e.g. point or polygon based), to access the map
tiling system and to select the part of the sheet to view have all
been created. In the first generation of the UGIX project the user
specifies spatial queries using these system implementation concepts
which are made comprehensible to the user diagrammatically (user
testing is helping to refine this aspect). Hence HyperArc forces the
user to work with ARC/INFO concepts, but tries to connect them with
the user's view of the problem under study. This is ultimately
restrictive to the user since the data structure is fixed, and maps
are files which the user needs to manipulate in some way.

A basic principle of the UGIX design is that in order to make a GIS
easy to use the process of making a database selection, displaying a
map or carrying out spatial analysis must be broken down into a series
of logical parts, linked by a pathway for the user to follow.
Following such a path and gaining experience with the alternative
options is an excellent way to improve a user's end-to-end
understanding of the components of spatial data processing.
Appropriate information needed for a user to make a decision is also
retrieved before indicating the command options, for example only maps
with the correct specifications are presented (e.g. with topological
relations already created), when this is necessary for the operation.

Another UGIX design principle is that improving access to existing
GIS can be achieved by converting the current function-orientation of
the native system interface (primitive and implementation-specific
operations) to a task-oriented interface (sequences of high level
spatial operations) usable by a spatially aware user. The second
generation of the UGIX project aims to build on the experience of
constructing such task-oriented interfaces to create generic
interfaces capable of communication with any GIS.

281

However, in order to implement such an interface in a generic way
requires a new form of software architecture which is independent of
specific implementations, does not enforce a particular data model,
and adheres to the standards in the user community which are most
crucial to the success of GIS in heterogeneous computing environments.
To achieve this a layered model is suggested that protects the user
interface from the actual implementation mechanisms provided by each
GIS vendor. Each layer within the model will perform a particular
task and have a well defined interface to the layers both above and
below. Some of the layers within UGIX will be able to communicate
directly with the underlying GIS at a matching level.

UGIX (A)

Design Overview
Separation of the user interface from the application is not a new

concept. Early work resulted in what is often known as the "Seeheirti
model" (Green 1985) developed during a 1983 workshop on architectures
for interactive systems at Seeheim. Subsequently, the identification
of components of the overall system corresponding to semantic,
syntactic and lexical aspects, and the relationships between them has
lead to various alternative architectures. The development of general
purpose software for managing the user interface as a separate process
has lead to the comcept of the user interface management system (DIMS)
(Pfaff 1985). Here the application and the user interface software
are quite separate and communicate via a well-defined protocol.

Figure 2. The Seeheim model

Use Presentation

i l

Dialogue
Control

Switch •4 ———————

Application
Interface
Model

••Application

The overall architecture for UGIX (A) is similar to the Seeheirr
model in many aspects. The requirement for a high bandwidth
communications channel from the GIS application is supported to allovv
efficient graphics display and manipulation. Figure 3 illustrates
the overall structure proposed for the UGIX environment.

Figure 3. Overview of UGIX(A) architecture

User

User

•^ '•! ^Application

interface

282

Description of Components
The presentation layer incorporates a standard user interface

toolkit (e.g. Motif, OpenLook etc.) a widget design facility, a screen
design facility and a screen execution facility. The widget and
screen design facilities operate within the constraints of the
toolkit, and will be inplemented as a set of executable screens. The
customisation environment itself and the actual resulting end-user
application, will also simply be a set of screens with which the user
may interact.

The screens will be designed in terms of a set of windows, a set of
widgets within each window and a set of forms. The behaviour of the
windows, widgets and forms will be described in terms of the 4GL
command language. Interaction with the screens will cause the widgets
to react in the predefined manner and the execution of CIS tasks in
terms of the spatial command language embedded within the 4GL.

Equivalent commands may be issued directly via a command line
interface, via widget interaction or using voice input. Each method
should result in the execution of the same generic functions within
the dialogue control component. The voice recognition facility issues
either individual spatial command language tokens which may be used to
build a complete command, or entire commands. Entire commands may be
abbreviated into a spoken shorthand consisting of just a few words
rather than requiring the user to speak the full command syntax for a
particular task.

The application interface module accepts generic spatial language
commands and maps them onto the command language of the underlying
CIS. It then issues these commands to the GIS via an inter-process
communications mechanism. The GIS responses may include alphanumeric
information (which may be used to fill a form), status information
(error and function status) and/or graphics. To support a highly
interactive graphics environment requires that a high speed channel be
provided to display the graphical data. However, alphanumeric and
status data may be routed through the dialogue control module for
further processing and display.

Figure 4 illustrates the proposed architecture of UGIX(A) in more
detail.

The Graphical User Interface
Wilson (1990) reviews the use of graphical user interfaces within

GIS and the applicability of the desktop metaphor. He suggests
guidelines for building suitable user interfaces. The GUI is described
as having three components:

- an underlying conceptual model,
- a command structure comprising codes, function keys, buttons etc.

with which to create a syntax, and
- the visible screen graphics, such as command lines, menus and

icons.

To date, within the GIS world, most emphasis has been placed on the
development of a command syntax and the design of menus, icons and
screens. However, as yet there are no agreed standards for
interaction with the interface unlike the PC world where techniques
such as double clicking on an object to activate it, Fl function key
for help etc. are commonly adopted.

283

Figure 4. More detailed breakdown of UGIX architecture

Graphical User Interface Environment

WIMP
Interaction: K

4̂

Presentation
1 ———— ̂ | Widget Design

1 ————————— 1

— M Screen Design

V
Window Layout

Widget Layout

Form Layout

-ifr- Standard Interaction.
UI toolkit ^ —————— ̂
fMotif 1 ^ ^

^ *F^Widget
1 Library I

Sh^w— — — -*1
screen
Defn

1 Library

U

Screen Execution

\ Screen control ^ k
\ Error, warning
\ and status
\ r ^ reporting /T\ \ Command I :: .-. I ,, . T
\ Dialogue >/ V°1CC InPut

KeyboardX // >.
input \ \J ^*N^

Graphics

\| 1 r
Dialogue
Control Dialogue Contro1

generic functions
&4GL

GIS^
Status

Messages

Application
Interface
Model

k 4GL
Command
Dialogue, r

•""^ v

Reco
1

^
4GL dl

Dialogue

oice recognition]

;nised
okens^ f

Token to
alogue mapping

k Error
Status
Messages

1 Function Mapping

GIS
Command
Language r

er Process Communications

^ n GIS
,, , . Status Graphics

Messages

External GIS

GIS
Commands

This lack of standardisation has lead to a lack of transferability
of knowledge, long learning periods and generally difficult system
usage.

Initial attempts at improving usability concentrated on reducing
the number of interactions, menus, forms and icons that the user had
to deal with. This approach either reduced the available

284

functionality or produced menu hierarchies that were difficult to use.
An alternative approach is to use existing knowledge of a related
field that may be applied to the new problem domain.

The Underlying Conceptual Model A major contributing factor
towards the non-standardisation of the CIS user interface is the lack
of an underlying conceptual model for the interface. It has been
suggested (Gould & McGranaghan 1990) that the primary mechanism by
which a user learns to use GIS is by metaphoric learning. Here the
user is able to treat the unfamiliar environment like another familiar
one thus reducing the overall learning period. The general cognitive
process may be partitioned into metaphoric, analogical and modelling
processes. The differences between the three processes and their
implications for computer systems design are reviewed by Wozny
(1989). The concepts of metaphor and analogy are closely related:
analogy implies that one domain behaves like another, whereas with
metaphor, the target domain is more directly mapped onto the other and
hence becomes the other. Consequently, the use of metaphor within the
user interface is preferable since it allows a user to interact with
an unfamiliar system as if it is an environment with which they are
familiar. This effectively reduces the learning time, reduces stress
caused by unfamiliarity (i.e. makes for a happy user) and provides a
conceptual framework for the new environment which may be built upon.
For infrequent users, the use of metaphor may be more important, since
they may never progress beyond the metaphor presented to develop a
mental model of there own (Wozny 1989).

Existing graphical user interfaces for non-GIS applications have
often been developed using the desktop metaphor as the underlying
conceptual model. The desktop metaphor is suitable for many business
related applications since the activities performed by the computer
based application have direct equivalents with the manual methods.
However, it may not be readily applicable to many GIS applications due
to the lack of spatial and mapping related activities that normally
occur on and around a desk.

The wide variation in GIS applications and the variation in
experience of GIS users indicates that a single conceptual model is
unlikely to satisfy or be applicable to all situations. If we
perceive GIS to be an enabling technology for the integration of
spatial and aspatial data, we must then consider it to be equivalent
to a DBMS in generality, and hence not suited to a single model. In
contrast, a GIS customised to suit a particular narrow application
(e.g. mains fault analysis in the Water industry) may provide a
situation where an applicable underlying conceptual model may be
utilised.

Wilson (1990) pointed out that some GIS applications may have no
equivalent manual method. However, this does not imply that a
conceptual model on which to base the user interface cannot be found.
Rather it implies that analogy or metaphor may be suitable techniques
for development of the conceptual model.

Current GIS technology imposes on the user a conceptual model of
geographic space that is a function of the internal structures
supported by the GIS (e.g. layers, points, lines, polygons). What we
should be aiming for is a user interface that permits the system
customiser to present a conceptual model to the user that is relevant
and applicable to the both the user's background and the application
in hand.

285

The strength of the desktop metaphor as used within the Macintosh
and other PC environments for the underlying conceptual model, is that
it provides an organising framework within which other operations and
metaphors may exist. Gould and McGranaghan (1990) have extended this
idea to suggest the need for an organising metaphor within, which there
may be other nested metaphors (which may themselves be organising
metaphors). This approach has promise since it provides a structure
within which applicable and relevant metaphors may be applied, rather
than trying to apply a single metaphor to all situations.

The Organising Metaphor within UGIX The current thinking for the
UGIX GUI is to develop an environment supporting nested metaphors.
The proposed overall organising metaphor is a building, within which
there are a set of rooms, each accessible via a door. It should be
noted that the idea of using the room/building metaphor has been
independently conceived by a number of different groups including
researchers at Xerox Palo Alto Research Center and University of
Waterloo (Chan and Malcolm, 1984), and even built into a number of
existing products (e.g. Rooms from ENVOS and even Xll rev 4 attempts
to provide a Rooms-like system).

Within UGIX, each room may possess its own organising metaphor.
Most rooms will be directly accessible from the entrance hall although
some special-purpose rooms may require access from within another
room. On entering the system the user is located in the entrance
hall, a neutral, public space through which the user moves to
particular environment. Doors provide access to the environments the
user has access to. The door metaphor is a strong metaphor for access
into and out of different environments (Catedra 1990) and provides
features such as locks, opening and closing. These features may be
used directly for access control, entering and leaving. Within each
room, a single type of activity occurs, and a single lower-level
organising metaphor is employed.

For example, one room provides an environment where the desktop
metaphor is supported. Here general filing, correspondence and
interfacing to external non-GIS packages (e.g. word processing,
spreadsheets) takes place. Access to the aspatial part of the GIS
database is available via card indexes, file folders etc. and
alphanumeric reports can be created and printed.

A second room contains the drafting office where the map, drafting
table, map cabinet and light table are the principle metaphors. Now
access to the GIS database is via the map. Maps may be taken out of
the filing cabinet, updated, viewed and copies taken for development
proposals etc. Eventually these may be replaced in the map cabinet
following approval by the chief draftsman/engineer. Note that
operations not consistent with the map metaphor may not be applied
here.

A third room contains a library. Within the library books are kept
providing reference material, reports, archives and documentation.
Updating of system documentation is performed here.

A fourth room contains the development and customisation
environment. A workstation metaphor »is supported which provides
direct access to the 4GL development and customisation environment.

There is one special door that leads off the entrance hall - an
external door. Through the door, blue sky and clouds may be glimpsed,

286

and on entering this environment the real world metaphor is used for
access to the CIS database. Here there are no seams, maps or files -
only a continuous world containing objects. This is where the
experienced GIS user works and it is also the environment in which
virtual reality may one-day be accessible (Jacobson 1990).

Users are provided with keys that are able to unlock only some
doors. It is feasible to consider more specialised rooms leading off
of others. For example the database administrator and system manager
may be in their very own room accessible from the development and
customisation area.

The concepts of buildings, rooms and doors are internationally and
culturally neutral, providing an almost universally understood
concept. A further advantage exhibited by this metaphor is that it
provides an easy facility for extension. To add new environments
involves simply adding another room (with door!) to the building.
Within each new environment a different organising metaphor may be
used to support functions not supported elsewhere. The possibilities
of this metaphor are seemingly endless - e.g. leaving the system may
simply be performed by turning off the light switch in the entrance
hall, or alternatively going through the door that leads out into the
night.

The Iconic Query Language Access to the functionality provided
within each environment (room) will be predominantly via icons, menus
and forms. The icons should fit the organising metaphor for that
environment so that they have relevance and preferably direct
applicability. Consequently, the drafting office might be designed
specifically for experienced cartographers and hence might support map
cabinets from which maps may be extracted, drafting boards on which
map updates and viewing may be performed and light tables on which map
overlay operations may be carried out.

Consistency and simplicity are key considerations when attempting
to design a user interface, be it for a GIS or for a dishwasher. A
concise and simple syntax for manipulating the icons and database
objects is required which is both consistent and meaningful in terms
of the metaphors used. Existing GUIs such as that used on the
Macintosh are not fully consistent. Consistency between applications
has been encouraged since Apple provide a set of guidelines for
developers to follow (ref Apple Mac developers guide). Consequently
most packages available for the Mac have a similar look and feel so
that knowledge of one application/package provides useful knowledge on
the use of others.

Certain other aspects of the Mac interface are far less consistent.
In particular the order in which the objects and the operators are
selected varies from one type of operation to another. Objects to be
manipulated are usually selected first, and then the operation to be
applied is selected (e.g. discarding data by moving it to the
wastebasket, applying a different font and ruler to a section of
text). However, sometimes the operation to be performed is selected
first and then the objects to which it is to be applied are identified
(e.g. select the print function and then indicate which pages to
print). Hence, even though operations that are common between
applications are normally presented in a very similar manner the
syntax for different operations may vary within an application.

287

A further level of inconsistency, most frequently observed by
novices, is the use of the wastebasket. Why is the trash can used to
eject the disk when it is normally used for deleting data? Most
novices are unable to find a method for ejecting the disk, since the
use of the wastebasket for deleting documents and folders implies that
if the diskette is moved to the wastebasket, all folders and documents
on the disk will be deleted. This latter example indicates where the
use of a metaphor has been extended beyond its applicability and used
in an inconsistent manner.

The impact of the English language on the syntactic ordering of
operations, parameters and objects (verbs, modifiers and nouns) may
not have relevance to the iconic interface. Although it is known that
language structures our concept of space (Talmy 1990), it is not
thought that language will adversely impact the syntactic structure
of the iconic interface. In English we generally use a noun-verb-
modifier ordering to state facts (e.g. Jack closed the door), but a
verb-noun-modifier ordering for instructions or commands (e.g. close
the door quietly please) . Most of the operations performed within the
CIS tend to be instructional in that the user is commanding the system
to perform some action (e.g. modifying, deleting, reporting),
supporting the adoption of a verb-noun-modifier ordering.

However, most iconic interfaces require that the objects are
selected prior to identification of the action (i.e. noun-verb-
modifier, or object-action ordering). Even though this ordering is
not common within the English language for instructional sentences, it
does feel natural for English speaking users of the iconic interface.

Perhaps the most important aspect of this ordering is that object
selection and the operations to be performed on those objects are
effectively separated. They have become two discrete instructions
issued by the user. Furthermore, object selection is common to
virtually all operations and becomes independent of those operations,
meaning that a single set of object selection techniques can be
applied throughout.

One significant disadvantage to the use of object-action syntax
ordering is that the selection process may select objects for which
the operation may be invalid. If the operation to be performed is
identified first, the object selection process can use knowledge of
the operation to ensure that only appropriate (valid) objects are
selected. Within existing GUIs, this problem is partially overcome by
disabling functions for which the selected data is inappropriate.
However, if it is not obvious which of the selected objects is causing
the function to become unselectable, much operator frustration is
likely to ensue.

Within the UGIX GUI, we recommend the use of object-action ordering
as the basic syntactical construct for icon interaction. Object
selection will be performed first. Subsequent identification of an
action will apply that action to the selected set of objects.

The Command Level Interface
The command level interface incorporates a 4GL command language, a

function mapping facility and an inter-process communications
facility. It accepts commands from the GUI and the voice recognition
system in terms of 4GL command sequences. It can also be accessed
directly to perform ad hoc functions and applications development.

288

Srtallworld Magik, an object-oriented (OO) development facility from
Smallworld Systems has been selected for the development of the
prototype.

Smallworld Magik: An object-oriented development environment. The
objective is to support a single command line and development
environment in which application development, database definition, ad
hoc queries, menu, form and icon commands, database access and
graphics are all available. It is also desirable that the full power
of the underlying CIS, DBMS and UIMS are available. An object-
oriented development language has been selected since it offers the
opportunity for high programmer productivity and a structured
development approach. The use of 00 techniques such as code re
usability, inheritance and encapsulation can reduce the overall
development effort for a complex system. The Magik language (Chance,
Newell and Theriault 1990) is a hybrid of the procedural and 00
approaches and supports its own interactive development environment.
It is fairly readable (certainly more so than 3GLs such as C and C++),
comes with a comprehensive set of standard object classes, methods and
procedures, and provides the ability to transfer applications between
hardware and operating system platforms with a minimum of effort. It
utilises the X-Windows standard for all interaction with the
workstation.

For the UGIX development, we are extending Magik by adding a new
set of language constructs to support a spatially extended version of
SQL.

SQL-SX: A spatially Extended version of SQL The relational
language SQL (Date 1989). forms a suitable base on which to develop
spatial extensions due to:

- its widespread acceptance by database users
- its availability within a large number of commercially available

DBMS (relational and non-relational)
- its acceptance as an international standard
- its ongoing development, thus ensuring a long-term future.

The use of relational database management system (RDBMS) technology
within the existing GIS user community is virtually universal.
Further, it is likely that RDBMS will be the major data management
technology for at least the 1990s, and that SQL will be the major
language for interaction with those databases. The investment by user
organisations in training staff in the use of SQL is significant so
there is consequently a sizeable body of expertise available both
within GIS user organisations and in the general computing industry.
The use of a non-standard query language for GIS implementations does
not appear commercially viable, nor practical in the near future.

A number of GIS vendors are already developing spatially extended
versions of SQL and have reported their work in the research
literature including Kork (Ingram & Phillips, 1987), Intergraph
(Herring, Larsen & Shivakumar, 1988), Wild Heerbrugg (now Prime)
(Charlwood, Moon & Tulip, 1987) and GeoVision (Westwood, 1989) . Each
has attempted to provide facilities supporting spatial predicates and
spatial data manipulation facilities within SQL (or SQL-like query
languages). Unfortunately, the basic query language in each case has
been an incomplete implementation of the ANSI/ISO SQL standard (ISO
1987, ISO 1989), and the spatial extensions were fairly minimal and

289

elementary. To make matters worse, the extensions in general do not
maintain consistent syntactic and semantic constructs with the rest of
SQL. For example, spatial predicates are not in general supported
within the WHERE clause, but rather within a separate clause.

Other researchers including Pong-Chai Goh (1989), Sacks-Davis,
McDonell and Ooi (1987) and Egenhofer (1987) have also provided useful
contributions towards the development of spatial extensions to SQL.
However, until recently there has been no proposal for a standard set
of extensions put forward for discussion. In our recent paper (Raper
and Bundock 1990) we proposed a set of spatial extensions for SQL that
could form the basis for an agreed standard between CIS vendors and
the GIS user community. The spatial extensions are based on the
existing proposals for SQL2 and SQL3 being studied by the combined
ISO-ANSI SQL standards working group (ISO-ANSI 1989). These proposals
include a number of object-oriented concepts, including support for
abstract data types, methods, operators and functions. In particular,
the detailed proposal in support of abstract data types (Kerridge
1989) if implemented, would provide the framework in which to develop
spatial data types, spatial operators and spatial functions, while
remaining completely within the SQL standard.

The extensions necessary to make SQL usable within GIS applications
for query of both spatial and aspatial data include:

- spatial data type(s) e.g. point, node, line, polygon
- spatial operators (predicates) e.g. at, inside, encloses,

connected_to
- spatial functions e.g. area_of, length_of
- long transaction management statements
- report specification facilities - both textual and graphical

In addition, functional requirements demand that:

- the spatial data types should be displayed graphically as a
result of being SELECTed

- the data dictionary and DDL support the extensions
- spatial access control (protection) may be provided by inclusion

of spatial data types, predicates and functions within VIEW
definitions

- spatial integrity maintenance may be provided by support of
spatial data types, predicates and functions within the
CONSTRAINT clause.

The Function Mapping Facility. This facility accepts UGIX commands
in the form of function specifications and data selection
specifications, and transforms these to the command language of the
underlying GIS. For functions supported by both UGIX and the
underlying GIS, the mapping should normally be moderately
straightforward. Using 00 techniques, the function mappings become
methods for the function objects. It is hoped that this technique
will provide a straightforward approach to allow the support of
multiple underlying GIS products.

Functions in UGIX not supported by the GIS However, not all
functions known to UGIX may be available in the underlying GIS.
Consequently, there will be holes in the UGIX interface for those
unsupported functions. Icons representing unsupported functionality
will be displayed in grey, and the matching command level functions
will possess a method that reports on the function unavailablity.

290

Functions in the CIS not supported by UGIX Where the underlying
GIS supports functions unknown to UGIX, a general purpose facility
will be provided that allows UGIX to send the system dependent command
string directly to the underlying GIS. The command string will be
explicitly declared and may be associated with icons, menus and forms
in the normal way. In this way, special purpose functionality may be
readily included in the UGIX GUI, even if it is not considered generic
enough to warrant inclusion in the generic function list.

SYSTEM CUSTOMISABILITY

The Requirement for Customisation
Customisation of any GIS is required to allow the system to manage

and manipulate the entity types that exist in the problem domain. The
system customiser or database administrator, must be able to describe
to the system the object classes/entity types that are to be modelled
within the resulting system. They must define the names of the object
classes, the names and types of attributes the objects possess, the
behaviour of the objects with respect to operations on the objects and
the inter-relationships between objects. The object class names,
attribute names and operation names should each be assigned in terms
of the language normally used within the application (i.e. the
application specific jargon - e.g. the land surveying examples of
table I) not in terms of the language used by the GIS. Defining the
objects, attributes and operations in terms of the user's language
allows interaction with the system to use that language.

The user interface may be customised to reflect the names described
above and the symbols used by the application. Consequently, the
standard icons representing the object classes, attribute types and
operations of the application domain must be generated and associated
with the names of the matching elements. This permits interaction
with the GUI to be performed with icons recognised by the user as
being part of the application domain.

The graphical user interface may also be customised to provide a
conceptual model using metaphors which inexperienced users may
recognise from previous experience - either application experience or
experience from other domains. This conceptual model must be
appropriate to both the application and the user's background.

The customisation facilities must be continually available, rather
than being used just once to create a fixed, static system. Business
(research, education, . ..) requirements change, resulting in either
changes to existing applications or entire new applications being
created. The user interface must also remain adaptable to match
individual user preferences, and user-specific tasks.

Integration of Task Analysis Methodologies
A variety of methodologies and associated tools are available today

to assist system designers and customisers determine the requirements
for a new information system. User-centered requirements analysis
methodologies provide a structured approach to performing both data
and task analyses.

Data analysis results in a detailed description of the object
classes, their attributes and the inter-relationships between object
classes that might be managed within the final system. It also
identifies integrity constraints and any other special behaviour

291

exhibited by objects when a change of state occurs. Although this
information may be recorded on paper in a descriptive manner, it is
also possible to save it in a database - often refered to as the data
dictionary. Tools that assist the data analysis task will nearly
always save this meta-data in a form that may be used at a later date
for automating the creation of the target database.

Task analysis results in the development of a detailed description
of the goals, processes and user interaction that must occur for the
goals to be met. Tools that assist this process may also store the
task descriptions in a database in a structured form. Formal
mechanisms have been developed to structure this information in such a
manner that it may be used later for automating the creation of the
user interface. For example Extended Task Action Grammar (ETAG)
(Tauber 1990) may provide such a mechanism, although it is likely that
the level of detail required to define the target system may be
significant.

It is intended that UGIX(A) incorporate tools to assist both data
and task analysis. These tools will be used to gather and structure
information describing the target environment in such a manner that it
may subsequently be used to automatically generate the database
definition and the user interface. Further, the information should be
in a form to provide input to the help facility supported by UGIX(B)
since descriptions of the data, the low level functions and the tasks
will all be available in a structured form.

COMMON FUNCTIONAL CIS OPERATIONS

A Methodology for Identification of Key GIS Functions
Analysis of the functions to be supported directly within the

interface is based on goal analysis and hierarchical decomposition
(top-down) techniques rather than task analysis techniques since the
interface, as delivered, must retain its generality. Task analysis
might provide a more detailed definition of requirements for a
particular (well defined) application but is considered too specific
when attempting to define general requirements. Abstraction of the
general functionality from a task based analysis might be possible
given sufficient access to a wide range of actual users in a wide
range of applications. However, operating within a tight set of time
and resource constraints, requires the analysis to be performed
quickly with minimal contact with real users.

To overcome this limitation, the study initially involved :

- a review of existing research literature,
- a review of a number of GIS tenders,
- a review of the functionality supported by a number of

commercially available GIS products.

A number of authors have reported attempts at classifying GIS
functionality, including Dangermond (1983) and Maguire and Raper
(1990). However, Dangermond based his analysis firmly in terms of the
map concept which partitions the world into discrete tiles.
Consequently, much of the functionality described is concerned with
managing these discrete units, to allow queries across multiple map
sheets, to join multiple maps to form a new composite map, and to
perform edge matching. This functionality is quite distinct from the
goals of the user, being the functionality necessary to support a map-

292

sheet based GIS implementation. Maguire and Raper describe the
functional components of a GIS in a more generic manner. Below each
identified high level function they separate the functionality that
applies to the spatial data, from that which applies to the attribute
(aspatial) data. In the current study we attempt to retain the user's
concept of objects within their application domain which may possess
spatial and/or aspatial components. This suggested set of generic
functions will be presented with the first UGIX prototype.

CONCLUSIONS

The development of a GIS independent user interface environment
capable of interfacing with a number of commercially available
products while still providing an adaptable, consistent, easily
learned and easy to use interface, appears at first sight a difficult
task. A structured approach to this problem is however beginning to
indicate the feasibility of the project.

Incorporating structured analysis tools into the environment is
expected to simplify system customisation while improving the
resultant interface. In particular, it should help provide a user
interface that incorporates the terminology, icons and conceptual
models specific to the application and user's background while
developing the interface in terms of a set of standard guidelines.

The usability of the prototype system will be evaluated and
compared to the interfaces offered by the underlying GIS products.
The comparison will eventually prove or disprove the viability of this
approach. If successful, we would like to promote the concepts
incorporated within UGIX to initiate discussion between users and
vendors on the development of standards and guidelines for GIS user
interface design and construction.

ACKNOWLEDGEMENTS.

The authors of this paper acknowledge the help of ESRI in the
funding of work leading to the prototyping of HyperArc, the first
generation of UGIX. Apple Computer (UK) have also assisted in this
work by establishing a laboratory of Macintosh computers which form
the Apple Mapping Centre at Birkbeck College. Receipt of an ESRC/NERC
grant from the collaborative programme in GIS is acknowledged by MSB.
Smallworld Systems have assisted the project with hardware and
software tools. We would also like to thank Lesley Bundock for her
efforts in reviewing and commenting on various drafts of this paper.

REFERENCES

Apple Computer (1987). Human interface guidelines. Addison Wesley,
Amsterdam

Catedra M. (1990). "Through the Door": A view of space from an
anthropological perspective. Proceedings of NATO AST Cognitive and
Linguistic Aspects of Space, Las Navas, Spain

Chan P.P. and Malcolm M.A. (1984) . Learning considerations in the
Waterloo port user interface. Proceedings IEEE First International
Conference on Office Automation, IEEE, New York

Chance A., Newell R.G. and Theriault D.G. (1990) . An Overview of
Magik, Technical Paper 9/1, Smallworld Systems Ltd, Cambridge, UK.

293

Charlwood, G. Moon, G. and Tulip, J. (1987). Developing a DBMS for
Geographic Information: A Review, Proceedings Auto-Carto 8,
Baltimore, Maryland.

Chen J. (1990). Providing Intrinsic Support for User Interface
Monitoring, Proceedings Human-Computer Interaction - INTERACT '90,
Cambridge, UK.

Cowen D.J. and Love S.R. (1988). A HyperCard based workstation for a
distributed CIS network. Proceedings GIS/LIS '88, San Antonio, TX,
USA.

Crellin J., Horn T. and Preece J. (1990). Evaluating evaluation: A
case study of the use of novel and conventional evaluation
techniques in a small company. Proceedings Human-Computer
Interaction - INTERACT '90, Cambridge, UK.

Dangermond J. (1983). A Classification of Software Components
Commonly used in Geographic Information Systems. Proceedings United
States/Australia Workshop on Design and Implementation of Computer-
Based Geographic Information Systems, Amherst, New York

Date C.J. (1989) . A Guide to the SQL Standard, Second Edition,
Addison-Wesley, Reading, Massachusetts

Egenhofer M.J. (1987). An extended SQL syntax to treat spatial
objects, Proceedings 2nd International Seminar on Trends and
Concerns of Spatial Sciences, New Brunswick.

Green M. (1985). Report on Dialogue Specification Tools. In Pfaff, G.E
(ed) User Interface Management Systems. Springer Verlag. pp 9-20.

Gould M.D. and McGranaghan M. (1990) Metaphor in Geographic
Information Systems, Proceedings 4th International Symposium on
Spatial Data Handling, Zurich, Switzerland.

Grudin J. (1989). The Case Against User Interface Consistency,
Communications of the ACM, 32, 10.

Herring J.R. Larsen R.C. and Shivakumar J. (1988). Extensions to the
SQL Query Language to Support Spatial Analysis in a Topological
Data Base, Proceedings GIS/LIS '88.

Ingram K.J. and Phillips W.W. (1987). Geographic Information
Processing Using a SQL-Based Query Language, Proceedings Auto-Carto
8, Baltimore Maryland.

ISO (1987). Report ISO 9075 Information Processing Systems-Database
Language SQL

ISO (1989). Report ISO 9075 Information Processing Systems-Database
Language SQL

ISO-ANSI (1989). Database Language SQL2 and SQL3 (ISO-ANSI working
draft) X3H2-89-252 and ISO DEL FIR-3, J Melton (editor), July 1989

Jacobson R. (1990). Virtual Worlds, Inside and Out. Proceedings NATO
AST Cognitive and Linguistic Aspects of Space, Las Navas, Spain

294

Kerridge J.M. (1989). A Proposal to add User Defined Datatypes to SQL,
ISO report ISO/TC97/SC21/WG3-DBL-FIR-3.

Maguire D.J. and Raper J.F. (1990). Design Models and Functionality in
CIS, Proceedings GIS Design Models, Leicester, UK.

Pfaff G.E. (ed) (1985) . C7ser Interface Management Systems,
Eurographics Seminars, Springer-Verlag, Berlin

Pong-Chai Goh (1989). A GQL for Cartographic and Land Information
Systems, International Journal of Geographic Information
Systems, vol. 3, no. 3, 245-255.

Raper J.F. and Bundock M.S. (1990) UGIX: A Layer Based Model for a GIS
User Interface. Proceedings of NATO ASI Cognitive and Linguistic
Aspects of Space, Las Navas, Spain

Raper J.F. and Green N.P.A. (1989). Development of a Hypertext Based
Tutor for Geographical Information Systems. British Journal of
Educational Technology.

Raper J.F., Linsey T. and Connolly T. (1990). UGIX: A Spatial Language
Interface for GIS : Concept and Reality. Proceedings of EGIS '90,
Amsterdam, The Netherlands

Rhind D.W., Raper J.F. and Green N.P.A, (1989). First UNIX then UGIX,
Proceedings of AutoCarto 9, Baltimore, MD, USA.

Sacks-Davis R., McDonell K.J. and Ooi B.C. (1987). GEOQL - A Query
Language for Geographic Information Systems, Internal Report 87/2,
Dept of Computer Science, Royal Melbourne Institute of Technology.

Strijland P. (1990). Icons for use on screens Part 1: Specifications.
ISO/IEC JTC 1/SC18/WG9 Working Document (4 July 1990).

Talmy L. (1990). How Language Structures Space. Proceedings of NATO
ASI Cognitive and Linguistic Aspects of Space, Las Navas, Spain

Tauber M.J. (1990) ETAG: Extended task action grammar. A language for
the description of the user's task language. Proceedings Human-
Computer Interaction - INTERACT '90, Cambridge, UK.

Westwood K. (1989). Toward the Successful Integration of Relational
and Quadtree Structures in a Geographic Information System.
Proceedings National Conference - GIS - Challenge for the 1990's.,
Ottawa, Canada

Williams J.R. (1989). Menu Design Guidelines. ISO TC159/SC4/WG5 WD
9241-14 (17 March 1989)

Wilson P.M. (1990) Get your Desktop Metaphor off my Drafting Table:
User Interface Design for Spatial Data Handling. Proceedings 4th
International Symposium on Spatial Data Handling, Zurich,
Switzerland.

Wozny L.A. (1989) The Application of Metaphor, Analogy and Conceptual
Models in Computer Systems. Interacting with Computers: The
Interdisciplinary Journal of Human-Computer Interaction, vol.1 no.
3 pp 273-283

295

Algebraic Optimization
of Combined Overlay Operations*

Claus Dorenbeckt
Max J. Egenhofer*

National Center for Geographic Information and Analysis
University of Maine

Orono, ME 04469, U.S.A.
CLAUS@MECANl.bitnet
MAX@MECANl.bitnet

Abstract
The operations necessary to combine map layers are formalized with algebraic
specifications. This shows that arithmetic operations upon discrete spatial subdi
visions are reduced to a single, parametric overlay operation, the actual behavior
of which is determined by a value operation which combines the non-spatial at
tributes of the individual cells of the corresponding layers. The novel approach is
the application of these formalisms to find more efficient strategies for processing
several overlay operations at an implementation-independent level. Two particu
lar strategies are investigated: (1) the elimination of equivalent subexpressions to
reduce the complexity of the overlay operation and (2) the integration of several
overlay operations into a single one.

1 Introduction
Spatial data models (Peuquet 1984, White 1984, Frank and Kuhn 1986, Herring
1987, Egenhofer et al. 1989) and spatial data structures (Peucker and Chrisman
1975, Corbett 1979, Nagy and Wagle 1979, Samet 1989) have been extensively
studied in the past. More recently, the interest in the relations between spatial
data models and spatial data structures has increased (Egenhofer and Herring
1991, Frank 1991b, Frank and Mark 1991, Goodchild 1991). Initial results of
these investigations are:

• A spatial data model is the formalization of spatial concepts so that they can
be represented in a computer.

"This work was partially funded by a grants from NSF under grant number SES 88-10917 and
Intergraph Corporation, principal investigator Andrew U. Frank.

tOn a leave of absence from the University of Bremen, F.R. Germany.
* Additional support from Digital Equipment Corporation under grant number TP-765536 is

gratefully acknowledged.

296

• A spatial data structure is the implementation of a particular spatial data
model.

• A spatial data model may have multiple implementations with various effects
on the performance and the storage requirements.

• A spatial data structure must fulfill the properties of the operations specified
for the data model, in order to be a valid implementation of a spatial data
model.

For example, the data model of a regular subdivision of space into squares of
equal size, frequently called a raster model, may be implemented with different
spatial data structures, such as a 2-dimensional array, run-length encoded, as a
quadtree data structure, etc. (Samet 1989).

Within this framework of spatial data models and spatial data structures, a
question of particular interest is, "How to describe formally the behavior of the
operations?" This question covers the properties of the operations, i.e., the linkage
between a data model and its various implementations, but, more importantly, also
the specifications of the properties of their combinations. Note that it does not
treat the actual implementation, i.e., a particular data structure or an algorithm.

Formalizations of spatial data models and GIS operations are necessary to
(1) verify that an implementation, i.e., a spatial data structure, does what was set
forth by the spatial data model, and (2) compare the semantics of different spatial
data models (Frank 1987, Smith and Frank 1990). Non-spatial data models have
been formalized, for example, by the relational algebra which specifies the behav
ior of the operations upon relational tables (Codd 1970, Ullman 1982), but only
subsets of spatial algebras exist, e.g., for topological relationships (Egenhofer and
Herring 1990) or directions (Peuquet and Ci-Xiang 1987, Chang et al. 1989, Frank
1991a). Each of these approaches is limited to a very specific class of operations
and no attempts have been made to integrate them into a larger system.

The Map Analysis Package provided the first comprehensive collection of an
alytical and spatial operations on the basis of regular tessellations (Tomlin 1983,
Tomlin 1990). It describes map overlay operations informally, without applying
the mathematical rigor necessary to analyze the behavior of the operations, leaving
ample space for ambiguous interpretations. One implementation of this MAP alge
bra describes formally these operations in the C++ programming language (Chan
and White 1987), but lacks the definitions of the corresponding observe operations
so that no axioms about the behavior of the operations can be formulated.

More formal approaches are based on the Euclidean plane and the representa
tion of spatial data in terms of points, lines, and areas. A formalisation of the non
set-theoretic part of Euclidean geometry (Tarski 1959) gives a collection of thirteen
elementary axioms. An algebraic specification of graphic data types formally de
fines the semantics of a simple graphics programming language without geometric
operations (Mallgren 1982). An algebra for geometric constructions, based upon
well-known algebraic structures such as rings and fields (Goguen 1989), demon
strates the use of algebraic specifications for spatial objects, however, it is limited
to a few, very basic constructs in plane geometry. The geo-relational algebra
enhances the relational model with computational geometry operations (Guting
1988). A formalized interpretation of operations upon maps uses set operations

297

and a construct similar to constructs in functional programming languages, such as
mapcar in LISP, applying a user-defined function to each element of a set (Scholl
and Voisard 1989).

This paper addresses the formalization of operations on regular tessellations to
assess optimization strategies, particularly for combinations of overlays. The oper
ations necessary to combine map layers are formalized with algebraic specifications
and the optimization attempts to identify a more efficient combination of the ini
tial operations. It employs algebraic methods to substitute complex combinations
by simpler ones (Ullman 1982), a technique commonly employed in electrical en
gineering applications (Preparata and Yeh 1973) and compiler design (Aho et al.
1985).

The remainder of this paper is structured as follows: the next section briefly
introduces the two formalisms used, i.e., algebraic specifications and decision ta
bles. Section 3 formalizes a specific map overlay operation and then generalizes
this formalism so that it becomes applicable for arbitrary overlay operations. The
properties of value operations to combine layers, cell-by-cell, are analyzed in Sec
tion 4, ,and strategies are proposed for efficient combinations of multiple overlay
operations. Section 5 summarizes the results and concludes with directions for
further research.

2 Formal Methods

2.1 Algebras
Multi-sorted algebraic specifications are a tool commonly used in software en
gineering to describe completely and formally the behavior of complex sys
tems (Liskov 1986). They are based on heterogeneous algebras (Birkhoff and
Lipson 1970) and their extensions to multi-sorted algebras (Guttag 1977). Data
algebras (Zilles 1979), using equations to define the independent properties of data
structures, and abstract data types (ADTs) (Goguen et al. 1978) influenced to
day's understanding of algebraic specifications. An algebraic specification consists
of three parts (Liskov 1986, Ehrich et al. 1989): (1) a set of sorts, 1 (2) a set of op
erations defined upon the sorts, and (3) a set of axioms or equations that specifies
the behavior of the operations. Two kinds of operations are distinguished: (1) op
erations to create or modify an ADT, called creators, and (2) operations to observe
some of the properties of an ADT, called observers. A specification is sufficiently
correct and sufficiently complete in terms of its creators and observers (Guttag
and Horning 1978).

