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FOREWORD

This volume contains the 27 papers of the Tenth International Symposium on Computer- 
Assisted Cartography. AUTO-CARTO 10 represents a new direction for the series. 
(Only time will tell whether it was the start of a new course, or a temporary detour!) For 
the first time, full papers were peer-reviewed by at least two, and often three or four, 
members of the program committee. Furthermore, accepted papers were returned to the 
authors for revision based on the reviewers comments. Our announced plan was to 
accept between 30 and 40 papers, and we expected to select those from a pool of perhaps 
100 submissions. Based on that expectation, a large program committee with a total of 
22 members was established to conduct the reviewing and to advise on final program 
decisions; the program committee co-Chairs wish to thank all the members of the 
committee for their timely and conscientious reviewing and other participation in the 
decision-making process.

We were surprised, and somewhat disappointed, when only 39 full papers were 
submitted for consideration. (This compares to some 160 abstracts submitted to AUTO- 
CARTO 8 four years earlier.) However, the quality of those papers was in most cases 
very high, and we believe that "self-selection" was in part responsible for the low 
number submitted. Other possible reasons for the low pool of papers are that the 
community realized too late that full papers were due in September; or that the 
community does not wish to have fully-refereed proceedings, preferring instead to 
submit refereed material through the journals. In fact some people suggested exactly that 
reason, and the program chair(s) for AUTO-CARTO 11 will have to consider carefully 
whether to try full reviewing again, or return to the previous system of screening 
extended abstracts or short proposals.

Despite the low number of submissions, we continued to apply the high refereeing 
standards that had been promised to the authors. All unanimous recommendations from 
the reviewers were followed; for the remaining papers, a subset of the program 
committee met in Anaheim and finalized the decisions. The result was the acceptance of 
27 of the papers which appear in this volume. Then, because the 27 papers did not fill 
all available AUTO-CARTO 10 program slots, three panel discussions that had been 
proposed were inserted into program, and brief summaries (unrefereed) also appear in 
this volume.

Do the members of the "AUTO-CARTO community" want refereed proceedings? After 
the meeting, people should make their feelings on this clear, and transmit them to us, or 
to the Board of the American Cartographic Association. Regardless of the future of full- 
paper refereeing in AUTO-CARTO, we are proud of the quality of papers in this volume, 
and look forward to an excellent meeting in Baltimore!

David M. Mark, Buffalo, New York
Denis White, Corvallis, Oregon

28 January 1991
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DATABASE ARCHITECTURE FOR MULTI-SCALE GIS

Christopher B. Jones
Department of Computer Studies

The Polytechnic Of Wales
Pontypridd 

Mid Glamorgan, CF37 1DL, UK

ABSTRACT

Many applications of GIS, such as planning, exploration and 
monitoring of natural resources, require the mapping and analysis of 
spatial data at widely differing scales. Ideally, a single large scale 
representation of spatial data might be stored, from which smaller scale 
versions were derived. Currently however, automation of the necessary 
generalisation processes is not sufficiently well advanced for this to be a 
possibility. Consequently, multiple representations must be maintained, 
though proven generalisation techniques can be used to reduce data 
duplication, provided that processing overheads are not prohibitive. 
Maintenance of a multiple representation database requires a flexible 
approach to the use of both single-scale and multiresolution data 
structures. Furthermore, rule-based software is required for a) deciding 
whether new datasets should be merged with existing ones, or stored as 
separate representations, and b) selecting appropriate representations and 
applying generalisation procedures to satisfy user queries. This paper 
presents an overview of a database design, based on a deductive 
knowledge-based systems architecture, which attempts to meet these 
requirements.

INTRODUCTION

Increasing interest in the use of geographical information systems 
(GIS) brings with it requirements for the analysis and display of 
geographical information at various scales, relating to different 
locations and to different themes. The accumulation of this information 
introduces a need for sophisticated databases that are flexible with 
respect to the variety of stored data and to the scale and locational 
accuracy of the output. Such requirements arise in organisations 
concerned with monitoring or exploiting the natural and man-made 
environment.

Maintenance of data derived from a variety of source scales raises a 
major issue of whether the individual real-world objects should be 
represented once, at their highest resolution, or whether multiple 
versions at different scales should be stored. Ideally perhaps the former 
option appears most desirable, since it avoids data redundancy and the
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possibility of inconsistency between versions. The approach depends 
however upon the assumption that smaller scale versions can be derived 
automatically. With the current, relatively limited, capabilities of 
automatic generalisation software, this is not a valid assumption (Brassel 
and Weibel, 1988). In a multi-scale database servicing a wide range of 
output requirements there is therefore good reason to store multiple 
representations of the same objects (Brassel, 1985). Even when small 
scale versions can be derived automatically, there will be situations, 
involving large degrees of generalisation, in which the delays due to 
computation could not be tolerated in an interactive GIS. In such 
circumstances it could be desirable to store the results of automated 
generalisation.

The presence of multiple representations of spatial objects, and the need 
for retrieval at a range of scales, places considerable demands upon a 
database management system. If it is to maintain and retrieve data with 
the minimum of user-intervention, it must incorporate software capable 
of making decisions about updates and retrievals. When new datasets are 
loaded, decisions must be taken about whether to replace existing data, 
merge with existing data, or store as a separate representation. On 
querying the database there may be several candidate representations. 
One of these may be selected for output or it may be used to derive an 
appropriate representation using automatic generalisation procedures. In 
addition to the inclusion of 'intelligent1 software, the need arises for data 
structures which are efficient for access in terms of ground resolution, 
spatial location, topology and aspatial attributes.