The following example specifies an ADT point in the Euclidean plane. The
ADTs integer and boolean are assumed to exist with their usual semantics. The
syntax of this specification method resembles the syntax of specification-like pro
gramming languages such as Eiffel (Meyer 1988) and MOOSE (Egenhofer and
Frank 1988).

1 The term sort does not imply an order (sorting) over the instances. Programming languages
use the less ambiguous term type in lieu of sort, however, types consider also the structure of the
sorts (Cardelli and Wegner 1985) which is part of an implementation.

298

SORTS2 point USES integer, boolean
OPERATIONS3 make: integer x integer -» point

x: point —> integer
y: point —•» integer
isEqual: point x point —>boolean

VARIABLES4 ii, i 2 : integer; pt , p 2 : point
EQUATIONS5 x (make (i1(i2)) == ii

y (make (i!, i2)) == i2
isEqual (pi, p2) == integer .isEqual (x (pi), x (p2)) and

integer.isEqual (y (pi), y (p2))

Specification 1: Point.

2.2 Decision Tables
A decision table is another method to specify formally the behavior of operations,
particularly those which can be described by a series of rules. It consists of two
parts: (1) a set of conditions which have to be satisfied simultaneously and (2) the
corresponding actions to be taken upon the conditions (Metzner and Barnes 1977).

Decision tables are most naturally presented in the form of a table with the set of
conditions being put into the upper half of the table and the set of corresponding
actions underneath. Boolean values, T and F, are assigned to the conditions
indicating whether or not the corresponding action should be taken. If an action
is taken independent of a condition then a dash in the corresponding decision
indicates don't care. Since the entries in conditions and corresponding actions are
logically connected with AND, they are commutative.

Decision tables are a well-suited tool to express some spatial analysis operations
which frequently use complex algebraic expressions to describe their operations
and mappings. The following example demonstrates the use of a decision table
to formalize a particular value operation, the localRating, frequently used in the
MAP algebra (Tomlin 1990). LocalRating assigns to each n-tuple of values a new
value. For example, the following localRating combines a layer of altitudes with a
vegetation layer into a new layer windExposure.

• If the altitude is greater than or equal to 290 and vegetation type 0 then the
wind exposure is 1.

• If the altitude is greater than or equal to 290 and vegetation types 1-3 then
the wind exposure is 2.

• If the altitude is less than 290 and vegetation type 0, 1, or 3 then the wind
exposure is 3.

2The SORTS definition includes the data type to be specified and the types it USES to describe
its properties.

3 OPERATIONS are defined by their name, the Cartesian product of the input sorts, and the
sort of the result.

4 VARIABLES describe the instances of the sorts used in the equations.
5 The behavior of each operation is expressed by EQUATIONS in terms of equivalent observe

and create operations.

299

• If the altitude is less than 290 and vegetation type 2 then the wind exposure
is 4.

Table 1 shows a decision table which models these rules.

altitude
vegetation
windExposure

> 290
0
1

> 290
1 V2V3

2

< 290
OV1 V3

3

< 290
2
4

Table 1: The decision table for the local rating of altitudes and vegetation [Tom-
lin 1989].

3 Formalizing Overlay Operations
The raster model is a particular subclass of the regular tessellations with a discrete
representation of space (Egenhofer and Herring 1991, Frank 1991b). It partitions
the area of interest into equally-shaped cells so that (1) the set of all cells forms a
complete partition, called a layer, and (2) any pair of cells does not overlap. This
section will demonstrate the use of algebraic specifications to specify formally
combinations of layers.

3.1 An Overlay Example
The most common queries upon layers are based on the map overlay methodol
ogy, i.e., the combination of several layers into a new one (Steinitz et al. 1976).
A simple, but specific example is to show the use of algebraic specifications for
describing a particular overlay operation. The operation to be specified is the com
bination of the two layers with regular rectangular cells, both over the same spatial
extent, in the same scale, and with the same orientation. Each cell is made from
a location and a value. In this particular example, each value is an integer, with
the operations equal and maximum and their usual semantics, and each location
is a rectangle described by its lower-left and upper-right points (Specification 1),
a creator (make), and three observe operations (Specification 2).

300

SORTS location USES point, boolean
OPERATIONS make: point x point —> location

lowerLeft: location —» point
upperRight: location —> point
isEqual: location x location —»boolean

VARIABLES pi, p2 : point, lj, 1 2 : location
EQUATIONS lowerLeft (make (px , p 2)) == p:

upperRight (make (pT , p2)) == p2
isEqual (li, 12) == point.isEqual (lowerLeft (li),

lowerLeft (12)) and
point.isEqual (upperRight (li),

upperRight (12))

Specification 2: Location as the Cartesian product of two points.

Cells have operations to make a new one and to access its components, i.e.,
getLocation and getValue (Specification 3).

SORTS cell USES location, value
OPERATIONS make: location X value —> cell

getLocation: cell —>• location
getValue: cell —>value

VARIABLES 1: location; v: value
EQUATIONS getValue (make (1, v)) == v

getLocation (make (1, v)) == 1

Specification 3: Cells.

The resulting layer contains the greater of the two values at the corresponding
spatial locations (Specification 4).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -> layer

overlayMaximum: layer x layer —* layer
VARIABLES la, 1 2 : layer; Ci, c2 , c3 : cell
EQUATIONS FOR EACH [G! , c2 , c3] IN [lj, 1 2 , overlayMaximum (lx, 12)] :

location.isEqual (cell.getLocation (c3),
cell.getLocation (cj)) and

location.isEqual (cell.getLocation (c3),
cell.getLocation (c2)) and

value.isEqual (cell.getValue (c3),
value.maximum (cell.getValue (ci), cell.getValue (c2)))

Specification 4: Combining two layers by selecting the maximum value.

301

The syntax of the equations uses a FOR EACH5 loop (Liskov et al. 1981)
to apply an operation to all elements of a set (Backus 1978), i.e., all cells which
are part of, or IN, a layer. Actually, this is an observe operation upon a layer
returning the cells in the aggregate one after another. Simultaneous loops over
multiple aggregates group the parts and the aggregates pairwise between brackets
so that the n-th part in on bracket corresponds with the n-th aggregate in the
other.

This set of specifications for layers, cells, rectangles, and integers completely
formalizes the behavior of this particular overlay operation.

• Layers are combined by applying a particular operation to corresponding cells,
i.e., cells with the same spatial location.

• The same value operation is applied to all cells of a layer.

• The value combination of cells preserves the locations of the cells, i.e., the
location of each cell in the resulting layer is the same as the one of the cells
combined.

3.2 A Generalized Overlay Operation
The previous specification can be generalized so that it holds for other overlay
operations as well. Such a generic specification is based upon the definition of a
generalized value type, a superclass of all possible sorts which may characterize
the non-spatial properties of a cell.

A value type must provide operations to compare two values for equality (isEqual)
and to combine values (Specification 5). The specification of its create operation
is DEFERRED (Meyer 1988), because it depends upon the particular value type used.

SORTS value USES boolean
OPERATIONS create: DEFERRED -> value

isEqual: value x value —»boolean
combine: value x value x ...x value —» value

Specification 5: A generic value.

Likewise, the location specification may vary for different shapes of cells. Be
sides the make operation, the ADT location must provide an operation to compare
two locations for equivalence (isEqual) (Specification 6).

SORTS location USES boolean
OPERATIONS make: DEFERRED -> location

isEqual: location x location —>• boolean

Specification 6: A generic location.

5 Not to be confused with the for-all quantifier, V, commonly used in calculus.

302

The specification of the ADT cell as the Cartesian product of location and value
stays unchanged (Specification 3). The modified ADT layer has a single overlay
operation with varying implementations depending on the value operation used to
combine corresponding cells. The FOR EACH loop runs over the sets of all cells
in all layers, indicated by c, and 1,, respectively (Specification 7).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -* layer

overlay: layer x layer x ...x layer x value.combine —> layer
VARIABLES c,, cn : cell; 1,: layer
EQUATIONS FOR EACH [c,, cj IN [1,, overlay (1,, value.combine)]:

location.isEqual (cell.getLocation (cn),
cell .getLocation (c,-)) and

value.isEqual (cell.getValue (cn),
value.combine (cell.getValue (c,-)))

Specification 7: A parametric layer.

The behavior of any overlay operation is expressed by a particular operation
upon the values of individual cells (value. combine). The usage of a variable argu
ment over value operations reduces the specification to a single, generic operation.
Combine is similar to the operators apply (Scholl and Voisard 1989) and A (Giiting
1988) in other formalizations.

The generalized overlay specification reveals that the characteristics of these
overlay operations are exclusively determined by the operation combining several
values. Conversely, the properties of the value operation immediately map onto
the properties of the overlay operation. For arithmetic overlay operations, it is
sufficient to consider each layer as a set of cells, i.e., no topological relationships
among the cells are used. Since the values are combined over the same location,
the overlay operation—in terms of relational algebra (extended with arithmetic
capabilities) (Ullman 1982)—is (1) an equijoin over the same location (Frank 1987)
followed by (2) an arithmetic operation combining the values of corresponding
location and (3) a projection of the locations and the combined value.

4 Optimization
An overlay operation over multiple layers results in a new layer which, in turn, may
be used as an argument in another overlay operation. Frequently, many overlay
operations are combined this way to perform a more complex operation (Tomlin
1990). While sophisticated spatial data structures may efficiently implement an
individual overlay operation, they generally provide only little support for improv
ing the processing of a series of overlays. It will quickly become time consuming
to process sequentially each overlay operation by producing an intermediate layer
after each operation. In lieu of immediately performing each operation, it is more
efficient to evaluate first the entire operation and identify an execution strategy
which predicts the shortest processing time. Similar considerations within the re
lational algebra to gain better performance for complex, combined operations led

303

to the area of query optimization (Ullman 1982). To date, only few attempts have
been made to improve systematically spatial query processing (Hudson 1989, Ooi
and Sacks-Davis 1989). Current overlay processors calculate interactively one over
lay at a time (Pazner et al. 1989), though there have been recently attempts to
pursue more efficient processing strategies (Yost and Skelton 1990). To improve
the overlay operations of several layers, two strategies are investigated: (1) to iden
tify equivalent sub-expressions so that they can be computed only once, and (2) to
integrate several individual overlay operations into a single one. Both strategies
will be investigated subsequently.

4.1 Notation
The uppercase Greek letter omega (ft) will be used to denote overlay. Its argu
ments are (1) the ordered set of layers layert , . . . , layern with n > 0, and (2) a
particular combination operation (Equation 1).

tocombinationVayert , . . . , layern] (1)

The combination operation may be a function, such as max or average, or a
decision table. For instance, the value combination specified in decision table 1 is
applied to the layers altitudes and vegetation, resulting in the layer windExposure
(Equation 2).

windExposure := Slxabie i (altitude, vegetation) (2)

4.2 Equivalent Overlay Operations
A first step during processing the combination of overlays is to identify those se
quences of operations that occur several times so that they need to be executed
only once. The goal for such an overlay optimizer is to find equivalent, but more
efficient expressions, i.e., expressions which yield the same result within less time.
This strategy requires a formal knowledge of equivalent expressions. Mathematics
has the notion of properties of combinations of operations to describe whether two
expressions are equivalent or not. Most familiar are the commutative, associative,
and distributive laws, e.g., for the combinations of sets with the operations union
and intersection. Likewise, the combination of layers with various overlay oper
ations may be described by their commutative (Equation 3), associative (Equa
tion 4), and distributive (Equation 5) properties.

, layer?} = ^l eam b mation(layers , layerj) (3)
i combination^ combination(layert, layers), layers ~] =

ttcombinationVayer! ^comtm^o^V^t, layers)) (4)
combination ̂ a-yer i $l comiinanon2 (layer %, layeT3 }} =

^combination2 (^ combination! (layeTi , layers), ft combination j (layert , layer s)~) (5)

The specification of the generalized overlay operation (Specification 7) demon
strated that an overlay varies only over different value operations; therefore, the
properties of the combinations of overlay operations can be based upon the prop
erties of the corresponding value operation. For instance, the combination of three

304

layers is associative if and only if the value operation is associative as well:

ft combination^ combm^tion^ayer, , layeT2 }, layers) =
, layer*,)} (6)

value. combine(value. combine^! , vs), v3) =
value. combine(vi , value. combine(vs , vs)) (7)

Since the overlay operations depend completely upon the corresponding value
operations, they can be optimized by only considering the value operations in
the same sequence as the corresponding overlay operations. Equivalent overlay
operations can be found by analyzing the properties of the value operations. These
properties are described in the axioms of the specifications of the values. For
example, given a complex query containing the following expressions:

. . . ft add(lo-yeri ,ft add (layer2 Jayer3)) . . . ft add(layers ,ft add (layers , layer i}) ... (8)

The axioms of the particular value specifications may provide the necessary
information about the properties of the add operation, e.g.,

SORTS value
OPERATIONS add: value x value -> value
VARIABLES Vj , v2 , v3 : value
EQUATIONS add (VL v2) == add (v2 , vj

add (YI, (add (v2 , v3)) == add (add (vt , v2) , v3))

Specification 8: Commutative and associative properties of the value operation
add.

Based upon these axioms it can be formally analyzed whether or not these
two expressions are the same. First, the overlay operation is substituted by the
corresponding operations upon values (Equations 9 and 10).

ft add^ayert, ft add(layer2, Iayer3)) =>• value. add(vt , value. add(vs , vs)) (9)
=^ value .add(vs , value. add(vz, vt)) (10)

Then the axioms are applied. With the associative law, Equation (10) is trans
formed.

value. add(vs , value. add(vg, vt)) = value. add(value.add(vs , v2), vt) (11)

Finally, the commutative law is applied twice.

value. add(value.add(vs , vs), Vj) = value. add(vt , value. add(v3 ,
= value. add(vt , value. add(vs , v$)) (12)

Equation (12), the equivalent for (10), is the same as (9), i.e., the two subex
pressions in Equation (8) are the same and, therefore, only one of them must be
executed.

305

4.3 Integration of Multiple Overlay Combinations
A second strategy to reduce the execution time of a complex combination of over
lays is to integrate several overlay operations into a single, equivalent one, i.e.,

(13), layers , layers)

Again, the specification of the generalized overlay operation (Specification 7)
was fundamental in tackling this problem. It shows that this integration means
to move a value operation, value, oper at ion2 , from the inner FOR EACH loop
into the outer loop and combine value, oper at ioni with value. operation2 into
value. operation3 . The validity of such combinations can be checked with the
axioms specifying the value ADTs.

FOR EACH (ti, t 2) IN (A,
FOR EACH (t3 , t 4) IN (B, C)

DO value. operation2)
DO value. operation!

=>
FOR EACH (ti, t 2 , t 3) IN (A, B, C)

DO value. operations

An alternative approach to this symbolic optimization is the use of decision
tables to evaluate the combinations. Given the sets of values on each layer, the
decision tables can be applied to analyze the property of the combination of op
erations.

The following example demonstrates such an integration. Four layers, AI, A2 ,
BI, and B 2 , with the four respective sets of values, {2, 4, 8}, {6, 10}, {3, 4}, and
{1, 2, 3), should be combined such that

result := Slmm (^,en,,(Ai,Ag),Sl TM,tt(Blt Bg))

The decision table 2 shows the combinations for the two inner overlays.

(14)

A t
A 2
x,

2
6
4

2
10
6

4
6
5

4
10
7

8
6
7

8
10
9

Table 2: (a) Xt := average(A t ,A 2) and (b) Xt := (Bt ,B2 }.

306

Table 3 shows the result of the combination of the two intermediate results with
the operation min.

xt
xz
X

4 4
2 1
2 1

4
3
3

6
2
2

6
1
1

6 5
3 2
3 2

5
1
1

5
3
3

7 7
2 1
2 1

7
3
3

9
2
2

9 9
1 3
1 3

Table 3: X :=

The sequence of operations may be expressed by a single table. Its condition
part contains the Cartesian product of the values in the four layers and the action
part has the corresponding values of the combinations (Table 4).

A t
A s
Bt
Bs

2
6
4

1V3

2 2
6 6
3 4
- 2

4 44
666
434

1V3 - 2

2
10
4

1 V3

2 2
10 10
3 4
- 2

4
10
4

1V3

4 4
10 10
3 4
- 2

8
6
4

1 V3

8 8
6 6
3 4
_ 2

8
10
4

1 V3

8 8
10 10
3 4
- 2

1 23 1 23 23123 2 3 2 3

Table 4: X := min(average(A 1 ,A 2 }, Table 2b(B1 ,Bs)).

Table 4 can be simplified by combining columns with the same actions, e.g.,

2V4V8 2V4V8 2V4V8 2V4V8 2V4V8 2V4V
6 10 6 10 6 10
443344

1V3 1V3 - - 2 2
X

Table 5: X := min(average(A 1 ,A s }, Table 2b(B1 ,Bs)).

Further integrations (over the values of A2) and the substitutions of disjunctions
which cover the entire domain by the value don't care reduce the value operation to
an operation which is independent of the two layers A\ and A? (Table 6); therefore,
the entire overlay operation may be reduced to the combination of the two layers
BI and J52 .

307

Bt
Bs

4
1V3

3 4
- 2

2 3

Table 6: The simplified decision table for ^l mtn (^l average(A l , A 2), ^Tabie eb(Bi , Bs)}.

The decision table also indicates in which order the two layers should be pro
cessed. The value of a layer needs not be examined if the result is independent of it.
For example, it is more efficient to execute £1 Table sb(B\, B^) than ft Table zb (B^, BI).
In the first case, the result of half of the operations is determined by just examin
ing BI , because the outcome of the combination with value 3 is independent of the
value at the corresponding location in B2 . If the value is 4 then the corresponding
value in B2 must be examined as well. On the other hand, if the converse operation
is executed then always the values of both layers must be processed.

5 Conclusion
Rigid formal methods have shown to be effective tools to identify optimization
strategies for combinations of overlay operations. The algebraic specification of a
generalized overlay operation for tessellations revealed that

• a layer may be considered a set of cells, each consisting of a location and a
value, and

• arithmetic overlay operations over layers can be broken down into a value
operation to be performed for each cell of a layer or tuple of corresponding
cells in several layers, similar to the application of a function to a whole set
in functional programming.

Since overlay operations are founded upon value operations, it is possible to map
the considerations about best execution plans for operations onto considerations
about the combination of value operations. Two particular ways of optimizing
several overlay operations have been investigated:

1. the use of axiomatic description of the value operations to identify whether or
not two combinations of value operations are equivalent. Faster executions of
combinations of overlays are possible, because such equivalent subexpressions
can be substituted by the result of one single overlay operation.

2. the use of decision tables, representing the characteristics of value operations,
to integrate several overlay operations. This method can be applied if the sets
of values of all layers are known. The integration reduces any combination of
overlay operations into a single one and is most effective if the number of con
ditions is small. Decision tables are less suitable for large sets of conditions,
because the tables grow multiplicatively before reduction.

308

The results obtained demonstrated the usefulness of the approach. Further in
vestigations are necessary to build sophisticated query optimizers for raster GIS's.
The present work, intentionally, excluded geometric operations on cells, e.g., those
which exploit the neighborhood relationship between cells. Within the formal
framework provided it is now possible to study their behavior to formalize geo
metric operations on tessellations.

6 Acknowledgements
Thanks to Andrew Frank for his useful comments on earlier versions of this pa
per and to Kelly Chan, Werner Kuhn, Hans-Peter Kriegel, and Alan Saalfeld for
stimulating discussions.

References
A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, MA, 1985.

J. Backus. Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs. Communications of the ACM,
21(8):613-641, August 1978.

G. Birkhoff and J. Lipson. Heterogeneous Algebras. Journal of Combinatorial
Theory, 8:115-133, 1970.

L. Cardelli and P. Wegner. On Understanding Type, Data Abstraction, and Poly
morphism. ACM Computing Surveys, 17(4):471-552, April 1985.

K. Chan and D. White. Map Algebra: An Object-Oriented Implementation. In:
International Geographic Information Systems (IGIS) Symposium: The Research
Agenda, Vol. II, pages 127-150, Arlington, VA, November 1987.

S.K. Chang, E. Jungert, and Y. Li. The Design of Pictorial Databases Based Upon
the Theory of Symbolic Projections. In: A. Buchmann, 0. Giinther, T. Smith,
and Y. Wang, editors, Symposium on the Design and Implementation of Large
Spatial Databases, Lecture Notes in Computer Science, Vol. 409, pages 303-323,
Springer-Verlag, New York, NY, July 1989.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communications
of the ACM, 13(6):377-387, June 1970.

J. Corbett. Topological Principles of Cartography. Technical Report 48, Bureau
of the Census, Department of Commerce, 1979.

M. Egenhofer and A. Frank. MOOSE: Combining Software Engineering and
Database Managemenst Systems. In: Second International Workshop on
Computer-Aided Software Engineering, Advance Papers, Cambridge, MA, May
1988.

309

M. Egenhofer, A. Frank, and J. Jackson. A Topological Data Model for Spa
tial Databases. In: A. Buchmann, O. Giinther, T. Smith, and Y. Wang, editors,
Symposium on the Design and Implementation of Large Spatial Databases, Lec
ture Notes in Computer Science, Vol. 409, pages 271-286, Springer-Verlag, New
York, NY, July 1989.

M. Egenhofer and J. Herring. A Mathematical Framework for the Definition of
Topological Relationships. In: K. Brassel and H. Kishimoto, editors, Fourth Inter
national Symposium on Spatial Data Handling, pages 814-819, Zurich, Switzer
land, July 1990.

M. Egenhofer and J. Herring. High-Level Spatial Data Structure, in: D. Maguire,
D. Rhind, and M. Goodchild, editors, Geographical Information Systems:
Overview, Principles, and Applications, Longman Scientific and Technical, Lon
don, 1991 (in press).

H.-D. Ehrich, M. Gogolla, and U. Lipeck. Algebraic Specifications of Abstract
Data Types (in German). B.C. Teubner, Stuttgart, 1989.

A. Frank and W. Kuhn. Cell Graph: A Provable Correct Method for the Storage
of Geometry. In: D. Marble, editor, Second International Symposium on Spatial
Data Handling, pages 411-436, Seattle, WA, 1986.

A. Frank. Overlay Processing in Spatial Informaion Systems. In: N. Chrisman,
editor, AUTO-CARTO 8, Eighth International Symposium on Computer-Assisted
Cartography, pages 16-31, Baltimore, MD, March 1987.

A. Frank. Qualitative Spatial Reasoning about Cardinal Directions. In: D. Mark
and D. White, editors, Autocarto 10, Baltimore, MD, March 1991a.

A. Frank. Spatial Concepts, Geometric Data Models and Data Structures. Com
puters and Geo-Sciences, 1991b (in press).

A. Frank and D. Mark. Language Issues for Geographical Information Systems, in:
D. Maguire, D. Rhind, and M. Goodchild, editors, Geographical Information Sys
tems: Overview, Principles, and Applications, Longman Scientific and Technical,
London, 1991 (in press).

J. Goguen, J. Thatcher, and E. Wagner. An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types. In:
R. Yeh, editor, Current Trends in Programming Methodology, Prentice-Hall, En-
glewood Cliffs, NJ, 1978.

J. Goguen. Modular Algebraic Specification of Some Basic Geometrical Construc
tions. In: D. Kapur and J. Mundy, editors, Geometric Reasoning, pages 123-153,
MIT Press, Cambridge, MA, 1989.

M. Goodchild. A Geographical Perspective on Spatial Data Models. Computers
and Geo-Sciences, 1991 (in press).

R. Giiting. Geo-Relational Algebra: A Model and Query Language for Geo
metric Database Systems. In: J. Schmidt, S. Ceri, and M. Missikoff, editors,

310

Advances in Database Technology—EDBT '88, International Conference on Ex
tending Database Technology, Venice, Italy, Lecture Notes in Computer Science,
Vol. 303, pages 506-527, Springer Verlag, New York, NY, 1988.

J. Guttag. Abstract Data Types And The Development Of Data Structures.
Communications of the ACM, 20(6):396-404, June 1977.

J. Guttag and J. Horning. The Algebraic Specification of Abstract Data Types.
Acta Informatica, 10:27-52, 1978.

J. Herring. TIGRIS: Topologically Integrated Geographic Information Systems.
In: N. Chrisman, editor, AUTO-CARTO 8, Eighth International Symposium on
Computer-Assisted Cartography, pages 282-291, Baltimore, MD, March 1987.

D. Hudson. A Unifying Database Formalism. In: ASPRS/ACSM Annual Con
vention, pages 146-153, Baltimore, MD, April 1989.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Schaffert, R. Scheifler, A. Snyder.
CLU Reference Manual. Lecture Notes in Computer Science, Vol. 114, Springer-
Verlag, New York, NY, 1981.

B. Liskov and J. Guttag. Abstraction and Specification in Program Development.
MIT Press, Cambridge, MA, 1986.

W. Mallgren. Formal Specification of Graphic Data Types. ACM Transactions of
Programming Languages and Systems, 4(4):687-710, October 1982.

J. Metzner and B. Barnes. Decision Table Languages and Systems. Academic
Press, New York, NY, 1977.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, NY,
1988.

G. Nagy and S. Wagle. Geographic Data Processing. ACM Computing Surveys,
11(2):139-181, June 1979.

B. Ooi and R. Sacks-Davis. Query Optimization in an Extended DBMS. In:
W. Litwin and H.-J. Schek, editors, Third International Conference on Founda
tions of Data Organization and Algorithms (FODO), Lecture Notes in Computer
Science, Vol. 367, pages 48-63, Springer-Verlag, New York, NY, June 1989.

M. Pazner, K.C. Kirby, and N. Thies. MAP II: Map Processor—A Geographic
Information System for the Macintosh. John Wiley &; Sons, New York, NY, 1989.

T. Peucker and N. Chrisman. Cartographic Data Structures. The American Car
tographer, 2(2):55-69, 1975.

D. Peuquet. A Conceptual Framework and Comparison of Spatial Data Models.
Cartographies 21(4):66-113, 1984.

D.J. Peuquet and Z. Ci-Xiang. An Algorithm to Determine the Directional Rela
tionship Between Arbitrarily-Shaped Polygons in the Plane. Pattern Recognition,
20(l):65-74, 1987.

311

F. Preparata and R. Yeh. Introduction to Discrete Structures. Addison-Wesley
Publishing Company, Reading, MA, 1973.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley
Publishing Company, Reading, MA, 1989.

M. Scholl and A. Voisard. Thematic Map Modeling. In: A. Buchmann,
O. Giinther, T. Smith, and Y. Wang, editors, Symposium on the Design and
Implementation of Large Spatial Databases, Santa Barbara, CA, Lecture Notes in
Computer Science, Vol. 409, pages 167-190, Springer-Verlag, New York, NY, July
1989.

T. Smith and A. Frank, Report on Workshop on Very Large Spatial Databases.
Journal of Visual Languages and Computing, 1(3):291-309, 1990.

C. Steinitz, P. Parker, and L. Jorden. Hand-Drawn Overlays: Their History and
Prospective Uses. Landscape Architecture, 66(8):444-455, 1976.

A. Tarski. What is Elementary Geometry? in: L. Henkin, P. Suppes, and
A. Tarski, editors, Symposium on the Axiomatic Method, pages 16-29. North
Holland, Amsterdam, 1959.

C.D. Tomlin. Digital Cartographic Modeling Techniques in Environmental Plan
ning. PhD thesis, Yale University, 1983.

C.D. Tomlin. Geographic Information Systems and Cartographic Modeling.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

J. Ullman. Principles of Database Systems. Computer Science Press,
Rockville, MD, 1982.

M. White. Technical Requirements and Standards for a Multipurpose Geographic
Data System. The American Cartographer, ll(l):15-26, March 1984.

M. Yost and B. Skelton. Programming Language Technology for Raster GIS Mod
eling. In: GIS/LIS 90, pages 319-327, Anaheim, CA, November 1990.

S. Zilles. An Introduction to Data Algebras. In: D. Bj0rner, editor, Abstract
Software Specifications, pages 248-272, Spring-Verlag, New York, 1979.

312

SPATIAL OVERLAY WITH INEXACT NUMERICAL DATA

David Pullar
Surveying Engineering Department

National Center for Geographical Information and Analysis
University of Maine,
Orono, Maine, U.S. A.

Abstract
A methodology for the operation of spatial overlay is presented in this paper. A general
framework for spatial overlay based on concepts in epsilon geometry is developed to
cope with the problems of computational errors and handling inaccurate numerical data.
These problems normally cause topological inconsistencies and generate spurious
effects in the result. A mapping is defined to accommodate the edges and vertices in all
spatial layers so they are unambiguously aligned within a prescribed tolerance.
Geometrical arguments are given to show the correctness of this approach.

1. Introduction
Spatial overlay is an analytical tool used to integrate multiple thematic layers
(coverages) into a single composite layer. Each layer is organized into a polygon-
network structure where polygons are assigned to nominal, or ordinal, categories. The
data may be efficiently stored using a topological data structure [Peucker and Chrisman
1975]. Spatial overlay has proven to be a very powerful tool to analyse the association
among different spatial patterns and land characteristics. Despite its popularity there is
practically no theory to guide the development of algorithms.

Development of programs for spatial overlay have been hindered by a number of
problems related to map accuracy and computational geometry. If the input coverages
are overlaid exactly, then sliver polygons are produced along different versions of the
same boundary or spatially correlated boundaries represented in different layers. Slivers
are an undesirable byproduct of overlay as they are meaningless and degrade further
analysis and interpretation of the data [Goodchild 1978]. Other problems that arise are
as follows;

i) repeated application of tolerance intersections cause objects to move outside
their tolerance [White 1978],
ii) numerical instability causes topological inconsistencies [Franklin 1984],
iii) spurious affects from fuzzy creep and subtolerent segments [Guevara 1985].

One of the most significant achievements in polygon overlay software can be found in
the ODYSSEY system for geographic information processing [Dougenik
1979][Chrisman 1983]. The overlay program for ODYSSEY addressed many of the
problems listed above, and computed tolerant intersections as a solution to the sliver
polygon problem [White 1978]. The primitive operation for intersection was broadened
to include a tolerance parameter, and clusters of intersection points were analysed to
form consistent nodes [Chrisman 1983]. The value for the tolerance parameter is related

313

to the accuracy and scale of the input coverages. However, a problem arises when
trying to overlay many coverages which have multiple accuracies. A central tenet of this
paper is that the concepts and approaches used to analyze spatial data can profit from
further improvement of the overlay algorithm. A general framework for map overlay
which will integrate many coverages, with multiple tolerances, in a single operation is
described. The overlay algorithm is similar to Zhang and Tulip [1990] in avoiding
slivers by snapping less accurate points to more accurate points and not moving any
point outside its tolerance. We extend this work by presenting a verifiable methodology
for the overlay operation.

The proposed approach, called map accommodation, is based upon a simple concept
of accommodating the geometry between each layer to bring them into alignment in the
composite layer. Map accommodation detects and reports all types of intersections and
proximities between spatial data, and then objectively analyses the data to resolve
conflicts.

An outline for the paper is as follows. The next section describes issues related to
geometrical intersection. Section 3 describes an algorithm for reliable polygon set
operations. It is a robust algorithm, but it does not place an overall bound on positional
errors introduced in the process. Section 4 gives a brief outline of the solution we
propose, it aims to both bound and minimize any positional errors. Sections 5 and 6
give a more formal treatment of the overlay problem and the correctness of the
proposed solution. Section 7 describes a clustering algorithm which is central to our
approach. Section 8 analyses the performance of the proposed algorithm and suggests
some enhancements.

2. Geometric Operations
Geometric operations on objects representing physical phenomena pose special
problems for the design of computer algorithms. Hoffmann [1989] says that "practical
implementations of geometric modeling operations remain error-prone, and a goal of
implementing correct, efficient, and robust systems for carrying them out has not yet
been attained".

Geometric operations encounter two types of errors; i) numerical errors, and ii)
representational errors.

2.1 Numerical Errors
Geometric operations on polyhedral objects represented by floating-point numbers will
introduce numerical errors in the result [Hoffmann 1989], The most common numerical
error is round-off error. Geometric operations use intermediate results from numerical
computations to derive symbolic information. For instance, when a computed variable
is less than, equal to, or greater than zero indicates if a point lies below, on, or above a
line. If the difference between the values compared is less than a certain threshold £,
computations can lead to misleading results. Two broad approaches are proposed for
treating numerical errors; a) compute an exact result by performing intermediate
computations with a higher precision [Ottmann et al 1987], or b) determine error

314

intervals around geometric objects and perturb a version of the input data so objects are
unambiguously related to one another within their respective intervals [Hoffmann et al
1988].

2.2 Representational Errors
The coordinate descriptions for geometric objects, whether explicitly stated or not, are
expressions of measurement and include some positional uncertainty. Geometric
operations need to, a) capture the notion of "approximate tests", and b) to provide
estimates on the accuracy of objects. Guibas and others [1989] describe a general
framework for coping with errors in geometric operations called epsilon geometry, and
show how epsilon-predicates are incorporated in geometric tests.

In a similar vein Milenkovic [1989] describes a technique, called data normalization, to
perform reliable geometrical set operations on polyhedral objects. Data normalization
acts as a preprocessing stage to resolve any topological ambiguities before performing
set operations. A version of the input data is perturbed slightly to get better agreement
between vertices and edges in the output overlay. The decisions on what to perturb and
by how much can become very complex for arrangements of line segments.

Epsilon geometry bears some resemblance to techniques used in computer-assisted
cartography. Blakemore [1984] suggested an epsilon band could represent the
positional uncertainty of a digitized line, and illustrated its use to answer a point-in-
polygon query. It has also been used operationally in procedures for map overlay and
feature generalization. The overlay program in ODYSSEY was the first to include an
epsilon tolerance to control moving the location of boundaries for the removal of sliver
polygons [Dougenik 1979]. In feature generalization an epsilon tolerance is used for
line filtering [Chrisman 1983] [Perkal 1966].

The approach used in epsilon geometry can cope with inaccuracies significantly larger
than those introduced by numerical errors. Therefore, epsilon geometry provides a
good general framework to deal with both numerical and representational errors. This
chapter builds on these and other works to explore the use of epsilon geometry in
polygon overlay. The next section describes the method used to compute the
intersection of polyhedral objects which applies the concepts of data normalization. It is
a robust algorithm, but has undesirable drawbacks we wish to improve upon.

3. Data Normalization
This section describes a published algorithm that includes some discussion of the
reasoning steps involved in geometric operations. Milenkovic [1989] describes a simple
method to give a definite and correct answer to geometric operations on polyhedral
objects. The idea is to perturb the positions of objects, that are within a certain
threshold £, so they coincide exactly. The method is called data normalization, and it
assures all data objects satisfy two numerical tests:

1) no two vertices are closer than a tolerance £, and
2) no vertex is closer to an edge than a tolerance £.

315

Two primitive operations are applied to the data to satisfy these conditions, vertex
shifting and edge cracking. See figures 1 and 2. Vertex shifting will move one vertex
to another if they are closer than tolerance £. If a vertex is within tolerance £ to an
edge, edge cracking will move the vertex to a new cracked point along the edge.

Figure 1: Vertex Shifting

Figure 2: Edge Qacking

The algorithm described by Milenkovic initially makes two passes through the data.
The first pass tests for near coincidence between vertices from the input polygons.
When two vertices are found within the threshold tolerance then one vertex is shifted
and identified with the other vertex. The second pass tests for the proximity of vertices
to edges for the input polygons, and does edge cracking where necessary. Edge
cracking may introduce further near coincidences. Hence, the algorithm is reiterated
until both the numerical tests for data normalization are satisfied. With each iteration
slight perturbations accumulate and may lead to positional alterations larger than £, this
is called creep. For example, in the left diagram of Figure 3 the vertices ut and Vj are
within tolerance £ of edge (u0v0). The right diagram shows the results after edge
cracking, now the vertices u2 and v2 are within £ of the new edge (ufSj) which in
turn calls for further cracking. Edge cracking may continue in a cascading fashion so
that points along edge (UOVQ) will migrate outside their given tolerance.

Figure 3: Creep introduced by edge cracking.

This algorithm will compute output polygons with a valid planar topology, so in this
sense it is robust. However, positional error will accumulate with each iteration so the

316

procedure cannot place a constant bound on the extent polygons are perturbed. The next
section describes another approach which avoids creep.

4. Proposed Solution
This paper has used the ideas behind data normalization and adapted them to a new
approach to overlay called map accommodation. This section gives a brief description
of the mechanics of our approach to map overlay, and shows how a clustering
procedure is incorporated with the primitive operations for vertex shifting and edge
cracking. Latter sections will give a more formal and detailed description.

4.1 Issues
The two drawbacks to the algorithm described in the previous section are;

i) the perturbations are performed in an arbitrary fashion, and
ii) it does not prevent creep.

First, there is no objective evaluation of relations between the geometric primitives
(vertices and edges) to guide what gets snapped to what. It is a greedy algorithm which
accommodates primitives of one polygon to another as violations to normalization
conditions occur. We propose an algorithm which objectively evaluates the proximities
between geometric primitives to guide the accommodation process. Like the overlay
program in ODYSSEY [Dougenik 1979], a clustering strategy is used to minimize the
perturbations to the data. The benefit of this approach is it promotes a stable map
topology.

The stability of map topology and its relation to a discrete surface model is investigated
by Saalfeld [1987]. Measures of stability, or robustness in the topological structure, are
defined in terms of a geometrical measure of the closeness of primitives. We propose a
strategy to cluster primitives based upon proximity, such that primitives are clumped
together to minimize perturbations and provide the greatest separability between cluster
centers. In this way we expect greater stability in the overlay transformation.

Second, primitives can migrate from their original locations by a significant distance for
certain degenerate configurations. This was discussed briefly in the previous section
and, Milenkovic demonstrates a case where a valid polygon can collapse to a point. To
avoid the effects of creep we perform clustering in a special way to bound the
perturbations.

4.2 Brief Outline of Algorithm
The remainder of this section gives a simple description of map accommodation, and
latter sections will go into greater detail. The accommodation algorithm accepts as input
N layers of data structured in an topological format. To start, we check all vertex-vertex
proximities. If any two vertices are within a geometrical tolerance to one another they
are reported in a list. Cluster analysis is performed on the elements in this list to
determine consistent output vertices. By consistent we mean vertices satisfy the
normalization condition, that is; i) no two vertices are closer than the tolerance, and ii)
no vertex is moved greater than its tolerance. In effect, we have performed the task of

317

vertex shifting to accommodate the vertices among the layers.

Next, we check all vertex-edge proximities. If a vertex is found to be within the given
geometrical tolerance to another edge, then the vertex and its closest point along the
edge are reported in a list. Cluster analysis is again performed on this list to determine
consistent output vertices. Any internal points to edges that are clustered to other points
are treated as a cracked edge.

Finally, we check all edge-edge intersections. The composite layer may now be
assembled in a straight-forward manner.

4.3 Example
The process just described is illustrated by overlaying two simple geometric objects
shown in figure 4.

Triangle 1

Triangle 2

Figure 4: Two figures to be overlaid.

In figure 5, the highlighted vertices are found to be within the geometrical tolerance to
one another, and are clustered and identified with a single vertex. In figure 6, the
highlighted areas show edges found to be within the tolerance to a vertex. The edges
are broken at the closest point to the offending vertex, this point and the vertex are
clustered and identified with a single vertex. Now the geometry for the two triangles are
accommodated to common vertices and edges. It is a now a relatively simple problem to
compute their Boolean intersection. From the resulting figure we can answer
approximate tests concerning the coincidence or inclusion of vertices and edges.

Ouster Vertices

Figure 5: Vertex Shifting

318

Cluster Vertices
& Intersect Points

Figure 6: Edge cracking

This section has presented a very simple description of map accommodation.
Subsequent sections will give a more formal and detailed treatment of the process.

5 Accommodation Conditions
This chapter is mainly concerned with how the overlay transformation affects the
geometry of objects. Map accommodation is required to satisfy five geometric
conditions which validate the result of polygon overlay. These conditions form the
basis for the design of the map accommodation algorithm.

The basic geometric primitives are vertices and edges, and an associated tolerance
parameter called epsilon. A map layer is denoted by the triple { V,E,G }, where;

V is the set of vertices v representing points in the plane,
E is the set of edges e made up of ordered pairs of vertices, and
6 is the epsilon parameter £ associated with the vertices or edges.

To establish a convention, we will use lower case symbols to denote primitives of a set
D

and upper case to denote the sets. For example, e^ is the i-th element in the R-th set of
R p R edges, or in other words e e E. An element e has an associated tolerance denoted

A vital part of the overlay process is to accommodate the geometric primitives from all
input layers to resolve topological ambiguities. A number of input layers will be
mapped to a single composite layer. If a primitive is not within the epsilon tolerance to
another primitive then it remain unchanged. However, if it is necessary to accommodate
primitives from different layers then this may cause the combining of primitives or the
insertion of new primitives. The five conditions for map accommodation determine
what sort of changes are allowed. These conditions examine spatial proximities and are
defined in terms of the Euclidean distances d between primitives. Formally, we define
the accommodation mapping for 1..N input layers to one composite layer as,

{vW.e 1 }, {v2,E2,e 2 }, ... {VN,EN,G N } =» {V,E',e'}
such that the following accommodation conditions are satisfied;

319

Al) vf is moved to v^ iff d(vf,v') < if ,

A2) for any two \',v' implies d(v',v') > minimum(£j ,£:) ,
j j ~

R ft'A3) a cracked point p on e^ is moved to v. iff d(p,v.) < £ ^ ,

A 4) for any v.' and point p on any e' implies rf(p,v.') > minimum(£•',£'),
A5) no two e' intersect except at a common vertex v'.

An infinite number of mappings will satisfy these condition. Therefore, another
constraint is imposed to minimize any positional alterations. This is achieved by using
cluster analysis to objectively chose the output vertices to which other vertices are
moved. The next section describes the way cluster analysis is used in map
accommodation and presents informal arguments to show how the above conditions are
satisfied.

6 Accommodation Process
Central to the accommodation process is the clustering procedure. Clustering will
analyze points and replace the points which are agglomerated with their weighted
centroid. The weight for a point is related to its associated epsilon parameter. For now,
we only define the properties of the clustering method and leave the description of the
clustering algorithm for the next section. The input to cluster analysis is a set {P,6},
where;

P is a set of points p in the plane, and
6 is the epsilon parameter £ associated with each point.

Formally, clustering is a mapping between sets as,

{P,G} ==> {P',6'J,

where p' is the weighted centroid for agglomerated points pj«P, and £ ' is selected as
the minimum of the £ j«6 , and such that the following clustering properties hold;

Cl) for any p^ clustered to p' implies rf(pj,p') < £j, and

C2) for any two P.',p[implies d(p^,p') > minimum(£j',£').

Based on the given properties of a clustering, we describe each stage in the
accommodation technique and give informal arguments to show they satisfy the
accommodation conditions. This is followed by an outline of each step in the algorithm.
The three major stages of the accommodation technique are;

1. Vertex shifting,
2. Edge cracking,
3. Edge intersection.

320

The order of execution for each stage is designed to detect and resolve correlation
between boundaries. Correlated boundaries will demonstrate a similar pattern of
curvature. This correlation will be most prevalent at corresponding terminal points and
break points along boundary lines. Therefore, detection of coincident vertices should
proceed first. Figure 7(a) shows two correlated lines with areas of vertex coincidence
highlighted. Figure 7(b) shows the result after vertex shifting. Subsequent detection of
vertex to edge proximities will detect correlation along the boundary line. Figure 7(b)
also highlights areas of vertex to edge coincidence, and figure 7(c) shows the result
after edge cracking. The final stage will detect clear cases for two edges crossing.

(a) Detect vertex coincidence (b) After vertex shifting (c) After edge cracking
Figure 7: Map accommodation for two lines

6.1 Vertex Shifting
The task of vertex shifting is to detect vertices that are approximately coincident, and
then compute consistent output vertices. One pass is made through the input data
performing pairwise comparisons between vertices in each layer. When the distance
between two vertices is discovered to be less than the sum of their tolerances they are
reported in a list. This list serves as input to the clustering algorithm. Clusters are
computed and any affected vertices are identified with a new vertex at the respective
cluster centroid.

Clustering will satisfy properties (Cl) and (C2), which is sufficient to prove that
conditions (Al) and (A2) for the accommodation mapping (given in §5) are satisfied.
That is, no vertex is perturbed outside it epsilon tolerance, and vertices are separated by
at least the minimum epsilon tolerance.

6.2 Edge Cracking
Edge cracking detects vertices that lie approximately on an edge, and then computes
consistent output vertices which are inserted along the appropriate edge. One pass
through the data is required to find all vertices near edges. A vertex vj is considered
near to an edge e;, by first finding point p as the orthogonal projection of v^ onto e;,
when rf(vj,p) < (£j+£p. Any affected vertices and cracked edges are reported in the

321

list.

There does exist degenerate cases that require additional checking. In certain geometric
configurations cracking an edge will cause further edge cracking. Figure 8 shows such
a case, v causes e j to be cracked at p j which in turn causes 62 to be cracked at P2- The
later point is called an induced intersect point, these constructs were first identified in
the overlay part of the ODYSSEY program [Harvard 1983].

v cracks edge e

Induced intersect point

Figure 8: Edge ej is cracked at pj which may cause edge 62 to be cracked at P2

To guard against these degenerate cases requires an additional test. All new vertices
located along a cracked edge are tested against all other edges. If any induced intersect
points are discovered they are reported in the list. This list serves as input to the
clustering algorithm. Clusters are computed and any affected vertices are identified with
a new vertex at the respective cluster centroid.

Clustering properties (Cl) and (C2) are sufficient to guarantee conditions (Al) and
(A3) for the accommodation mapping (given in §5) are satisfied. Edge cracking will not
violate condition (A2) because the only way for two vertices to move close to each
other is if they are cracked by an edge between them, and therefore they must already
have been discovered and evaluated in the edge cracking procedure. By searching for
and including induced intersect points in the cluster analysis will guarantee there are no
further violations to condition (A4). Therefore, conditions (Al) to (A4) for the
accommodation mapping are satisfied.

6.3 Edge Intersection
Edge intersection identifies a common vertex at the point where two or more edges
cross. One pass through the data is required to find all cases where edges cross at
internal points. Note all intersections are computed without ambiguities since vertices
and edges now satisfy conditions (Al) to (A4). However, by creating a new vertex at
the intersection point may cause a violation to condition (A4). Figure 9 illustrates the
degenerate case that needs to be treated. An additional test for further edge cracking is
required (with the new intersection points only) to detect induced intersections. Again,
all intersection points and induced intersect points serve as input to cluster analysis.

322

Induced intersect points

Figure 9: Edges ej and 62 intersect at pj, which may cause edge 63 to be cracked at P2

When two edges cross they are cracked at a common point. This point is identified as a
common vertex for both edges, so condition (A5) of the accommodation mapping is
now satisfied. After this, all the conditions for the accommodation mapping are
satisfied and we can proceed to rebuild the topological structure for the composite layer
in a reasonably straight forward manner by tracing polygonal paths.

6.4 Accommodation algorithm
An outline of the algorithm for accommodation is presented. Accommodation calls the
cluster analysis procedure. For simplicity it is assumed clustering will satisfy
conditions (Cl) and (C2) for any input, and then details for the clustering algorithm are
explained in the next section.

PRELIMINARY
The algorithm accepts as input any number of layers, each composed of a set of edge-
paths. A tolerance parameter is associated with each edge, therefore tolerances may also
vary within layers. For convenience we shall denote the R-th layer in our set
terminology as {VR,ER,6R }. The algorithm needs a data structure to store intersect
points to be clustered, this is called MSET.

ALGORITHM - overlay of N layers of chains
Map-accommodation: {V l ,E l ,e 1 }, {V2,E2,e2 }..{VN,EN,G N } =* {V,E',6'}

R SStep 1. Do pairwise comparison of vertices v^ , v: where R*S, and report all pairs

within the tolerance, i.e. d(vf, vj) <(£j +£j), to the set MSET.
Step 2. Perform a clustering on the points in MSET. Identify all agglomerated vertices

v with the appropriate cluster centroid v' and assign the minimum £ to £.'.
R S Step 3. Do a pairwise comparison of vertices and edges v- , $• where R*S, and report

e
pairs within the tolerance, i.e. let p be point on e: perpendicular to Vj then

d(vf ,p) <(tf+e|), to the set MSET.
e

Step 4. Repeat Step 3 for the newly cracked points, i.e. the cracked points p on e-, to
find any induced intersect points, and report these pairs to the set MSET.

Step 5. Perform a clustering on the points in MSET. Identify all agglomerated vertices
v and cracked points on e with the appropriate cluster centroid v' and assign the

minimum £ to £'.

323

R S Step 6. Do pairwise intersection of edges e- , e- where R*S, and report pairs that
intersect (at an interior point on both edges) to the set MSET.

R S Step 7. Repeat Step 3 for intersect points, i.e. the point p on e^ and e-, to find any
induced intersect points, and report these pairs to the set MSET.

Step 8. Perform a clustering on the points in MSET. Identify all intersect points on e

with the appropriate cluster centroid v' and assign the minimum £ to £'.

7. Clustering
A central part of our approach to the accommodation process is the clustering
algorithm. The previous section defined the properties of a clustering, this section
describes how clustering is performed. A clustering problem is defined as a partition of
a finite set into n disjoint sets based upon minimizing an objective function. The
objective function is typically some proximity measure to bring out intrinsic structure in
the data. The complexity of obtaining a global optimal solution is NP-complete for n-
partitions (n>2) in two or more dimensions [Brucker 1978]. This is not computationaly
feasible, so a suboptimal heuristic solution is proposed.

The task at hand is to describe; i) the objective function used to measure proximity
between clusters, and ii) the strategy used to form partitions of the data.

7.1 Proximity Matrix
The proximity matrix represents an index of similarity (or dissimilarity) measures
between pairs of clusters. The most commonly used criteria for computing these
similarity measures is a square-error criteria, and is based on minimizing the square
error between component points and their computed cluster centroid [Jain & Dubes
1988]. This is similar to minimizing the within-cluster variation and maximizing the
between-cluster variation. We show how this criteria is adapted to clustering points
with a geometrical tolerance.

The weighted arithmetic mean for a set of values xj and their associated weights Wj is;
N

,N

The weighted mean vector for a cluster K, denoted m , is defined as the cluster
centroid. This is computed by the weighted arithmetic mean for ordinates of the cluster
points. If a coordinate is denoted by the pair {x,y} then the weighted coordinate
centroid m^ is denoted as {x^y w}. The weight is related to the positional uncertainty
associated with a point, and is defined as the inverse of the square of the epsilon
tolerance, i.e. w = l/£2.

The square-error for the k"1 cluster with n^ members is given as;

324

Figure 10: Distances used in computing square-error

A minimum variance partition is defined as a clustering which minimizes the sum of the
square-error for a fixed number of N clusters, that is by minimizing the expression;

2 2

The similarity measure computed in this chapter must additionally obey the following
constraints;

1) the distance between a cluster centroid and all its member points is not greater
than the given geometrical tolerance, and

2) the function should seek to minimize the number of clusters.

To fulfill the first requirement, we define the bounded-square-error for the ktn cluster
Ck as;

_ ̂ ^
if VXi€ck ^(xi,mk) < £{

otherwise,

_ ̂ek =

where £j is the geometrical tolerance associated with Xj. This says that we are only
interested in points within the given geometrical tolerance to the centroid, otherwise the
square-error can be some very large number.

In the second requirement, we need to limit the final number of clusters by gradually
merging clusters. The idea is to find the minimum number of clusters which satisfy
conditions (Cl) and (C2). At the same time the partitioning chosen should yield the

2 minimum value for E^ using a bounded-square-error criteria. A solution to this
problem is computationally not feasible. In fact, it requires examining the power set of
all points. The next section describes a suboptimal solution to the problem.

325

7.2 Clustering Strategy
We have already shown that an optimal partitioning based on minimizing an objective
function is not computationally feasible. Therefore, a selection strategy is used to
reduce the number of partitions evaluated to achieve a "reasonable" approximation. The
selection process is designed to converge to a local minima of the objective function.
Jain and Dubes [1988] give an extensive discussion on the factors involved in cluster
strategies. The major choices are between hierarchical and partitional schemes.
Hierarchical clustering schemes organize the data into a nested sequence of groups.
Partitional clustering schemes successively determine partitions of clusters such that
points are moved between clusters in an effort to improve a criteria function. The major
disadvantages we see for a partitional clustering are; i) it is very sensitive to a hill-
climbing solution, ii) it is designed to solve for a fixed number of partitions. A
hierarchical procedure is not as sensitive to a hill-climbing solution; but as Jain and
Dubes state, its most desirable feature is in modeling the global structure of the data.

An agglomerative algorithm for hierarchical clustering is proposed. It starts by placing
each point into an individual cluster. A proximity matrix made up of similarity measures
between clusters is computed. This matrix is interpreted to merge two or more clusters
at each level in the hierarchy. The process is repeated to form a sequence of nested
clusters. The bounded-square-error criteria will terminate when all values in the
proximity matrix are infinity. This provides a reasonable solution to minimizing the
number of clusters.

The algorithm needs an appropriate data structure to store clusters and their respective
member points. Operations for merging clusters and for finding which cluster a
particular point is in must be supported. A very efficient data structure called a
MERGE-FIND ADT is described in Aho, Hopcroft and Ullman [1985] for this
purpose.

8. Analysis of Algorithm
We can analyse the computational cost for the accommodation mapping in each of the
three steps by examining the complexity for; i) geometrical intersection, and ii)
clustering.

First, geometrical intersection involves the pairwise comparison between primitives in
the various layers. If there are M layers each having T primitives (interpret this as either
the number of vertices or edges) then it requires (MT)^ proximity comparisons between
primitives in a brute force approach. The number of points reported will depend on the
degree of spatial correlation between primitives in different layers. We estimate the
worst case occurs when all the layers are the same giving 2MT points.

A plane sweep solution to geometrical intersection [Preparata and Shamos 1985] is
unsuitable because the sweep invariant requires a strict order between edges and the
vertical sweep line. A modified sweep technique using a band sweep is used in the
ODYSSEY program [White 1978], and this is claimed to work well. An alternative
method using a griding technique [Franklin 1989] was adopted for our implementation.

326

The edges were organized into edge-cell pairs by testing if the band (given by the
epsilon tolerance about an edge) overlapped a grid cell. Then a brute force method was
used to compute tolerance intersection within each cell. Performance tests on
experimental data, which assume a uniform distribution of line segments, show
favorable execution times for a grid partitioning technique compared to the plane sweep
technique [Pullar 1990].

Second, the computational cost for clustering is extremely high using a brute force
approach. Let N=2MT, then it would require N(N-l)/2 computations to construct the
proximity matrix for a set of intersect points. To process this matrix for clustering
requires N^(N-l)/4 computations in the worst case, i.e. all N points merge to a single
cluster. Therefore, the computational complexity of the algorithm is of order O(N^) in
the worst case. Day and Edelsbrunner [1984] offer an improvement on this by efficient
determination of nearest neighbors in the clustering algorithm, they describe an
algorithm of O(N^ log N) in the worst case. This was still felt to be an unacceptable
cost.

In our implementation, the efficiency of clustering was improved by incorporating the
grid partitioning technique in the algorithm. An alternative clustering procedure, which
in principle works the same as an agglomerative algorithm, is used in collaboration with
the uniform grid. Assuming points are uniformly distributed over the coverage, a
nearest-neighbor search can be localized using a grid superimposd over the data. The
technique is described in Murtagh [1983], and an upper-bound for the expected time
complexity is reported to be O(N log N). If the grid resolution is no smaller than the
maximum epsilon tolerance then a nearest-neighbor search may be localized to the
current grid cell and its adjacent group of grid cells. In our experiments the partitioning
techniques had a very satisfactory average behavior and exhibited an O(N) cost
behavior. Further details of the algorithm will be published in a future article.

9. Conclusion
The main objective of this paper was to develop a methodology for map overlay which
overcomes problems of computational errors and handling numerical data of an
uncertain pedigree. A technique used to perform reliable geometrical set operation in
solid modelling systems, called data normalization, is adapted to the map overlay
problem. We show how the proposed technique, called map accommodation, will
prevent creep in the geometry of primitives and promote stability in map topology. We
have also presented informal arguments which demonstrate the correctness of this
approach.

The advantage of our approach is it breaks the complex task of map overlay into
simpler tasks which require simple data structures for implementation. The key
operations for reporting intersections and spatial proximities between primitives, and
clustering points involve a significant computational workload. Therefore, an efficient
approach needs to be incorporated in the all stages of the algorithm to provide
satisfactory performance. We propose the use of a grid partitioning technique.

327

Acknowledgements
I would like to express my appreciation to Renato Barrera for the advice and ideas he
contributed towards this work. Support for this project is provided by Prime Wild GIS
Inc., and from the U.S. National Science Foundation through the NCGIA.

References
Aho A., Hopcroft J. and Ullman J., 1985; Data Structures and Algorithms. Addison-

Wesley Publishing Co., Reading, MA.
Blakemore M., 1984; Generalization and Error in Spatial Databases. Cartographica,

Volume 21. pp.131-139
Brucker P., 1978; On the Complexity of Clustering Problems. In: Optimierung und

Operations Research, Editors R.Hen, B.Korte and W.Olletti, Springer, Berlin.
Chrisman N., 1983; Epsilon Filtering: A Technique for Automated Scale Changing.

Proceedings 43rd Annual Meeting of ACSM, Washington, DC. pp.322-331
Day W. and Edelsbrunner H., 1984; Efficient Algorithms for Agglomerative

Hierarchical Clustering Methods. Journal of Classification, 1. pp.7-24
Dougenik J., 1980; WHIRLPOOL: A program for polygon overlay. Proceedings

Auto-Carto 4, Vol.2, Reston, VA. pp.304-311
Dutton G., 1978; Harvard Papers on Geographical Information Systems. Addison-

Wesley Publishing Co., Reading, MA.
Franklin W.R., 1984; Cartographic Errors Symptomatic of Underlying Algebra

Problems. 1st International Symposium on Spatial Data Handling, Zurich.
pp. 190-208

Franklin W.R., 1989; Uniform Grids: A Technique for Intersection Detection on
Serial and Parallel Machines. Proceedings of Auto-Carto 9, Baltimore, Maryland.

Goodchild M., 1978; Statistical Aspects of the Polygon Overlay Problem. In: Harvard
Papers on Geographical Information Systems, Vol.6, Editor G. Dutton 1978.

Guevara J., 1985; Intersection Problems in Polygon Overlay. Unpublished paper,
available from author through E.S.R.I., Redlands, CA.

Guibas L., Salesin D. and Stolfi J., 1989; Epsilon Geometry: Building Robust
Algorithms from Imprecise Computations. Proceedings 5th Annual ACM
Symposium on Computational Geometry, West Germany.

Harvard, 1983; WHIRLPOOL Programmer Documentation. Harvard Computer
Graphics Laboratory, Cambridge, MA.

Hoffmann C., 1989; Geometric and Solid Modeling. Morgan Kaufmann, San Mateo,
CA.

Jain A. and Dubes R., 1988; Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, NJ.

Milenkovec V., 1989; Verifiable Implementations of Geometric Algorithms Using
Finite Precision Arithmetic. In: Geometrical Reasoning, Editors D. Kapur and J.
Mundy, MIT Press, Cambridge, MA.

Murtagh F., 1983; Expected-Time Complexity Results for Hierarchic Clustering
Algorithms Which Use Cluster Centres. Information Processing Letters, 16.
pp.237-241

Ottmann T., Thiemt G. and Ullrich C., 1987; Numerical Stability of Geometric
Operations. Proceedings 3rd ACM Symposium on Computational Geometry.
Waterloo, pp. 119-125

328

Perkal J., 1966; An Objective Approach to Map Generalization. Discussion Paper 10,
Ann Arbor MI, Michigan Inter-University Community of Mathematical
Geographers.

Peucker T. and Chrisman N., 1975; Cartographic Data Structures. American
Cartographer, Vol.2, pp.55-69

Preparata F. and Shamos M., 1985; Computational Geometry. Springer-Verlag, New
York.

Pullar D., 1990; Comparative Study of Algorithms for Reporting Geometrical
Intersections. 4th International Symposium on Spatial Data Handling, Zurich.

Saalfeld A., 1987; Stability of Map Topology and Robustness of Map Geometry.
Proceedings of Auto-Carto 8, Baltimore, Maryland.

White D., 1978; A Design for Polygon Overlay. In: Harvard Papers on Geographical
Information Systems, Vol. 6, Editor G. Dutton 1978.

Zhang G. and Tulip J. 1990; An Algorithm for the Avoidance of Sliver Polygons and
Clusters of Points in Spatial Overlay. 4th International Symposium on Spatial Data
Handling, Zurich, pp. 141-150

329

A Diagnostic Test
for Error in Categorical Maps

Nicholas Chrisman and Marcus Lester
CHRISMAN@max.u.washington.edu & MARCUSL@max.u.washington.edu

Department of Geography DP 10, University of Washington
Seattle, Washington 98195 USA

ABSTRACT
A test based on exhaustive overlay of two categorical maps provides a
description of error distinguished into the likely sources of that error (a
diagnosis of the error). The results of the overlay are characterized by
geometric, topological and attribute criteria to separate the most likely
positional errors from the attribute errors. This paper applies the
proposed test to a simple land cover map, which was replicated by a second
interpreter. Results diagnose the positional inaccuracy and
misidentifications common in such a GIS layer. Adopting this test will
target the efforts of a producer's quality control functions, and it will also
clarify fitness for the particular uses contemplated by others.

Preamble
A great quantity of geographic information, including maps of land use,
soils, geology, property ownership and other phenomena, are represented
in the form of categorical maps. A test for categorical maps is required to
understand their fitness for use. Beyond a simple accuracy figure, a test
should provide an indication (a diagnosis) of which component of the
map might need correction or quality control attention.

For many years, cartographers, remote sensing experts and others have
made do without tests or with tests that provide much less diagnostic in
formation than a comprehensive test. The test developed here uses poly
gon overlay, not point sampling. Such a test is specifically mentioned in
the US Proposed Standard for Digital Cartographic Data [Part in, 4.3.3].

"4.3 Attribute Accuracy
... Accuracy tests for categorical attributes can be performed by one of the
following methods. All methods shall make reference to map scale in
interpreting classifications.

4.3.3 Tests based on Polygon Overlay
A misclassification matrix must be reported as areas. The relationship between
the two maps must be explained; as far as possible, the two sources should be
independent and one should have higher accuracy." (Morrison, 1988, p. 133)

Despite this explicit reference in the standard, there is no complete
specification for such a test. Furthermore, the standard does not discuss
the diagnostic results which are possible.

This paper presents a new test for the accuracy of categorical maps. Rather
than examining previously studied alternatives, this paper presents the
case for the new test, using a worked example. In the conclusions, the
paper will generalize beyond the specific case.

330

The Example
The example for this paper derives from the efforts of the Dane County,
Land Records Project to generate a Soil Erosion Control Plan (Ventura,
1988). A more complete description of the project and its products has
been presented in a number of publications (Chrisman and others, 1984;
Niemann and others, 1987). In producing this plan, the project could rely
on many layers of existing mapping, but land cover was not readily
available. For the purposes of the plan, land cover requirements were
relatively simple, leading to five categories:

Row Crop Row planted crops, particularly corn and soybean
Meadow Pasture and crops such as alfalfa and hay
Coop Cooperator fields (in row crops or meadow)
Woods Forested areas in rural use (not including housing)
Other all non-rural uses plus wetlands, water, etc.

The plan needed to separate its realm of interest, rural agricultural land
use, from the non-agricultural (suburban and urban). Thus, the general
purpose cover category of Other included wetlands, roads, subdivisions,
golf courses, industrial and commercial uses. The Woods category applies
to area out of crop use - whole woodlots, not single trees. The other three
categories deal with the active agricultural uses. Cooperator fields cover
those areas with existing soil conservation agreements between the farmer
and the conservation agencies. In any particular year, a cooperator field
would be in either a row crop or meadow.

Once the conservation staff developed the categories for mapping, they
had to acquire photography. The US Agricultural Stabilization and
Conservation Service (ASCS) takes a color 35mm slide of each section
(square mile) in Wisconsin (and many other agricultural states) each crop
year to verify compliance with various federal programs. These photos
are not strictly controlled photogrammetric products, but they offered
color, more timely coverage and greater detail than the higher altitude
products available from other sources. The project decided to use the 1982
ASCS slides to identify land cover categories and to map the results on the
photographic base produced for the Dane County Soil Survey.

Map 1: Land Cover by Interpreter 1

Other

The County staff made the maps (in pencil on prints of the photobase) and
digitized them. Map 1 shows the map product for one soil sheet (the unit

331

of original compilation). The University of Wisconsin-Madison team
assisted in verifying the topological consistency and related operations. By
summer 1983, one township (out of 35) was mapped. This pilot stage was
used to demonstrate the capabilities required to complete the county plan.
Much of the investigation dealt with the economics of data preparation
and digitizing (Chrisman and others, 1984, p. 33-37).

So far, this process is uneventful. A local government group was making
do, producing a map product to fill a project need without a large
appropriation. This stage should also have included a test of accuracy in
order to determine that the product was fit for the intended use. Most
applications teams, being sure of their own work, forge ahead without
such testing. It is the purpose of this paper to describe how a testing
process could assist in the operational decisions of the GIS user.
Developing such a test is, of course, a matter for theory and research.
Much of the paper concentrates on the development of important
ramifications of the test.

Map 2: Land Cover by Interpreter 2

Row Crop

In summer 1984, another person reproduced the interpretation, according
to the same rules and using the same materials (see Map 2). The second
interpreter was a graduate student with some years experience as a
conservationist in a nearby county. Such a test would be most
authoritative based on an independent source of higher accuracy, but that
would require simultaneous acquisition of another source of photography,
imagery or field reports which cannot be mobilized in retrospect.

Thus, this test began with two maps of the same scale. As a test, it
provides a measure of the deviation between two trials. If both
interpreters agree, it shows that the classification can be reproduced
reliably. When they differ, it may be due to error on either part, but the
first interpreter had somewhat more field experience with this specific
area.

332

Polygon Overlay
Map 3 shows the result of overlaying Map 2 onto Map 1. Areas where the
two interpreters agreed are not shaded, while the disagreement is dark.
The individual polygon boundaries have been suppressed to permit small
and thin features to show in the printed format.

Map 3: Disagreement between Interpreters

B Disagree

Agree

The areas of the polygons created by the overlay can be crosstabulated by
the categories from the two source maps in the form of a matrix called a
misclassification matrix by the Proposed Standard for Digital Cartographic
Data Quality (Morrison, 1988, p.133), as in Table 1.

Table 1: Misclassification Matrix (hectares)

Interp. 2: Row Crops
Interp. 1:
Row Crops 1110.9
Meadow 17.5
Coop Fid 4.0
Woods .9
Other 32.7

Meadow Coop Field Woods

82.5
212.3

3.6
.3

11.6

.9

.04
32.6

.1

.8

.2

.03
10.2

7.5

Other

57.8
35.8

2.0
2.1

212.3

From Map 3 and Table 1, it is clear that the two sources are in rough
agreement. 85.8% of the area covered by the two maps falls into the
diagonal of the matrix, meaning that the two interpreters agreed. For the
purposes of the USGS program of land use and land cover mapping, 85%
correct was set as a standard (Fitzpatrick-Lins, 1978). Thus, this example
demonstrates a result at the low end of acceptability (though many remote
sensing products fall much below this threshold). These overlay results
were reported earlier (Chrisman, 1987) with a verbal interpretation of the
reasons for the particular errors. This paper reports on an analytical
procedure to decompose the error detected by overlay. The basis for such a
test has been described in earlier publications (Chrisman, 1989a; 1989b);
this paper reports actual results and some extensions which developed
from this trial.

333

Outline of the Test Procedure
The basic theory behind the test distinguishes positional error from
attribute (classification) error. The first arises from uncertainty in the
location of a boundary, while the second arises from lack of agreement in
the categories mapped. Some researchers deny the utility of this
distinction. To them, a categorical map is too much of a fiction to merit
the attention otherwise attached to map error for continuous surfaces.
While some categorical maps may contain dubious elements, the political
and administrative requirements for GIS continue to specify sharp
distinctions in a fuzzy world. A test for categorical maps, such as the land
cover example presented above, is sorely needed.

This section describes the procedure applied to separate the positional
errors from the attribute errors. The following sections explain the
rationale for these decisions, using the example as illustration.

Figure 1: Flow of test applied to each overlay polygon

Mixed sources

Compactness
"Fat"

"Narrow"

Figure 1 shows the steps involved in this test. Sequentially, each polygon
is examined and fit into one of four resultant categories. There are a
number of numerical parameters involved; each one may be adjusted, but
the diagram shows the particular values used in this application. The first
step simply decides if it represents an error. For a simple test, the
attributes must be identical, in more complex cases this decision may
require more information. Second, if both sources coincide to form the
bulk of the polygon's boundary, then the error must be in attributes (there
is not enough line work in disagreement). The parameter used here was
more than 85% of the perimeter. Third, if all the non-coincident lines

334

come from one source, it is attribute error since it must be a whole
"island" of different thematic attribute, and not an area where polygons
partially overlap. Fourth, polygons with area less than a "minimum map
unit" are judged to be positional in nature, since they are too small to
have been identified on the input layers. This threshold may be the
smallest area mapped on the input layers (the procedure adopted here) or
some other minimum area parameter which may be appropriate for a
given test.

Fifth, for those polygons whose area is greater than a different "large"
threshold (the square of a given "minimum discrimination distance"
parameter), a minimum compactness value is calculated, and the
compactness of the polygon is compared to this calculated minimum.
This compactness value is a measure of polygon shape based upon
Unwin's S2 (1981). It is reformulated to allow a single calculation from a
polygon's area and perimeter:

S2 =2(7ca/p2)0-5 (1
The minimum compactness is that of a rectangle with area equal to the
polygon's area and one side equal to the minimum discrimination
distance:

S2min= (*a)°-5 /(n + (a/u)) (2
where [a. = minimum discrimination distance (in this case \i is 1/8 inch on
the original maps). Any polygon that is both larger than u2 and more
compact than S2 min is at once large enough and wide enough to have been
identifiable on the input layers, so it is judged to be an attribute error.
Essentially, this creates a sliding scale. Relatively less compact polygons
can fall into the attribute error category if they are relatively large.

Figure 2: Classification by size and compactness.

Large —
>2min

Polygon
Size

Defined
Attrib.
Error

For the sixth and final stage of the test, a perimeter index is calculated for
all polygons not previously classified. The perimeter index, discussed
more fully below, is a ratio of the perimeter from one source to the total of
the non-coincident perimeter from both sources. With this index, each
remaining polygon falls into one of three categories: attribute, ambiguous
(gray zone) or positional error.

335

Explanation of the test procedures
In applications of polygon overlay, it has long been known that "slivers"
can fill up computer storage and clutter the analytical procedures (see for
example, Goodchild, 1978; Cook, 1983). In this case, however, the slivers
provide a clue to the origin of errors. Slivers have been identified in the
past by their size and by their shape, being generally small and narrow.
Narrowness is usually interpreted by human visual pattern recognition,
which is difficult to quantify for complicated map features. One analytical
approximation of narrowness is compactness. Compactness indices,
typically ratios of perimeter to area, (see Unwin, 1981) are unreliable
measures of very narrow shapes for this purpose. Because perimeter
increases dramatically with line sinuosity and with inner rings of
polygons, a large polygon may have a compactness index similar to a
sliver.

The purpose of the test is not solely to isolate those polygons commonly
called slivers. The purpose is to test the accuracy of the categorical map.
Slivers are simply one form of commonly recognized error which serve as
indicators of positional differences. Each of the components mentioned
above; size, compactness and narrowness play a role in the proposed test,
alongside a measure of "perimeter contribution". The measure of shape
described in Formula 1 and 2 above serves well in distinguishing
relatively compact polygons, but it is not reliable for other circumstances.

Figure 3: A typical positional error

A simple
illustration:
2 categories
(A,B)

2 sources
(uppercase/
lowercase)

In Figure 3, the classical sliver has some clear distinguishing
characteristics. It is "small"; it is narrow; it is not compact, but these
criteria are either scale-specific or could falsely identify complex features as
described above. Other distinguishing characteristics might be proposed.
For example, one sliver tends to engender another, in a sequence along
the "true" line (Goodchild, 1978). Thus, slivers would have two possible
identifying characteristics. Slivers should be topologically adjacent and the
nodes at either end should be four valent (be formed by the geometric
intersection of two straight lines). Both of these criteria are relatively
difficult to implement for a number of reasons. First, slivers will occur at
different positions, sometimes near true nodes (usually three valent for

336

non-parcel data). It may be difficult to separate these true nodes from the
sliver nodes. Second, polygon overlay is a messy business, involving the
vagaries of floating point hardware (see Douglas, 1974; Dougenik, 1980).
While a pure sliver might have four valent nodes at either end, the
calculations of the intersection might discover a coincident section,
creating two three valent nodes. Additionally, instead of random
fluctuations, a long narrow sliver may be produced by a uniform (or one
sided) misinterpretation of a thematic boundary. Such a sliver may have
no adjacent slivers. These same difficulties make the topological criterion
difficult to manage, as well.

Another measure of slivers is required. Observing Figure 3, the linework
from the two sources is nearly equal in length. In general, a sliver is an
area bounded by one line from one source and a second line from the
other source that are both intended to represent the same feature. In
addition, other forms of positional error which do not exhibit other special
characteristics of slivers also show the same balance between sources.
Working backwards from the results of the test, those overlay polygons
whose boundaries come from the two sources in approximately the same
amounts are more likely to be positional errors. For sources of equivalent
scale, the perimeter from the two sources will be very close to equality. Of
course, when one source records much more detail, the perimeter may be
much longer to enclose the same area. This form of cartographic texture
has been related to fractal measures. In those cases, there should be more
perimeter from the detailed source.

The perimeter index is a ratio which compares the perimeter from one
source to the sum of the perimeters from each source (Equation 3).

Perimeter index = a / (a+b) (3
where: a = length of chains from source A only;

b = length of chains from source B only.
In this formula, perimeter does not include those sections of a polygon's
border which come from both sources (those lines which the overlay
process finds to be coincident).

This index falls into the range from zero to one, with 0.5 as the result for
the pure sliver (subject to the concern about scale discussed above). The
index can be calculated with either map as Source A (the numerator of the
ratio), which will yield values reflected around 0.5. The two versions are
equivalent as long as the interpretation of the index is symmetric around
0.5. Figure 4 shows the observed distribution of the perimeter index for
the land cover test presented earlier. In Figure 4 and all subsequent
diagrams, the vertical axis represents percentage of the relevant total, in
order to standardize the presentations.

337

Figure 4: Distribution of perimeter index (all polygons)
a: by percentage of count of polygons; b: by area of polygons

30-

20 .

30 -

20 -

04 0.6 08
Perimeter Index

10 .

0.4 0.6 0.8
Perimeter Index

The pattern in Figure 4 (particularly part b) is somewhat clouded because it
includes all polygons. While there is a central tendency between .4 and .6
in the number of polygons, much of the total map area comes from a few
large polygons. The overlay generates 681 polygons, 106 of which are not
errors. As shown in Map 3, these 106 polygons have 85.8% of the area,
hence they dominate Figure 4b.

Figure 5: Distribution of index (tested polygons only)
a: by percentage of tested polygons; b: by percentage of area tested

40 ,

30-

20-

10.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Perimeter Index Perimeter Index

Figure 5 only tabulates the 153 polygons actually subjected to the perimeter
index test, as described above. These are the polygons which are not
classified by the earlier parts of the test. The largest number of overlay
polygons (Figure 5a) fall near the center of the index, around 0.5. In both
diagrams, the distribution is similar, and the values of .4 and .6 fall near
obvious breakpoints in the distribution.

338

Figure 6 is a diagram of an area which is misclassified by one interpreter;
the linework comes from just one source. In the diagram, the uppercase
letters show a distinction on one source, but the lowercase letters show
that the whole region is classified "a" in the other source. The line comes
completely from one source. These errors are classified as attribute errors
by the single source test (Figure 1).

Figure 6: Attribute error (all lines from one source)

Even without a single source test, a perimeter index near zero or near one
indicates an attribute-like error. However, while it is a more reliable
classifier of error than the compactness index, larger polygons will
occasionally, by chance, have a nearly equal proportion of perimeter from
each source. Knowing where to draw the line between the ends and the
positional error in the middle is not immediately obvious. One way to
proceed is to introduce a known type of error, then see how the perimeter
index varies.

To test the reliability of the index for classifying identification and
discrimination error, positional error was introduced by translating
(shifting) a map relative to itself. The original was used as the source of
higher accuracy. Figure 7 shows the distribution of the perimeter index
(for polygons of disagreement) after translating Map 1 south by a distance
corresponding to .8 meters on the ground. This distance is quite small
relative to the line width of the map, and an entirely possible registration
error. These maps were digitized on a tablet with a least count resolution
of about .4 meters on the ground at map scale. Variations in registration
will arise from the hardware as well as the visual placement of the cursor
over the registration marks.

339

Figure 7: Perimeter Index distribution from shifting Map 1
(distribution for all polygons (a) and area (b) in disagreement)

100 -,

80 -

60 -

20 -

a:

100,

80

60 -

40 .

20 -

0.0 0.2 0.4 0.6 0.8
Perimeter Index

1.0 0.0 0.2 0.4 0.6 0.8
Perimeter Index

1.0

As Figure 7 shows, this purely positional error is closely packed around
the theoretical value of 0.5. This indicates that the index correctly
interprets the translation as a positional error.

Translation error, which would be due to misregistration or similar
causes, is only one kind of positional error, but other forms of positional
error also generate similar overall distributions. The result of the test of
Map 1 on Map 2, shows a peak in Figure 4a much like the peak in Figure
7a, but the distribution by area in 4b is significantly different from 5b.
When the restrictions are applied prior to applying the perimeter index,
Figure 5a still shares the dominant central spike of 7a. Artificially pure
positional error produces an unmistakable signature in the distribution of
the perimeter index.

The distribution of the test results (Map 3, Table 1 and Figure 4) is the
combination of all the error processes that distinguish the two sources. To
decompose the polygons into two broad categories, position-like error and
attribute-like error, they were analyzed for area, coincident boundary
segments, compactness index and perimeter index. The compactness
index is used to classify the more compact polygons, while the less
compact polygons are classified with the perimeter index. While as yet
there is no theory to guide the selection of a threshold between the medial
and extreme values of the perimeter index, the range of values in Figure 7
and the breakpoints in Figures 4 and 5 indicate that from 0.4 to 0.6 is very
likely to be positional error. Thus, for this application, any error with an
index between 0.4 and 0.6 is termed positional, while those from 0 to 0.25
and from 0.75 to 1.0 are termed attribute-like. The remaining "gray" zone
between 0.25 and 0.4 and between 0.6 and 0.75 (which contained 14
polygons and about 1% of the total area of the map) is ambiguous. In Map
4 it appears in a separate gray category. A symmetric set of thresholds is
easily justified for a case, such a this one, of maps at the same approximate
scale and level of detail. If one source has much more detailed lines, the
midpoint might be biased due to the well-known effects of resolution on
perimeter (Perkal, 1966).

340

Map 4: Positional and Attribute Errors

Position

Map 4 shades the same polygons as Map 3, but classifies them into the
position-like and the attribute-like categories. Again, the polygon borders
are suppressed to show the small polygons. In general, the distinction of
the two types seems reasonable, although there are some problems. A few
large areas which were not due to uncertain boundaries were classified as
position-like because they are classified as "narrow" by the compactness
index and the perimeter contribution happened to be relatively balanced.
Further refinement of the model may separate these from the more clearly
position caused errors. A topological study of the chains may serve this
purpose.