A research project has been initiated with the aim of building an 
experimental multi-scale spatial information system. In the remainder of 
the paper the components of the proposed experimental system are 
outlined, before discussing specific issues which arise in designing and 
implementing multi-scale GIS. Attention is focused in particular on 
multiresolution data structures, indexing mechanisms and the 
maintenance and query of multiple scale representations.

COMPONENTS OF A MULTI-SCALE DATABASE 
ARCHITECTURE

An overview of the main components of a proposed multi-scale 
database is illustrated in Figure 1. All updates and queries are channelled 
through a deductive subsystem, the rule-base of which controls changes 
to the contents of the database and retrievals from it. The contents of the 
database are summarised within an object directory which, though it may 
be spatially segmented, serves primarily to record the presence of stored 
objects in terms of their application-specific classes and the nature of 
their representations with regard to dimension, locational accuracy and 
spatial data model. The rule base of the deductive subsystem refers to the



current contents of this object directory in order to make decisions about 
appropriate strategies for update and retrieval. It also controls the 
execution of spatial processors required for certain update operations 
and for performing, where necessary, generalisation operations on 
retrieved objects.

The detailed spatial structure of objects listed in the object directory is 
recorded in the topology and metric geometry components. The metric 
geometry component stores data referenced directly to locational 
coordinates and could include both vector and raster data employing 
specialised multiresolution data structures. In the case of vector 
structured objects a close relationship could be expected with 
corresponding elements in the topology component of the database. The 
distinction between topology and metric geometry is intended to 
facilitate efficient search based on topological information at various 
levels of detail. Range searches for all objects in a given rectangular 
window may be served directly by the metric geometry data structures.

The rule-based component of the experimental system is envisaged 
initially as a deductive, or logic database which may be implemented in a 
logic programming language with extensions for calling external 
procedures and for access to permanent storage. Execution of rules for 
update of single resolution and multiresolution spatial data structures and 
for generalisation will then be achieved by calling the various spatial
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processors. Implementation of the spatial data structures requires the use 
of complex data types, while the processors which operate on them 
could, in some cases, consist of knowledge-based subsystems in their own 
right. These latter components of the database may appear therefore to 
be suited to implementation using object-oriented programming 
techniques.

Recognition of the importance of combining rule processing with 
object-oriented databases is reflected in the design of systems such as 
POSTGRES (Stonebraker, 1986). The potential of this type of database 
system for implementing multi-scale GIS has already been identified by 
Guptill (1989, 1990). From the more purely deductive database 
standpoint, new versions of the logic programming language Prolog are 
being developed to provide efficient integration with a permanent 
database (Bocca et al, 1989; Vieille et al, 1990). By adding facilities for 
handling complex data types and for calling external procedures, the 
deductive database architecture may also then provide a suitable basis 
for building multi-scale geographical databases.

MULTIRESOLUTION DATA STRUCTURES

Whether there are single or multiple representations of individual 
objects and classes of object, each representation may be regarded as a 
candidate for retrieval over a range of scales. The largest scale limit will 
be constrained by the locational accuracy of the geometric data. The 
smallest scale limit will be determined by the capability of automated 
generalisation functions which can operate on the object. Widely used 
line generalisation procedures such as the Douglas algorithm (Douglas 
and Peucker, 1973) have been used, in combination with smoothing 
operators over scale changes in excess of a factor of 100 (Abraham, 
1988). When the linear features form part of areal objects, automated 
procedures are generally very much more restrictive, since issues such 
as object amalgamation and displacement must be taken into account. 
Automated areal generalisation was used in the ASTRA system (Leberl 
and Olson, 1986) but scale changes were only of a factor of about two. A 
variety of techniques is available for generalisation of digital terrain 
models (Weibel, 1987). Limits on the possible degree of generalisation 
of these models depends on the error tolerance of the application. 
However, when structure lines (ridges, valleys and form lines) are added 
to the model, the limits may be expected to be similar to those of the 
generalisation of the individual linear features.

Given that individual representations apply over a range of scales, the 
question arises as to how best to store the objects to achieve efficient 
access at different scales. The options are single storage of the object 
with generalisation to smaller scales at the time of the query; storage of 
several pre-generalised versions of the object, with the possibility of data



duplication (as in Guptill, 1990); and storage of a non-duplicating 
hierarchical representation of the single object (see below). The first of 
these options could, in the case of linear features and terrain models, 
require initial retrieval of orders of magnitude excess data before 
simplification by a generalisation function. The second option could give 
efficient access to a representation which may closely approximate the 
retrieval specification, but at the expense of a storage overhead due to 
data duplication. The third option is a compromise in which a 
generalisation function is used to segregate the geometric component of 
the objects according to their contribution to shape and accuracy. By 
organising the component data in a hierarchical manner it is then 
possible to access only the geometric data required to build a 
representation at, or an approximation to, the required level of 
generalisation.

Multiresolution data structures which avoid or minimise data 
duplication are available for both linear features and surfaces. For linear 
features, the strip tree (Ballard, 1981) provides a means of accessing 
successively higher resolution approximations to a curve represented by 
rectangular strips. In its original form it is not very space efficient, as 
individual points may be stored several times if they bound successively 
narrower strips. Each rectangle must also be explicitly defined. The 
original strip tree consists essentially of a binary tree. The root node 
stores a rectangular strip which encloses the entire feature, along with 
pointers to two offspring. A point where the curve touches the side of 
the initial strip is used to subdivide the curve into two parts, each of 
which is represented by enclosing strips which are stored in the 
offspring nodes. The curve is divided recursively in this manner until 
individual strips coincide with straight line, zero width, segments 
between successive vertices of the feature.