Table 2 shows the matrix crosstabulating the position-like error.

Table 2: Position-like Error (hectares)

Interp. 2: Row Crops
Interp. 1:
Row Crops —
Meadow
Coop Fid
Woods

Meadow Coop Field Woods

Other

11.9
.5
.9

14.5

22.8

1.2
.3

4.1

.9

.04

.1

.8

.2

.03

.09

Other

34.0
10.2

1.3
1.4

Table 3 shows the areas of polygons classified as attribute errors. In this
situation, there are many fewer attribute errors, in terms of polygons, but
the total area is greater. The nature of the attribute error should be
interpreted in terms of the five categories. The largest attribute cell is 59.8
hectares which interpreter #1 classed as Row Crop and #2 classed as
Meadow. This error will have little impact on the soil erosion plan. The
errors involving the Other category will have greater impact, but are
relatively small.

341

Table 3: Attribute Error (hectares)

Interp. 2: Row Crops Meadow Coop Field Woods Othei
Interp. 1:
Row Crops — 59.8 15.2
Meadow 5.6 — 22.2
Coop Fid 3.5 2.4 — .3
Woods —
Other 13.2 7.4 7.4 —

Attribute error can be decomposed directly into the cells of the table. An
error between Meadow and Row Crop does not depend on the error
between Woods and Other. Thus, any analysis of the attribute error relates
to the particular classification and the ability to identify it on the source
material.

In the spirit of a diagnostic test, there is a need to decompose more
completely the error in Table 2, above. The positional error can have two
systematic components which can be studied separately: bias in position -
caused by misregistration, and filtering (or generalization). These two
cases will be considered separately.

Translation
The experiment of translating a map against itself was described above in
order to show a pure case of positional error. Such an experiment can be
used as a diagnostic tool as well. By translating the map of higher
accuracy, one may obtain a simulation of the amount of error which
would arise from a given error. This distribution can be compared to the
actual error discovered. Some goodness-of-fit procedure could be applied
to pick out the best fitting translation. Error matrices are not random
samples to which the usual tools of linear regression apply, but estimation
tools from the toolkit of robust statistics would be the most applicable.
The Least Median Square is one such method (Shyue, 1989).

Table 4: Misclassification Matrix
resulting from a .8 m South translation of Map 1 (figures in hectares)
Interp. 2: Row Crops Meadow Coop Field Woods Other

Interp. 1:
Row Crops 1234.2 5.9 .4 .5 12.6
Meadow 7.2 256.9 .2 .2 2.1
Coop Field .9 .2 40.9 .2
Woods .7 .1 .03 12.6 .2
Other 11.3 3.1 .7 .3 250.4

For this test, no such fit was examined. The error polygons showed a set of
narrow polygons elongated east-west (Map 3). These could have been
generated by a north-south translation error. A small translation was
performed, which produced the matrix shown in Table 4. The error of the
translation was completely classified as position-like (see Figure 7). The
distance of .8 meters was chosen as a reasonable (and small) number

342

which produced an error matrix whose values nearly fit the actual errors
discovered (see Table 2).

The translation error can be subtracted from the total positional error to
produce a matrix of those errors which could not be ascribed to a simple
registration problem (Table 5). A subtraction of the attribute error is not
produced because translation produces only position-like error. In this
case, the ambiguous error was aggregated with the position-like error, to
judge the overall effect of translation. The subtraction does not remove
the large instances of error, but it removes much of the small quantities
from the matrix. In some cases, the translation produces a fraction of a
hectare more than observed. Such small negative numbers are, in
aggregate magnitude, less than the areas which they supplant, and should
not detract from the use of translation in a larger model of error. It is not
proven that any particular translation occurred, but such a test could assist
in discovering the amount of a misregistration in a very specific manner.
The residual error in Table 5 is not strictly proportional to the error
reported in Table 2. For instance the errors involving Row Crop are all
reduced, due to long boundaries, but Meadow/Other is much less affected.

Table 5: Residual Positional Error [Table 2 minus Table 4] (hectares)
Interp. 2: Row Crops Meadow Coop Field Woods Other

Interp. 1:
Row Crops - 16.9 .5 .3 30.0
Meadow 4.7 - -.2 11.5
Coop Field -.4 1.0 - .03 1.8
Woods .2 .2 -.03 - 1.6
Other 8.2 1.0 -.6 -.2

Filtering
An alternative view of positional error does not seek a uniform
translation, but it recognizes that maps are often digitized in greater
resolution than is warranted by their accuracy. The overlay test in Map 3
and Table 2 was carried out at a very exacting tolerance (.4 m). This is
essentially an exact overlay. Of course, it is critical to apply an exact test to
determine the total error between two digital maps. But in addition, it is
useful to study how much of the error observed comes from the classical
slivers which are entirely unintentional (Goodchild, 1978). Cook (1983)
included a distribution showing the areas of the objects, as shown
indirectly in the graphs of Figures 2 &3. But the important characteristic of
a sliver is narrowness, not area. A distance filter is much more
appropriate. The epsilon filter (Dougenik, 1980; Chrisman, 1983; Beard,
1987) was applied during another overlay run. A series of tolerances were
tried from 1 meter to 20 meters. The results of the test are reported from
the most drastic filter, 20 meters. Map 5 presents the test results. This
figure is a better estimate of the accuracy required for a land cover map for
a soil erosion plan in this landscape. Any point on either map found
within 20 meters of another point causes the cluster analysis of the
WHIRLPOOL algorithm to ensure that only one will survive. This
process does not average coordinates, it selects points.

343

Map 5: Test results after a 20 m filter

L-.

i-i-\, -,
x/

Position

The first observation about Map 5 and Table 6, the misclassification
produced by a 20 meter filtering overlay, is that the area in the diagonal
increased from 85.8% to 88.4%. Thus, some area which was found to be in
error with an exact overlay, was placed into the correct classifications if the
positional tolerance was broadened to 20 meters. Some small error
interactions discovered by the exact test disappear. Many categories are
reduced substantially, while others are unaffected. This difference in
behavior begins to discover the structure of error. The error below the 20
meter threshold may have essentially random distributions, but what
survives may point at specific problems to correct.

Table 6: Misclassification Matrix after filtering [20 m] (hectares)
Interp. 2: Row Crops

Interp. 1:
1136.6

12.1
3.5

.04

Meadow Coop Field Woods

Row Crops
Meadow
Coop Fid
Woods
Other 24.1

76.5
221.6

2.9
.1

8.9

34.1

.1

.2

11.0
7.6

Other

41.0
32.2

1.1
1.9

222.6

It is interesting to compare the effects of the 20 meter filtering and the .8
meter translation. The two figures seem to be radically different, but the
error matrices are surpisingly similar. The difference is that the .8 meter
translation occurs everywhere. All lines (at least those going east-west)
generate slivers in proportion to their length. The 20 meter filtering
actually moves things less. Compared to the exact overlay conducted in
Map 3 which used 6048 points, the 20 meter filtering produces a
representation in Map 5 with only 3241 points. It is a radical filtering, yet
the basic message about the error between Map 1 and Map 2 is still there.

The filtering has an impact on the distribution of the perimeter index.
Figure 8 shows the distribution for all polygons, as Figure 4 did for the
exact case.

344

Figure 8: Distribution of perimeter index (all polygons 20 m filter)
a: by percentage of number of polygons; b: by percentage of area

40 -| 40-,

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Perimeter Index Perimeter Index

There are many fewer polygons, but the distribution in 8a is well centered
around 0.5. The filter removed many small slivers, reducing the
numbers, and increased the discovery of coincident lines, making the
distribution of indeces more balanced. Figure 9 shows the distribution of
the tested polygons only, just as Figure 5 did above. Figure 9 shows a
dramatic reduction in the positional (central) spike, though it still remains
the mode of the distribution. Figure 9 involves many fewer polygons and
less area than Figure 5.

40

30.

5•= 20 J

10-

Figure 9: Distribution of index (tested polygons, 20 m filter)
40_

a: b:

JWW VA
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Perimeter Index Perimeter Index

The filter has reduced the positional error from 6% to near 1% of the total
area. Thus, we can infer that the positional accuracy of the features on
these maps match to within 20 meters, except for 1% of more gross
blunders. Such a statement could be refined by an iterative use of the
filter.

Table 7 tabulates the errors reported in the positional category by the test at
20 meter tolerance. This is the positional error residual after the filtering.
It seems to discover some of the same residual effects found by the

345

translation. A few figures in this table (such as Row Crop/Meadow and
Row Crop/Other) are roughly symmetrical around the diagonal, meaning
that the one error was about as likely as the other. If the user is interested
in overall figures for area, a finding of balanced error is similar to a
finding of an unbiased estimator in statistics. However, if the user needs
site-specific figures, the errors still are errors.

Table 7: Filtered Positional Error [20 m] (hectares)

Interp. 2: Row Crops Meadow Coop Field Woods Other
Interp. 1:
Row Crops — 6.3 .2 8.9
Meadow 4.4 — 2.2
Coop Fid .004 — .4
Woods .04 .1 — .4
Other 5.3 1.0 .1 .04 —

Some of the entries in Table 7 are not symmetric. These point out specific
discrimination biases between the interpreters. This information, if
produced as a test during a normal GIS production sequence would
provide information beyond the typical accuracy assessment that would
diagnose the specific pair of categories. Such information should enhance
quality control.

The filtering procedure has less effect on attribute-like errors. The matrix
of attribute error is presented in Table 8. The large propensity for
interpreter 2 to see Meadow when #1 sees Row Crops carries over from
the misclassification matrix. The size has risen from 59.8 ha. in Table 3 to
68.1. Most of the figures in this table have increased from Table 3. This
matrix is notably less symmetrical compared to Table 7.

Table 8: Filtered Attribute Error [20 m] (hectares)

Interp. 2: Row Crops Meadow Coop Field Woods Other
Interp. 1:
Row Crops — 68.1 23.9
Meadow 5.6 — 27.9
Coop Fid 3.5 2.9 — .6
Woods — 1.5
Other 18.0 7.9 7.6 —

Considering the size of the map sheet, most of these attribute errors may
be tolerable. Quality control efforts might apply to correct the positional
errors as a higher priority, but some attention might also be given to
Interpreter 2's propensity to classify Row Crops as Meadow.

Limitations
The test procedure developed in this paper is provisional. It does not
classify all the errors entirely correctly. For example, there are some large
errors declared to be position-like because the compactness index is

346

relatively small and the perimeter index is balanced between the two
sources, but the nature of the error seems to be much more a disagreement
over classification, not position. These cases occur when a relatively
compact polygon has an attached "tail" or when a polygon is a rectangle
with a relatively narrow width (see the extreme left of Map 4). In these
cases, unlike more typical position-like errors, the model will require
further refinement.

In a more general sense, this test simply reports on the results for the area
studied. It has no mechanism to estimate what would happen in some
other, even nearby region. It does not have any particular statistical
distribution or measure of goodness-of-fit. However, separation of the
distinct forms of error is a first step towards the construction of such
models.

Conclusions
This paper has attempted to demonstrate that a polygon overlay test is
indeed possible and useful. It is possible to conduct a test using a
replication of a map product, not necessarily a source of known higher
accuracy. Differences of minimum mapping units and classification
schemes are not a hinderance, but they are the very goal of a test. This test
offers a chance to diagnose specific forms of mapping error. With some
development and fine tuning it may come to replace the more standard
point sampling methods used in the remote sensing discipline.

Acknowledgements
US National Science Foundation Grant SES 87-22084 provided partial
support for this paper. The data used for the tests was generated by the
Dane County Land Records Project during 1984 by Marcel Thoma and
Kevin Connors. The University of Washington Statistical Consulting
Service has provided a sounding board for some of the concepts, though
the authors are responsible for any errors.

References Cited
Chrisman, N.R. 1982: Methods of spatial analysis based on error in

categorical maps. PhD thesis, U. of Bristol.
Chrisman, N.R. 1983: The role of quality information in the long-term

functioning of a CIS. Proceedings AUTO-CARTO 6, 2, 303-321.
Chrisman, N.R. 1987: The accuracy of map overlays: a reassessment.

Landscape and Urban Planning, 14, 427-439.
Chrisman, N.R. 1989a: Modeling error in overlaid categorical maps. In:

Goodchild and Gopal (ed.) Accuracy of Spatial Databases, London,
Taylor and Francis: 21-34.

Chrisman, N.R. 1989b: Error in categorical maps: testing versus
simulation. Proceedings AUTO-CARTO 9, 521-529.

Chrisman, N., Mezera, D., Moyer, D., Niemann, B., Vonderohe, A. 1984:
Modernization of routine land records in Dane County, Wisconsin:
implications to rural landscape assessment and planning, URISA
Professional Paper 84-1.

Cook, B.C. 1983: Geographic overlay and data reliability, Proceedings IGU
US/Australia Workshop: 64-80.

Douglas, D. 1974: It makes me so CROSS, Harvard Laboratory for

347

Computer Graphics, reprinted p. 303-307 in' Peuquet and Marble 1990:
Introductory Readings in GIS, Taylor & Francis.

Dougenik, J.A. 1980: WHIRLPOOL: A geometric processor for polygon
coverage data, Proceedings AUTO-CARTO TV, 2: 304-311.

Fitzpatrick-Lins, K. 1978: Comparison of sampling procedures and data
analysis for a land use and land cover map, Photogrammetric
Engineering and Remote Sensing, 47, 343-351.

Goodchild, M. 1978: Statistical aspects of the polygon overlay problem, in
vol. 6 G. Dutton, ed., Harvard Papers on Geographic Information Systems,
Addison Wesley.

Mark, D.M. and Csillag, F. 1989: The Nature of Boundaries in 'Area-Class
Maps', Cartographica, 26(1), 65-78.

Morrison, J. (ed.) 1988: The Proposed Standard for Digital Cartographic
Data, The American Cartographer, 15: 9-140.

Niemann, B. Sullivan, J. Ventura S., Chrisman, N. Vonderohe, A. Mezera,
D. and Moyer, D. 1987: Results of the Dane County Land Records
Project, Photogrammetric Engineering and Remote Sensing, 53, 1371-1378.

Perkal, J. 1966: An attempt at objective generalization. Discussion Paper 10,
Michigan InterUniversity Community of Mathematical Geographers.

Rosenfield, G. and Melley, M. 1980: Applications of statistics to thematic
mapping. Photogrammetric Engineering and Remote Sensing, 46,
1287-1294.

Shyue, S-W. 1989: High breakdown point robust estimation for outlier
detection in photogrammetry, PhD dissertation, University of
Washington.

Sinton, D. 1978: The inherent structure of information as a constraint to
analysis: mapped thematic data as a case study , in vol. 7 G. Dutton, ed.,
Harvard Papers on Geographic Information Systems, Addison Wesley.

Unwin, D. 1981: Introductory Spatial Analysis, Methuen, London.
Ventura, S. 1988: Dane County Soil Erosion Plan, Land Conservation

Committee, Madison WI.
Ventura, S. Sullivan, J.G. and Chrisman, N. 1986: Vectorization of Landsat

TM land cover classification data. Proceedings URISA, 1, 129-140.
Vonderohe, A.P. and Chrisman, N.R. 1985: Tests to establish the quality of

digital cartographic data: some examples from the Dane County Land
Records Project, Proceedings AUTO-CARTO 7, 552-559.

348

GeoGraph: A Topological Storage Model for Extensible GIS

K. Bennis m, B. David n, I. Morize-Quilio Q\, J.M. Thevenin ™, Y. Viemont ™

0) MASI, Universit6 Paris VI
45, Avenue des Etats Unis, 78000 Versailles. France

e-mail: viemont@sabre.ibp.fr

0 IGN-France
2, Avenue Pasteur, BP 68, 94160 Saint Mande\France

e-mail: david@ign.uucp

(3) INRIA-Rocquencourt
BP 105,78153 Le Chesnay .France
e-mail: theven@madonna.inria.fr

Abstract

Topological data structures are useful for reducing the cost of geometrical operations
within a Geographic Information System (GIS). Unfortunately, manipulating such data
structures can be quite complex — especially when supporting multiple, overlapping
geographical maps. The GeoGraph storage model proposed in this paper solves this
problem. It is implemented as a toolbox, and is used as a low-level system layer for
support of a GIS. The Ge"oGraph storage model is based on a graph with the
corresponding basic traversal primitives, and can be integrated within an extensible
relational DBMS so that important spatial operations can be directly executed by graph
traversals. Furthermore, the graph is decomposable so that only the useful subset of the
database can be loaded from disk without format conversion.

1. Introduction

Geographic information systems (GIS) require storage and manipulation of both
semantic and spatial data. Whereas conventional DBMS data models (e.g., the relational
model) are well suited to representing and manipulating semantic data, queries concerned
with spatial data imply the use of geometric operations not directly supported by these
data models. Furthermore, because the processing performance of geometric operations
is strongly influenced by data representation, systems supporting spatial data benefit
greatly from a data model specially tailored for efficient support of these operations.

There are several ways to implement spatial data. A simple solution is to store each
spatial object as a coordinate list. Although coordinate lists reflecting the position of
objects are sufficient to perform geometric operations, inter-object spatial relationships
that are obvious when seen on a map are complex and costly to capture when using this
representation. To reduce the number of inter-object comparisons required by this

349

approach, it is possible to use spatial indices on coordinate lists. As a more
fundamental attack on this problem, however, it is possible to enrich the geometrical
description of objects with topological information. This information explicitly
materializes the connectivity and contiguity relationships between spatial objects, and can
be represented as a graph that provides direct and efficient support for adjacency
operations.

Topological information has been used in several geographical information systems
[MorehouseSS, Herring87, Kinnear87, SpoonerPO]. The topological information is
usually stored in a graph using an appropriate internal representation [White79,
Peuquet84]. These representations can be complex to maintain and may require expensive
verification of integrity constraints. In many cases, topological graphs have been used to
store relationships between spatial objects of one geographical map at a time. For
instance the topology of a road map is stored separatly from the topology of a land cover
map. As a consequence operations involving several maps require the fusion of several
graphs, which can be a complex and expensive procedure [Schaller87].

In this paper we present GeoGraph, a storage model for topological information
that supports efficient operations involving several layers of maps. This model stores
the topology of an internal map corresponding to the overlay of several geographical
maps. Hence spatial objects of one geographical map are decomposed into collections
of elementary spatial objects and the internal map materializes the relationships
between the spatial objects. This principle has alrady been used in some GIS like
TIGER [MeixlerSS] and TIGRIS [Herring90]. We focuse on a clean integration of
topological information in a DBMS so that semantic and spatial data can be manipulated
in a uniform way.

GeoGraph is implemented using a toolbox approach and constitutes a low-level
system layer that can support general purpose GIS. This storage model is based on the
topological map theory that guarantees coherent updates of topological information, and
provides a minimal set of operations for navigation through a topology [DufourdSS]. In
this paper, we demonstrate a straightforward integration with an extensible relational
DBMS supporting a GIS. The integration is based on a single graph that incorporates
both relational data and spatial data in order to precompute all operations, and is currently
being investigated in the framework of the G6oTropics system [Bennis90], an extensible
DBMS based on extensions of SQL.

The paper is organized as follows. Section 2 reviews the basic concepts of
topological maps used in G6oGraph. Section 3 introduces the concept of map overlay
and then provides a formal definition of Ge"oGraph in terms of a graph structure and
primitive operations on the graph. Section 4 illustrates the use of the G6oGraph toolbox
for implementation of geographical operators of the GeoTropics system. Section 5 argues
for a specific implementation of GeoGraph when it is incorporated into a relational
DBMS. Section 6 gives our conclusions.

350

2 . Topological map concepts

Topological maps have been defined as an extension of combinatorial maps
[Edmond60, CoriSl]. They provide the necessary support for expressing relationships
between spatial objects in a plan [DufourdSS, Dufourd89]. This section gives intuitive
definitions of the basic concepts of topological maps in order to highlight their
contribution for topological information management in cartography. To clarify the
discussion we distinguish non fully-connected topological maps from topological maps.

2.1. Non fully-connected topological maps

A non fully-connected topological map defines a graph similar to the well known
topological graph [White79, Peuquet84], and uses two basic functions ~ a and a (see
figure 1). In general this graph is not fully-connected. Edges of this graph represent
lines which correspond to the location of linear features (e.g., roads), or boundaries of
surfacic features that we call faces. Nodes of this graph represent intersections of edges.
Conceptually, each edge is decomposed into two blades labeled by integers (e.g., b and
-b) corresponding to the two possible orientations of the edge. Function a applied to a
blade label gives the label corresponding to the opposite blade orientation. Function a is
a permutation which orders blades around their end-node in a clockwise fashion. Thus,
a applied to blade b gives the next blade ending at the end-node of b. Any traversal of
the graph can be expressed by a combination of the functions a and a. For instance, the
boundaries of one face can be traversed turning counterclockwise applying a loop on
function q> = OoO to any blade of that face. In the graph, a geometry is associated to each
edge. For this purpose, a last function y is defined such that y applied to a blade gives a
coordinate list corresponding to the geometry of the associated edge. A non fully-
connected topological map can be defined more formally as follows:

Definition: non fully-connected topological map
A non fully-connected topological map is defined as a quadruplet (B, a, a, y) where
B is a finite set of blades; a : B -> B is a permutation such that Vb € B oc(b) = -b;
a : B -> B is a permutation such that Vb e B a(b) is the next blade ending at the end
node of b, turning clockwise; and y is a function which applied to any blade returns
the geometry of the associate edge.
A permutation (p can be deduced from a and a such that cp =

According to this definition, the cycles (b,cc(b)) of a define edges, the cycles
oaCb),...,^ 1 ^)) define nodes and the cycles (b.cpO^.tpoqKb),...,^- 1 ^)) of (p

define faces. It is important to note that any blade defines one and only one edge, node,
and face using respectively a cycle of a, a or (p. The reverse is not true. From these
properties we can deduce that, given a face defined by blade b and function (p, the
adjacent area along blade b is defined by blade a(b) and function (p.

351

-1
Nodes :

nl = (1, 2, -3)
n2 = (-1, -4, -2)
n3 = (3, 4)

Faces :

fl = (1. -2)
f2 = (2, 3, -4)

Figure 1: An example of map

Compared to the usual adjacency graphs, non fully-connected topological maps have
the following advantages for geographic applications: (i) faces are easily enumerated; (ii)
the planarity of a map can be checked very efficiently using a, a, <p and y [Dufourd89].

2.2. Topological maps

Applying the definition of a non fully-connected topological map, the graph
resulting from a geographical map is in general not fully-connected, and useful
relationships between different fully-connected components of this graph are not
captured. In order to avoid this drawback, a topological map is defined below as an
extension of a non fully-connected topological map, where a partial order among the
fully-connected components is defined based on geometric inclusion. In support of this
definition, we note that given any pair of fully-connected components (cl, c2), the
following property is true: either cl and c2 locations are disjoint (side by side), or one of
cl or c2 is fully included into one face of the other component. Otherwise (cl, c2) would
form a single fully-connected component. In the second case, one component, say cl,
constitutes a hole in a face of the other component (c2).

A hole is an external face which is defined by the external boundaries of a connected
component. In order to distinguish internal faces from external faces a convention is
introduced: an internal face is defined by its boundaries, turning counterclockwise; an
external face is defined by its boundaries, turning clockwise. Figure 2 shows the graphic
representation of a topological map.

f7

f6
The inclusion tree

f5 and f7 are the most external faces. f6 is included into
the internal face f2 of the connected-component f5

cO

f5

Figure 2: an example of topological map
A topological map can be defined formally as follows:

352

Definition: topological map
A topological map is defined by: (i) a quadruplet (B, a, a, y) which is a non fully-
connected topological map; (ii) an inclusion tree T, composed of nodes q
representing the fully-connected components of the quadruplet (B, a, a, y) and arcs
(ci—»C2) connecting two components ci and C2 iff C2 is included in ci. An arc
(ci-»c2) is labeled by the face of ci containing C2- The root of t is a virtual
component CQ containing all the components of the map.

3 . The GeoGraph model

A topological map can efficiently handle all adjacency operations between objects of
a map, but is restricted to operations applied to objects belonging to the same map. In
cartography, however, the same area is often represented through several maps, each
map representing spatial objects associated to a particular semantic point of view (e.g.,
road map, land cover, etc.), and users frequently apply complex operations involving
several such maps. The GeoGraph model was therefore designed to efficiently deal with
a topology involving several layers of maps.

The purpose of this section is to present an extension of topological maps supporting
map overlay, and to then define the GeoGraph model. Our model is expressed in terms of
a specific graph structure called GeoGraph (which represents an extended topological
map), plus a set of basic traversal primitives for GeoGraphs.

3.1. Extending topological maps

Operations involving several layers of maps are based on costly geometrical
intersection computations. Optimized computational geometry algorithms for computing
shape intersections have been studied [PreparataSS], but, even with the use of supporting
index structures, they remain slow.

To avoid geometric intersection computations during query processing, intersections
between spatial objects (regions, lines and points) of several (overlapping) maps can be
pre-computed during the creation of the database. This technique has been exploited in
the GEOQL system [Sack87], where geometric processing is reduced by adding to the
object coordinate lists of several maps the points corresponding to inter-map object
intersections. Checking for object intersections then consists of looking for explicit
shared points.

The GeoGraph model is based on pre-computing a collection of elementary spatial
objects (ESOs) that correspond to a decomposition of the spatial objects of the original
maps. Figure 3 illustrates the result of this pre-computation step applied to the overlay of
a map representing Paris's districts and a map representing the underground rail network
of Paris. The ESO collection resulting from the pre-computation step constitutes a new
map which can be stored as a topological map where the ESOs are represented as faces,
edges, and nodes. To speed up operations defined on the original maps while actually

353

using the ESO map in computations, it is necessary to keep links between the original
objects and the ESOs. These links materialize aggregations of ESOs which represent
original elements. On the example of figure 3, district number 8 has been split in two
faces which have to be aggregated to reconstruct the map of Paris's districts. Topological
maps can be extended to maintain these aggregation links.

Paris Districts

RER: Underground rail network Storage in the database

Figure 3: The corresponding storage of two themes.

A topological map extended with aggregation links maintains adjacency relationships
between ESOs as usual, plus intersection and inclusion relationships between
aggregations of ESOs. Using an extended topological map, most of the operators
involving intersection and inclusion relationships on several maps can be evaluated using
graph-based processing instead of geometric processing.

3.2. GeoGraph definition

We first introduce a few notations appropriate in the context of a collection of
geographical maps. In most of our examples M will denote a particular geographical
map. A geographical map M is described by semantic data and spatial data. The spatial
data of a geographical map are called regions, lines, or points, and represent,
respectively, surfacic features, linear features or ponctual features. We denote by R, L,
or P, sets of regions, lines, and points, and by r, 1, or p, the elements of these sets. The
spatial data of a particular geographical map constitute a subset of R, L or P which is
identified by a unique name. We use S to denote one of these subsets. The ESO
resulting from the pre-computation step applied to the collection of geographical maps
are called faces (inner faces), holes (outer faces), blades and nodes. We denote by F,
H, B, N, or C, respectively, the sets of faces, holes, blades, nodes and coordinate lists,
and by f, h, b, n, or c, the elements of these sets. A region is an aggregation of faces

354

and a line is an aggregation of blades. A point is associated to a node.
The GeoGraph graph is a specitic representation of the extended topological map

described in section 3.1. This graph is illustrated in figure 4. Nodes of this graph are
elements of R, L, P, F, B, and N. Nodes and faces are explicitly represented in this
graph (unlike the representation of topological maps given in section 2) in order to more
directly associate spatial data with semantic data in the database. Edges of the GeoGraph
represent three kinds of functions: functions connecting elements of the original maps to
ESOs; functions on the topological maps; and functions connecting each blade to the
nodes representing the face and the node defined by the blade. Edge functions
connecting elements of an original map to ESOs are identified using the name associated
by the map to these elements. This allows retrieving from ESOs the original elements of
a particular map. The graph of GeoGraph can be defined more formally as follows.

Definition:
GeoGraph is a graph (X, A) where X = RuLuPuFuHuBuNuCis a set of

vertices of G and A is the set of edges defined below:
(i) Links between spatial objects and ESO:

• (r, S, f) e A iff r e S, S C R, f € F and f is a component of r,
• (1, S, b) e A iff 1 € S, S C L, b e B and b is a component of 1,
• (p, S, n) e A iff p e S, S C P, n e N and n correspond to p,

(ii) Topological links:
• (b, a, b') e A iff be B, b1 e B and a (b) = b1 ,
• (b, a, b1) e A iff be B, b1 e B and a (b) = b1 ,
• (b, (p, b1) e A iff be B, b1 e B and 9 (b) = b',
• (b, y, c) e A iff be B, ce C and c is the coordinate list associated with b,
• (f, h) e A iff f e F, h e H and h is a hole into the internal face f,

(iii) Correspondence between faces, nodes and blades:
• (b, f) e A iff b e B, f e F and f is the left face of b,
• (b, h) e A iff b e B, h e H and h is the left hole of b,
• (b, n) e A iff b e B, n e N and n is the end node of b.

Spatial
objects

Elementary
spatial
objects

Coordinate |
lists

Figure 4: Links between objects in GeoGraph

355

3.3. Primitive operations

The Ge"oGraph model provides a set of basic primitives to traverse a Ge"oGraph.
These primitives constitute a toolbox dedicated to the implementation of efficient
geometric operations involving several maps via graph traversal operations. This set of
primitives is detailed below:

• traversals of aggregation links between ESO and regions, lines or points are
supported by the following primitives :

(i) MemberFaces (r, S) = {f € F / r e R and (r, S, f) € A},
(ii) OwnerRegions (f, S) = {r e R / f e F and (r, S, f) e A},
(iii) MemberBlades (1, S), OwnerLines (b, S), MemberNode (p, S),

Ownerpoint (n, S) are defined similarly. Note that MemberNode and
Ownerpoint are singletons;

• traversals of the topological map defined on ESO are supported by :
(i) a, a and <p which are the conventional permutations of topological

maps,
(ii) y gives the coordinate list,
(iii) The primitives necessary to traverse the inclusion tree of topological

maps :
ContainingFace (h) = {fe F/ he H and (f, h) € A},
ContainedFaces (f) = {h e H / fe F and (f, h) e A};

• traversals between faces holes and nodes defined by blades:
(since faces and nodes are described by a list of blades, the inter-connections of
blades, faces and nodes are expressed in the next primitives)
(i) Left (b) = {fe F / be B and (b, f) e A} (Left (b) is a singleton),

BoundingBlades (f) = {b e B / fe F and (b, f) e A},
(ii) Left (b) = {he H / be B and (b, h) e A} (Left (b) is a singleton),

BoundingBlades (h) = {b e B / he H and (b, h) e A},
(iii) EndNode (b) = {ne N / be B and (b, n) e A} (EndNode (b) is a

singleton),
ArrivingBlades (n) = {b e B / ne N and (b, n) e A}.

Ge"oGraph primitives allow traversal of all edges of a Ge"oGraph in both directions,
so any traversal of a Ge"oGraph can be expressed by a combination of these primitives.
Within a GeoGraph, adjacency relationships between objects of several geographical
maps can be deduced from traversals along aggregation edges and along edges
materializing the topological map defined on the ESOs. Containment relationships
between objects of the same type (region/region or line/line) belonging to different
geographical maps can be deduced directly from traversals along aggregation edges.
Containment relationships between objects of different types (region/line, region/point or
line/point) belonging to different geographical maps can be deduced from traversals along

356

aggregation edges and along edges materializing the topological map defined on the ESO.
GeoGraph primitives are thus sufficient to carry out all the operations based on the inter-
object relationships.

To ease the implementation of these operations it is possible to deduce functions
useful as construction blocks in the design of a GIS. For example, the function
AdjFaces(f) = {Left (b) / b e BoundingBlades (f)} can be defined to retrieve the
adjacent faces of face f; the function Right(b) = Left (a(b)) can be defined to retrieve the
right face of blade b. In summary, G6oGraph supports all the links between spatial
objects which are important to efficient geometric operators. We leave unspecified the
details concerning links between spatial objects and semantical objects. These links are
not included in the GeoGraph model for they depend on the data model used in the GIS.

4. Using the GeoGraph model

This section illustrates the implementation of spatial operators as an extention of a
DBMS using the GeoGraph model. For the sake of clarity, the spatial operators are
presented in a relational context, but it is important to note that these operators and their
implementation can be generalized to other data models.

First, we present a possible integration of the GdoGraph data in a database using a
relational DBMS which can be extended with abstract data types [StonebrakerSS]. Then,
classical spatial predicates and spatial functions are enumerated. Spatial predicates are
applied to a couple of spatial objects to check some spatial properties. The definition of
the main spatial operators required in a relational DBMS extended toward geography is
then introduced. These operators are based on spatial predicates and spatial functions.
They work on sets of spatial objects and return the combination of spatial objects which
satisfy a given predicate. Finally the implementation of these operators with the
GeoGraph model is detailed. The architecture and the query langage of such a DBMS
extended toward geography can be found in [Bennis90].

4.1. Connection of GeoGraph with an extended relational database

A cartographic object is composed of semantic and spatial data. In order to support
the spatial data, the spatial domains Regions, Lines and Points are added to the
conventional domains of values used in relational DBMSs. A spatial relation is then
defined as a relation containing at least one attribute which takes its values in a spatial
domain. A map is a spatial relation with exactly one spatial attribute which is a key of
the relation. The conventional relational operators (i.e. selection, join and projection) are
augmented with spatial operators for spatial attribute manipulations.

To clarify the discussion, a few notations are introduced below. We use two spatial
relations named R and S. We denote by R.k (resp S.I) the spatial attribute of R (resp S).
We denote by r (resp S) a tuple of the R (resp S) spatial relation. We denote by AV a set
of values varying on the same domain and by v a particular value of this set. The result
of a spatial operation is a relation denoted by RES.

357

In the sequel of the paper we assume for clarity that the database is stored according
to the DBGraph storage model introduced in [Pucheral90]. This model stores a relational
database as a bipartite graph composed of a set of tuples named T, a set of values named
V and edges connecting each tuple to each of its attribute values (see figure 5). The
purpose of this storage model is to precompute all conventinal relational operations,
which is complementary with the objective of the GeoGraph. Two basic traversal
primitives are provided: succ_tup(t, R.k) is a function from T to V that delivers the value
of attribute R.k of tuple t and succ_val(v, R.k) is a function from V to T that delivers the
set of tuples whose th attribute value is v.

In a DBGraph, tuple vertices (resp. value vertices) may be grouped on a relation
basis (resp. domain basis) since the relations form a partition of T (resp. V). Spatial
domains constitute three subsets of V which comprise the sets R, L, P used as entry
points in the GeoGraph.

DBGraph /£>v GeoGraph
X^rT—————7J

Legends

T: tuple-vertices '' • •, ('' • •, (

N

O

O

relational
data
spatial data

elementary
spatial data
edges of
Gebgraph
edges of
DBGraph

V: value-vertices

Figure 5: a GeoGraph connected to a DBGraph

4.2. Spatial Predicates and Spatial Functions.

A spatial predicate takes two input spatial attribute values, and checks whether a
given spatial property is satisfied by this pair. The two input values can be of different
domains, although there are some restrictions depending on the predicate. Figure 6
summarizes the classical spatial predicates and the domains of the allowed input values.
Spatial predicates fall into two categories: one for checking neighborhood relationships
such as adjacency of regions; the other for checking containment relationships such as
inclusion or overlap of spatial objects. For detailed information on these predicates see
[David89]. Each spatial predicate can be evaluated by a traversal of the GeoGraph. This
traversal can be expressed by a sequence of primitive operations of the GeoGraph model.
One part of this traversal corresponds to a translation of the regions, lines or points given
in entry into ESO (faces, blades and nodes), while the other part selects elementary
components which satisfy the predicate. The first part uses operations on aggregation
links and the second part uses operations of topological maps. Examples of such

358

traversals can be found in section 4.4.

Predicate

Region

Line

Point

Region

Adjacent
Overlap
Inclusion
Right
Left
Overlap
Inclusion
Inclusion

Line

Border
Overlap

Connected
Overlap
Inclusion

Ends
Inclusion

Figure 6: The spatial predicates

Spatial functions are useful to calculate new values which are either numerical or
geometrical (coordinates lists). Some are also used to compute new values of type
region, line or point based on new aggregations of ESO. These functions can be
classified into two categories: those requiring a geometrical computation on spatial
values, and those which can be sped up by the topological map included in the GeoGraph
model. Figure 7 summarizes the main spatial functions.

Functions

Speed up by
G6oGraph

Involve a
geometrical
computation

Unary

Result is numerical
Area(Ol)withOl e R
Perimeter(Ol) with Ol e R
Length(Ol) with Ole L
Result is a coordinate list
Geometry(Ol) with Ol € R or L

Binary
Result € R or L or P

Intersection(Ol,O2) with Ol e R or L and O2 € R or L
Fusion(Ol,O2) with Ol € R andO2 e R orOl e L sidO2 e L
Difference(Ol,O2) with Ol e RandO2 e RorOl e LaniO2e L

Result is numerical
Distance(Ol,O2) with OleRor Lor P and O2eRor Lor P

Figure 7: The spatial functions

4.3. Spatial Operators
The data model of Ge"oTropics uses three basic spatial operators: the spatial

selection, the spatial join, and the calculation operators. The first two of these
correspond to extensions of the conventional selection and join operations of the
relational model. The spatial operators take as arguments one or two spatial relations and
return a spatial relation, and are now explained

The Spatial Selection operator, denoted by Sel(S, Q), is applied to a relation S,
and determines the subset AS of the tuples of S whose spatial attribute satisfy a
qualification Q. The qualification Q is a simple comparison S.I 0 const where const is a
spatial constant of the domain region or point and where 0 is a spatial predicate. The
spatial predicate used is generally inclusion or overlap. Selections involving these
predicates correspond to the usual geographical operations of clipping and windowing.
The selection operator is expressed as:

359

Sel(S, Q) = {Se S/ (S.I 0 c) is true}

The Spatial Join operator denoted by Join(R, S, 0), is applied to the spatial
relations R and S, and determines a set of tuples composed of all possible combinations
of a tuple r e R concatenated to a tuple S € S, such that the spatial attributes R.k and S.I
of r and S satisfy the join condition R.k0S.l, where 0 is a spatial predicate. Most of the
spatial operations based on relationships between spatial objects can be expressed by a
join operation involving a specific spatial predicate. The join operator is expressed as
follows:
Join (R, S, 0) = {(r, s) / r e R, S e S and (r.k 0 s.l) is true}

The Spatial Calculation operator, denoted by Calc (R, f) or Calc (R, S, f) can
take one or two relations as arguments. It is similar to the spatial join, but extends the
concatenation of the entry relations attributes with the result of a spatial function f
applied to the spatial attributes. Note that the join predicate is replaced by function f.
This operation can be expressed as follows :
Calc (R,f) = { (r,f(r.k)/re R }
Calc (R, S, f) = { (r, s, f(r.k, s.l)) / r e R, s e S}
The widely used overlay operation can be translated as follows: projection (Calc (R, S,
n)) where n involve R.k, S.I and the projection discards these two attributes.

4.4. Spatial Operator Implementation.

The G6oGraph model is currently being used to support the three spatial set-oriented
operators presented in section 4.3. Numerous versions of these operators can be
deduced depending on the spatial predicate used. It is not possible to give three general
algorithms that support all versions of these operators. For illustration, this section
focuses on two versions of the join operator and one version of the calculation operator
which correspond to the more commonly used geometric operations and illustrate well the
functionnality of the GeoGraph model. The join operation is first applied to retrieve all
couples of adjacent regions of two maps (spatial relations). Then it is applied to retrieve
all couples of overlaping regions and lines of two maps. The joins involves the
adjacency and the containment relationships, which belong to the two classes of spatial
predicates. The classical operation of overlay is then expressed in primitives of the
GeoGraph model. The execution of the selection operator is not detailed in this section
because it is efficiently handled by algorithms involving geometrical indices. For this
operation the GeoGraph model had to be augmented with geometric indices for
elementary components (Face, Blade and Node) and spatial attribute values (region, line
or point) (see section 5).