The multi-scale line tree (or line generalisation tree) is related to the 
strip tree and may be regarded as a tree of variable branching ratio 
rather than a binary tree (Jones 1984, Jones and Abraham 1986,1987). 
Each level of the structure corresponds to a maximum implicit strip 
width. Furthermore, it is vertex rather than strip oriented, and each 
level stores vertices which are intermediate to those at the next higher 
level. The result is that it is significantly more space-efficient than the 
strip tree. It has been implemented in a network database in which each 
level of a hierarchy is stored independently of the other levels of the 
same line object, but in association with the equivalent generalisation 
levels of other objects (Abraham, 1988). Thus rapid access to all features 
of a particular resolution is facilitated by only retrieving, for each 
object, those hierarchical levels which are relevant to a specified output 
scale (or spatial resolution).

Use of a multi-scale line tree introduces the problem of maintaining



aspatial and topological attributes of the line features. If the hierarchy 
extends across a wide range o,f scales, the line itself may be 
geographically extensive.such .that;there are distinct internal subdivisions 
relating to .different feature codes .and to topological nodes. By attaching 
sequence numbers to the component vertices of a line, aspatial 
classification and topological structure can ,be .defined in terms of ranges 
of sequence numbers .and individual, sequence ̂ numbers which have been 
designated as -nodes (Jones and Abraham, 1987; Abraham, 1988). To 
retain ac.cess-.efficiency, the node vertices should he stored at the highest 
hierarchical level (lowest resolution) at which they are likely to be 
required. Thus vertices which-the generalisation procedure may classify 
as low level would, if they were logical nodes, be raised to the 
appropriate higher 'level.

Multiresolution representations ,of surfaces may be categorised into 
those teased .on .mathematical ifunctional ̂ models of the :surface and those 
based on -original, <or ^derived, 'sample .points. Jf 'the .coefficients of a 
surface function are orthogonal, dn .the sense that they represent 
independent ̂ components of the.surface.shape, then a/multiresolution data 
structure could :be created by.* separating the .storage of the components 
into distinct records. Each .record would .correspond to a 'level 1 , 
characterised .by'the.extent to which .the stored:coefficients contributed to 
the surface shape.'The most "important components could be stored at the 
highest levels, while.less significant .ones were stored at progressively 
lower levels. A.problem which ̂ occurs whenmsing.global functions, such 
.as iFourier Series, is that the [reconstructed, simplified surface, may be 
subject locally ;to relatively .large ^ejrors. ,A .mathematical function 
approach whicli controls errors '.can l>e obtained -.by partitioning the 
surface into rectangular regions each of which is represented by its own 
function '(Pfaltz, 1975). 'By-partitioning ^the surface in the manner of a 
quadtree, .the .size .of the quadrants ..can ;be reduced locally .until the 
chosen function fits the, surf ace .to within a pre-specified tolerance (Chen 
and Tobler, .1986.; iLeifer and .Mark;, 1987.). Although the method has 
.been applied primarily ;to the representation ,of surfaces at a specified 
error tolerance, it ;,co.uld -b_e .extended into :a multiresolution quadtree in 
which intermediate;(subdividjs.d),nodes stored a function.accompanied by 
a measure <of the .associated srror.

Surfaces represented by sample .points are usually,organised either as 
regular .grids .of elevation values or as ,an Irregular set of significant 
points. Irregularly distributed points are typically -structured by 
triangulation, to -form a 'triangulated irregular network, or TIN 
(Peucker et al, 1978). Because the sample .density-of,a TIN Is.adapted to 
local variation in surface .detail the structure lends itself to 
implementation as .a .multiresolution structure.



The Delaunay pyramid (De Floriani, 1989) is a hierarchical 
multiresolution tree for storing triangulations. The top level of the tree 
stores a Delaunay triangulation of a subset of the original dataset of 
important points. The next lower level is constructed by adding vertices 
which are chosen to be the most distant from the previous triangulated 
surface. Points are added to the previous surface, which is 
re-triangulated to accommodate them until the error between this new 
surface and the remaining points is within a pre-set tolerance. The next 
lower level is created in a similar manner, controlled by the error 
tolerance for that level. Each level stores a list of the triangles and 
vertices .of which it is composed, the differences (in terms of triangles) 
between the adjacent upper and lower levels, and pointers from certain 
triangles to those which replace them, and are hence intersected by them, 
at the immediate lower level. Note that only a subset of triangles at each 
level points to lower triangles, since some of the previous triangles will 
be retained in the lower level.

An advantage of a triangulated surface model is that it provides the 
possibility of being integrated with point, linear and polygonal features. 
If the vertices which define the .latter features are merged with those 
which define a digital elevation model then, after triangulation, the 
linear and.polygonal features can be constituted by the edges within the 

itriangulation, while point features are represented by single nodes. To 
ensure that linear features are retained in this way, the triangulation 
process must be constrained by boundaries defined by the linear features 
(see De Floriani and Puppo, 1988, for the constrained triangulation of 
multiresolution topographic surfaces). Provided all nodes are uniquely 
identified, the embedded spatial objects and their topology can be 
referenced directly to sequences of, and individual, triangulation nodes. 
In a multiresolution structure, references to nodes can include their level 
within the hierarchy and, just as with the multi-scale line tree topology, 
their nodes would be stored at the highest level that they could be 
expected to be of use. A multiresolution triangulation data structure 
integrated with topology and feature specification is currently being 
developed (details will be published elsewhere).

INDEXING MECHANISMS

Appropriate schemes for efficient spatial access to multiresolution 
hierarchies may vary according to whether,the objects encoded in the 
hierarchies are very extensive compared with potential regions of 
interest. This factor determines the desirability of incorporating spatial 
indexing .within the object representation in addition to a spatial index 
which refers only to the entire objects. The latter indexing scheme would 
indicate the storage location of objects, the geometry of which was 
stored in, for example, a multi-scale line tree, a multiresolution 
triangulation or a single level representation. Methods of implementing



the primary object index include techniques such as i) a fixed grid with 
references to intersecting objects; ii) a bounding quadtree cell scheme 
(Abel and Smith, 1983); and iii) an R-tree, or one of its relatives, which 
works with minimum bounding rectangles (Guttman 1984, Faloutsos, 
1987). Depending on the nature of the application, an additional aspatial 
index to objects could also be desirable.

If the geometry of objects referenced by the spatial or aspatial index 
was extensive compared with the search window, it would be necessary 
to traverse the geometric data structure, selecting those parts inside the 
window. If the geometry was stored as a multiresolution hierarchy (line 
tree or triangulation), covering a wide range of scales, then it could 
frequently be expected to be spatially extensive relative to query 
windows for large scale applications. The multi-scale line tree was 
implemented on this assumption and incorporated spatial indexing within 
each level of the hierarchy. In that experimental database, both fixed 
grid and quadtree schemes were applied, in which the cells of the grids 
and of the quadtrees stored sets of vertices in chained records. When the 
fixed grid size was selected to be different for each level (according to a 
regular pyramid) the performance of the two schemes was found to be 
similar (Abraham, 1988).

In De Floriani's Delaunay pyramid (De Floriani, 1989), the 
pointer-based implementation provides some direction to spatial search 
within the structure once candidate triangles have been identified at the 
top level. The implementation described appears to have been oriented 
towards point rather than window searches. An alternative approach, 
currently being pursued, is to impose a spatial index on each level.

Bearing in mind that a multi-scale database may be very large and that 
objects may occur at widely differing levels of class-generalisation 
hierarchies, the concept of a single spatial index and a single list or index 
of objects becomes rather monolithic. Given that the scale of the output 
can be expected to be correlated with the level of class generalisation, a 
natural development of the indexing system is to segregate it into 
generalisation levels allowing direct access into an appropriate level. 
Each level could be associated with some limiting spatial resolution and 
would reference only classes of object which were regarded as likely to 
become significant at that scale. The choice of classes could be somewhat 
arbitrary on the assumption that a data dictionary indicated the 
correlation between class and level. It would not be necessary to refer 
explicitly to the parents of classes in a class-generalisation hierarchy, 
provided the content and structure of all such hierarchies was stored 
separately, allowing them to be inferred (see, for example, Egenhofer 
and Frank, 1989).



MAINTENANCE OF MULTIPLE REPRESENTATIONS

An important issue in maintaining multiple representations is the extent 
to which data duplication and data redundancy are to be tolerated. 
Duplication will occur when one representation is a simplified version of 
the other if its geometry, such as the vertices of a line or triangulated 
surface, is a subset of that of the other version. If an automatic 
procedure exists for performing the simplification, then the smaller scale 
version may be regarded as redundant. Data redundancy in this sense can 
also arise in the absence of data duplication provided that there is an 
automatic procedure for deriving a required small scale version from 
the larger scale version. For the purposes of an interactive information 
system however, this notion of redundancy may be questioned if the 
processing required by the automatic procedure was too much to provide 
an acceptable response time.

The multiresolution data structures referred to earlier give rapid access 
to generalised versions which are geometric subsets, and they therefore 
provide a means of avoiding data duplication, at least for linear features 
and surfaces. When 'quantum leap' differences occur in the course of 
generalisation, due for example to changes in dimensionality and to 
merging and displacement of objects, the existing types of 
multiresolution data structures cannot be used. It can also be expected 
that where automatic procedures do exist for this degree of 
generalisation, there is a greater chance of being too slow for 
satisfactory user interaction. It is in the event of major changes in the 
geometric representation that the storage of multiple versions is most 
likely to be appropriate. This does not however preclude the use of 
multiresolution data structures for separately maintaining both the 
smaller and larger scale representations across their different ranges of 
scales.

Another situation in which multiple versions might be stored is that in 
which data duplication was very localised, due to the presence of 
geographically small areas of large scale, high resolution data within a 
region which was covered by a much more extensive, smaller scale 
representation. A method of maintaining a consistent representation at 
the small scale, while also avoiding the data redundancy, would be to 
generate a multiresolution data structure from the large scale data and 
merge it, at the top level, with the existing small scale version. This 
would involve cutting out the duplicated section and edge matching 
between the two versions (see Monmonier, 1989b, for a discussion of 
techniques for automatic matching of map features which differ in their 
original scale of representation). It may be envisaged that the processing 
overheads incurred in local deletions followed by merging of the new 
data may not be deemed justifiable for relatively small quantities of data, 
since the coverage at the larger scales would only be patchy. As more



extensive coverage at the larger scales accumulated in the database, a 
point would be reached at which the delete and merge process became 
justifiable.

Control over the decision on when to merge new data with stored data 
can be placed within a rule base which is integral to the database 
management system. An analogy may be made with trigger mechanisms 
which have been incorporated in database systems such as POSTGRES 
(Stonebraker, 1986). Triggers are an automatic means of maintaining 
integrity based on rules which dictate that once a particular data element 
has changed, it may propagate a sequence of changes to related records 
in the database. Each trigger may be expressed as a production rule 
which is implemented by a forward chaining mechanism in which the 
firing of one trigger may lead to subsequent firing of another trigger.