Let us consider the adjacent-join, a spatial join operation involving an adjacent
predicate. Two regions are adjacent if they have adjacent faces and if they do not have

360

common faces. The algorithm performing the operation is given figure 8. This algorithm
may be decomposed into four steps, each of which is a traversal of a subpart of the
Ge"oGraph. For each tuple r of R, the first step decomposes the region-value of attribute
R.k into faces. The second step executes a sequence of topological operations on ESOs
in order to get the set of faces which are adjacent to some faces obtained in the first step.
The third step converts the faces obtained in step2 into region-value of attribute S.I. All
these regions contain at least a face adjacent to one face of the region-value of r. The
fourth step checks that region-values selected in the 3fd step do not have common faces
with the region-value of r.

Function Join (R, S, Adjacent)
/* R.k and S.I take their values in R */
/* we assume card(R) < card(S) */
begin
/*..l st step */;
for each r € R do

AV3 = 0;
AVi := MemberFaces(r.k, R.k); /* decomposition into elementary faces */
/*...2ndstep */
for each vi e AVi

AV2 := BoundingBlades (vj); /* give all blades bounding vj */
for each \2 e AV2

AV3 := AV3 u Left (v2); /* give adjacent faces of vi */
endfor

endfor
AV~3 := AV"3 - AVI; /* discard faces belonging to r.k */
/*...3rd step */
for each v3 e AV3

AV4?=AV4uOwnerRegions(v3, S.I); /* retrieve regions of S.I including face V3 */
endfor
/*..4th step */
for each V4 e AV4

ifAVi n MemberFaces(v4, S.I) * 0 /* discard the regions which have */
/* common faces with region r.k */

then RES := RES + (r, succ_val(v4, S.I)); /* build the result made of tuple r */
/* and the tuple owning the region v4 */

endfor
end

Figure 8: Join operator involving the adjacency predicate

Consider now the overlap-join operator, a join operation involving a spatial predicate
checking the overlap between a line and a region. The algorithm performing this
operation is given figure 9 which starts from the lines to reach the overlaping regions. A
line and a region overlap if at least one blade of the line defines two faces belonging to
the region. This algorithm is also based on four steps which are similar to the four steps
of the previous algorithm. Nevertheless, these steps cannot be expressed in exactly the
same way. The first three steps determine the set of regions on the left of the line and the
set of regions on the right of the line. The fourth step performs the intersection of these
two sets.

361

Function Join (R, S, Overlap)
/* R.k takes its value in L
and S.I takes its value in R */
/* we assume card(R) < card(S) */
begin
/*...ist step */
for each re R do

AV4:= 0;
AVi := MemberBlades(r.k, R.k) /* decomposition into elementary blades */
for each vi € AVi

/*...2ndstep */
\1= Left(vi); /* give the face on the left of blade vi */
vr:= Left(a(vi)); /* give the face on the right of blade vi */
/*...3rd step */
AV2 := OwnerRegions(vr, S.I); /* retrieve regions of S.I including face Vr */
AV3:= OwnerRegions(vi, S.I); /* retrieve regions of S.I including face Vj */
/*..4th step */
AV4:= AV4 u (AV2 n AV3); /* discard the regions which border line r.k */

endfor
for each v4 e AV4

RES = RES u (r, succ_val(v4, S.I)); /* build the result made of tuple r */
/* and the tuple owning the region V4 */

endfor
end

Figure 9: Join operator involving the overlap predicate

Finally, let us consider a version of the spatial Calculation operator involving
the function of intersection of two regions. This operation is applied to two maps and
produces the overlay of the maps. The corresponding algorithm is given figure 10. If
we compare this algorithm to the previous ones, it can be decomposed into four steps
with an empty second step, since containment relatioships between objects of the same
type can be deduced from traversals along aggregation edges without the use of the
topology. In this algorithm, the computation of n (r.k, S.I) is reduced to a simple set-
intersection between two sets of faces with no access to the coordinates of the spatial
objects geometry.

In our experience, most of the algorithms of binary geometrical operations can be
decomposed into four steps. The first step decomposes the spatial attribute values of the
first map into a set ESO1, using aggregation edges. The second step performs topological
operations starting from ESO1 to reach a set ESO2 satisfying a topological predicate. The
third step retrieves spatial attribute values of the second map which aggregate elements of
ESO2, and the fourth step performs some supplementary verifications. For operations
involving containment relationships on objects of the same type, the second step is not
required. An important contribution of the extended topological map is that algorithms
based on these four steps always access ESOs of the same spatial location.

362

Function Calc (R, S, Intersection)
/* we assume the R.k and S.I take their values in R */
begin
/*...1 st step */

for each r e R do
AVi := MemberFaces(r.k, R.k); /* decomposition into elementary faces */
AV2:= 0;
/*...3rdstep */
for each vi e AVi

AV2=AV2UOwnerRegions(vi, S.I); /* retrieve regions of S.I including face vi */
endfor
/*...4th step */
for each \2 e AV2

AV3 := MemberFaces(v2> S.I); /* decomposition into elementary faces */
RES = RES + (r, succ_val(v2, S.I), AVi <~> AVs); /* build the result made */

/* of tuple r and of the tuple owning region */
/* V2 and of the intersection of r.k and V2 */

endfor
endfor
end

Figure 10: Calculation operator involving the intersection function

5. Implementation

There are many ways to implement the G6oGraph graph. It could be implemented
within a Network DBMS, an Object Oriented DBMS or as an extension of a Relational
DBMS. We detail below a particular implementation based on the third approach, and on
the connection of GeoGraph with the DBGraph model [Pucheral90] (as detailed in
section 4.1). The key point of this implementation is a good data clustering. The
objective is to partition the two graphs of figure 5 into separate segments which can be
loaded separatly according to the needs of operations being executed.

In order to ease the data partitionning, tuples and values are stored separately (see
figure 11). Since the domains form a partition of the set of values V, all the values
varying over the same domain can be clustered in a separate segment. Taking advantage
of vertical partitioning, the values of one domain can be loaded independently of the
others. Similarly, since the relations form a partition of the set of tuples T, the tuples of
one relation can be stored in one segment. Each object stored in a segment has a unique
and invariant identifier (OID). Thus, tuples and values can be referenced by OID's.

In the definition of a DBGraph, an edge between a tuple and a value can be traversed
in both directions. Consequently an edge is represented with two physical arcs: one from
the tuple to the value, and also a reverse arc. A tuple is implemented as an array of OIDs,
each referencing its attributes values, which are stored in separate domains. These OIDs
materialize arcs from the tuples to the values. Reverse arcs are materialized by inverted
lists attached to the values. Each inverted list is divided into a set of sublists so that there

363

is one sublist per attribute varying on the domain of the value. All these sublists are
referenced by an array attached to the corresponding value. Because of vertical
partionning, it is possible to cluster all the inverted sublists of one attribute into one
segment. Indices may be added on domain values to speed up selections on all attributes
varying on the same domain.

segment containing
the inverted sublists
of R.5

segment containing
domain Dj

The temporary relation results from a join between R and S.
The attribute S.4 is assumed to be a key attribute._____

Figure 11: implementation of the DBGraph part

Consider now the implementation of the Ge"oGraph part. There is a direct mapping
between a value of the spatial domain point and a node. Thus attributes of type point
directly reference node values stored in a node domain. Values of the spatial domain
region (resp. line) are stored as set of OIDs referencing face (resp. blade) values stored in
a face (resp. blade) domain. The sets of OIDs materialize aggregation links from spatial
objects to ESOs. Reverse links from blades and faces to the tuples, materilize reverse
aggregation links from ESOs to tuples containing spatial objects. Face and blade
domains are stored like DBGraph domains with inverted lists in order to materialize these
links. It is not necessary to maintain inverted lists for region and line values. For some
attributes it may be inefficient to store the values separatly from the tuples because they
are accessed each time the tuple is accessed, and graph traversals of costly operations
don't use links between the corresponding attribute values and the tuples. Values of
these attributes can be stored directly in the tuples. For example, region and line
attributes fall in this category. Spatial indices are maintained for the three domains node,
blade and face. Values of these domains are clustured with the spatial indices which
reinforce the contribution of the vertical partitionning, since algorithms based on extended
topological maps favors access to ESOs of the same spatial location (see section 4.4).

Values ot the three domains face, blade and node have a complex structure that stores
the topology of the ESO map (see figure 12). The main part of this topology is supported
by the blade values. A blade value is represented by a record containing five fields: (i)
the ODD of the opposite blade, which materializes the a function; (ii) the OID of the next
blade of the end-node, which materializes the a function; (iii) the OID of the left face of

364

the blade, which, used in conjunction with the a function, allows retrieval of the two
faces bordering the blade; (iv) the OID of the end-node of the blade, which is necessary
to access to the inverted list of the node; and (v) the ODD of a coordinate list material!zing
the geometry of the blade. Coordinate lists are stored in a separate domain without
inverted list. This domain is clustered with a geometrical index. A face value is the OID
of any blade of the face. The value of one node contains only the OID of one blade
reaching it. This information is sufficient for a node since the o function gives the
complete cycle of blades reaching it. Furthermore its geometry can be extracted from the
geometry of one of its blade. In a similar way, the value of one face is composed of a
record containing the OID of one blade of its boundary and a set of OID corresponding to
the set of holes contained in this face. Applying a succession of a and a functions to the
blade referenced by the face gives the complete cycle of blades of its boundary. Its
geometry can be obtained from the geometry of all of these blades.

f Faces, domain ~\
f
1

I |
NM«i<te [[toM,.*,*8>:M&l

V J

r Blades domain ^

" i ' '""""" i*
1 — I a(b)f o(b)l left-facej end-nod^ geometrjj

1

^[ot(b)[o(b) j left-facej «nd-node| geometrj|

0

1 |jJ o(bH o(b) j Mt-Jace I end-node! geometry!
^ 1 ——— 1 ——— 1 ————— 1 ————— I ————— \J

Nodes domain

|-J —— |
•t-SSSj

V J

Figure 12: Spatial values representation

5. Summary and futur work

In this paper, we have presented the GeoGraph storage model, a toolbox supporting
low layers of GIS in an extensible way. The definition of this model was given
independently of implementation detail, in terms of a graph structure and primitive
operations on that structure. This facilitates the description of the toolbox functionality,
and supports our argument of general utility. Topological information and geometric
information of several maps are incorporated in a single graph that directly supports
geometric operations based on adjacency and containment relationships. This graph is
based on the topological map theory guaranteeing that all updates on topological
information are coherent, and providing a minimal set of operations to navigate through
the graph.

Although GeoGraph is intended for various higher level data models, we illustrated
the utilization of this storage model in the context of an extensible relational DBMS. In
this context, the resulting GIS is itself extensible and can exploit fully the toolbox aspect
of GeoGraph. We showed that the GeoGraph graph can be integrated with relational data
in a straightforward fashion. Algorithms of the main geographical operations have been

365

given in an abstract form using the basic primitives of G6oGraph. These algorithms,
based on graph traversals, are simple and exibit desirable locality properties.

A specific implementation of the GeoGraph model has been proposed. This
implementation avoids data duplication and shows that the GeoGraph graph can be
partitioned to minimize disk trafic. Spatial data are clustered with spatial indices. This,
combined with the space locality properties of the algorithms, reinforce the contribution
of vertical partitionning. This implementation is currently being experimented in the
framework of the GeoTropics system, an extensible GIS based on extensions of SQL
[Bennis90].

Additional research will be useful in enhancing the G6oGraph model. For example,
the decision to always overlap geographical maps has some drawbacks: operations
involving only one map can be slowed down, since the number of elementary storage
elements can be unnecessarily large. It may prove more efficient to selectively overlap
layers based on the frequency of their joint use in queries[David90].

References
[AnsaldiSS] Ansaldi S., De Floriani L., Falcidieno B., "Geometric Modeling of

Solid Objects by Using Face Adjacency Graph Representation", ACM
SIGGRAPH'85 Conf., San Francisco, USA, 1985.

[Bennis90] Bennis K., David B., Quilio I., Vie"mont Y., "GeoTROPICS: Database
Support Alternatives for Geographic Applications", 4th Int.
Symposium on Spatial Data Handling, Zurich, Switzerland, July 1990.

[CoriSl] Con R. & Vauquelin B., "Planar maps are well labeled trees", Can. J.
Math., Vol. XXXIH, 1981.

[David89] David B., "External Specifications for the Cartographic DBMS",
ESPRTT-TR 2427-0022 TROPICS Project, June 1989.

[David90] David B., Viemont Y., "Data Structure Alternatives for Very Large
Spatial Databases", Sorsa colloquium 90, Fribourg, Deutshland, July
1990.

[Dufourd88] Dufourd J.F., "Algebraic Specification and Implementation of the
Topological Combinatorial Maps", PIXIM'88 proc., Paris, France,
1988.

[Dufourd89] Dufourd J.F, Gross C. et Spehner J.C., "A Digitizing Algorithm for
the Entry of Planar Maps", Computer Graphics International'89,
Leeds, Spring-Verlag, June 1989.

[Edmonds60] Edmonds J., "A Combinatorial Representation of Polyhedral
Surfaces", Notices Amer. Math. soc. n°7,1960.

[Herring87] Herring J.R., "TIGRIS: Topologically integrated geographic
information system", Auto-Carto'8 proc., Baltimore, Maryland, USA,
March 1987.

[Herring90] Herring J., "The definition and development of a Topologically Spatial

366

Data System", Photogrametry and Land Information Systems,
Lausanne, Suisse, March 1989 (Published in 1990).

[Lienhardt89] Lienhardt P., "Subdivision of N-Dimensional Spaces and N-
Dimensional Generalized Maps", 5th ACM Symposium on
Computational Geometry, Sarbriiken, RFA, June 1989.

[Kinnea87] Kinnea C., "The TIGER Structure", Auto-Carto'8 proc., Baltimore,
USA, March 1987.

[Meier82] Meier A., "A Graph Grammar Approach to Geographic Databases",
Proc. of 2nd Int. Work, on Graph Grammars and their Application of
Computer Science, October 1982, Lecture Notes in Computer Science,
Springer Verlay, 1982.

[Meixler82] Meixler D., Sadlfeld A., "Storing, Retrieving and Maintaining
Informations On Geographic Structures", Auto-Carto'7 Proc.,
Wachington, USA, March 1985.

[MorehouseSS] Morehouse S., "A Geo-Relational Model for Spatial Informations",
Auto-Carto'7 Proc., Washington D.C., USA, 1985.

[Peuquet84] Peuquet Donna J., " A Conceptual Framework and Comparison of
Spatial Data Models", Cartographica vo!21 n°4,1984.

[Pucheral90] Pucheral P., TheVenin J.M., Valduriez P., "Efficient main memory
Data Management Using the DBGRAPH Storage Model", VLDB90
proc., Brisbane, Australia, August 1990.

[Sack87] Sack-davis R., Mcdonell K.J., "GEOQL - A Query Language for
Geographic Information Systems", Australian and New-Zeland
Association for the Advancement of Science Congress Townsville,
Australie, August 1987.

[Samet85] Samet H., Webber E., "Storing a collection of Polygons Using
Quadtree", ACM Transaction on Computer Graphics 3 (4), July 1985.

[Schaller87] Schaller J., 3The Geographical Information System (GIS)
ARC/INFO", EuroCarto VI proceedings, Czechoslovakia, April 1987.

[Spooner90] Spooner R. "Advantages and Problems in the Creation and Use of
Topologically Structured Database", Photogrametry and Land
Information Systems, Lausanne, Suisse, March 1989 (Published in
1990).

[StonebrakerSS] Stonebraker M., Rubenstein B., Guttman A., "Application of Abstract
Data Types and Abstract Indices to CAD Databases", ACM Sigmod,
San-Jose, 1983.

[Waugh87] Waugh T.C., Healey R.G., "The GEOVIEW Design, a Relational
Approach to Geographical Data Handling", Int. J. Geographical
Information Systems", 1(2), 1987.

[White79] White M. "A Survey of the Mathematics of Maps", Auto-Carto'4
proc., 1979.

367

TOPOLOGICAL MODELS FOR 3D SPATIAL INFORMATION SYSTEMS

Simon Pigot,
Environmental Systems Research Institute,1

380 New York St.,
Redlands, Ca. 92373

email: uucp: uunet!esri!atlas!simon
internet: spigot@esri.com

Abstract

The need for complex modelling and analysis of 3-dimensional data within a
spatial information system (SIS) has been established in many fields. While much of the
data that is currently being modelled seems to require "soft-edge" data structures such as
grids or rasters, the need for certain types of complex topological modelling and analysis
is clear. Current plane topology models such as the winged edge, widely used in
computer aided design (CAD), are limited in the types of analysis that can be performed
but useful because of their basis in the field of algebraic topology. This paper firstly
reviews the neighborhood structure provided by current plane topological models. It then
describes the derivation of a fundamental set of binary topological relationships between
simple spatial primitives of like topological dimension in 3-space. It is intended that these
relationships provide both a measure of modelling sufficiency and analytical ability in a
spatial information system based on three dimensional neighborhoods.

1. Introduction

Modelling and analysis of 3-dimensional spatial phenomena has become a
critical need in many applications, particularly the earth sciences. One of the traditional
approaches to the modelling problem is to subset the sampled data from the 3D
phenomena into individual spatial objects based upon theme or convenience; each spatial
object can then be decomposed into a set of abstract geometric primitives - points, lines,
faces and volumes; and a set of spatial relationships describing how the object may be
reconstructed from these primitives. Analysis of the spatial phenomena requires not only
the spatial relationships between the primitives required to reconstruct individual spatial
objects, but also those relationships describing how the individual spatial objects interact.
Such an approach is one method by which spatial objects may be modelled and analyzed
according to theme or view in a larger model of the real phenomena.

1 From April 11th, 1991, author's address will be: Centre for Spatial Information
Studies, University of Tasmania, GPO Box 252C, Hobart, Tasmania, Australia, 7001.
Internet email address: pigot@sol.surv.utas.oz.au

368

Topology is useful in both modelling and analysis because it provides simple
and very useful spatial relationships, such as adjacency and connectivity. Topology can
be thought of as the most primitive layer in a hierarchy of spatial relationships, where the
next level of refinement is provided by the addition of familiar concepts based on a metric
(ie. distance, direction etc.). Recent work by (Greasley 1988),(Kainz 1989) and (Kainz,
1990) in lattice theory seems to suggest that order relationships may exist at a similar
level to topology.

Current topological models are either loosely or strongly based on a structure
from algebraic topology known as the cell complex. The cell complex (in conjunction
with graph theory) provides rules to govern the decomposition of a continuous 3D object
into a finite number of points (0-cells), lines (1-cells), faces (2-cells) and volumes (3-
cells). In governing the decomposition, the cell complex allows for the explicit
description of three fundamental topological concepts: adjacency, connectivity and
containment. Other relationships between individual objects such as whether two objects
are disjoint or apart, may be provided by embedding individual cell complex(es) within a
single cell or world cell and using the explicit relationships in combination to derive the
particular relationship required. For example, it may be possible to analyze the explicit
relationships to determine if two faces meet at a point (compare node connectivity of
surrounding lines) or share a line (directly from adjacency). However, some relationships
cannot be derived from these explicit relationships and may violate some of the rules of
the cell complex, e.g. in 2-space (R^) overlapping polygons (Egenhofer et. al. 1989); in
3-space (R^), intersecting volumes or a face meeting another face at a point are all known
to violate the rules of the cell complex governing the decomposition. In (Molenaar 1990)
it is suggested that other relationships such as a line internal to a volume, also do not fit
easily within the cell complex. From other work in 3D SIS (Youngmann 1988) and CAD
(Weiler 1986), it appears that at least some of the modelling and analysis problems could
be solved by combining the solid, surface and wire frame modelling approaches of CAD.

In this paper, the limitations of the cell complex are described by analyzing
the direct and indirect topological relationships between cells that it provides. A layered
set of fundamental binary topological relationships between simple lines, faces and
volumes in R^ based on point-set topology and extended from the work of (Egenhofer et.
al. 1990) and (Pullar et. al. 1988) will be derived and presented. This paper and future
research will attempt to integrate these intuitive yet powerful topological relationships and
concepts with cell complex theory from algebraic topology since the power of the cell
complex lies not in the nature and type of topological relationships that it allows, but in
the ability to pose and solve topological problems as algebraic problems. It is expected
that this approach will yield advantages both in modelling and analysis. For modelling
purposes, the new topological relationships are intended to be used to ascertain the
sufficiency of a cell complex based on 3D neighborhoods and provide insight into other
useful structures such as lattices. Compactness and efficiency could be maintained by
modelling only the coarsest topological relationships. For analysis purposes, a detailed

369

set of basic topological relationships should provide either direct answers or at least the
starting point of an answer, to complex spatial questions about the objects being
modelled. In addition, enhancements to the fundamental modelling capability based on a
complete set of topological relationships should allow boolean operations to be closed, i.e
boolean operations may occur without the problem of not being able to model the result.

Sections 2 and 3 of this paper are concerned primarily with the cell complex.
Section 2 introduces the necessary theory from algebraic topology and section 3 describes
the current application of cell complex theory and the topological relationships which can
be modelled. Section 4 introduces the necessary theory from point-set topology and
presents the derivation of the new and richer set of topological relationships for R.3.
Finally, section 5 concludes this paper with a summary of the results and the directions
that will be taken in future research.

2. Topology

Topology is defined as the set of properties which are invariant under
homeomorphisms (Alexandroff 1961) - one-to-one, continuous and onto
transformations. Intuitively, it is easier to think of a homeomorphism as a kind of elastic
transformation which twists, stretches and otherwise deforms without cutting. From the
definition of topology as the study of those properties which remain invariant under
homeomorphism, two objects are topologically equivalent if either can be transformed
into the other using this type of elastic transformation. Clearly, metric properties such as
distance, angle and direction are affected by homeomorphism and hence are not
topological properties. It is the notion of homeomorphism which provides a fundamental
or primitive set of spatial relationships (Chrisman 1987).

About Neighborhoods

The neighborhood of a point is any open set (ie. a set that does not include its
boundary) that contains the point. Neighborhoods can be defined in any abstract manner,
but the most common are those that have a metric interpretation. For example in 2D, the
neighborhood of a point can be considered as any 2D "flat" disk containing that point.

About Manifolds

A manifold is an n-dimensional surface of which every point has a
neighborhood topologically equivalent to an n-dimensional disk.This property is usually
defined as local flatness. Manifolds are of interest because of their useful topological
properties (in particular, the notion of orientation) which are inherited by the cells of a cell
complex.

About Simplexes. Cells and Complexes

370

An n-simplex is the n-dimensional simplest geometric figure eg. a 1-simplex
is a line, a 2-simplex a triangle and a 3-simplex a tetrahedron - in essence, an n-simplex
has n+1 vertices and may be viewed as the smallest closed convex set containing the
given vertices (Alexandroff 1961). An n-simplex is the homeomorph of an n-cell. eg. any
closed polygon which does not have an internal boundary (ie. genus 0) is homeomorphic
to a triangle or 2-simplex. Because of this topological equivalence all results for
simplexes generalize to cells.

An n-simplex is a composite of n-l,n-2,...,l simplexes. eg. a 2-simplex or
triangle, is bounded by three 1-simplexes, which meet at three 0-simplexes. In
(Egenhofer et. al. 1989) this property is termed "Completeness of inclusion".

An n-simplicial complex or more generally an n-cell complex is the
homeomorph of an n-dimensional polyhedron whose faces are all (n-l)-cells, no two of
which intersect except at a cell of lower dimension. In (Egenhofer et. al. 1989) this
intersection restriction is termed "Completeness of incidence". With this restriction, an n-
cell complex may inherit the properties of an n-manifold, thus accessing the topological
properties of manifolds, the most important of which is orientation. The notion of
orientation is usually applied to the 1-simplex by defining one of the bounding 0-
simplexes or points as a point of origin and the other as a point of termination. Relative
orientations can then be assigned to all higher simplexes according to the traversal of
bounding 1-simplexes.

About Duality

Two dual operators which arise from these completeness axioms are termed
boundary and coboundary, originally attributed to Poincar6 (Corbett 1985). The
boundary of an n-simplex is the incident set of n-1 simplexes. For example, a 3-simplex
(tetrahedron) has 4 incident 2-simplexes, 6 incident 1-simplexes and 4 incident 0-
simplexes. The coboundary of an n-simplex is the set of n+1-simplexes incident to the
given n-simplex. For example, a 1-simplex may have two 2-simplexes cobounding it
(one either side). The following table shows each cell and its dual, for R^;

Primal Dual
0-cell 3-cell
1-cell 2-cell
2-cell 1-cell
3-cell 0-cell

An important and powerful implication of duality is the fact that a primal may
be represented and manipulated algebraically using its dual state. For example, 3-cells or
volumes in a 3D SIS can be manipulated and represented by their dual state, the 0-cell or
point.

371

3. Current Topological Models

Current topological models used either explicitly or implicitly in SIS and
CAD fields are rather similar, despite the fact that CAD models are more generally used
for 3D modelling and SIS are predominantly concerned with 2D models.

In SIS, 2D phenomena are assumed to be a connected set of points and lines
(or a graph) which can be embedded in a 2-manifold - thus creating a set of connected
and unconnected (or internal areas) (Corbett 1975),(Corbett 1979),(White 1983) and
(White 1984). The application of the dual concepts of boundary and coboundary as
described in the last section, provides connectivity and adjacency. Internal areas are
described by simple application of homology theory. The data structures employed in
such models are abstracted from graph theoretic concepts. Examples of systems built
around these principles include DIME (Corbett 1975), ARC/INFO, TIGRIS (Herring,
1987), TIGER (Boudriault 1979).

In CAD and SIS surface modelling, even though 3D phenomena are being
modelled, the current assumptions and resulting models are the same. The planar face of
a 3D polyhedron is embedded in a 2-manifold and the embedded faces exist in 3D space
resulting in a set of connected and unconnected (or internal) faces and volumes. The same
application of the dual concepts of boundary and coboundary provides connectivity and
adjacency e.g. (Corbett 1985) is a 3D extension of (Corbett 1975) and (Corbett 1979).
Internal faces and volumes can be described by application of homology theory similar to
that used for 2D SIS. The data structures employed in such models, such as the winged-
edge model of (Baumgart 1975) and its later variants, e.g. (Braid et. al. 1978), (Woo
1985) and (Weiler 1985) are also based on graph theory and have been used extensively
in CAD.

Both of these topological models can be described as vector, edge or
boundary data structures and the particular topological relationships which are modelled
can be classified using a system of relationships between 0,1 and 2D primitives specified
in (Baer et. al. 1979) - see figure 1. Analysis of figure 1 shows that the main topological
models in use, the winged-edge model in (Baumgart 1975) and the 2D map model in
(Corbett 1975) and (Corbett 1979), both model the same set of relationships - EV and EF
(from EV can derive VE, VV and EE, from EF can derive FE and FF, and from EF and
EV together can derive VF and FV). Note that EV and EF give connectivity and
adjacency corresponding with the boundary/coboundary principles of the cell complex -
both models are basic applications of the cell complex. Most practical models do allow
useful extensions that would normally be excluded by pure cell complex theory. For
example, "dangling" lines - lines which are not connected at one or both ends to any other

372

line.

The algebraic structure provided by cell complex theory has been
reinvestigated in (Egenhofer et. al. 1989) and (Frank and Kuhn 1986) using concepts
specified in (Giblin 1977) and (Moise 1977). This work has been applied to geological
layers in (Carlson 1986) and to algorithms for editing triangular irregular networks in
(Jackson 1989). The stated approach to the construction and maintenance of the cell
complex is different to that taken previously because the construction and maintenance
operations on the complex use topological concepts only - distance and other metric
notions are not required.

W VE VF

EE

VF EF FF

Figure 1-9 Relationships of (Baer, Henrion & Eastman 1979)

The intention is to avoid or at least minimize any inconsistency between the metric
geometry and the topology that may be introduced by the limited precision arithmetic of
computing devices (Franklin 1984). The other interesting aspect of (Egenhofer et. al.

373

1989) is that the construction and maintenance techniques are dimension independent.

In all models the necessary topological descriptions of faces with internal
faces and volumes with internal volumes are described by the application of another
branch of algebraic topology known as homology theory, e.g. (Corbett 1975), (Corbett
1979), (White 1983) and (Weiler 1985). Homology provides methods by which these
internal faces and volumes may be detected by analysis of bounding cycles in cell
complexes. In a wider sense homology groups give an indication of the connectivity
present - internal faces and volumes may be regarded as homology group generators. In
(Saalfeld 1989) other homology groups and additional homology theory are described
and used in an attempt to determine the number of polygons resulting from the overlay of
two maps.

4. Topological Relationships

What topological relationships may exist between abstract geometric
primitives in euclidean 3-space? To answer a detailed question about the nature and type
of all topological relationships is an attempt to classify the types and situations of
manifolds. This is possible for R* (1-space) and R^ (2-space) however, R3 (3-space)
has a number of quite difficult and unexpected situations which make general
classification very difficult. See (Zeeman 1961) and (Alexandroff 1961). Fortunately, it
is not necessary to attempt this. A number of assumptions about the nature of the
relationships and the geometry of the n-cells involved can be made without limiting the
power and application of the derived relationships. Specifically, only binary topological
relationships between closed, connected (genus 0 - no internal holes) n-simplexes will be
considered. The use of simplexes rather than cells is intuitive; simplicial complex theory
is the starting point for the more generalized and advanced cell complex theory. Cells can
be decomposed into simplexes in what is termed a simplicial decomposition, thus the
results derived using simplicial complex theory can be generalized to cell complex theory
via the decomposition.

In section 3, it was shown that cell complex theory as it is currently
implemented in plane topology models allows a number of useful topological
relationships such as adjacency and connectivity. In effect, cell complex theory allows n-
dimensional adjacency (= connectivity in Rl), containment and the complement
relationship of disjoint existing where no adjacency can be found. In essence, the main
function of the cell complex is to allow specification of topological problems using
algebraic methods, the definition of the algebraic operations being confined by the
intersection rules (the set of allowable topological problems).

Point-set topology (classical topology) provides a much more intuitive view
of topological relationships. In this paper, point-set binary topological relationships
between 1-simplexes in R^, 2-simplexes in R^ and 3-simplexes in R^ are based on
consideration of the fundamental boundary, interior and exterior point-sets of any n-

374

simplex in Rn. Additional point-sets are formed generically by embedding the n-simplex
and its fundamental point-sets for Rn , within Rn+l. Consideration of the possible
intersections of these point-sets with the boundary point-set of a second n-simplex then
gives the fundamental topological relationships. The relationships are point-set
topological relationships because they are derived from the intersection of these
fundamental point-sets only.

The resulting binary topological relationships are very detailed. A number of
methods can be chosen to aggregate or subdivide them into a hierarchy of detail. The
method of aggregation chosen in this paper is consistent with the topological notion of
homeomorphism. Each of the resulting binary topological relationships is considered to
be the union of the two n-simplex point sets involved. Some topological relationships are
then homeomorphic and can be replaced by a single homeomorph. The resulting tree
structure then provides two levels of detail, the most descriptive relationships being
found at the "leaves" of the tree. Further subdivision and grouping could also occur by
considering the dimension of the spatial intersection between the two n-simplexes in each
relationship as proposed in (Egenhofer et. al. 1990).

In all of the following discussion, a 1-simplex is called an interval, a 2-
simplex is called a face and a 3-simplex is called a volume.

Theoretical Background

All results used and derived in this section are for metric topological spaces
since metric topological spaces are most commonly used for modelling purposes. Metric
topological spaces are a subset of general topological spaces.

An n-simplex in Rn divides Rn into three useful and intuitive point-sets, well
known in point-set topology; eg. (Kasriel 1971)

Interior ° set of an n-simplex C: a point x is an interior point of C provided
there exists an open subset U such that x is an element of U and U is strictly contained
within C. The union of all such points is the interior set

Boundary set 3 of an n-simplex C: C -

Exterior set of an n-simplex C: Complement of C.

A simple and complete method can be found for finding all topological
relationships between two closed, connected n-simplexes. In (Pullar et. al. 1988),
(Driessen 1989) and (Egenhofer et. al. 1990) only the intersection of the boundary and
the interior point-sets of the two n-simplexes is used to derive topological relationships.
In this paper, a more powerful and fundamental method is used which is based on the set

375

intersection of the boundary, interior and exterior point-sets of an n-simplex nj and the
boundary, interior and exterior sets of another n-simplex n2 in Rn . In practice, the
derivation of relationships can be simplified by considering the possible set intersection
of the boundary point-set of n^ and the interior, exterior and boundary point-sets of n^
since the boundary set of n^ naturally defines the interior and exterior point-sets of nj
and governs their possible relationships with the sets of n^- Further detail can then be
added to each relationship if required by considering the set intersection of the interior
and exterior sets of n ̂ with those of n2-

Up till now the definitions of the fundamental point-sets of an n-simplex have
been given in terms of an n-simplex in Rn, however in order to analyze intersections
between n-simplexes in Rn+l it is necessary to consider what happens to the simplex and
its point-sets in Rn when they are embedded in Rn+l. This is of particular importance to
this research, since the aim is to derive topological relationships between 1-simplexes, 2-
simplexes and 3-simplexes in R^.

The closed boundary and open interior and exterior point-sets of an n-
simplex in Rn are all closed point-sets when considered relative to Rn+l since the union
of these point-sets is an n-manifold equivalent to Rn, and Rn itself is a closed point-set in
Rn+l. Since the intersection process is reliant upon the existence of these three point-sets
then we have a problem, the solution to which can be found by considering the
dimension of the n-manifold created from the union of these point-sets and the dimension
of the space in which they to be embedded. In Rn, we are considering the intersection of
the boundary, interior and exterior point-sets of two n-simplexes in the same n-manifold
which is equivalent to Rn. In Rn+l, we consider not only the situation in Rn where both
n-simplexes are in the same n-manifold, but also the complement situation which occurs
when both n-simplexes are in different n-manifolds. Clearly any intersection between the
boundary, interior and exterior point-sets of the two n-simplexes will always occur where
the two n-manifolds meet, hence if the open/closed point-set properties of the interior,
exterior and boundary point-sets of an n-simplex are considered strictly relative to the n-
manifold formed by their union, then their open/closed point-set properties are preserved
and can be used without loss of generality regardless of the dimension of the space in
which the n-manifold(s) created from their union are embedded.

It is now necessary to find a simple and comprehensive way of analyzing the
intersection possibilities between two n-simplexes in Rn+l excluding the subset formed
specifically for Rn when both n-simplexes are in the same n-manifold. This can be done
by choosing a specific embedding of such an n-manifold or equivalently Rn, in Rn+l. If
Rn and Rn+1 are metric spaces with standard orthogonal basis vectors (or coordinate
system axes) then if we choose the embedding such that the n orthogonal basis vectors of
Rn are coincident with n of the n+1 orthogonal basis vectors of Rn+ l, then Rn
disconnects Rn+ l into two open point-sets corresponding to the opposing directions of

376

the n+lth orthogonal basis vector of Rn+ l. Using this fact the derivation method for
possible intersections between n-simplexes in Rn+ * can be extended simply by
considering those intersection combinations involving either or both of the two new
point-sets resulting from the embedding.

In the summary of the theory and the rest of this paper, the generic term set is used in
place of point-set. The theory can now be summarised in five steps as follows;

1. Formulate the boundary, interior and exterior sets of an n-simplex n j in Rn.
2. Derive basic relationships based on all possible set intersections of the boundary
set of a second n-simplex ^2 anc^ ^e interior, boundary and exterior sets of the n-
simplex nj from step 1.
3. Consider the union of the interior, exterior and boundary sets of any n-simplex
in Rn as an n-manifold equivalent to Rn with the definition of the open/closed
properties of these sets strictly relative to Rn.
4. Disconnect Rn+ l into two new open sets by choosing an embedding of Rn
(created in step 3) in Rn+ l such that the n orthogonal basis vectors of Rn are
coincident with n of the n+1 orthogonal basis vectors of Rn+l.
5. Derive additional relationships based on the possible set intersections of the
boundary set of an n-simplex ^2 w^ *e boundary, interior and exterior sets of the
a second n-simplex nj with the boundary set of n2 intersecting either or both of the
two new sets predicted in step 4.

Intervals (l-simplexes)

The boundary, interior and exterior sets of an interval ij in R 1 are shown in
figure 2.

D

Figure 2 - The exterior, boundary and interior sets of an
interval in Rl

Note that there are two distinct closed boundary sets (B and D), two distinct open exterior
sets (A and E) and a single open interior set (C). The union of the sets A,B,C,D and E is
a 1-manifold equivalent to R*. All possible binary topological relationships between two
intervals in R* can then be derived by choosing any two points x and y forming the
boundary set of a second interval i^ either from the same set or each from a different set,
and making these the boundaries of an interval joining them. The created interval \i will
then either intersect interval \\ in some way or be disjoint from it. e.g. If both points x
and y are chosen from set A (the left exterior set) then the created interval \i will not

377

intersect ij. The unique combinations and their spatial interpretations are shown in figure
3.

X •

Figure 3 - Possible choice combinations of the two boundary points x,y from the
boundary, interior and exterior sets of an interval in Rl

From figure 3, it is possible to distinguish those choices which give distinct relationships
and name these distinct relationships as follows; (8 = element of a set)

x £ boundary set B or D, y £ boundary set D or B -> ij equals \2
x,y £ exterior set A or E -> il and \i are disjoint
x,y £ interior set C -> ij contains 12
x £ exterior set A or E, y £ interior set C -> ij and \2 overlap
x £ exterior set A or E, v £ boundary set B or D -> \\ meets \i
x £ boundary set B or D, y £ interior set C -> i\ and \2 share

	common bounds

Note that these six relationships are the same as those derived in (Pullar et. al. 1988). The
names given to the six distinct relationships are also taken from (Pullar et. al. 1988).

If we define the open/closed properties of these sets strictly relative to R1
then these sets and the set relationships in R.1 are preserved when the five sets A,B,C,D
and E whose union comprises R.1 are embedded in R.2. As for the new sets created by the
embedding; if the embedding of R^ in R^ is chosen such that the basis vector of R^
corresponds to one of the two orthogonal basis vectors of R^, then R^ will be divided
into two open sets F and G, separated by a third set corresponding to Rl. The situation is
shown in figure 4. R! is represented by the line L.

378

F
D

X̂C

G

R2
If

-4-

Figure 4 - New point sets F & G obtained by embedding Rl in R2

All possible binary topological relationships between intervals in R^ can be
derived in the same way as for Rl, by choosing two points either from the same set or
from a different set and making these the boundary of an interval. Since those
relationships derived in R! apply without modification in R^, only the new combinations
where x,y are elements of either or both sets F and G will be considered.

The set relationships can be divided into groups by examination of figure 4.
The first group occurs when both boundary points are in the sets A,B»C,D or E which
comprise R* (the line L) and has already been considered above. The second group
occurs when either one or both of the boundary points of \^ are contained within either F
or G. The spatial situation corresponds to the interval \^ being either left or right of the
line L. The possible combinations and their spatial interpretations are shown in figure 5a.

B D
Figure 5a - Intersection between the boundary point y of interval i2 and

the boundary, interior and exterior sets of interval il when boundary
point x of i2 is always chosen from the point set F (or equivalently, G).

The following set relationships may be distinguished based upon which sets the
boundary points x and y intersect;

x£ set F, y£ setF OR
x£ set G, y£ setF OR
x e set F or set G, y e exterior set A or E ij and \i disjoint

379

x£ set F or set G, y £ boundary set B or D
* £ set F or set G, y £ interior set C

-> 11 meets 12
-> ii intersects \i

The third group occurs when one of boundary points of \2 is an element of F and the
other is an element of G, indicating that the interior set of interval \2 intersects the line L
(the boundary, exterior and interior sets of ij) at a point. The possible combinations and
their spatial interpretations are shown in figure 5b.