The possibility of a chain of triggered updates can be envisaged in a 
multiple representation database if the insertion of large scale 
representations filled gaps in an intermediate scale representation, 
enabling the latter to be merged with an existing, smaller scale, 
representation. Thus databases which include trigger mechanisms can be 
seen, to some extent, as dynamic, self-maintaining systems. If there was 
any doubt about the reliability of such systems, with regard for example 
to correct matching and merging of geometry and topology, these 
updates could be subject to user-verification before being committed to 
the database. All operations could be reversible if historical records 
were maintained in archival memory.

DATABASE QUERIES ON MULTIPLE REPRESENTATIONS

A query to a multi-scale, multiple representation database can be 
expected to be faced with a choice of versions which are candidates for 
retrieval. An automatic query processor would then need to make a 
choice of the appropriate retrieval to meet the user's requirements. 
Criteria for an appropriate retrieval would differ according to whether 
the output was required for analytical purposes or solely cartographic 
purposes. In the latter case the version retrieved might be the one which 
most closely resembled the level of generalisation dictated by the map's 
theme and scale. Such a version could be obtained by a variety of means. 
There could be a single level stored representation of the appropriate 
generalisation. Alternatively there could be a multiresolution data 
structure which encompassed the required generalisation level and could 
therefore be traversed to construct the output. Failing that, there could 
be a large scale version which could be generalised by software. In the 
latter case the automated generalisation process could operate only on 
that large scale version or perhaps, as Monmonier (1989a) has proposed, 
an additional smaller scale version could be used to guide generalisation 
to an intermediate level. If no sufficiently large scale data were
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available, a poorer quality version could be retrieved and the user 
warned accordingly, or a failure reported.

The above strategies would not in general be suitable for queries based 
on the need for data analysis problems in which locational accuracy was 
of prime importance. Cartographic generalisation would not then be 
desirable and the appropriate version would be that derived directly 
from, or a subset of, the largest scale representation. Particular 
problems could arise with this sort of query if coverage of the query 
window required access to representations with differing locational 
accuracy. In any event, data retrieved for analytical purposes would need 
to be labelled with their accuracy, and processes involving overlay 
between different objects would need to maintain a measure of the errors 
propagated by the combination of geometric objects.

It is apparent that implementation of a query processor capable of 
adapting to user requirements will require the specification of rules to 
control the action to be taken under the various conditions of user needs 
and data availablility. The query processor could operate initially on the 
object directory which recorded the class, location, dimension, accuracy 
and spatial data model of objects stored in the data base. The rules could 
then be applied to select the best representation given the query 
conditions. This would include taking the decision on whether to apply 
automatic generalisation procedures and choosing which procedures 
were most suitable. The mechanism for implementing a deductive system 
governing queries may differ somewhat from that governing updates, 
referred to in the previous section. Because a query may be regarded as 
a specific goal, it lends itself to a backward chaining mechanism which 
attempts to match the contents of the database with the search conditions.

SUMMARY

The construction of a database, capable of maintaining multiple scale 
representations of spatial objects, poses major problems with regard both 
to the development of efficient multiresolution data structures and to 
controlling update and answering queries. The need for explicit rules 
governing update, database integrity and the retrieval of generalised 
objects indicates the desirability of a deductive, knowledge-based 
architecture providing declarative rule specification. Storage of complex 
objects in specialised data structures, along with the need for associated 
processors for update and generalisation, suggests however that it may 
also be appropriate to use object-oriented programming techniques. A 
research project is currently in progress with the aim of experimenting 
with deductive databases for implementing a multi-scale spatial 
information system. In the planned system, rules of update and query 
processing are specified in a deductive, logic database which is interfaced 
to spatial processors and spatial data structures which may be
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implemented, at least in part, in procedural or object-oriented languages. 
The operation of the spatial processors may themselves employ 
knowledge-based inference techniques which are encapsulated within the 
respective modules. The primary, deductive component of the system 
makes decisions about appropriate update and retrieval operations by 
referring to the current contents of an object directory, which 
summarises the nature of stored object representations in terms of their 
feature class, location, dimension, accuracy, and spatial data model. 
Details of the spatial structure of stored objects are maintained within 
separate topology and metric geometry components of the database, to 
which the object directory refers.
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ABSTRACT

This paper discusses the nature of models applied primarily for 
environmental data, where, theoretically, data collection is not restricted 
in terms of resolution. Once these data are entered into a geographical 
information system, its data structure should also be adjusted to the 
underlying model. This adjustment can determine a range of scales for 
spatial primitives to be efficiently handled by the system. The paradox of 
data models, in terms of what is an object rather than a group of points, is 
shown with an example. It is concluded that there may not be a generally 
best resolution for a given environmental variable to be mapped.

INTRODUCTION

Resolution, as such, would be most frequently defined in 
dictionaries as technical limitation or characteristics of some kind of a 
system. Obviously it is associated with "the minimum difference between 
two independently measured or computed values which can be 
distinguished by measurement or analytical methods" (NCDCDS, 1988). 
Concerning a geographical information system (GIS), this definition 
would determine our task: Target objects to be mapped should be defined 
so that they can be distinguished from each other. This formal 
requirement would subsequently determine the amount of necessary 
detail to represent these objects. With abstract spatial entities defined, 
attribute properties can easily be assigned to them: census tracts have a 
population, square meters do not. In most instances of environmental 
mapping, however, the problem is faced from a different angle. First, the 
spatial entities should be defined according to which attributes can be 
assigned, since, for example, a census tract may not have high suitability 
for wheat. Secondly, the definition above treats distinguishability as a 
dichotomous variable and does not specify levels of accuracy. This is 
primarily due to the still existing gap in understanding the relationship 
between spatial and non-spatial resolution (see Dueker, 1979 for early 
reference) that can be referred to respectively as a 
recognition/identification problem in the mapping space and in the 
feature (or measurement) space (see Fig.l).