D

Figure 5b - Intersection between the interior set of interval 12 and
the boundary, interior and exterior sets of interval il when x and y
are chosen from the point sets F and G respectively.

The three resulting relationships are distinguished according to which set of ii that the
interior of \2 intersects (in fact, the three possible relationships between a single point and
the interior, boundary and exterior sets of an interval);

x 6 set F, y £ set G, intersect exterior set A or E
x £ set F, y £ set G, intersect boundary set B or D
x £ set F, y £ set G, intersect interior set C

-> ij and \2 disjoint
-> ii intersects \2
-> ii and \2 cross

By consideration of both these groups, the only new relationships which result are
intersect and cross, making a total of 8 relationships between intervals in R^. For R^
also, no new relationships result because embedding the scheme for R^ shown in figure
4, in R3 produces two new sets as a result. The same process of reduction for R^ reveals
no new relationships - hence there are eight relationships between intervals in R^.

To reduce these 8 relationships in detail, the union of the boundary and
interior points-sets of ii and \2 is considered. Relationships can then be eliminated which
are homeomorphic. For intervals, this results in relationships; meet, overlap, contains,
equal, common-bounds all being homeomorphic to a single interval. Thus, the complete
two layer hierarchy of binary topological relationships between intervals (1-simplexes) in
R3 is shown in figure 6.

380

disjoint cross intersect

meet commonbounds concur overlap equal

Figure 6 - The eight unique binary topological relationships between 1-cells
inR3

Faces (l-simplexes)

The boundary, interior and exterior sets of a face (or 2-simplex) a i in R^ are
shown in figure 7.

A
B

Figure 7 - Exterior (A), Boundary (B) and Interior (C) point-sets of a face in R2

Note that there is a single closed boundary set (B), a single open exterior set (A) and a
single open interior set (C). The union of sets A,B and C is a 2-manifold equivalent to

381

R.2. All possible binary topological relationships between faces in R^ can then be derived
from the possible set relationships between the boundary, interior and exterior sets A, B
and C of a\ and the boundary set X of &2- e.g. if the boundary set X of a2 is contained
within the interior set C, then the face a% will be contained within aj. The combinations
matrix showing the possible relationships between the boundary of the face &2 and the
exterior, boundary and interior sets A,B, and C of aj is shown in table 1.

Exterior A

Boundary B

Interior C

X

X

X

X

X

X

X

X

X

X

X

X

Table 1: Set intersection relationships between the boundary set of a2
and the interior, exterior and boundary sets of al in R2

Note that the seventh relationship in the last column of table 1 is not possible
in R~ because of the restriction to closed, connected faces.

The six distinct relationships and their names are the same as those in
(Egenhofer et. al. 1990). The spatial interpretations are shown in figure 8.

af

equal

overlap meet commonbounds

Figure 8 - Six possible relationships between faces based on the intersection of
the boundary set of face a2 and the exterior, boundary and interior sets
of face al in R2

382

Figure 9 - New point sets D & E obtained by embedding the union
of the boundary (B), exterior (A) and interior (C) of a face
al in R3 (A U B U C = R2).

If we define the open/closed properties of these sets strictly relative to R2
then these properties and the set relationships in R2 are preserved when the 2-manifold
(equivalent to R2) formed by their union is embedded in R^. If the embedding is chosen
such that any two orthogonal basis vectors of R2 are coincident to two of any three
orthogonal basis vectors of R3 then R2 disconnects R3 into two open sets with the third
open set corresponding to R2 itself. The situation is shown in figure 9.

All possible binary topological relationships between faces in R3 can be
derived in the same way as for R2, by considering the possible set relationships between
boundary set of a face &2 and the boundary, interior and exterior sets of the face aj plus
the two new sets D and E which result from embedding R2 in R3 . Since all set
relationships derived for R2 are preserved in R3 , only the combinations involving the
new sets D and E will be considered.

By examination of figure 9, the set relationships can be divided into two
groups. The first group represents the situation where the boundary set X of a2 is
contained within the plane P formed from the union of the interior, exterior and boundary
sets of aj. This situation corresponds to faces in R2 and was considered above. The
second group corresponds to the situation where the boundary set X of &2 intersects
either D or E but not both. This corresponds to the spatial situation where &2 *s
completely on one side of the plane P formed by the boundary, interior and exterior sets
A,B and C of aj. In this situation, the boundary set X of &2 may intersect the plane P and

383

hence the boundary, interior and exterior sets A,B and C or not at all. All combinations
are shown in table 2.

12345678

Exterior A

Boundary B

Interior C

Above D

Below E
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 2: Set intersections between the boundary set X of a2
and the interior (A), exterior (B) and boundary (C) sets of al in R3 when al
intersects only one of the sets D or E.

Figure 10 - Relationships formed by the intersection of the boundary set X of a face a2
with the boundary, interior and exterior sets (A3 and C) of a face al when
the boundary set of of the face intersects the point-set D (or E). a2 is shown
shaded, however only the black outline is the boundary set of a2

384

Since the topological relationships are the same no matter which set D or E on
either side of the plane P the boundary set of &2 intersects, the combinations are shown in
the table with the marker offset between D and E. Note that relationship 7 is not possible
between two closed connected simplexes. The other seven relationships are shown
spatially in figure 10.

The third group of relationships occurs when the boundary set X of &2
intersects both D and E and hence must intersect the sets A,B and C of a j at an interval
whose boundaries correspond to two points from the boundary set X of &2 and interior
corresponds to the interior set Y of &2- The possible combinations between the boundary
set X of &2 and the boundary, interior and exterior sets A,B and C of aj when the
boundary set X intersects both D and E as well, are shown in table 3.

10 11 12 13 14 15

Exterior A

Boundary B

Interior C

Above D

Below E

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 3: Set Intersections between the boundary of set X of a2 and the
exterior (A), boundary (B) and interior(C) sets of al in R3 when the
boundary of a2 intersects both of the sets D and E.

The spatial interpretations are shown in figure 11. Note that for relationship
10 in column two, the interior set of the face &2 mav be used to derive a second
possibility. These relationships are marked lOa and lOb in the spatial interpretations of
these relationships, shown in figure 11. In addition, relationship 14 is not possible
between closed, connected faces.

By examination of all relationships in figures 8, 10 and 11, the number of
unique relationships between faces in R^ is fourteen since relationships 1,4 and 11 are
particular types of the disjoint relationship shown in figure 8 and relationships 3, 6 and
13 are particular types of the meet relationship shown in figure 8.

385

Figure 11 - Relationships formed by the intersection of the boundary set X of a face a2
with the boundary, interior and exterior sets (A3 and C) of a face al when
the boundary set of of the face intersects both point-sets D and E (passes through!
the plane P formed from the union of the boundary, interior and exterior sets of al.
Although a2 is shown shaded, only the black outline is the boundary set

To reduce these fourteen relationships in detail, the union of the boundary
and interior points-sets of aj and a2 in each relationship is considered. Relationships
which are homeomorphic can then be reduced to their homeomorphs. Thus, the complete
two layer hierarchy of binary topological relationships between faces (2-simplexes) in R^
is shown in figure 12.

Volumes (3-simplexes)

The boundary, interior and exterior sets of a volume (or 3-simplex) v^ in R^
are the same as for a face in R2 (Figure 7). There is a single closed boundary set (B), a
single open exterior set (A) and a single open interior set (C) just as there was for faces in
R2 in the previous section. The union of sets A,B and C is a 3-manifold equivalent to
R^. All possible binary topological relationships between volumes in R^ can then be
derived from the possible set relationships between the boundary, interior and exterior

386

Figure 12 - Hierarchy of
topologicalrelationships between
faces in R3.

ooC
O

sets A, B and C of v\ and the boundary set X of \2- e-S- ^ ̂ e boundary set X of \2 *s
contained within the interior set C, then the volume \2 will be contained within \\. The
combinations matrix showing the possible relationships between the boundary of a
volume \2 and the exterior, boundary and interior sets A,B, and C of v^ is shown in
table 4.

Exterior A

Boundary B

Interior C

X

X

X

X

X

X

X

X

X

X

X

X

Table 4: Set intersection relationships between the boundary set of v2
and the interior, exterior and boundary sets of vl in R3

Note that the seventh relationshi p in the last column of table 4 is not possible
in R.3 because of the restriction to closed, connected volumes. Not surprisingly the
relationships are the same as those between closed, faces in R .

The six distinct relationships and their names are the same as those used in
(Egenhofer et. al. 1990). The spatial interpretations are shown in figure 13.

overlap meet

commonbounds

Figure 13 - Six fundamental relationships between the boundary
set of a volume v2 and the boundary, exterior and interior
sets of a volume vl

388

Note that is also possible to use the sixteen different boundary-interior set
intersection combinations and the theory shown in (Egenhofer et. al. 1990), to derive the
same eight relationships between volumes or 3-simplexes. The only change in the theory
required is the use of an extension of the Jordan-Brouwer separation theorem to Ry,
given in (Alexander 1924).

To reduce these 8 relationships in detail, the union of the boundary and
interior sets of vj and \2 m each relationship is considered. Relationships which are
homeomorphic can then be eliminated. For volumes in R^, this results in meet, overlap,
contains, equal and common-bounds all homeomorphic to a single volume.

5. Conclusions and Future Research

The final aim of this research is a compact and powerful spatial information
system for 3D modelling and analysis. Since topological situations in 3-space are
complex and difficult, a natural starting place for the development and investigation of a
3D neighborhood topological model is to limit the types of relationships to those that may
occur between simplexes since they may be generalized to complex problems via a
simplicial decomposition. The topological relationships limiting the cell complex as
currently used in 3D topological models for SIS and CAD have been described. To
provide a better theoretical basis for 3D situations, a generic and reusable method for
deriving fundamental point-set topological relationships between two closed, connected
n-simplexes (genus zero) in Rn+ l (and higher dimensions) has been developed. The
generalized method of derivation can be summarised in two steps;

1. Consider the set intersection of the boundary set of a single n-simplex r\2
with the boundary, interior and exterior sets of a second n-simplex nj in Rn.

2. Extend these relationships by including either or both of the two additional
sets created by embedding the n-manifold created from the union of the boundary,
interior and exterior sets of nj in Rn+1.

Using this method, the derived sets of binary topological relationships for R^
have been presented as a two-layer hierarchy. Relationships in the first layer are created
by considering the union of the boundary and interior sets of the two n-simplexes and
replacing those relationships in the second layer which are homeomorphic with a
homeomorph. The results are as follows;

Second Layer - Fundamental First Layer - Aggregated
o

1-simplexes in RJ 8 4
**

2-simplexes in R-3 14 4

389

3-simplexes in R^ 6 2

It is interesting to note that the relationships between 3-simplexes verify the
correctness of the extended set of relationships between faces or 2-simplexes in R.3. Each
relationship between faces or 2-simplexes implied by the eight 3-simplex relationships is
predicted within the extended set of 2-simplex face relationships. Similarly, the
relationships between 2-simplexes verify the extended set of 1-simplex relationships in
R3.

Future research will concentrate on the development of a 3D neighborhood
topological model for SIS, the basis for the modelling sufficiency and analytical power of
this model will be the relationships derived in this paper. In addition, other hierarchies of
these relationships based on set and order theory will be investigated.

6. References

Alexander, J.W., 1924, On the Subdivision of 3-Space by a Polyhedron, Proceedings of the National
Academy of Science, vol. 10, pp. 6-12.

Alexandroff, P., 1961, Elementary Concepts of Topology (Dover Publications: USA).

Baer, A., C. Eastman, and M. Henrion, 1979, Geometric Modelling: A Survey, Computer Aided
Design, vol. 11, no. 5, pp. 253-272.

Baumgart, E.G., 1975, A Polyhedron Representation for Computer Vision, American Federation of
Information Processing Societies (AFIPS Conference), Proceedings of the NCC, vol. 44, pp. 589-596.

Boudriault, G., 1987, Topology in the TIGER file, Proceedings of the Eighth International Symposium
on Computer Assisted Cartography (AUTOCARTO 8), pp. 258-263.

Braid, I.C., R.C. Hillyard, and LA. Stroud, 1978, Stepwise Construction of Polyhedra in Geometric
Modelling, Mathematical Methods In Computer Graphics and Design (K.W. Brodlie ed.), pp. 123-141,
Academic Press.

Carlson, E., 1986, Three Dimensional Conceptual Modelling of Subsurface Structures, Technical
Papers of the ACSM/ASPRS Annual Convention, Baltimore, Maryland, USA, vol. 3, pp. 188-200.

Chrisman, N.R., 1987, Challenges for Research in Geographic Information Systems, International
Geographic Information Systems (IGIS) Symposium, vol. 1, pp. I-101 to 1-112.

Corbett, J.P., 1975, Topological Principles In Cartography, Proceedings of the International
Symposium on Computer Assisted Cartography (AUTOCARTO 2), pp. 61-65.

390

Corbett, J.P., 1979, Topological Principles in Cartography, Technical Report No. 48, US Bureau of
Census, Washington, D.C.

Corbett, J.P., 1985, A General Topological Model For Spatial Reference, Spatially Oriented
Referencing Systems Association (SORSA) Workshop (J.P. van Est ed.), Netherlands, pp. 9-24.

Driessen, R.J., 1989, A Model for Land Parcels in a LIS, Master of Surveying Thesis, School Of
Surveying, University Of Tasmania.

Egenhofer, M.J., A.U. Frank and J.P. Jackson, 1989, A Topological Model for Spatial Databases,
Design and Implementation of Large Spatial Databases (A. Buchmann, O. Gunther, T.R. Smith and Y.-
F. Wang eds) SSD 89, vol. 409, pp. 271-286, Springer-Verlag.

Egenhofer, M.J. and J.R. Herring, 1990, A Mathematical Framework for the Definition of Topological
Relationships, Proceedings of the Fourth International Symposium on Spatial Data Handling, Zurich,
Switzerland, vol. 2, pp. 803-813.

Frank, A.U. and W. Kuhn, 1986, Cell Graphs: A Provable Correct Method for the Storage of
Geometry, Proceedings of the 2nd International Conference on Spatial Data Handling, Seattle,
Washington, USA, pp. 411- 436.

Franklin, Wm. R., 1984, Cartographic Errors Symptomatic of Underlying Algebraic Problems,
Proceedings of the First International Symposium on Spatial Data Handling, Zurich, Switzerland, vol.
1, pp. 190-208.

Giblin, P.J., 1977, Graphs, Surfaces and Homology, (Chapman and Hall: U.K.).

Greasley, I., 1988, Data Structures to Organize Spatial Subdivisions, Report 79, University of Maine at
Orono, Dept. Surveying Engineering.

Herring, J.R., 1987, TIGRIS: Topologically Integrated Geographic Information System, Proceedings of
the Eighth International Symposium on Computer Assisted Cartography (AUTOCARTO 8), Baltimore,
Maryland, USA, pp. 282-291.

Jackson, J.P., 1989, Algorithms for Triangular Irregular Networks Based on Simplicial Complex
Theory, Technical Papers of the ACSMIASPRS Annual Convention, Baltimore, Maryland, USA, vol.
4, pp. 131-136.

Kainz, W., 1989, Order, Topology and Metric in GIS, Technical Papers of the ACSMIASPRS Annual
Convention, Baltimore, Maryland, USA, vol. 4, pp. 154-160.

Kainz, W., 1990, Spatial Relationships - Topology Versus Order, Proceedings of the Fourth
International Symposium on Spatial Data Handling, Zurich, Switzerland, vol. 2, pp. 814-819.

391

Kasriel, R., 1971, Undergraduate Topology, (W.B. Saunders Company: USA).

Mendelson, B., 1968, Introduction to Topology, 2nd Edition, (Allyn & Bacon: USA).

Moise, Edwin E., 1977, Geometric Topology In Dimension 2 and 3, Springer-Verlag.

Molenaar, M., 1990, A Formal Data Structure For Three Dimensional Vector Maps, Proceedings of the
Fourth International Symposium on Spatial Data Handling, Zurich, Switzerland, vol. 2, pp. 830-843.

Pullar, D.V. and M.J. Egenhofer, 1988, Toward Formal Definitions of Topological Relations Among
Spatial Objects, Proceedings of the Third International Symposium on Spatial Data Handling, Sydney,
Australia, pp. 225-243.

Saalfeld, A., 1989, The Combinatorial Complexity of Polygon Overlay, Proceedings of the 9th
International Symposium on Computer Assisted Cartography (AUTOCARTO 9), Baltimore, Maryland,
USA, pp. 278-288.

Spanier, E.H., 1966, Algebraic Topology, McGraw Hill Book Company.

Weiler, K., 1985, Edge-Based Data Structures for Solid Modelling Environments, IEEE Computer
Graphics and Applications, vol. 5, No. 1, pp. 21-41, IEEE, USA.

Weiler, K., 1986, Topological Structures for Geometric Modelling, Ph.D. Thesis, Rensselaer
Polytechnic Institute, Troy, New York, USA.

White, M., 1983, Tribulations of Automated Cartography and how Mathematics Helps, Proceedings of
the 6th International Symposium on Computer Assisted Cartography (AUTOCARTO 6), Canada, vol.
1, pp. 408-418.

White, M., 1984, Technical Requirements and Standards for a Multipurpose Geographic data system,
The American Cartographer, vol. 11, No. 1, pp. 15-26.

Woo, T.C., 1985, A Combinatorial Analysis of Boundary Data Schema, IEEE Computer Graphics and
Applications, vol. 5, No. 3, pp. 19-27.

Youngmann, C., 1988, Spatial Data Structures for Modelling Subsurface Features, Proceedings of the
Third International Symposium on Spatial Data Handling, Sydney, Australia, pp. 337-341.

Zeeman, R., 1961, The Topology of the Brain and Visual Perception, Topology of 3-manifolds and
Related Topics (ed. M.K. Fort), (Prentice-Hall: USA).

392

The Reactive-tree:
A Storage Structure for a Seamless,

Scaleless Geographic Database

Peter van Oosterom*

TNO Physics and Electronics Laboratory,
P.O. Box 96864, 2509 JG The Hague, The Netherlands.

Email: oosterom@fel.tno.nl

Abstract

This paper presents the first fully dynamic and reactive data structure. Reac
tive data structures are vector based structures tailored to the efficient storage
and retrieval of geometric objects at different levels of detail. Geometric se
lections can be interleaved by insertions of new objects and by deletions of
existing objects. Detail levels are closely related to cartographic map general
ization techniques. The proposed data structure supports the following gener
alization techniques: simplification, aggregation, symbolization, and selection.
The core of the reactive data structure is the Reactive-tree, a geometric index
structure, that also takes care of the selection-part of the generalization. Other
aspects of the generalization process are supported by introducing associated
structures, e.g. the Binary Line Generalization-tree for simplification. The
proposed structure forms an important step in the direction of the develop
ment of a seamless, scaleless geographic database.

1 Introduction

The deficiencies of using map sheets in Geographic Information Systems are well-
known and have been described by several authors [5, 10]. The obvious answer to
these deficiencies is a seamless or sheetless database. A seamless database is made
possible in an interactive environment by using some form of multi-dimensional in
dexing, e.g. the R-tree [15] or the KD2B-tree [35]. It turns out that the integrated
storage of multi-scale (scaleless) data in a spatial indexing structure forms the bot
tleneck in the design of a seamless, scaleless database [14]. A first approach might
be to define a discrete number of levels of detail and store them separately each with
its own spatial indexing structure. Though fast enough for interactive applications,
this solution is not particularly elegant. It introduces redundancy because some

*A part of this work was done while the author was at the Department of Computer Science,
University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands.

393

a. Scale 1:25,000 b. Scale 1:50,000

Figure 1: The Map Generalization Process

objects have to be stored at several levels. Apart from the increased memory usage,
another drawback is that the data must be kept explicitly consistent. If an object is
edited at one level, its "counter part" at the other levels must be updated as well.
In order to avoid these problems we should try to design a storage structure that
offers both spatial capabilities and multiple detail levels in an integrated manner:
a reactive data structure. Two spatial data structures, that provide some limited
facilities for multiple detail levels, are known: the Field-tree [9, 11] and the reactive
BSP-tree [33, 34]. However, these are not fully dynamic.
First, we will discuss some of the fundamental problems associated with detail levels
in a multi-scale database. The concept of multiple detail levels can not be defined
as sharply as that of spatial searching. It is related to one of the main topics in
cartographic research: map generalization; that is, to derive small scale maps (large
regions) from large scale maps (small regions). Figure 1 illustrates the generalization
process by showing the same part of a 1:25,000 map and of an enlarged 1:50,000 map.
A number of generalization techniques for geographic entities have been developed
and described in the literature [26, 30, 31]:

• simplification (e.g. line generalization);
• combination (aggregate geometrically or thematically);
• symbolization (e.g. from polygon to polyline or point);
• selection (eliminate, delete);

• exaggeration (enlarge); and

• displacement (move).

Unlike spatial searching, which is a pure geometric/topologic problem, map gener
alization is application dependent. The generalization techniques are categorized
into two groups [23, 26]: geometric and conceptual generalization. In geometric
generalization the basic graphic representation type remains the same, but is, for
example, enlarged. This is not the case in conceptual generalization in which the

394

a. The global data b. The detailed data

Figure 2: The Place of Global and Detailed Data

representation changes, e.g. change a river from a polygon into a polyline type of
representation.

Generalization is a complex process of which some parts, e.g. line generalization
[21, 22], are well suited to be performed by a computer and others are more diffi
cult. Nickerson [25] shows that very good results can be achieved with a rule based
expert system for generalization of maps that consist of linear features. Shea and
McMaster [31] give guidelines for when and how to generalize. Miiller [24] also ap
plies a rule based system for selection (or its counterpart: elimination) of geographic
entities. Brassel and Weibel [4] present a framework for automated map general
ization. Mark [20], Miiller [23], and Richardson [29] all state that the nature of the
phenomenon must be taken into account during the generalization in addition to
the more traditional guidelines, such as: the graphic representation (e.g. number of
points used to draw a line) and the map density. This means that it is possible that
a different generalization technique is required for a line representing a road than
for a line representing a river. It is important to note that the spatial data structure
with detail levels, presented in this paper, is only used to store the results of the
generalization process.

The guideline that important objects must be stored in the higher levels of the
tree, is the starting point for the design of the Reactive-tree. This guideline was
derived during the development of the reactive BSP-tree [33, 34] and is illustrated
in Figure 2: the global data are stored in the top levels of the tree (gray area in
Figure 2a) and the detailed data of the selected region are stored in the lower lev
els of the tree (Figure 2b) in nodes which are "quite close" to each other. The
Reactive-tree is an index structure, which supports geometric searching at different
levels of importance. The properties of the Reactive-tree are described in Section 2,
together with a straightforward Search algorithm. Insert and Delete algorithms are
given in the subsequent section. Support for the generalization technique simplifi
cation is provided by representing polygonal or polyline objects by a Binary Line
Generalization-tree, see Section 4. Support for the generalization techniques aggre
gation and symbolization is discussed in Section 5. In Section 6 the Alternative
Reactive-tree is presented, not based on the guideline stated above. This paper is
concluded with an evaluation of the presented structures.

395

2 The Properties of the Reactive-tree

In the following subsection, it is argued that importance values associated with ob
jects, are required. The two subsequent subsections give an introduction to the
Reactive-tree and a formal description of its properties, respectively. The last sub
section describes a geometric Search algorithm, which takes the required importance
level into account.

2.1 Importance Values

Generalization is, stated simply, the process of creating small scale (coarse) maps out
of detailed large scale maps. One aspect of this process is the removal of unimportant
and often, but not necessarily, small objects. This can be repeated a number of
times, each time resulting in a smaller scale map with fewer objects in a fixed region.
Each object is assigned a logical importance value, a natural number, in agreement
with the smallest scale on which it is still present. Less important objects get low
values, more important objects get high values. The use of importance values for
the selection of objects was first published by Frank [8].

Which objects are important is depends on the application. In many applications
a natural hierarchy is already present. In the case of, for example, a road map
these are: highways, major four-lane roads, two-lane roads, undivided roads, and
dirt roads. Another example can be found in WDB II [12] where lakes, rivers, and
canals are classified into several groups of importance. Typically, the number of
levels is between five and ten, depending on the size and type of the geographic data
set. In a reasonable distribution the number of objects having a certain importance
is one or two orders of magnitude larger than the number of objects at the next
higher importance level; a so called, hierarchical distribution.

2.2 Introduction to the Reactive-tree

Several existing geometric data structures are suited to be adapted for the inclusion
of objects with different importance values, for example the R-tree [15], the Sphere-
tree, and the dynamic KD2B-tree [35]. In this paper, the Reactive-tree is based on
the R-tree, because the R-tree is the best known structure. However, if orientation
insensitivity is important, then one of the other structures mentioned must be used.
The Reactive-tree is a multi-way tree in which, normally, each node contains a
number of entries. There are two types of entries: object-entries and tree-entries.
The internal nodes may contain both, in contrast to the R-tree. The leaf nodes of
the Reactive-tree contain only object-entries. An object-entry has the form

(MBR, imp-value, object-id)

where MBR is the minimal bounding rectangle, imp-value is a natural number that
indicates the importance, and object-id contains a reference to the object. A tree-
entry has the form

(MBR, imp-value, child-pointer)

396

= importance 1

= importance 2

Figure 3: The Scene and the Rectangles of the Reactive-tree

where child-pointer contains a reference to a subtree. In this case MBR is the
minimal bounding rectangle of the whole subtree and imp-value is the importance
of the child-node incremented by 1. The importance of a node is defined as the
importance of its entries. Note that the size of a tree-entry is the same as that of
an object-entry. When one bit in the object-id/'child-pointer is used to discriminate
between the two entry types, then there is no physical difference between them in
the implementation. Each node of the Reactive-tree corresponds to one disk page.
Just as in the R-tree, M indicates the maximum number of entries that will fit in
one node, and m < IM/2] is the minimum number of entries. Assume that the
page size is 1024, then M is 48 in a realistic implementation.

2.3 Defining Properties

In this subsection the defining properties of the Reactive-tree are presented. The
fact that the empty tree satisfies these properties and that the Insert and Delete
algorithms given in Section 3 do not destroy them, guarantees that a Reactive-tree
always exists. The Reactive-tree satisfies the following properties:

1. For each object-entry (MBR, imp-value, object-id), MBR is the smallest axes-
parallel rectangle that geometrically contains the represented object of impor
tance imp-value.

2. For each tree-entry (MBR, imp-value, child-pointer), MBR is the smallest
axes-parallel rectangle that geometrically contains all rectangles in the child
node and imp-value is the importance of the child-node incremented by 1.

3. All the entries contained in nodes on the same level are of equal importance,
and more important entries are stored at higher levels.

4. Every node contains between m and M object-entries and/or tree-entries,
unless it has no brothers (a pseudo-root).

397

\
r

.15,
r
W

' \
r
S17

r
W

r
^

r
s20,

r

*
r
8

r
9

r ^— >
.10

r ^~>
.11,

^

r '-> r-— >,

^\
\

r
^

r ^~> r̂
 — v

r
12

r
13

^_

r—\
30

/
r '-->
ii

•^

r <->
s31,

^
r r
S^.33.

r̂
-v

S34j
r
^

Figure 4: The Reactive-tree

5. The root contains at least 2 entries unless it is a leaf.
It is not difficult to see that the least important object-entries of the whole data
set are always contained in leaf nodes on the same level. In contrast to the R-tree,
leaf nodes may also occur at higher levels, due to the more complicated balancing
criteria which are required by the multiple importance levels; see properties 3, 4,
and 5. Further, these properties imply that in an internal node containing both
object-entries and tree-entries, the importance of the tree-entries is the same as
the importance of the object-entries. Figure 3 shows a scene with objects of two
importance levels: objects of importance 1 are drawn in white and the objects of
importance 2 are drawn in grey. This figure also shows the corresponding rectangles
as used in the Reactive-tree. The object-en tries in the Reactive-tree are marked
with a circle in Figure 4. The importance of the root node is 3, and the importance
of the leaf nodes is 1.

2.4 Geometric Searching with Detail Levels

The further one zooms in, the more tree levels must be addressed. Roughly stated,
during map generation based on a selection from the Reactive-tree, one should try
to choose the required importance value such that a constant number of objects will
be selected. This means that if the required region is large only the more important
objects should be selected and if the required region is small, then the less important
objects must be selected also. The recursive Search algorithm to report all object-
entries that have at least importance imp and whose MBRs overlap search region
5, is invoked with the root of the Reactive-tree as current node:

1. If the importance of the current node TV is less than imp, then there are no
qualifying records in this node or in one of its subtrees.

2. If the importance of the current node N is greater or equal to imp, then report
all object-entries in this node that overlap 5.

3. If the importance of the current node N is greater than imp, then also in
voke the Search algorithm for the subtrees that correspond to tree-entries that
overlap 5.

398

3 Insert and Delete Entry Algorithms

The Search algorithm is the easy part of the implementation of the Reactive-tree.
The hard part is presented by Insert and Delete algorithms that do not destroy
the properties of the Reactive-tree. In the implementation presented here, there
is exactly one level in the Reactive-tree for each importance value, in the range
from rain-imp to max jimp, where minjimp and max-imp correspond to the least
and to the most important object, respectively. If necessary, there may be one or
more tree levels on top of this, which correspond to importance levels max-imp +
1 and higher. Then the top level nodes contain tree-entries only. Assume that
tree-imp > maxjimp is the importance of the root of the Reactive-tree, then the
height of the tree is tree jimp -f 1 - minJmp. The values of rain-imp and tree jimp
are stored in global variables. In the algorithms described below, the trivial aspects
of maintaining the proper values of these variables are often ignored. Because of the
direct relationship between the importance and the level of a node in the Reactive-
tree of this implementation, the impjvalue may be omitted in both the object-entry
and the tree-entry.

3.1 Insert Entry

The Insert algorithm described below does not deal with the special cases: empty
tree and the insertion of an entry with importance greater than tree-imp. Solutions
for both are easy to implement and set the global variable tree-imp to the proper
value. The Insert algorithm to insert a new entry E of importance Ejimp in the
Reactive-tree:

1. Descend the tree to find the node, that will be called TV, by recursively choosing
the best tree-entry until a node of importance E-imp or a leaf is reached. The
best tree-entry is defined as the entry that requires the smallest enlargement
of its MBR to cover E. While moving down the tree, adjust the MBRs of the
chosen tree-entries on the path from the root to node N.

2. In the special case that node TV is a leaf and the importance N-imp is greater
than E-imp, a linear path (with length N-imp — E-imp] of nodes is created
from node TV to the new entry. Each node in this path contains only one entry.
This is allowed, because these are all pseudo-roots.

3. Insert the (path to) new entry E in node TV. If overflow occurs split the node
into nodes TV and TV' and update the parent. In case the parent overflows as
well, propagate the node-split upward.

4. If the node-split propagation causes the root to split, increment tree-imp by 1
and create a new root whose children are the two resulting nodes.

The node splitting in step 3 is analogous to the node splitting in the R-tree. A disad
vantage of the Reactive-tree is the possible occurrence of pseudo-roots. These may
cause excessive memory usage in case of a "weird" distribution of the number of ob
jects per importance level; e.g. there are more important objects than unimportant
objects.

399

3.2 Delete Entry

An existing object is deleted by the Delete algorithm:
1. Find the node N containing the object-entry, using its MBR.
2. Remove the object-entry from node N. If underflow occurs, then the entries

of the under-full node have to be saved in a temporary structure and the node
N is removed. In case the parent also becomes under-full, repeat this process.
It is possible that the node-underflow continues until the root is reached and
in that case tree-imp is decremented.

3. Adjust the MBRs of all tree-entries on the path from the removed object-entry
back to the root.

4. If underflow has occurred, re-insert all saved entries on the proper level in the
Reactive-tree by using the Insert algorithm.

There are three types of underflow in the Reactive-tree: the root contains 1 tree-
entry only, a pseudo-root contains 0 entries, or one of the other nodes contains
m — I entries. The temporary structure may contain object-entries and tree-entries
of different importance levels.

4 The Binary Line Generalization-tree

Selection, as supported by the Reactive-tree, can assure that only global and im
portant polylines (or polygons) are selected out of a large-scale geographic data set,
when a small-scale map (large regions) has to be displayed. However, without spe
cific measures, these polylines are drawn with too much detail, because all points
that define the polyline are used. This detail will be lost on this small-scale due
to the limited resolution of the display. Also the drawing will take an unnecessary
long period of time. It is better to use fewer points. This can be achieved by the
k-th point algorithm, which only uses every k-th point of the original polyline for
drawing. The first and the last points of a polyline are always used. This is to ensure
that the polylines remain connected to each other in the nodes of a topologic data
structure [3, 27]. This algorithm can be performed "on the fly" because it is very
simple. The k can be adjusted to suit the specified scale. However, this method has
some disadvantages:

• The shape of the polyline is not optimally represented. Some of the line
characteristics may be lost if the original polylines contain very sharp bends
or long straight line segments.

• If two neighboring administrative units are filled, for example, in case of a
choropleth, and the k-th point algorithm is applied on the contour, then these
polygons may not fit. The contour contains the re-numbered points of several
polylines.

Therefore, a better line generalization algorithm has to be used, for instance the
Douglas-Peucker algorithm [6]. Duda and Hart [7] describe an algorithm similar
to the Douglas-Peucker algorithm and call it the "iterative end-point fit" method.
Both references date back to 1973. A slightly earlier publication is given by Ramer
[28] in 1972. These types of algorithms are time consuming, so it is wise to compute

400

a. Polyline b. BLG-tree

Error indicated within
parentheses. The points Pj_
and PIO are implicit.

Figure 5: A Polyline and its BLG-tree

the generalization information for each polyline in a pre-processing step. The result
is stored in, for instance, a Multi-scale Line Tree [17, 18]. The disadvantages of the
Multi-scale Line Tree have already been discussed in [37]: it introduces a discrete
number of detail levels and the number of children per node is not fixed. Strip
trees [1] and Arc trees [13] are binary trees that represent curves (in a 2D-plane)
in a hierarchical manner with increasing accuracy in the lower levels of the tree.
These data structures are designed for arbitrary curves and not for simple polylines.
Therefore, we introduce a new data structure that combines the good properties of
the structures mentioned. We call this the Binary Line Generalization-tree (BLG-
tree).

The BLG-tree stores the result of the Douglas-Peucker algorithm in a binary tree.
The original polyline consists of the points pi through pn The most coarse approxi
mation of this polyline is the line segment [pi,pn]- The point of the original polyline,
that has the largest distance to this line segment, determines the error for this ap
proximation. Assume that this is point pk with distance e?, see Figure 5a. pk and
d are stored in the root of the BLG-tree, which represents the line segment [pi,pn].
The next approximation is formed by the two line segments [pi,p/t] and [pfcj^n]- The
root of the BLG-tree contains two pointers to the nodes that correspond with these
line segments. In the "normal" situation this is a more accurate representation.
The line segments [pi,pjt] and [pfc,pn] can be treated in the same manner with respect
to their part of the original polyline as the line segment [p1? pn] to the whole polyline.
Again, the error of the approximation by a line segment can be determined by the
point with the largest distance. And again, this point and distance are stored in a
node of the tree which represents a line segment. This process is repeated until the
error (distance) is 0. If the original polyline does not contain three or more collinear
points, the BLG-tree will contain all points of that polyline. It incorporates an
exact representation of the original polyline. The BLG-tree is a static structure with
respect to inserting, deleting and changing points that define the original polyline.
The BLG-tree of the polyline of Figure 5a is shown in Figure 5b. In most cases,
the distance values stored in the nodes will become smaller when descending the
tree. Unfortunately, this is not always the case, as shown in Figure 6. It is not a
monotonically decreasing series of values.

The BLG-tree is used during the display of a polyline or polygon at a certain scale.
One can determine the maximum error that is allowed at this scale and the primitive

401

a. Polyline b. BLG-tree

P2 .(4.6)

P3 *
Figure 6: Increasing Error in BLG-tree

is simplified and a good graphic representation is obtained. During traversal of the
tree, one does not have to go any deeper in the tree once the required accuracy is
met. The BLG-tree can also be used for other purposes, for example (further details
can be found in [37]):

• Estimating the area of a region enclosed by a number of polylines.
• Estimating the intersection(s) of two polylines. This is a useful operation

during the calculation of a map overlay (polygon overlay).
Note that the BLG-tree is most useful for polylines and polygons defined by a
large number of points. For a small number of points, "on the fly" execution of
the Douglas-Peucker [6] algorithm may be more efficient. For polylines that are
somewhere in between, another alternative might be interesting. Assign a value to
each point to decide whether the point is used when displaying the polyline at a
certain scale. This simple linear structure is probably fast enough for the medium
sized polyline.

5 Support for Other Generalization Techniques

The Reactive-tree and the BLG-tree reflect only a part of the map generalization
process: selection and simplification. A truly reactive data structure also deals
with other aspects of the generalization process. In this section two more aspects
are discussed: symbolization, and aggregation. These terms may be confusing in
the context of the Reactive-tree, because the tree is usually described "top-down"
(starting with the most important objects) and map generalization is usually de
scribed "bottom-up" (starting at the most detailed level). The two generalization
techniques are incorporated in the reactive data structure by considering objects
not as a simple list of coordinates, but as more complex structures. In practice, this
can be implemented very well by using an object-oriented programming language,
such as Procol [19, 32, 36, 37].
Symbolization changes the basic representation of a geographic entity, for example,
a polygon is replaced by a polyline or point on a smaller scale map. Besides the
coordinates of the polygon, the object structure contains a second representation in
the form of a polyline or point. Associated with each representation is a resolution
range which indicates where it is valid. An example of the application of the sym
bolization technique is a city which is depicted on a small scale map as a dot and

402

Figure 7: A Large Object is Composed of Several Small Objects

on a large scale map as a polygon.
The last generalization technique included in the reactive data structure is aggrega
tion, that is the combination of several small objects into one large object. From
the "top-down hierarchical tree" point of view, a large object is composed of sev
eral small objects; see Figure 7. The geometric description of the large object and
the geometric descriptions of the small objects are all stored, because there is no
simple relationship between them. The large object is some kind of "hull" around
the small objects, see Figure 7. Usually, a bounding box around the small objects
is a sufficient "geometric search structure", because the number of small objects is
limited. However, if the number of small objects combined in one large object is
quite large, then a R-subtree may be used.

Aggregation is used, for example, in the map of administrative units in The Nether
lands [37]. Several municipalities are grouped into one larger economic geographic
region (EGR), EGRs are grouped into a nodal region, nodal regions are grouped
in a province, and so on. Another approach to this case is to consider the bound
aries as starting point of the design, instead of the regions. In that case selection is
the appropriate generalization technique and the Reactive-tree can be used without
additional structures.

6 An Alternative Reactive-tree

In this section a reactive data structure is presented, which is not based on the
guideline that important objects must be stored in the higher levels of the tree.
The advantage of the Alternative Reactive-tree over the Reactive-tree is that it does
not assume a hierarchical distribution of the number of objects over the importance
levels.
The 2D Alternative Reactive-tree is based on a 3D R-tree. The 3D MBR of a 2D
object with importance imp is denned by its 2D MBR and its extents in the third
dimension are from imp and to imp+8, where 8 is a positive real number, so an object
corresponds to a block with non-zero contents (except for point objects). Figure 8
depicts the 3D MBRs of a number of 2D objects at two different importance levels.
When the parameter 8 is chosen very small, e.g. 0.01, the Alternative Reactive-tree
tries to group the objects that belong to the same importance level. This can be
explained by the fact that there is a heavy penalty on the inclusion of an object with

403

Importance or
z-axis

y-axis

x-axis
Figure 8: The 3D MBRs of the Alternative Reactive-tree

another importance value, as the volume of the 3D MBR will increase by at least a
factor (1 + S)/6. The larger 8 becomes, the less the penalty, and the more likely it
is that objects of different importance are grouped, and the Alternative Reactive-
tree behaves more like a normal 2D R-tree. In any case, all objects, important and
unimportant, are stored in leaf nodes on the same level.

The Alternative Reactive-tree can be generalized to support objects with general
labels instead of the hierarchical importance values. This enables queries such as
"Select all capital cities in region R." The label capital is associated with some of
the geographic objects, by inserting these entries into the tree. A Geographic object
may be associated with more labels by inserting more entries for the same object.
In the implementation, label corresponds to a numeric value. By choosing certain
values for these labels and for £, possible coherence between labels may be exploited.
This is what is actually done in the 2D Alternative Reactive-tree for hierarchically
distributed data.

7 Discussion

This paper described the first fully dynamic and reactive data structure. It was
presented as a 2D structure, but 3D and higher dimensional variants are possible.
Note that this has nothing to do with the use of a 3D R-tree for the 2D Alterna
tive Reactive-tree. The Reactive-tree and the Alternative Reactive-tree have been
implemented in C++ on a Sun 3/60. Two large data sets have been used to test
the reactive structures: WDB II [12] and the map of administrative units in The
Netherlands. Both performance tests showed the advantage of the selection based
on importance level and geometric position. Displaying the whole map area at in
teractive speed was possible, in contrast to the situation where the normal R-tree
was used, which also showed a lot of annoying details. The additional structures
for the support of simplification, symbolization, and aggregation are currently being
implemented. Future performance tests depend on the availability of digital maps
with generalization information.

404

Two other generalization techniques where not discussed: exaggeration and dis
placement. Exaggeration seems easy to include, because it is a simple enlargement
of an aspect of the graphic representation of one object, e.g. the line width. How
ever, the enlargement of linear features may cause other features to be covered and
they must therefore be displaced. Exaggeration and displacement are difficult to
handle, because multiple objects have to be considered. An ad hoc solution is to
associate an explicit set of tuples (displacement, map-scale-range) with each object
that has to be displaced and a set of tuples (enlargement, map-scale-range) with
each object that has to be enlarged. Further research is required in order to develop
more elegant solutions.
Very recently, another reactive data structure has been proposed by Becker and
Widmayer [2]. The Priority Rectangle File (PR-file, based on the R-file [16]) forms
the backbone of their structure. A significant common characteristic of the PR-
file and the Reactive-tree is that, in general, both store more important objects in
higher levels. A few differences of the PR-file, compared to the Reactive-tree, are:
objects of equal importance (priority) are not necessarily on the same level, and
object-entries and tree-entries can not be stored in the same node.

Finally, other Reactive-trees should be considered which are able to deal efficiently
with a non-hierarchical distribution of the number of objects over the importance
levels, whilst sticking to the guideline that important objects are to be stored in the
higher levels of the tree. This might be realized by changing the properties in such
a manner that one tree level is allowed to contain multiple importance levels, but it
is not (yet) clear how the Insert and Delete algorithms should be modified. This is
subject to further research.

References

[1] Dana H. Ballard. Strip trees: A hierarchical representation for curves. Com
munications of the ACM, 24(5):310-321, May 1981.

[2] Bruno Becker and Peter Widmayer. Spatial priority search: An access tech
nique for scaleless maps. Technical report, Institut fur Informatik, Universitat
Freiburg, June 1990.

[3] Gerard Boudriault. Topology in the TIGER file. In Auto-Carto 8, pages 258-
269, 1987.

[4] Kurt E. Brassel and Robert Weibel. A review and conceptual framework of au
tomated map generalization. International Journal of Geographical Information
Systems, 2(3):229-244, 1988.

[5] Nicholas R. Chrisman. Deficiencies of sheets and tiles: Building sheet-
less databases. International Journal of Geographical Information Systems,
4(2):157-167, 1990.

[6] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of points required
to represent a digitized line or its caricature. Canadian Cartographer, 10:112-
122, 1973.

[7] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
John Wiley fc Sons, New York, 1973.

405

[8] A. Frank. Application of DBMS to land information systems. In Proceedings
of the Seventh International Conference on Very Large Data Bases, pages 448-
453, 1981.

[9] Andre Frank. Storage methods for space related data: The Field-tree. Techni
cal Report Bericht Nr. 71, Eidgenossische Technische Hochschule Zurich, June
1983.

[10] Andrew U. Frank. Requirements for a database management system for a
GIS. Photogrammetric Engineering and Remote Sensing, 54(11):1557-1564,
November 1988.

[11] Andrew U. Frank and Renato Barrera. The Field-tree: A data structure for Ge
ographic Information System. In Symposium on the Design and Implementation
of Large Spatial Databases, Santa Barbara, California, pages 29-44. Lecture
Notes in Computer Science 409, Springer Verlag, July 1989.

[12] Alexander J. Gorny and Russ Carter. World Data Bank II, General users guide.
Technical report, U.S. Central Intelligence Agency, January 1987.

[13] Oliver Giinther. Efficient Structures for Geometric Data Management. Number
337 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1988.

[14] Stephen C. Guptill. Speculations on seamless, scaleless cartographic data bases.
In Auto-Carto 9, Baltimore, pages 436-443, April 1989.

[15] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.
ACM SIGMOD, 13:47-57, 1984.

[16] Andreas Hutflesz, Hans-Werner Six, and Peter Widmayer. The R-file: An
efficient access structure for proximity queries. In Proceedings IEEE Sixth In
ternational Conference on Data Engineering, Los Angeles, California, pages
372-379, February 1990.

[17] Christopher B. Jones and lan M. Abraham. Design considerations for a scale-
independent cartographic database. In Proceedings 2nd International Sympo
sium on Spatial Data Handling, Seattle, pages 348-398, 1986.

[18] Christopher B. Jones and lan M. Abraham. Line generalization in a global
cartographic database. Cartographica, 24(3):32-45, 1987.

[19] Chris Laffra and Peter van Oosterom. Persistent graphical objects. In Euro
graphics Workshop on Object Oriented Graphics, June 1990.

[20] David M. Mark. Conceptual basis for geographic line generalization. In Auto-
Carto 9, Baltimore, pages 68-77, April 1989.

[21] Robert B. McMaster. Automated line generalization. Cartographica, 24(2):74-
111, 1987.

[22] J.-C. Miiller. Optimum point density and compaction rates for the representa
tion of geographic lines. In Auto-Carto 8, pages 221-230, 1987.

[23] Jean-Claude Miiller. Rule based generalization: Potentials and impediments.
In 4th International Symposium on Spatial Data Handling, Zurich, Switzerland,
pages 317-334, July 1990.

[24] Jean-Claude Miiller. Rule based selection for small scale map generalization.
Technical report, ITC Enschede, The Netherlands, 1990.

406

[25] Bradford G. Nickerson. Automatic Cartographic Generalization For Linear Fea
tures. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, April 1987.

[26] F.J. Ormeling and M.J. Kraak. Kartografie: Ontwerp, productie en gebruik van
kaarten (in Dutch). Delftse Universitaire Pers, 1987.

[27] Thomas K. Peucker and Nicholas Chrisman. Cartographic data structures. The
American Cartographer, 2(l):55-69, 1975.

[28] Urs Ramer. An iterative procedure for the polygonal approximation of plane
curves. Computer Graphics and Image Processing, 1:244-256, 1972.

[29] Diane E. Richardson. Database design considerations for rule-based map feature
selection. ITC Journal, 2:165-171, 1988.

[30] A.H. Robinson, R.D. Sale, J.L. Morrison, and P.C. Muehrcke. Elements of
Cartography. J. Wiley & Sons, New York, 5th edition, 1984.

[31] K. Stuart Shea and Robert B. McMaster. Cartographic generalization in a
digital environment: When and how to generalize. In Auto-Carto 9, Baltimore,
pages 56-67, April 1989.

[32] Jan van den Bos and Chris Laffra. Procol - A parallel object language with
protocols. In OOPSLA '89, New Orleans, pages 95-102, October 1989.

[33] Peter van Oosterom. A reactive data structure for Geographic Information
Systems. In Auto-Carto 9, Baltimore, pages 665-674, April 1989.

[34] Peter van Oosterom. A modified binary space partitioning tree for Geographic
Information Systems. International Journal of Geographical Information Sys
tems, 4(2):133-146, 1990.

[35] Peter van Oosterom and Eric Claassen. Orientation insensitive indexing meth
ods for geometric objects. In 4^n International Symposium on Spatial Data
Handling, Zurich, Switzerland, pages 1016-1029, July 1990.

[36] Peter van Oosterom and Chris Laffra. Persistent graphical objects in Procol.
In TOOLS '90, Paris, pages 271-283, June 1990.

[37] Peter van Oosterom and Jan van den Bos. An object-oriented approach to the
design of Geographic Information Systems. Computers & Graphics, 13(4):409-
418, 1989.

407

INTEGRATION OF SPATIAL OBJECTS IN A GIS

Richard G. Newell, Mark Easterfield & David G. Theriault
Smallworld Systems Ltd,

8-9 Bridge Street,
Cambridge, England

CB2 1UA

ABSTRACT

A GIS is distinguished from other database systems in a number of
respects, particularly in the requirement to handle spatial objects
with extent. Whereas a common approach is to treat "geometry" and
"attributes" separately, a more integrated approach is to treat the
spatial aspect as but one part of an integrated data model which
accommodates all objects and their attributes in a seamless manner.
Spatial objects differ from other object attributes in that they usually
have extent and therefore efficient retrievals cannot be achieved by
the mechanisms implemented within database systems on their own.
This paper addresses the problem of implementing efficient spatial
retrieval methods within an integrated object data model. An
improved quadtree mechanism for clustering objects on disk is also
described.

INTRODUCTION

In recent years, the problem of organising large numbers of spatial
objects in a database has become much better understood. It is now
up to the system implementors to apply the known methods in real
systems. However, although there are many algorithms described for
indexing and storing spatial objects, there is little published
information on how to apply the algorithms within the context of a
complete integrated database system which would support a GIS. In
particular, there is an almost total lack of clear descriptions of
implementations within the realm of the relational model, although
papers have been published which seem to get good results using
this approach (Abel 1983 and 1984, Bundock 1987).

Older systems use a proprietary structure of sheets or tiles to
organise their spatial data, but this leads to serious problems in large
systems. A modern approach is to implement a spatial database
which is logically seamless. Some systems separate out the geometric
objects into a separate proprietary database which is specifically built
for fast spatial retrievals, and then this is linked somehow to a
database of attributes. It is our contention that this does not meet any
criteria of integration. This does of course beg the question of what
to do about the integration of spatially located data that is already
committed to institutional databases and which needs to be

408

accommodated within a GIS. We have no elegant answer to this
problem.

Currently available relational database systems come under a lot of
criticism for use with spatial data, on account of their apparent poor
performance. However, in our view, the jury is still out on this issue,
as, if appropriate data models are used, then acceptable spatial
performance seems to be achievable (Abel 1983 and 1984), but this
depends on the use to be made of the GIS. For relational databases,
there are more serious issues than this to overcome, especially the
management of long transactions and versioning (Easterfield et al
1990).

It is significant however, that most commercial systems that use a
commercial relational database system for holding spatial data
employ a system of check out into a single user proprietary database
before work starts, and they may even go one step further to employ
a display file to gain adequate graphics performance.

We have been researching the implementation of fast spatial
retrieval algorithms within the context of a version managed tabular
database, which uses an interactive object oriented language for its
development and customisation environment (Chance et al 1990,
Easterfield et al 1990). Our approach has been to implement spatial
retrieval methods in the system by using the normal indexing
methods of the tabular database, without any ad hoc structures
showing through to the system customiser and developer. We neither
employ check out for reasons of handling multiple users nor do we
need to employ a display file to achieve good performance.

HOW TO ACHIEVE FAST SPATIAL ACCESS

The nub of all spatial access algorithms (e.g. range trees,
quadtrees, field trees, k-d trees etc) seems to be the same, in that if
one can organise one's data somehow in the form of a tree structure,
where each node of the tree corresponds to a subset of the area
covered by its parent node, then candidate objects inside an area or
surrounding a point can be found quickly. Such algorithms can
retrieve an object in a time proportional to the logarithm of the
number of objects in the database.

One approach is to provide an external spatial index into a database
of objects which is not spatially organised. If one is retrieving many
objects within say a rectangle, then the candidate objects can be
identified very quickly, but retrieving the objects themselves is like
using a pair of tweezers to extract each one from disk. The
logarithmic behaviour still applies, but the constant term is very
large because of disk seek time.

Thus, to gain the full benefit, the actual object data itself needs to
be organised spatially on disk, by clustering the data, so that one can
at least use a "shovel" to retrieve objects (bulk retrieval), instead of a
pair of "tweezers" (random retrievals).

Certain methods of spatial indexing are structured so that each
object is contained once only in the index. Other approaches

409

duplicate an object's entry in the index, based on sub-ranges of the
total object. This has the advantage that candidate objects are more
likely to be relevant, but the disadvantage that duplicates must be
eliminated. (Abel 1983)

There does not seem to be a great performance difference
between the many methods of indexing and clustering that have been
described in the literature (Smith and Gao 1990, Kriegel et al 1990).
The message is, just do anything in a tree structure and you will get
most of the benefit, the rest is just tuning.

However, we are rather concerned with implementing such
mechanisms within an overall integrated data model, where the
peculiarities of particular methods are hidden, because if they are
not, the complexity and cost of development is increased. In
addition, as new spatial indexing mechanisms are discovered, these
should be implementable independently of the overall data model.

SPATIAL KEYS IN TABULAR DATABASES

It is well known that it is possible to encode the size and position
of an object in a unique spatial key, so that objects which are close to
each other in space generate similar keys. Further, if objects with
similar keys are stored at similar locations on disk, then the number
of disk accesses required to retrieve objects can be greatly
minimised.

Some methods lend themselves easily to the generation of a spatial
key, such as a quadtree index and its many close variations (Samet
1989). However, mechanisms such as range trees preclude this
approach, indeed the actual structure produced depends on the
order in which the database is created.

We have not investigated methods such as range trees for
clustering objects, because they are ad hoc and it seems to us
difficult to hide the storage mechanisms behind an acceptable
interface for system developers.

It is common in a tabular database that records with similar
primary keys are close to each other on disk, especially if the
fundamental storage mechanism is something like a B*tree. Thus, if
the most significant part of the primary key of all spatial objects is a
spatial key, then the desired effects of spatial ordering on disk can
be achieved (Abel 1983 and 1984, Libera & Gosen 1986). Further,
topological relationships between objects (e.g. represented by an
association table) can also be arranged to have the same spatial keys
as parts of their primary keys so these will become spatially
clustered as well.

However, the approach has one potential drawback. Consider the
problem of changing the geometry of such an object in a way that its
spatial key changes. Thus, making some, possibly minor, geometric
edit could result in a change to the primary key, i.e. identity, of the
object, resulting in problems of maintaining the overall integrity of
the database. Modification of a primary key effectively means deletion
followed by re-insertion.

410

One might consider a storage mechanism where records are
clustered according to a spatial key which is not a part of the
primary key. While this would be satisfactory for extremely simple
models (e.g. a single table of records with an auxiliary index for
primary key retrievals) it would not cluster the records in the many
association tables that exist in a richly connected data model.

A PRAGMATIC APPROACH

The idea of containing a spatial key within the identity of each
object does not complicate other kinds of retrieval. As far as these
procedures are concerned, a spatial key is no different from an
ordinary key. Our pragmatic idea is that at the time an object is first
created, we generate a spatial key as part of its unique identifier. The
value of this identifier never changes from this point on, even if the
location and geometric extent of the object is changed. The
pragmatic part comes in that geometric edits are rare, and major
changes in position or extent are even rarer. Thus the object rarely
moves far in space, so why should it move far on disk? Thus an
object's identity is a function of where it is born and we assume that
it never moves far from its place of birth.

However, by doing this, spatial retrievals may become unreliable,
because some objects which should be retrieved may be missed. Our
solution to this is to have a single external spatial address table, with
accurate spatial keys which are always maintained up-to-date, and it
is this which is used to retrieve objects. The "sloppy" spatial key is
no more than a clustering device, i.e. an accelerator to speed spatial
search. In the worst case, if large parts of the geometry were
modified significantly (e.g. following rectification), then the system
may get slow, but it would still work correctly.

The method used to implement the index does not need to be the
same as the method used to organise the clustering of the actual data
so that, for example, a range tree index (Guttman 1984) could be
used to index data which is clustered in a quadtree.

In our implementation, we use the same approach for both
clustering the data on disk and for building the external index.

HOW TO GENERATE A SPATIAL KEY

As there seems to be general agreement that there is minimal
difference in performance between the many tree-based approaches
to spatial clustering, (Kriegel et al for example found differences of
the order of 20% between the various methods that they
investigated) then perhaps the next criterion could be to aim for
simplicity. This therefore eliminates the range tree, because neither
is it simple, nor is it easy to see how one generates a permanent,
reproducible key from it. Smith and Gao found that methods based
on B-trees were good on storage utilisation, insert speed and delete
speed, but were inferior on search times. We suggest here a
modification to the method of creating a key based on a linear
quadtree which gives a worthwhile performance improvement

411

without degrading the other performances, nor adding any undue
complexity.

Now it is well known that point data can be incorporated in a
Morton Sequence, which is directly equivalent to encoding the
quadtree cell in which the point exists. A quadtree index is very good
for encoding point data, because all points exist in the leaves of the
tree (See figure 1) (see the MX quadtree in Samet 1989).

Coding Scheme

Code for "A": 2133

Figure 1: Quad-tree Encoding of Point Object

Encoding spatial objects with extent in a quadtree can also be
done, but many objects will exist near the root (see MX-CIF Quadtree
in Samet 1989 and Batty 1990), thereby leading to them being
included in many retrievals when they are not in fact relevant. For
large databases, this leads to a degradation in retrieval performance.
Samet's book contains a number of schemes for getting around this
problem by allowing an object to exist in more than one quadtree
node. However, this is not suitable for clustering the object data
itself.

In our earlier researches we had investigated solving this problem
by using a key based on a nine-tree in which each square is divided
into 9 equal sized overlapping squares each of which is a quarter of
the size (half the dimension) of its parent. Although it had the
desired effect of not populating the root, the tree is not well
balanced and the retrieval strategy is more complex. This in fact was
the basic approach behind Bundock's paper (Bundock 1987).

We include here a simpler solution to this problem because we
have not seen it described elsewhere. The idea is based on the fact
that most objects are very small compared to the world. So in order
to avoid trapping objects near the root of the tree, the subdivision
method is modified so that each quadtree cell is divided into 4 parts
which overlap slightly, i.e each quadtree sub-square is slightly more
than half the dimension of its parent square (See figure 2). The
overlap never needs to be more than the size of the largest object in
the database, and in practice can be less than this. The optimum
overlap depends on some statistic of the object size, such as the
mean object size times a factor.

412

Normal Quad-tree
Key :0

Overlapping Quad-tree
Key : 1244

Figure 2: Quad-tree Encoding of Object with Extent

This slight modification to the simple quadtree key is no more
complex to program, but does lead to worth while performance
improvements for retrieving objects inside an area and in finding
objects surrounding a point compared to the simple quadtree key
mechanism.

A DATA MODEL FOR CIS

Figure 3 below illustrates graphically a simplified data model. It
should be regarded as just a part of the complete model required for
a GIS application. A large number of users' requirements for
modelling their geometry and associated topology can be handled by
a generic model of this form. Where users differ from one another is
in the modelling of their own objects and interrelationships. The
philosophy is not that geometric objects, such as polygons, have
attributes, but that real world objects can be represented
geometrically by such things as polygons. In this diagram, a line with
an arrow signifies a one-to-many or many-to-one relationship and a
line with an arrow at both ends signifies a many-to-many
relationship. Of course, in a physical implementation, a many-to-
many relationship is implemented by means of an intermediate table,
which itself should also be spatially clustered.

The diagram should be read starting from the top. For example, a
real world object, such as a wood is represented by an area, which
may be made up of one or more polygons (these polygons may have
resulted from intersections with other polygons in the same
topological manifold). It is possible that each polygon may have one
or more "islands" such as a lake (i.e in this case, a lake is an island).
The lake area would of course share the same polygon as used by the
wood area. Polygon boundaries are represented by a closed set of
links, each one connecting exactly two nodes.

413

f SPATIAL]_JI |ND" J71 REAL WORLD
OBJECTS

SPATIALLY
CLUSTERED

Figure 3: Spatially Indexed Topological Model

From the point of view of the system implementor, it is only the
interrelationships of this model that he wishes to worry about,
without himself being concerned with efficient spatial retrievals.
However, if all entities in the model are identified by means of a key
with spatial content, then the desired clustering of instances in each
table will occur transparently. As it is common that objects which are
topologically related are also spatially near to one another, disk
accesses for topological queries should also be greatly reduced.

All that is needed in addition to this model is the external spatial
index itself, which is merely a device for generating candidate keys
for spatial retrieval. The point is that the spatial indexing method
does not perturb the logical structure of the model.

In our implementation, the spatial index is a table, just like any
other, which refers to real world objects, such as houses, lakes and
utility pipe segments. A real world object may then have a number of
different representations depending on such contexts as scale.

CONCLUSION

This paper has been concerned with the implementation of fast
spatial indexing methods within the context of an integrated GIS
data model. A design criterion has been to implement the spatial
mechanisms without complicating other retrievals from the database.
An approach is advocated based on a precise spatial index which can
generate candidate keys within a tabular database whose primary
keys contain a permanent, but "sloppy", spatial key. The external
precise spatial index could be regarded as part of the data model, or
could indeed be implemented as an entirely different mechanism.
The method proposed for generating spatial keys is a minor

414

improvement to the simple quadtree, which we have described here,
because we have not seen it published elsewhere.

ACKNOWLEDGEMENTS

We are grateful to Mike Bundock for his helpful comments on an
earlier draft of this paper.

REFERENCES

Abel, D.J. & Smith, J.L. (1983): A Data Structure and Query
Algorithm Based on a Linear Key for a Rectangle Retrieval Problem,
Computer Vision, Graphics, and Image Processing 24,1, October
1983.

Abel,D.J. & Smith, J.L. (1984): A Data Structure and Query
Algorithm for a Database of Areal Entities, The Australian Computer
Journal, Vol 16, No 4.

Batty, P. (1990): Exploiting Relational Database Technology in GIS,
Mapping Awareness magazine, Volume 4 No 6, July/August 1990.

Bundock, M. (1987): An Integrated DBMS Approach to
Geographical Information Systems, Autocarto 8 Conference
Proceedings, Baltimore, March/April 1987.

Chance, A., Newell, R.G. & Theriault, D.G. (1990). An Object-
Oriented GIS - Issues and Solutions, EG7S '90 Conference
Proceedings, Amsterdam, April 1990.

Easterfield, M.E., Newell, R.G. & Theriault, D.G. (1990): Version
Management in GIS - Applications and Techniques, EG7S '90
Conference Proceedings, Amsterdam, April 1990.

Guttman, A. (1984): R-trees: A Dynamic Index Structure for Spatial
Searching, Proceedings of ACM SIGMOD Conference on Management
of Data, Boston, June 1984.

Kriegel, H., Schiwietz, M., Schneider, R., Seeger, B. (1990):
Performance Comparison of Point and Spatial Access Methods, in
Design and Implementation of Large Spatial Databases: Proceedings
of the First Symposium SSD '89, Santa Barbara, July 1989.

Libera, F.D. & Gosen, F. (1986): Using B-trees to Solve Geographic
Range Queries, The Computer Journal, Vol 29, No 2.

Samet, H. (1989): The Design and Analysis of Spatial Data
Structures, Addison Wesley, 1990, ISBN 0-201-50255-0.

Seeger, B. & Kriegel,H. (1988): Techniques for Design and
Implementation of Efficient Spatial Access Methods, Proceedings of
the 14th VLDB Conference, Los Angeles, California, 1988.

Smith, T. R. and Gao, P. (1990): Experimental Performance
Evaluations on Spatial Access Methods Proceedings of the 4th Spatial
Data Handling Symposium, Zurich 1990, Vol 2, p991.

415

ALTERNATE REPRESENTATIONS OF GEOGRAPHIC
REALITY

Auto Carto 10
Panel Discussion

Organizers:
Stephen Guptill, U.S. Geological Survey

Scott Morehouse, E.S.R.I.

Participants:

Nicholas Chrisman, University of Washington
Michael Goodchild, University of California, Santa Barbara

Stephen Guptill, U.S. Geological Survey
Scott Morehouse, E.S.R.I.

Fran9ois Salge, IGN, France

THE DEBATE

Geographic information systems (GIS) are based on models of
geographic reality. The functionality and utility of a GIS depends on a
useful and correct data model. Data modeling involves the abstraction of
reality as a number of objects or features, then defining these objects, their
interrelationships, and behavior precisely.

The real world of geographical variation is infinitely complex and often
uncertain, but must be represented digitally in a discrete, deterministic
manner. Sometimes it is possible to define discrete features or objects in
more or less rigorous fashion, but more often the digital representation is an
abstraction of reality.

GIS databases present two very different views of reality. In one,
geographical variation is represented by a set of layers, each of which
records the pattern of one variable over the study area. If there are n layers,
then n separate items of information are available for each and every point in
the area. The variation in any one layer may be represented in numerous
ways, including a raster of point samples, a set of nonoverlapping
polygons, an irregular set of point samples, or a TIN.

In the second approach, we think of the world as a space populated by
objects of various kinds - points, lines, and areas. Objects have attributes
which serve to distinguish them from each other. Any point in the space
may be empty, or occupied by one or more objects. GISs that take the layer
view of the world often allow the user to populate a space with objects, but
then insist that they be forced into the layer model.

416

However, much of the recent work on object-oriented design for
geographic databases has emphasized the syntax of geographic features and
deemphasized the need for defining useful spatial query, display, and
analysis operators. It may be more important to design the data model
around what geographic objects do, rather than what they are.

One contention is that the purpose of a GIS is not only to store and
query a static schema of entities and relationships, but also to build new
entities and relations dynamically. Why, therefore, define, capture, and
store relationships which can be computed as needed? More importantly,
why define and capture relationships between entities for which there is no
clear functional requirement? Perhaps the goal of GIS data model design
should be to develop the simplest model that works.

The layer/object debate is becoming as important to the current GIS
industry as the earlier raster/vector debate, and carries a fundamental
message. Whereas the raster/vector debate was over how to represent the
contents of a map in a database, the layer/object debate is over how to
represent and analyze the multivariate complexity of geographic reality.

The panelists will present a wide variety of views on the layer/object
debate from the perspectives of academia, industry, and government. Each
has been involved in the design, development, and use of geographic
information systems and geographic databases. The commentary will help
the audience to clarify their thoughts on this important topic.

417

WHAT'S THE BIG DEAL ABOUT GLOBAL HIERARCHICAL
TESSELLATION?

Organizer: Geoffrey Dutton
150 Irving Street

Watertown MA 02172 USA
email: qtm@cup.portal.com

This panel will present basic information about hierarchical tessellations (HT's) as
geographic data models, and provide specific details about a few prototype systems
that are either hierarchical tessellations, global tessellations, or both. Participants will
advocate, criticize and discuss these models, allowing members of the audience to
compare, contrast and better understand the mechanics, rationales and significance of
this emerging class of nonstandard spatial data models in the context of GIS. The
panel has 7 members, most of whom are engaged in research in HT data modeling,
with one or more drawn from the ranks of informed critics of such activity. The
panelists are:

- Chairperson TEA
- Zi-Tan Chen, ESRI, US
- Nicholas Chrisman, U. of Washington, US
- Gyorgy Fekete, NASA/Goddard, US
- Michael Goodchild, U. of California, US
- Hrvoje Lukatela, Calgary, Alberta, CN
- Hanan Samet, U. of Maryland, US
- Denis White, Oregon State U., US

Some of the questions that these panelists might address include:

- How can HT help spatial database management and analysis?
- What are "Tessellar Arithmetics" and how can they help?
- How does HT compare to raster and vector data models?
- How do properties of triangles compare with squares'?
- What properties do HT numbering schemes have?
- How does HT handle data accuracy and precision?
- Are there optimal polyhedral manifolds for HT?
- Can HT be used to model time as well as space?
- Is Orthographic the universal HT projection?

Panelists were encouraged to provide abstracts of position papers for publication in the
proceedings. Those received are reproduced below.

Combination of Global and Local Search strategy in Regular Decomposition Data
Structure by Using Hierarchical Tessellation

Zi-Tan Chen, PhD
Environmental Systems Research Institute

380 New York St., Redlands, CA 92373, USA
Phone: (714) 793-2853
email: zitan@esri.com

418

This presentation describes a role of hierarchical tessellation (HT) in a very large
spatial data base. Large amount of spatial data can be indexed by regular
decomposition data structures, like Quad Trees (QT), Quaternary Triangular Mesh
(QTM), etc. All regular decomposition data structures have advantages of simple
computation and elegant hierarchy, and facilitate global search.

On the other hand, most spatial features in the real world are irregular in shape and
size. Therefore, an irregular decomposition data structure, for example a TIN, has more
efficiency and impact in terrain surface feature representation. An irregular
decomposition data structure usually has its own local neighbor finding properties.
These properties can provide valuable fast local search in special cases. For instance,
TIN has its own properties that make it easy to find a neighbor triangle from any given
triangle. However, it is not easy to build a global search for a TIN, because its
irregular shapes causes difficulties in building a hierarchy.

An optimal search strategy is a combination of the global and the local search in a
large spatial data base environment. In this way, a search can benefit from both global
hierarchical search and local neighbor finding properties.

The HT explores the local properties of a regular decomposition data structure. Based
on knowledge of the HT, fast local search in regular data structure for features with ir
regular shape becomes possible. This paper discusses the concept. As an example,
some experimental results of quadtree indexes a TIN for search triangles are given.

Rendering and managing spherical data with Sphere Quadtrees

Gyorgy Fekete
SAR at National Space Science Center
NASA/Goddard Space Flight Center

Greenbelt, MD 20771
email: gyuri@ncgl.gsfc.nasa.gov

Most databases for spherically distributed data are not structured in a manner
consistent with their geometry, as a result, such databases possess undesirable
artifacts, including the introduction of "tears" in the data when they are mapped onto a
flat file system. Furthermore, it is difficult to make queries about the topological
relationship among the data components without performing real arithmetic. The
sphere quadtree (SQT), which is based on the recursive subdivision of spherical
triangles obtained by projecting the faces of an icosahedron onto a sphere, eliminates
some of these problems. The SQT allows the representation of data at multiple levels
and arbitrary resolution. Efficient search strategies can easily be implemented for the
selection of data to be rendered or analyzed by a specific technique. Furthermore,
sphere quadtrees offer significant potential for improving the accuracy and efficiency of
spherical surface rendering algorithms as well as for spatial data management and
geographic information systems. Most importantly, geometric and topological
consistency with the data is maintained.

419

Implementing a Global GIS Using Hierarchical Tessellations

Michael F. Goodchild
National Center for Geographic Information and Analysis

University of California, Santa Barbara CA 93106
email: good@topdog.ucsb.edu

The QTM scheme described by Dutton and based on recursive subdivision of the faces
of an octahedron provides a convenient and practical way of representing distributions
over the surface of the earth in hierarchical, tesselated fashion. This presentation
describes work at NCGIA Santa Barbara to implement a global GIS using a version of
Dutton's scheme. The system makes use of the 3D display capabilities of a graphics
workstation. Algorithms have been developed for the equivalent of raster/vector
conversion, including filling, and the representation of lines in chain codes. Windowing
is simple because of the basic transformations used to create the scheme, suggesting
its use in tiling global databases. Examples are given of displays using the system,
and of some simple forms of analysis.

The Truncated Icosahedron as the basis for a global
sampling design for environmental monitoring

A. Jon Kimerling
Department of Geosciences

Oregon State University
Corvallis, OR 97331

Denis White
NSI Technology Services Corp.

US EPA Environmental Research Laboratory
200 SW 35th St.

Corvallis, OR 97333

A comprehensive environmental monitoring program based on a sound statistical
design is necessary to provide estimates of the status of, and trends in, the condition
of ecological resources. A systematic sampling grid can provide the adaptive capability
required in a broad purpose monitoring program, but how shall the globe or large areas
of it be covered by such a grid? Criteria for determining the cartography and geometry
of the sampling grid include equal areas across the domain of sampling, regular and
compact shape of sampling areas, and hierarchical enhancement and reduction of the
grid.

Analysis of systematic subdivisions of projections of the Platonic solids (tetrahedron,
hexahedron, octahedron, dodecahedron, and icosahedron) onto the globe show that
subdivisions of the dodecahedron and icosahedron produced the most regular set of
triangles, but differences among triangles are unacceptably large. In addition, analysis
of Lambert azimuthal equal-area map projections for the triangular subdivision of each
Platonic solid show that distortions in shape reach unacceptably large maximum
values for each solid.

Acceptably small shape distortions (maximum about 2%) can be obtained by
subdividing the globe into a truncated icosahedron, an Archimedean polyhedron
(commonly used as the tessellation for soccer balls) consisting of twenty hexagons
and twelve pentagons. A hexagon face of the truncated icosahedron can be positioned

420

to cover the entire conterminous U.S.; adjacent hexagons cover Alaska and Hawaii. A
hexagon from this model can be decomposed into a grid of equilateral, equal-area
triangles whose vertex positions can be projected into geodetic latitude and longitude
coordinates on the spheroid.

This triangular grid of sample points has advantages in spatial analysis over square or
hexagonal grids. The geometry for enhancement and reduction provides for a
hierarchical structure, and includes provision for density changes by factors of 3, 4, and
7. Points in the triangular grid placed on the truncated icosahedron hexagon can be
addressed with a hierarchical system based on the systematic decomposition from the
hexagon, or by a system similar to the quadrangle labeling convention of the U.S.
Geological Survey.

The Evolution of Geopositioning Paradigms

Hrvoje Lukatela
2320 Uxbridge Drive

Calgary, Alberta, CANADA - T2N 3Z6
email: lukatela@uncamult.bitnet

Numerical geopositioning paradigms, used in virtually all of the current geometronical
systems, are derived by a simple-minded transplant of the procedures and numerical
apparatus of the classical cartography into the realm of digital computing. Such
systems suffer from two major faults:

1) Full functionality of their spatial modeling is restricted to a single planar area;
usually less than one percent of the planetary surface. Modeling of the time-space
relationships between the near-space objects and the terrestrial surface is imprecise
and/or inefficient
2) Geometry relationship derived from the planar digital model is, at best, an imprecise
approximation of the corresponding relationship in the object space; at worst, it is an
exact opposite.

The purpose for the creation of most geometronical systems is no longer the auto
mated production of an analog, graphical model, from which a human observer derives
spatial relationships. In many disciplines, the human map user has been partially or
completely replaced by a layer of discipline-specific software; layer which depends on
the geometronical system - and its database - for the selection, manipulation and
delivery of digitally encoded spatial information. Among the spatial processing
requirements of a typical application system, two stand out:

1) From the numerical representation of spatial objects, their geometric relationships -
unions, intersections, proximity sections, distances, etc. - must be derived, with at
least an order of magnitude higher spatial resolution and precision than that which is
employed by the measurements and activities carried out in the object-space.
2) Among a large number of objects, populating the digital model and its database, the
system must select those that conform to a criterion based on the spatial extent of
another, possibly transient, object. This criterion is frequently combined with non-
spatial selection criteria.

HIPPARCHUS is one among a number of new numerical geopositioning paradigms,
which provide these facilities, while avoiding the faults mentioned above. Its reference
surface - and the data domain - is an ellipsoid of rotation; its repertoire of spatial
primitives consists of points, lines and areas on the terrestrial surface, as well as the

421

time-position relationship of the closed orbits and their sensor geometry.

In order to construct an index into a collection of objects, the domain is partitioned, and
the fragment identifiers are used as the search arguments of either an implicit or
explicit index table. Spherical or spheroidal surface partitioning presents a greater
challenge than that of a planar one; beyond five Platonic solids, spherical surface can
not be sub-divided into a finite number of regular polygons. The spherical surface can
be partitioned using one of the two divergent structure classes: pseudo-regular
(Pythagorean) or irregular (Platonic). Of the latter, spheroidal equivalent of the planar
Voronoi tessellation - combined with the vector algebra based manipulation of the
spherical coordinates - seems to yield an extremely efficient implementation of the
critical spatial algorithms. It is, however, the combination .of both partitioning
techniques that will likely provide a base for the future numerical geopositioning
paradigms.

422

VISUALIZING THE QUALITY OF SPATIAL INFORMATION

Barbara P. Buttenfield
NCGIA, Department of Geography, SUNY-Buffalo, Buffalo, NY 14261

email GEOBABS@UBVMS

M. Kate Beard
NCGIA, Department of Surveying Engineering

University of Maine, Orono, Maine 04469
email BEARD@MECAN1

DESCRIPTION AND SCOPE OF THE ISSUE

Technology currently allows us to process and display large volumes
of information very quickly. Effective use of this information for analysis
and decision making presupposes that the information is correct or
reasonably reliable. Information on the quality of data is essential for
effective use of GIS data: it affects the fitness of use of data for a particular
application, the credibility of data representation and interpretation, and the
evaluation of decision alternatives. The credibility of spatial decision
support using GIS may indeed depend on the incorporation of quality
information within the database and the display. As Goodchild (1990) states
the best insurance will be to sensitize the GIS user community to accuracy
issues and to develop tools which allow spatial data handling systems to be
sensitive to error propagation. Visualization should be explored as a
method for capturing, interpreting and communicating quality information
to users of GIS. Clearly, the quality of information varies spatially, and
visual tools for display of data quality will improve and facilitate use of GIS.
At present, those tools are either unavailable (in existing GIS packages) or
not-well developed (error models and the process of visualization are only
recently beginning to be addressed directly as research topics).

The quality of spatial data and databases is a major concern for
developers and users of GIS (Chrisman, 1983). The quality of spatial
information products is multidimensional, and relates to accuracy, error,
consistency and reliability. Implications for spatial analysis and for spatial
decision-making are too complex for a comprehensive inventory, but can
be identified in theoretical work (for example in spatial statistics) as well as
in GIS applications (for example in resource management). This paper
presents an initial framework for discussion of the role of visualization for
understanding and analyzing information about the quality of GIS data.
The discussion will proceed from and expand upon the ideas presented
here in a panel session at the meeting.

This paper represents part of Research Initiative #7, "Visualizing the
Quality of Spatial Information", of the National Center for Geographic
Information and Analysis, supported by a grant from the National Science
Foundation (SES-88-10917); support by NSF is gratefully acknowledged.

423

Our goal in this research panel is to bring together representatives
from academia, federal agencies and the private sector to present their needs
for knowledge about the quality of spatial data products. Discussion will
focus on effective means to manage and visually communicate components
of data quality to researchers, decision-makers and users of spatial
information, particularly in the context of GIS. The intention is to consider
a variety of perspectives on topics for a research agenda available to the
general GIS community, and to hear the various sectors (educational,
commercial and applications) express priorities for topics in the agenda.

THEMES FOR RESEARCH

Questions and impediments relating to the visualization of data
quality conceivably cover a very broad ground. For example, issues of
modeling and sensitivity analysis might be considered to determine what
visual tools are appropriate for particular models, the opportunity for
visualization to facilitate spatial analysis, and caveats to consider in
implementing visual tools in modeling. The role of visualization in
geographical analysis and its role in hypothesis testing and data exploration
have been recently reviewed (Buttenfield and Mackaness, 1991), but these
topics lie beyond a manageable scope for the panel. Instead, impediments
and research priorities within four categories will be addressed. These
include defining components of data quality, identifying impediments for
maintenance of data models and databases, addressing representational
issues, and evaluating particular user needs for data quality information.

Data Quality Components. Perhaps the most commonly cited component
of data quality relates to measures of error. Commonly recognized errors
include those associated with data collection(source error) and the
processing of data for map compilation (process error). Information on
source error is often discarded with the completion of map compilation.
Process errors have proven difficult to analyze in many cases, for example
in studies of digitizing error, or in modeling error associated with soil
mapping (Fisher, 1991). In statistics, the concept of Least Squares Error has
been applied to determine reliability (or what is called 'confidence') in
hypothesis testing. A third error component (use error) is associated with
the appropriate application of data or data products (Beard, 1989).