Let us treat the above outlined apparent contradiction in a 
"historical" context, i.e. with the analysis of the considerably long history 
of philosophical and sophisticated discussions in the GIS-era about the 
relationship of geometry and attributes, as well as their respective 
accuracies. There are numerous approaches to such issues from 
geosciences, cartography, statistics, etc., but unfortunately the more 
authoritative definitions read, the more confusing they are.
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Figure 1.
Schematic representation of the relationship 

between spatial and non-spatial data characteristics

The examination of the problem is organized as follows. Section 1 
describes the major distinct approaches, which deserve much attention. I 
would argue that, although some of the technical ideas have been around 
for two decades or more, their authors might have wanted to use and 
interpret them in an inadequate way. Therefore a significant section is 
devoted to the mathematical models and some examples are elaborated 
on to prove their use. Section 2 then introduces an uncertainty 
relationship between spatial resolution and attribute accuracy. It is an 
extension of the "control one, measure another" scheme (Sinton, 1978), 
because it shows how resolution will vary in the mapping space once 
attribute accuracy is fixed, and vice versa. Section 3 presents an 
illustrative ecological site characterization example.

APPROACHES TO RESOLUTION

The nature of the approaches to resolution issues in mapping 
varies because the primary task is considered to be different: (1) in the 
geosciences it is assumed to be based on stochastic signal reconstruction 
which is also the most popular view of those in remote sensing and
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image processing, (2) in "conventional" cartography it is more or less 
loosely linked to scale and observable detail, while (3) in the jargon of 
digital cartography ("data modelers") representation and model-fitting are 
the preferred key terms. For this discussion let us use an "ultimate" 
working definition of our task: derive information, or in other words, 
make a prediction at a "non-visited" site, where site refers to both 
mapping and feature spaces. Additionally, when discussing these 
approaches, one should not forget that all our mathematical tools operate 
on the foundations of mathematical models, i.e. much of our effort is 
focused on constructing meaningful models and the sometimes lengthy 
demonstration of mathematical apparatus must not hide this significant 
first step.

Geosciences - sampling, interpolation and variability

There is an obvious assumption about objects, or processes in 
space, namely, the larger the sample we have, the better. Since usually a 
number of constraints (e.g. time, storage, money) limit our ability to 
sample "infinitely", models, predicting our information loss with 
sampling, are of extreme interest. Therefore, not surprisingly, following 
paths of the "digital revolution of the 50's" in geosciences (see Clearbout, 
1976, Webster, 1977 for reviews), references to the sampling theorem 
have emerged in the general cartographic literature (e.g. Tobler, 1969, 
Csillag, 1987, Tobler, 1988). There are three very attractive aspects to this 
approach: (1) it can be utilized in sampling design, (2) it provides handy 
tools for interpolation as well as filtering, and (3) it is computationally 
very efficient.

Once one adopts this approach, the underlying mathematical- 
statistical assumptions of the model should be clearly understood. A 
significant part of the discussion below is written in order to outline the 
background of the choices one can have when applying mathematical 
models. It turns out, that in some cases certain assumptions are made not 
because they provide more reasonable basis, but because of the practical 
reason that otherwise certain problems could not have been handled. 
First of all, in this particular case, having a sample of size n, the model is 
concerned with ^(x1 ) / ...,^(xn) stochastic variables having joint normal 
distribution. It is crucial to everyday practice that we hardly have any 
tools to check this assumption. It is especially difficult, because the sample 
taken at n locations is a single realization of the variables. Furthermore, it 
is assumed that the expected value of this distribution is zero, and the 
variance is finite. So with this model we are confined in our prediction to 
the case, when, somehow, our original problem has been reduced to a 
zero-mean variable. With these assumptions we can prove that the 
covariance exists (i.e. COV[£(xi),£(xj)]< o) and it is positive semi-definite. It 
is our task now to construct an estimate of our distribution so the 
variance of the difference between the model and the estimate should be 
minimum. It is only due to the joint-normality assumption that our 
search for the estimate can be restricted for linear functions, i.e. in the 
form of weighted sum:

(1)
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The major problem in constructing our estimate is that we may not 
have sufficient information about the covariance, therefore further 
assumptions will be necessary. For instance, stationarity is a quite 
frequent assumption in order to reduce dramatically the number of 
elements to be estimated in the covariance matrix.

It is probably the advantage of modeling with linear functions that 
makes interpolation and filtering so popular in applying these tools (for 
math-intensive review of spectral analysis see Brace well, 1965, or Bend at 
and Piersol, 1986). However, even if our assumptions are valid, there are 
Imany manners of abuse. When I say abuse, I mean that you can rarely 
find anyone who would apply these techniques, usually available by 
pressing a button, having tested accuracy constraints.

Let us just consider two simple cases for demonstration, linear 
interpolation and moving averaging. For the former case, suppose that 
we have taken sparse samples. Disregarding the distortion that may be 
due to undersampling, (i.e. less frequent sampling than half of the 
shortest wavelength represented), let us linearly interpolate among our 
data points! The total RMS-error (Bendat and Piersol, 1986), the square 
root of the mean difference between the original and the interpolated 
signal over the entire Nyquist-interval, will be

(2) ERMS(f ) = 2 - sinc2(f )(2+(2W)2/3))

where sine denotes the sine-cardinal function [sinc(a)=sin(^a)/^a], 
while f denotes dimensionless frequency (equals frequency times 
sampling distance). As Figure 2 clearly illustrates, linear interpolation can 
severely distort higher frequency signals. If, for example, one would 
interpolate 1,2,4,... points between existing data points, the maximum 
error term (from Eq.2. at f'=0.5) would be -5.63, -26.83, -50.21 in decibels, 
and 52, 4, 0.3 in relative percentage, respectively, providing upper limits 
for accuracy.

Considering moving averaging, it is again the frequency-dependent 
distortion that should be pointed out. In general, filtering can be written 
in the form

(3) ' yk = Zj qxk+i (i = -N,N)

for which moving averaging is a special case with q= 1/(2N+1) for 
all i's. The amplitude response (or frequency modulation function, S(f')) 
can be obtained with the Fourier- transform of the (filter) coefficients. In 
this particular case it is in the form of a geometric series:

(4) S(f') = Si q exp{-j21if'} = 1/(2N+1) £j exp{-j2flif'} = 

= 1/(2N+1) exp{-j2TINf'} [1 

= sinc(2N+l)f'/sinc(f)
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The amplitude modulation transfer function of moving averaging

for filter-size 3 and 9. Local extremes can be calculated with the given
formulae, based on S(f')/ where N denotes the length of the filter.
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Some characteristics of S(f') for "everyday-size" moving average 
filters are displayed on Figure 3. It should be noted again, that these filters, 
generally applied heuristically, are close to our expectations at low 
frequencies, but at higher ones they seem to misbehave.

Such methods of spectral analysis aim to construct our estimate of 
the covariance matrix based on the strict stationarity assumption. A close 
relative, called kriging, became popular and uses the assumption of 
second order stationarity (Journel and Huijbregts 1978). The estimation 
procedure, in this case, is even further reduced, since it aims at the most 
commonly independent, parametric estimation of the substitute of the 
covariance function, called a semi-variogram (McBratney and Webster 
1986). We should point out that it is the equivalence of the squared 
deviation from the mean and the normalized square difference between 
all pairs, known since the early days of mechanics, that is behind this 
methodology.

There are some further necessary remarks to be made about 
kriging. The estimation procedure with the stationarity assumption 
already eliminated a number of unknown parameters, and the covariance 
became a function of distance. Thus the covariance matrix is only 
dependent on the spatial arrangement of the sample that is, again, 
computationally efficient. However, the estimation procedure becomes 
highly dependent on the values of the semi-variogram at small distances, 
i.e. the nugget value, (Ripley 1981), and becomes statistically unstable 
when this value is not zero (Mardia, 1980, Philip and Watson, 1986). Still, 
the popularity of kriging is due to its close links to spatial variation 
(variability, heterogeneity, etc.) and the seemingly straightforward 
manner in which it treats continuous functions characterizing such, 
otherwise hardly mappable, phenomena.

The spread of these methods in GIS-applications can probably be 
attributed to their ability to give direct estimates of deviation from an 
expected value for points, as well as for areas (Journel, 1986). The spatial 
mean derived this way for arbitrary spatial partitioning has been widely 
applied in environmental sciences as well as in remote sensing (Burgess 
and Webster, 1980, Woodcock and Strahler, 1984). This implies that our 
software eventually can map not only a certain variable, but its reliability.

Cartography - scale, precision and detail

My impression is that cartographers do not like the term resolution 
(Robinson et al., 1984, Campbell, 1991). Implicitly, however, a kind of a 
rule of thumb is used according to Tobler (1988): Since the smallest 
physical mark which the cartographer can make is about one half of a 
millimeter in size, one can get a fairly good estimate of resolution in 
meters by dividing the denominator of map scale by two thousand.

This rule is certainly far from being absolute. The real art in 
cartography is to represent objects even if they are smaller than this 
nominal resolution because of "relative importance". Discussions about 
generalization, in fact, clearly reflect this paradox. For example:
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"Cartographically speaking, it is essential to retain 
both the details required for geographical accuracy and 
required for recognizability within a digital data base.

To preserve accuracy and recognizability automatically 
during map generalization, one must be able to describe 
digitally the details that must be preserved." (Buttenfield, 
1989)

Inevitably, cartographers, in the "traditional" sense (Vasiliev et al., 
1990), are concerned with visually conceivable objects, i.e. map elements 
whose geometric and attribute characteristics are merged forming a 
graphic attribute. Thus the distinct boundary between precision and 
accuracy seems to be intentionally loosened.

In the previous section, for example, precision could have been 
understood as the definite upper limit of accuracy in both mapping and 
feature spaces, while here it is related only to location, and the content 
has been switched to recognizability. Consequently, this approach forms a 
counterpart of the one discussed above with extreme "geometrization" of 
the resolution issue.

Data model(er)s and structures - raster vs. vector

In one of the most recent summaries on accuracy-related research 
in GIS (Goodchild and Gopal, 1989), resolution had a roughly equal 
number of references (18) in the index with filtering (9) and interpolation 
(10), and generalization, on its own (17), was very close. This may mislead 
us into thinking of a delicately balanced approach.