By some definitions, error (the discrepancy between measurement
and true value) is much more difficult to assess than accuracy (the
discrepancy between measurement and a model). The best examples of this
may be found in determination of geodetic position, which until the
development of GPS systems was limited to (albeit precise) projection of
location with reference to a geodetic spheroid and datum. The Proposed
Standard for Digital Cartographic Data Quality (Moellering, 1988)
incorporates three accuracy measures (positional accuracy, attribute accuracy,
and consistency) in addition to lineage and completeness.

A standard definition of data quality and its components may be
difficult to agree upon, as the domain of an application will likely impact

424

the user needs. For soils data, for example, requirements for consistent
attribution of soil type are more readily evaluated than requirements for
accurate positioning of soil parcel boundaries. For demographic data, where
enumeration boundaries are determined by mechanisms unrelated to the
particular variable at hand, just the converse may be true. Regardless, there
should be consensus about some of the research priorities for this theme:

What visual tools are appropriate for particular error models?

How can visualization facilitate monitoring of error propagation?

Data Models and Database Issues. Management of data quality within a GIS
database requires attention during manipulation and update, and will likely
impact upon the future architecture of such databases for implementation.
Information about the information within a database is referred to as
metadata, and has recently become a research issue in its own right (see for
example Lanter and Veregin, 1990). The representation of data quality
components in a data structure will not only have requirements to facilitate
their visual display, but also must be implemented with efficient pointers
and links to facilitate update operations. Analysis of error propagation
might also be facilitated by visual display, and the design of these graphic
tools may not be closely aligned with the design of conventional GIS
graphics. This will be covered under the third theme presented below.
Other questions arise:

How can the metadata be updated simultaneously with the data?

What database requirements must be implemented to accommodate
real-time data quality representations for static GIS products, or for
dynamic displays?

Can current data structuring alternatives accommodate changes to
data and data quality in effective ways? How can links b/t data and
data quality be preserved during database modification or update?

Representational Issues. The ease with which visualization tools may be
integrated within GIS packages varies considerably depending on at least
three issues, including the domain of the phenomena to be studied, the
purpose or intent of the user, and the format of the GIS software
(MacEachren, Buttenfield, Campbell, and Monmonier, 1991). This presents
a substantial challenge to the system designer. Buttenfield and Ganter
(1990) suggest that GIS requirements for visualization include conceptual,
technological, and evaluatory solutions, which may be seen to vary over
three broad domains: inference, illustration, and decision-making. Each
presents a challenge to the integration of appropriate visualization tools.

Maps are a major tool for decision-making with GIS. Current GIS
software includes functions to create cartographic output automatically or
interactively. However, none of the current turnkey systems include
mechanisms to ensure correct use of graphics functions. Poorly designed
maps may convey false ideas about the facts represented by the data, and bias

425

the decision-making process. Weibel and Buttenfield (1988) explore ways to
improve the quality of GIS map products, and increase effectiveness of
information transfer based on graphics. Their guidelines may provide only
a rudimentary implementation for visualizing data quality. Research
priorities that come to mind under this theme may involve both system
benchmarking and cognitive evaluations, as seen for example by the
following questions:

What design tools are appropriate for graphical depiction of
data quality?

Will generation of realtime data displays during database
update facilitate monitoring of error and error propagation?

How can the effectiveness of such displays be evaluated? For
example, What is the utility of embedding data quality with
data in graphic display? Can the two be merged, or is this too
much of a cognitive challenge for effective interpretation?

Evaluation of User Needs. Ganter (1990) discusses visualization from a
cognitive as opposed to graphical perspective, cautioning readers that
discovery and innovation, which have traditionally involved thinking
visually and producing images, increasingly benefit from GIS and CAD. He
argues for the importance of understanding the human faculties which use
pictures as tools in thinking. Science and engineering define problems,
explain processes, and design solutions through observation, imagination
and logic. Evaluation of user demands for data quality information will
require sensitivity to the internal (perceptual and cognitive) mechanisms by
which spatial and temporal patterns are interpreted.

Equally important is the need for sensitivity to the domain of the GIS
application. For example, reliability associated with a routing of emergency
dispatch vehicles will likely vary with each link of the route; this
information must be presented with high precision and in a short
timeframe. Reliability variations associated with the environmental impact
of a timber clear-cut operation cannot be tied to a routed network, and
variations may be interpolated as opposed to tabulated raw data. In this
context, some research questions may be proposed:

What are expectations of GIS users regarding data quality displays?

How will visualization of data quality impact upon the reliability
and credibility of spatial decision-making using GIS?

SUMMARY

With advances in technology, storage and displays mechanisms are
now in place for real-time display not only of spatial pattern but also of the
quality of the rendered data. Developments in software provide spatial
inference and statistical explanation to the verge of providing models about

426

the reliability and consistency of spatial interpretation, and this has paved
the way for application of GIS to policy-making and decision support. There
is a need and timeliness to consider data quality issues in the context of GIS.
Our acuity for visual processing indicates that current technology in
graphical display may assist our efforts to validate the decisions and results
based on GIS analyses. The panel discussion is intended to present multiple
viewpoints and to encourage the research and user community to address
visualization of data quality as an attainable goal in the development of GIS.

REFERENCES CITED

Beard M K (1989) Use error: The neglected error component. Proceedings,
AUTO-CARTO 9, Baltimore, Maryland, March 1989: 808-817.

Buttenfield B P and Ganter J H (1990) Visualization and GIS: what should
we see? what might we miss? Proceedings, 4th International Symposium
on Spatial Data Handling, Zurich Switzerland, July 1990, vol.1: 307-316.

Buttenfield B P and Mackaness WA (1991) Visualisation. Chapter II.a.4 in
Maguire, D. Goodchild, M.F. and Rhind, D (Eds.) GIS: Principles and
Applications. London: Longman Publishers Ltd. (in press)

Chrisman N R (1983) The role of quality information in the longterm
functioning of a geographic information system. Cartographica 21(2): 79-87.

Fisher P F (1991) Modeling Soil Map-Unit Inclusions by Monte Carlo
Simulation. International Journal of GIS (in press).

Ganter J H (1988) Interactive graphics: linking the human to the model.
Proceedings, GIS/LIS '88, pp. 230-239.

Goodchild, M F (1990) Spatial Information Science. Proceedings, 4th
International Symposium on Spatial Data Handling, Zurich, Switzerland,
July 1990, vol.1: 3-12.

Lanter D P and Veregin H (1990) A lineage meta-database program for
propagating error in geographic information systems. Proceedings GIS/LIS
'90, Anaheim, California, November 1990, vol.1, 144-153.

MacEachren A E, Buttenfield B P, Campbell J C and Monmonier M S
(1991) Visualization. In Abler, R. A., Olson, J. M. and Marcus, N. G. (Eds.)
Geography's Inner World. Washington, D. C.: AAG (forthcoming).

Moellering, H (1988) The proposed standard for digital cartographic data:
report of the digital cartographic data standards task force. The American
Cartographer, 15(1) (entire issue).

Weibel, W R and Buttenfield B P (1988) Map design for geographic
information systems. Proceedings, GIS/LIS 88, November 1988, San
Antonio, Texas vol.1: 350-359.

427

A General Technique for Creating SIMD
Algorithms on Parallel Pointer-Based

Quadtrees

Thor Bestul
Center for Automation Research

University of Maryland, College Park, MD 20742

Abstract

This paper presents a general technique for creating SIMD parallel
algorithms on pointer-based quadtrees. It is useful for creating paral
lel quadtree algorithms which run in time proportional to the height
of the quadtrees involved but which are independent of the number
of objects (regions, points, segments, etc.) which the quadtrees repre
sent, as well as the total number of nodes. The technique makes use
of a dynamic relationship between processors and the elements of the
space domain and object domain being processed.

1 Introduction
A quadtree is a data structure for indexing planar data. It is a tree with
internal nodes of degree four, where the root represents a planar rectangular
region, and the four sons of each internal node represent the four quadrants
of the node's region. Generally, each node stores some information about
the region it represents and also a color, with the internal nodes being con
sidered gray and the leaf nodes having some color derived from the data in
their regions. A particular variety of quadtree is typically denned by giving a
decomposition rule, which determines whether a region should be subdivided
and the corresponding node given sons. For example, for quadtrees to repre
sent binary images (i.e. region quadtrees), the rule is that if a region contains
pixels with both binary values, it is decomposed and the corresponding node
is an internal gray node with four sons. If a region consists entirely of only
one the binary values, the corresponding node is a leaf node and has, say,
the color black if the single value is 1 and white if it is 0. For our purposes,
the division of a region into quadrants is always done uniformly, although
the definition of quadtree does not necessitate this.

This paper describes a technique for creating quadtree algorithms in
tended to run in a parallel processing environment with many processors
sharing a single instruction stream (Single Instruction stream Multiple Data
stream or SIMD) and possessing a general facility for intercommunication
among the processors. The algorithms are for building and processing quadtrees
stored with one quadtree node per processor, and with non-leaf node pro-

428

cessors possessing pointers to the processors representing their sons. We call
such a quadtree implementation a parallel pointer-based quadtree.

The target architecture consists of many (several thousand) processors
each with a modest amount (a couple Kbytes) of local storage, and all of
which simultaneously perform a single sequence of instructions in lockstep.
The exception to this is that each processor can ignore instructions depending
on the current values in its local memory. Each processor has access to
anywhere within the local memory of any of the other processors. Thus if
each processor possesses a pointer to data in some other processor's memory,
they may all dereference their pointers in lockstep. Simultaneous reads of
data from a single location are supported. Simultaneous writes of data to a
single location are also supported, as long as a contention resolution operation
is specified along with the write operation, such as summing the received
values, min or maxing them, performing various boolean operations on them,
or selecting one of them arbitrarily.

A fundamental operation used often in the following is that of processor
allocation, in which a processor obtains a pointer to some other processor
not in use and initializes its local memory in some fashion, causing it to then
become part of the active computation underway. Processors can also be de
allocated, meaning that they no longer contribute to the active computation,
and lay idle waiting to be allocated again by an active processor. This can be
done in parallel for many processors which desire to allocate other processors
by using the rendezvous technique [4].

This algorithm creation technique combines two paradigms for parallel
computation in the arena of spatial data structures and the objects they
represent. One paradigm is space parallelism, in which the two or three-
dimensional space represented by our data structure (in this case a quadtree)
is divided up among the processors, each of which operates serially across the
entire set of objects. The other paradigm is object parallelism, in which the
set of objects involved is divided up among the processors, each of which
operates serially across the entire space. The technique described here uses
parallelism across both space and the set of objects. In order to accomplish
this combination of paradigms the technique leans heavily on the facility
of general intercommunication among processors, and in particular on the
capability of the handling of multiple reads and writes.

The technique succeeds partially because of its use of a very fine-grained
parallelism in which we have parallel processors distributed both across the
spatial elements and across the objects in the object set. However, the tech
nique only attains its full generality when we discover a mechanism to press
beyond even this level of granularity when necessary, and to make use of a a
dynamic relationship between processors and the elements of the space and
object domains being processed.

2 A Degenerate Case
It is simplest to describe the algorithm creation technique by first describing a
degenerate case of it. We use as an example problem the task of constructing
a PR quadtree for a collection of points in a plane, and create a parallel
algorithm for this task. In the construction of a PR quadtree, a node should

429

be assigned the color gray and subdivided if more than one point lies within
its boundary. A node should be white if it contains no points and black if it
contains exactly one.

We allow a processor for each point, containing that point's coordinates,
and initially have one processor to represent the root of the quadtree under
construction. The algorithm consists of a single loop iterating from the top to
bottom level of the quadtree being built, constructing all the quadtree nodes
for each particular level at once. Each point processor contains a pointer to
a node processor, and initially all the point processors point to the single
root node processor. The algorithm is illustrated in Figures 1 through 4 for
a small set of points.

For the first iteration of the loop, all points retrieve from the root node
information about where the boundary of the region it represents lies, and
then compute whether or not they lie within that boundary. All points
outside of the root boundaries set their node pointers to null. All points
with non-null node pointers then send the value "1" to the root node. These
values are summed at the root node as they are received. The root node
processor then checks this sum, and if it is greater than 1, meaning that
more than one point lies within its boundary, it assigns itself the color gray,
and allocates processors for its four son nodes. If the sum is 0 then the node
assigns itself the color white, and black if the sum is 1. Each point then
checks the node it points to (still the root node during this first iteration),
and if it is gray, computes which quadrant of the node it is in, and fetches
the corresponding son pointer. Each point processor now possesses a pointer
to the node processor corresponding to the quadrant within which the point
lies, if it lies in any, or has a null node pointer otherwise.

On the second iteration of the loop each point again sends the value "1"
to the node to which it points, the nodes check the sums they receive, and all
those nodes found to have more than one point within their boundaries are set
to gray and allocate sons. Each point processor then selects the appropriate
son to point to. This process is repeated moving down the quadtree being
created until no node has more than one point within its boundary, or some
limit on the number of quadtree levels has been reached.

Below is the PR-quadtree construction algorithm. The main procedure
is 'PR_quadtree()'. This procedure takes as an argument a pointer to a node
processor, which it uses as the root of the quadtree constructed. Only those
point processors active when the routine is called are used for the construction
of the quadtree. This is so that some subset of all the stored points could be
selected as a basis for the quadtree, by having the routine called from within
a parallel conditional statement. The effect of a conditional statement in
a parallel context is to deactivate for the duration of the statement those
processors whose currently stored values do not satisfy the conditional, as
will be discussed below.

In the procedure 'PR-quadtree', every node is given a flag called live. At
the beginning of each iteration of the procedure's loop, we set the live flag
to true in all those nodes which have some point processor pointing lo them,
and to false in all other nodes. Only those nodes for which lin is true are
operated on during the rest of the iteration.

We give here a description of our programming paradigm mid algorithm
notation.

430

The algorithm is given as a procedure, possibly with other supporting
procedures. There is no nesting of procedure declarations. Besides proce
dures there are global variables; a variable is global if it is declared outside of
any procedure. A procedure may return a value; if so, the type of the value
is given before the 'procedure' keyword.

A variable can be either parallel or non-parallel; in the latter case we say
that the variable is mono. Every parallel variable belongs to some particular
parallel processor type, such as point processor or node processor. A variable
is declared as mono with the construct "mono declaration''' and as parallel
with the construct "parallel processor-type declaration'''. In certain contexts
the default type is mono and in certain other contexts the default is parallel;
in these contexts the prefixes "mono" or "parallel processor-type" may be
omitted. Global declarations of variables are mono by default, so when global
declarations of parallel variables are made the prefix "parallel processor-type'1 ''
must be used, and furthermore the declarations must be given in a record-
style block delimited by the keywords 'begin' and 'end'. Only one such global
block of variables is permitted for each processor type. Each processor type
has its own namespace for global variables.

If a variable is a pointer, both the pointer itself and the type of object
pointed to can be either parallel or mono. The declaration "mono pointer
mono integer p" specifies a simple mono pointer to a mono integer, and corre
sponds to the usual notion of pointers in serial architectures. The declaration
"mono pointer parallel apple integer p" specifies that 'p' gives a uniform off
set into the storage of all processors of type 'apple' and that at that offset
is found a parallel variable of type integer. The declaration "parallel apple
pointer parallel orange integer p" specifies that the parallel pointer 'p' be
longs to the processors of type 'apple', and that each instance of 'p' points
to some datum of integer type in some processor of type 'orange'. The dec
laration "parallel apple pointer mono integer p" specifies that the parallel
pointer 'p' belongs to the processors of type 'apple' and that each instance
of 'p' points to some mono integer datum.

Procedures can also be either parallel or mono. A procedure is specified as
parallel by prefixing its declaration with "parallel processor-type", otherwise
it is taken to be mono. The arguments, local variables, and return value of
a mono procedure are taken to be mono by default. The arguments, local
variables, and return value, if any, of a parallel procedure are by default
parallel values. Furthermore, within the body of a parallel procedure, parallel
global names are interpreted in the context of the processor type given in the
procedure declaration. Any of the parameters, local variables, or return
values of any procedure can be forced to be of some type other than their
default by use the 'mono' and 'parallel' prefixes.

Declarations of procedure parameter types are given between the proce
dure argument list and the procedure's 'begin' statement.

The construct "in.every processor-type do statement-list" causes precisely
the set of all processors of the given type to become active at the beginning
of the statement list. Furthermore, within the statement list the names of
global variables are interpreted in the context of the given processor type. At
the end of the statement list, the set of processors which were active before
the statement list was entered is re-established as the active set.

The are two variants to "in_every". One is "in_every boolean-expression

431

processor-type do statement-list" and the other is "in_every processor-type
having boolean-expression do statement-list". Both are equivalent to "in_every
processor-type do if boolean-expression then statement-list".

Outside of a parallel procedure for a given type or an 'in_every' statement
for a given processor type, use of parallel global variable names for that
processor's type is considered an error.

In the construct "if conditional then statement-list", if the conditional
is a parallel expression (one involving parallel variables or values), then the
subset of the present active set of processors whose current values satisfy
the conditional are made the active set at the beginning of the statement
list. At the conclusion of the statement list, the set of processors which were
originally active is re-established as the active set.

When a parallel procedure is called, the set of processors active at the
time of invocation will be the set active at the beginning of the execution of
the procedure body.

If 'p' is a pointer to a processor, and 'f is a parallel variable in the
processors of the type of that pointed to by 'p', then the notation 'f<p>'
indicates the value of the variable 'f' in the particular processor pointed to
by'?'.

The symbol '<—h' indicates an assignment statement involving a possibly-
multiple write, and in which the write contention is to be resolved by sum
ming the multiply-written values. There are other similar assignment sym
bols such as '<-or' and '<-min'.

The algorithm is as follows:

node I I pointer node father;
node I I pointer node array son[4];
node I I integer level;
node I I node_color color;
node II real left, right, bottom, top;

point I I real x, y;

node II procedure allocate_sons();
/* Allocates four sons for each node active when

the procedure is called and fills each node's
son array accordingly. */

procedure PR_quadtree(root)
pointer node root;
/* Builds a PR quadtree for all the points which are in

allocated point processors. Assumes that root points to
a node whose level and boundary have been initialized,
and uses this node as the root of the quadtree
constructed. */

begin
node I I integer total;
point I I pointer node node_ptr;
point II integer my_quadrant;
integer 1;

/* Make all points within the root's boundary point to the

432

root, give all other points NULL node pointers. */
in_every point do
begin

node_ptr <- NULL;
if x >= left<root> and x <= right<root> and

y >= bottom<root> and y <= top<root> then
node_ptr <- root;

end;

/* Loop from level of root to bottom. */

for 1 <- level<root> downto 0 do
begin

/* Initialize point total for all nodes on present
level to zero. */

in_every node having level = 1 do
total <- 0;

/* Each point contributes 1 to the point total for the
node containing it. */

in_every point having node_ptr <> NULL do
total<node_ptr> <-+ 1;

/* Nodes with no points in them are white. Nodes with
one point in them are black. Nodes with more than
one point in them are gray. If we're not at the bottom
level we allocate sons for the gray nodes. */

in_every node having level = 1 do
begin

if total = 0 then color <- WHITE
else if total = 1 then color <- BLACK
else begin

color <- GRAY;
if 1 > 0 then allocate_sons();

end;
end;

/* If at bottom level then we're done. */
if 1 = 0 then return;

/* The points in each gray node divide themselves among
the sons. */

in_every point having node_ptr <> NULL and
color<node_ptr> = GRAY do

begin
/* Each point determines which subquadrant it is in. */
my_quadrant <- 0;
if x > 0.5 * (left<node_ptr> + right<node_ptr>) then
my_quadrant <- my.quadrant + 1;

if y < 0.5 * (bottom<node_ptr> + top<node_ptr>) then
my_quadrant <- my_quadrant + 2;

/* Each point fetches the pointer to the corresponding
node son. */

node_ptr <- son<node_ptr>[my_quadrant];
end;

end;
end;

433

To summarize the technique so far, we allow one processor per object and
one processor per quadtree node. Each object is given access to a sequence
of shrinking nodes which contain it; initially all objects have access to the
root node. By having each object obtain information from its node, and by
combining at the node information from all of the objects who access that
node, the objects make decisions about descending the quadtree from that
node.

3 The General Technique
Now consider instead the task of constructing a PM quadtree for line segment
data. In constructing a PM quadtree, a node should be assigned the color
gray and subdivided if its boundary contains more than one endpoint, or
if its boundary has two segments which enter it but which do not have a
common endpoint within it. Initially, we have one processor allocated for
the quadtree root, and one processor for each line segment, containing the
coordinates of the segment's endpoints.

Consider creating an algorithm, similar to the one given above, to con
struct the PM quadtree for this segment data. Each segment processor ini
tially possesses a pointer to the quadtree root processor. Each segment pro
cessor computes how many of its segment's endpoints lie within the boundary
of the node to which the segment processor points; this will be 0, 1, or 2.
Each segment then sends this value to the node it points to, and both the
maximum and minimum of these values are computed at the node. Any node
which receives a maximum value of 2 assigns itself the color gray, since this
means that some single segment has both endpoints in the node's boundary.
Any node which receives a maximum of 1 and a minimum of 0 also assigns
itself the color gray, since this means that there are at least two segments in
the node's boundary, one which passes completely through it and one which
terminates within it.

Then each segment with exactly 1 endpoint in the node it points to sends
the coordinates of that endpoint to the node. The node receives the minimal
bounding box of the coordinates sent to it (this, of course, amounts simply
to applying min and max operations appropriately to the coordinate compo
nents). If this minimal bounding box is larger than a point, the node assigns
itself the color gray, since this means that some two segments entering the
node have non-coincidental endpoints within the node.

Finally each segment with 0 endpoints in the node it points to determines
whether it in fact passes through the interior of the node at all, and if so
it sends the value "1" to the node, where these values are summed. If the
sum received by the node is greater than 1, the node assigns itself the color
gray, since this means that some two segments passing through the node do
not have any endpoints in the node, which implies that they do not have a
common endpoint in the node. Then all gray nodes allocate son processors.
Any nodes which were not given the color gray should be colored white if no
segments entered their interior (the sum is zero), and black otherwise (the
sum is one).

At this point in the algorithm, we would like to have all segment proces
sors which point to gray nodes compute which of the node's sons they belong

434

to, and retrieve from the node the appropriate son pointer, just as in the
case of the PR quadtree construction algorithm. Of course in this case, as
opposed to the case of the point data, a given segment can intersect more
than one of the node's sons, and we are left with the situation of wanting to
assign up to four son pointers to the segment processor's node pointer, and
processing each of the corresponding sons. The solution to this dilemma is
to allocate clones of each such segment processor, that is, to create multiple
processors which represent the same segment, and all of which contain (al
most) the same information. So for each segment processor pointing to a gray
node, we allocate three clone processors, all of which contain the segment's
endpoints and a pointer to the same node as the original segment processor.
In addition, the original and its clones each contain a clone index from 0 to
3, with the original containing 0 and each of the clones containing a distinct
index from 1 to 3. Now the original and its clones each fetch a son pointer
from the node that they all point to, each one fetching according to its clone
index, so that each gets a different son pointer.

The subsequent iterations of the algorithm proceed as the first, with each
segment processor determining how many of its endpoints lie within the
interior of the node it points to, and with the eventual computation of the
colors of all the nodes on each particular level. At this point in each iteration,
notice that any segment processors pointing to leaf nodes, or whose segments
do not pass at all through the interior of the node to which they point, will
not have any further effect of those nodes, and can thus be de-allocated and
re-used later. This reclaiming of segment processors keeps the number of
clones allocated for each segment from growing exponentially. In fact the
number of processors required for a given segment at a given level in the
construction of the quadtree will be only roughly as many as there are nodes
in that level of the tree through whose interior the segment passes.

To summarize the general technique then, we allow one processor per
quadtree node, .and initially allow one processor per object. Each object
is given access to a sequence of shrinking nodes which contain part of it;
initially all objects have access to the root node. By having each object
obtain information from its node, and by combining at the node information
from all of the objects who access that node, the objects make decisions
about descending the quadtree from that node. For those objects which do
descend, it is desirable for their various parts which lie in various quadrants of
the node to descend in parallel. Thus we allow duplicate or 'clone' processors
for each object, and have each processor handle just that portion of the object
relevant to one quadrant of the node. Duplicate processors which determine
that they can no longer effect the the node to which they point, because
that node is a leaf, or because the object they represent does not overlap
that node, can deactivate themselves so that they may be used later in the
computations for some other object.

We see then that this technique allows us to go beyond the level of gran
ularity of one processor for every element (space component or object) to
a level where there are multiple processors for certain elements and none
for others; where the processors are being used and disposed in a dynamic
fashion.

435

4 Other Applications
The same general technique can be applied to create algorithms for several
other quadtree tasks. For example consider the task of shifting a quadtree.
Suppose we have already created somehow a quadtree with one processor
per node, and wish to compute a new quadtree to represent the original
one shifted by some amount. Using this technique we create the following
algorithm.

Have each black leaf node of the old quadtree compute its own shifted
position. Then allocate a new processor for the root node of the new (shifted)
quadtree, and give each old black leaf node a pointer to this new root node.
Iterate the following from top to bottom of the new quadtree.

Each old black leaf node fetches the boundary of the new node it points
to, and computes whether, in its new shifted position, it encloses that node.
All old black leaf nodes which do enclose the new node they point to send the
value TRUE to the new node, which combines the received results by or-ing
them. Any new node which thus determines it is enclosed by some old black
leaf node assigns itself the color black. Then each old black node computes
whether it intersects the new node it points to even if it doesn't enclose it,
and if so sends TRUE to the new node, which combines the received results
by or-ing them. The new node then assigns itself the color gray if it is not
already black and if some old black leaf node intersects it, i.e. if the received
result is TRUE. Any new node which does not determine itself to be black
or gray in this way assigns itself the color white. All new gray nodes allocate
sons for themselves. Each old black leaf node pointing to a new gray node
allocates clones for itself, and divides up among itself and its clones the son
pointers of the new gray node to which they all point.

In the above procedure, before clones are allocated, any processor rep
resenting an old black leaf node which points to a black or white new node
should de-allocate itself so that it may be re-used, since it will no longer affect
the new node it points to. Of course, this de-allocation should not be done
for those processors which originally represented the quadtree to be shifted,
if it is desired that this original quadtree not be lost, but these processors
can be specially marked to avoid their being de-allocated.

It is not hard to see how this same technique can also be used to create al
gorithms for quadtree rotation and expansion which run in time proportional
to the height of the new quadtree, by computing in parallel the rotated or
expanded version of each old black leaf node, and building the new quadtree
using cloning. One can also create algorithms for the simultaneous insertion
of many polygons or arbitrary regions into a quadtree. Some of these al
gorithms will require an additional post-processing phase in which any node
with four sons of the same color is given that color and has its sons discarded.
This can be done in a single bottom-up pass over the new quadtree in time
proportional to its height.

5 A Hidden Edge Algorithm Using Cloning
To show the flexibility of our technique, we use it here to create an algorithm
for computing hidden edges in a scene consisting of polygons lodged in 3-

436

space. The algorithm builds an MX quadtree of the pixels in the viewplane.
In an MX quadtree [3], all pixel sized leaf nodes through which an edge passes
are black, and all other leaf nodes are white.

This algorithm is based on the Warnock algorithm for hidden edge com
putation [1] [5]. The essential idea of the algorithm is that while recursively
decomposing the viewplane into quadrants, if it can be determined that all
of the pixels which compose some entire quadrant at some level of decom
position should be white, then the quadrant does not need to be further
decomposed. In order to determine if this is so for a given quadrant, we
consider the planes (in 3-space) in which our polygons lie. After computing
the projections onto the viewplane of all polygons (which is done in parallel
by the polygon processors), we consider the planes of those polygons whose
projections completely enclose the given quadrant. We wish to determine
if the plane of any of those polygons is "closer" to the viewpoint than the
planes of the other polygons whose projections enclose the quadrant. To
determine this, we compute the inverse projections of the quadrant corners
onto the planes of the enclosing polygons, and if one plane is found to be
nearer to the viewpoint for all four corners, it is deemed the closest plane.

The algorithm proceeds as follows. We initially assign one processor per
polygon, and have one processor representing the root node of the viewplane
quadtree being constructed. Initially each polygon processor possesses a
pointer to the root node. The following procedure is iterated from top to
bottom of the quadtree being built.

Each polygon computes its projection onto the viewplane (these can be
pre-computed since they are fixed), and determines the relationship of its
projection with the quadtree node to which it points. Specifically, it de
termines whether its projection encloses the quadrant, or is involved with
it, meaning it overlaps but does not enclose the quadrant, or whether it is
outside the quadrant altogether.

Each polygon whose projection encloses its quadrant computes the in
verse projection of each of the four corners of its quadrant onto its plane.
This computation produces for each corner a distance from the viewpoint
to the polygon's plane. Each of these polygons then sends this distance for
each of the four corners to its quadrant (node) processor, which computes
the minimum of these values as they are received. Each polygon then reads
back the minimum distance for each of the four corners, and if all four min
imum distances are equal to the corresponding distances which the polygon
computed for its own plane, the polygon concludes that its plane is closest
to the viewpoint. The polygon then informs its quadrant that it is enclosed
by the projection of a polygon whose plane is closest to the viewpoint, and
based on this the quadrant assigns itself the color white.

Then all polygons which are involved with (i.e. overlapping but not en
closing) their quadrant send the value TRUE to their quadrant, which com
bines the values sent to it by or-ing them. Any quadrant not already assigned
the color white and which determines it has some polygon involved with it
assigns itself the color gray. All other quadrants have no polygons whose
projections either enclose them or are involved with them, so they assign
themselves the color white. All gray quadrants allocate sons.

Those polygons which point to a quadtree leaf node, or which are outside
the quadrant to which they point, de-allocate themselves, since they will no

437

longer affect those nodes. All remaining polygon processors point to a gray
nodes. Each remaining polygon processor allocates clones, and divides up
among itself and its clones the son pointers of its node.

On the last iteration of the algorithm, that is, the pixel-level iteration,
the procedure above is modified so that any node which is involved with some
polygon assigns itself the color black instead of gray. After this last iteration,
the quadtree constructed is an MX quadtree representation of the viewplane
of the projection, with hidden edges eliminated.

Below is the hidden-edge algorithm. The main procedure is 'hidden_edge()',
which takes as an argument a pointer to a node processor, and uses this as the
root of the quadtree constructed. As with 'PR_quadtreeQ', only those poly
gon processors active when the routine is called are used for the construction
of the hidden-edge image quadtree.

node |
node |
node I
node I
node I

pointer node father;
pointer node array son[4];
integer level;
node_color color;
real left, right, bottom, top;

/* Vertex projections onto viewplane. */
polygon II real array x[NPOINTS], y[NPOINTS];
/* Number of vertices in polygon. */
polygon II int npts;
/* Parameters of polygon plane. */
polygon I I real a, b, c;

polygon II real polygon II procedure poly_plane_dist(x, y);
polygon I I real x, y;
/* For each active polygon, returns the distance from the

viewpoint to the polygon plane via the point (x, y) on
the viewplane. */

polygon II procedure allocate_clones();
/* Allocates four clones for each active polygon. The

clones get the clone indices 0, 1, 2, and 3. */

polygon II procedure deallocate_clones();
/* Deallocate all active clones. */

node || procedure allocate_sons();
/* Allocates four sons for each active node. */

polygon I I relation
polygon II procedure find_relation(left, right, bottom, top);

polygon II real left, right, bottom, top;
/* Each active polygon determines the relationship (INVOLVED,

OUTSIDE, ENCLOSES) of its projection with the rectangle
defined by the parameters passed. */

procedure hidden_edges(root)
value pointer node root;
/* Builds a parallel quadtree to represent the scene of

all the polygons. Performs hidden edge elimination
based on a projection using the plane of the quadtree
leaves as viewplane. The pointer passed is assumed to
point to a quadtree node whose level and boundaries

438

have been initialized and is used as the
root of the quadtree constructed. */

begin
polygon I I relation rel;
polygon || real pleft, pright, pbottom, ptop;
polygon I I pointer node node_ptr;
polygon I| real pll, plr, pul, pur;
polygon I| integer clone_index;
integer 1;

/* Start off with all polygon clones pointing to the root. */
in_every polygon do
node_ptr <- root;

/* Loop from level of root node to bottom. */

for 1 <- level<root> downto 0 do
begin

/* Each polygon fetches the boundaries of the node it
points to and determines its relationship with it. */

in_every polygon do
begin
pleft <- left<node_ptr>;
pright <- right<node_ptr>;
pbottom <- bottora<node_ptr>;
ptop <- top<node_ptr>;
rel <- find_relation(pleft, pright, pbottom, ptop);

end;

/* Each node on the current level initializes the minimum
distance for its four corners to be infinity. */

in_every node having level = 1 do
begin

11 <- INFINITY;
Ir <- INFINITY;
ul <- INFINITY;
ur <- INFINITY;

end;

/* Every polygon processor whose projection is not outside
its node determines the distance from the viewpoint to
the polygon's plane for each of the four corners of the
node. For each of the four corners, the minimum
distance, computed over the set of planes of all such
polygons, is accumulated at the node processors. */

in_every polygon having (rel <> OUTSIDE) do
begin

pul <- poly_plane_dist(pleft, ptop);
pur <- poly_plane_dist(pright, ptop);
pll <- poly_plane_dist(pleft, pbottom);
plr <- poly_plane_dist(pright, pbottom);

ul<node_ptr> <-min pul;
ur<node_ptr> <-min pur;
ll<node_ptr> <-min pll;
lr<node_ptr> <-min plr;

end;

/* Each node on the current level initializes to FALSE
a flag which indicates that it is enclosed by the

439

projection of the closest polygon, and to TRUE a flag
which indicates that the projections of all polygons
are outside it. */

in_every node having level = 1 do
begin

enclosed_by_closest <- FALSE;
all_outside <- TRUE;

end;

/* Each polygon whose projection encloses its node
determines if its plane is closest (among the planes of
all such polygons) at all four corners of the node.
The disjunction of these results is accumulated at the
node processors. */

in_every polygon having (rel = ENCLOSES and
pul = ul<node_ptr> and
pur = ur<node_ptr> and
pll = ll<node_ptr> and
plr = lr<node_ptr>) do

enclosed_by_closest<node_ptr> <-or TRUE;

/* Each polygon knows if it is outside the node it
points to. The conjunction of these results is
accumulated at the node processors. */

in_every polygon having (rel <> OUTSIDE) do
all_outside<node_ptr> <-and FALSE;

/* Finally we determine the color for each node on the
current level. */

in_every node having level = 1 do
begin

if enclosed_by_closest or all_outside then
color <- WHITE;

else begin
if 1 = 0 then color <- BLACK;
else color <- GRAY;

end;
end;

/* Each polygon clone pointing to a black or white node,
or which is outside of the node it points to,
is de-allocated. */

in_every polygon having (color<node_ptr> = WHITE or
color<node_ptr> = BLACK or
rel = OUTSIDE) do

begin
deallocate_clones();

end;

/* If at the bottom level then we're done. */
if 1 = 0 then return;

/* Each gray node on the current level allocates sons. */
in_every node having level = 1 and color = GRAY do

allocate_sons();

/* Each remaining polygon allocates four clones and
tags itself as an old clone. */

in_every polygon do
begin

440

allocate_clones();
in_every polygon do new_clone <- TRUE;
new_clone <- FALSE;

end;

/* Then the new polygon processors each get a pointer
to one of the node's sons, and the old polygon
processors are deallocated. */

in_every polygon do
if new_clone then
node_ptr <- son<node_ptr>[clone_index];

else
deallocate_clones();

end;
end;

6 Some Timing Results
In this section we present some timing results for the PR quadtree build
ing algorithm and the hidden edge algorithm for implementations of these
algorithms on a Connection Machine. A Connection Machine is a SIMD
architecture based on a multi-dimensional cube. The vertices of the cube
correspond to processors, and the edges correspond to direct communication
links between the processors. The illusion of direct access from one processor
to the memory of any other is supported by a sophisticated routing algo
rithm, which deals with bottlenecks and which also supports simultaneous
read access and simultaneous write access using several contention resolution
operations. Due to the nature of the contention resolution mechanism, the
amount of time required to perform a simultaneous write to or read from
a single location tends to be proportional to the log of the number of pro
cessors performing the simultaneous access. The Connection Machine also
support virtual processors, meaning that each processor can emulate several
processors, with a proportional reduction in processing speed and memory
per processor. The mechanism of virtual processors in transparent to the
code which runs on the Connection Machine.

The algorithms were implemented in C*, a parallel version of C, using
floating point for all geometric coordinates and were run on a 16384 processor
CM-2 without floating point hardware. For each algorithm and number of
objects processed, two times are given. One is the real elapsed time, and one
is the amount of time spent actually performing operations on the Connec
tion Machine. The tables reveal that the running times of the algorithms on
a Connection Machine are not in fact completely independent of the number
of objects represented, which was expected since the execution of multiple
reads and writes takes time proportional to the log of the number of pro
cessors involved in the simultaneous access. This fact, together with the
fact that such intercommunication operations tend to be the most time con
suming operations on a Connection Machine, explains the approximate log
dependency seen in the tables of the algorithm running times on the number
of objects represented.

Table 1 shows timing results for the PR quadtree building algorithm for
various numbers of points distributed randomly over a square region, for a

441

quadtree with a maximum depth of eight levels.

Number of Points
10

100
1000

10000

Elapsed Time (s)
0.88
2.15
4.09
6.98

CM Time (s)
0.61
1.78
3.25
6.02

Table 1:

Table 2 shows timing results for the hidden edge algorithm for various
numbers of square polygons distributed randomly over a parallelpiped region
with a pre-computed parallel projection onto a viewplane parallel to one of
the faces of the parallelpiped. The MX quadtree constructed has a maximum
depth of eight levels, i.e. it is the MX quadtree for a 128 by 128 pixel image.

Number of Polygons
5

50
500

Elapsed Time (s)
9.49
12.64
18.79

CM Time (s)
8.57
11.24
15.49

Table 2:

7 Summary
This paper has presented a technique for creating SIMD algorithms for paral
lel pointer-based quadtrees. It combines parallelism both across the elements
of the space represented by the quadtree and across the elements of the set of
objects represented. It produces algorithms wherein a dynamic relationship
is maintained between elements and processors, with elements having per
haps several processors operating on them simultaneously, and with elements
disposing of their processors when they are no longer required, so that they
may be re-used by other elements.

8 Future Plans
We will continue to apply this technique in the construction of parallel al
gorithms for a variety of quadtree tasks. In addition, we point out that we
presented this technique as an embodiment of a control mechanism which
can exploit fine-grained parallelism to create a useful dynamicism between
processors and elements of our processing domain. In the future we plan to
expand on the notion of this sort of dynamicism and apply it to other data
structures and problem domains.

References
[1] John E. Warnock, "A Hidden Line Algorithm for Halftone Picture Rep

resentation", Technical Report 4-5, Computer Science Department, Uni
versity of Utah, Salt Lake, May 1968

442

[2] Hanan Samet and Robert E. Webber, "Hierarchical Data Structures
and Algorithms for Computer Graphics", IEEE Computer Graphics and
Applications, May 1988

[3] Gregory Hunter and Kenneth Steiglitz, Operations on Images Using
Quad Trees, IEEE Transactions on Pattern Analysis and Machine Intel
ligence, Vol. PAMI-1, No. 2, April 1979

[4] W. Daniel Hillis, The Connection Machine, M.I.T. Press, Cambridge,
MA, 1985, Section 6.3

[5] J.D. Foley and A. Van Dam, Fundamentals of Interactive Computer
Graphics, pp. 565-568, Addison-Wesley, Reading, MA, 1982

443

Figure 1: Before the
first iteration

Figure 2: After the
first iteration

Figure 3: After the
second iteration

Figure 4: After the
final iteration

444