The conventional separation of spatial data into geometry and 
attributes has not left this community yet. Such a separation is consistent 
with an entity-relationship model of phenomena, with geometry 
defining the objects, which then have attributes and relationships (Mark 
and Csillag, 1989). And there seems to be a borderline: Those who go for 
the priority of geometry (mapping space), having their roots in e.g. 
cartography or surveying, take a model of space most commonly called 
"vector", while those who emphasize the significance of classification, 
most probably rooted in geosciences, would adopt a model usually called 
"raster". Geometry and attributes, however, have in many cases intrinsic 
links to each other, therefore any treatment of one in isolation from the 
other will have a high risk of misrepresenting the phenomenon.

There is also a substantial difference between accuracy concepts in 
the vector and raster models (Chrisman, 1989, Mark and Csillag, 1989). 
The former, modeling space occupied by objects, attaches accuracy 
measures to representation of geometry (mapping space), while the latter, 
partitioning space into units which then will have attributes, prefers to 
assign such measures to the classification of attributes (feature space).

Regarding previous comments on the philosophy of modeling, 
once we have adopted a model, there are no mathematical-statistical tools 
to exchange it for another model; one can either apply it successfully with
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proper predictions, or can fail to get close to reality. In light of this, there is 
no valid conclusion available to decide which model is "better".

As far as choice or design of data structures is concerned, lots of 
efforts have been devoted to handling numerous kinds of objects (spatial 
primitives) simultaneously, and to implement their manipulation as 
transparently as possible (Goodchild, 1987). Thorough research has been 
carried out on the design of the functionality of GIS software focusing 
interest on user needs in terms of data volume and manipulation 
requirements.

Once a system is implemented on this basis, efforts to achieve a 
predefined classification accuracy may lead to either cumbersome 
recursion, or overdesigning the capabilities of the system. It seems to be 
more popular for "GISers" to provide performance tests only in terms of 
"geometrical representation", however, the community still lacks those 
tests on matching categorization requirements. Vector viewers specially 
claim that the raster approach overemphasizes geometric properties, 
while the vector model permits the attribute to be attached to the 
appropriate spatial object. Indeed, that is why there is emphasis on the 
links between geometry and attributes: the appropriate objects are not 
known a priori. It seems to me that the methodology of cartographers has 
been preferred to modeling uncertainty.

Unless data structures, efficiently handling a set of spatial 
primitives, are not adjusted to the inherent data characteristics, including 
accuracy, heterogeneity and the like, there will be no guarantee that a 
given representation can fulfill the requirements of classification 
accuracy. On the other hand, whenever the attribute domain was in focus, 
a very limited set of spatial characteristics, like a single fractal dimension, 
was taken into consideration (Goodchild and Dubuc, 1987). It would be 
properly modest to say that we have understood, and more or less 
successfully modelled, spatial data in the mapping space, while the 
exploration of feature space is still ahead.

THE CARTOGRAPHIC UNCERTAINTY RELATIONSHIP

The solution of the problem of making reliable maps (i.e. where 
both locational and classification accuracy is known and limited) has to be 
accompanied by the recognition that "accurate" and "erroneous" are not 
just two disjoint sets, but rather should be viewed as a continuum. When 
map users consider accuracy issues, they certainly want "the best". In 
simple words, if 10 m and 90% were printed on a tourist map as accuracy 
limits, they would like to assume that any dark green patch represents a 
forest with the same locational and thematic accuracy. And this is the 
point where real data may cause so much trouble to professional 
modelers. All of our tools dealing with spatial data, and de facto our 
geographical information systems, are context-dependent.

It requires manageable definitions of "objects to be mapped". We 
may want to ask, for instance in the previous example, whether our 
definition of a forest is useful at all: Can one, two, three... trees be a forest? 
Or, if one knows for sure that there is no forest covering more than 10,000 
square miles in an area, is that a useful piece of information? Such
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questions should not look absurd. When soil scientists are calculating the 
risk of missing a(n infinitely narrow) boundary in the field, landscape 
architects assign a value of ecological potential for a 5 km * 5 km area, or 
economists rank countries based on per capita income, etc., they are 
dealing with very similar problems: Complex human concepts (variables, 
categories and relationships) are "projected" into Euclidean space in a 
manner that their potential for further inference is maximized. In other 
words, spatial homogeneity criteria are defined so that uncertainty is 
tolerable.

There is a significant mathematical-statistical arsenal to study such 
criteria. Beyond classical works in autocorrelation studies (e.g. Griffith 
1988) more recently attribute classification with spatial constraints has 
been introduced (Gordon, 1987) more or less independently from 
mainstream GIS-related research (Chrisman, 1986).

Most importantly to our topic it has been shown for 
environmental variables that homogeneity criteria based on a given 
categorization reveal spatial variation (Csillag and Kertesz 1990). 
Generally speaking, there is a contradiction between the requirements of 
constant attribute accuracy and constant spatial resolution. The general 
concept that fixed these parameters independently over an entire data set 
cannot be held. If given that recognition probabilities for a class-set are 
predefined, there is no guarantee that a certain spatial resolution will 
match any homogeneity criterion. Conclusively, there may not be a 
unique, generally best resolution for a data set; either accuracy or 
resolution will exhibit variation.

ECOLOGICAL SITE CHARACTERIZATION - AN EXAMPLE

Let us illustrate the above outlined ideas with a practical 
environmental mapping example. The task of information processing in 
this case is to quantitatively describe ecological site characteristics of a salt- 
affected low-grass prairie (Toth et al., 1990a).

This landscape covers more than 100 km2 in the Hortobagy-region 
in E-Hungary, and it can be characterized by abrupt changes in soil 
conditions, surface grass cover, microrelief with very sharp boundaries 
(Rajkai et al., 1988). Additionally, the descriptive measures of the 
apparent surface pattern are highly scale dependent, consequently there 
have been numerous efforts to determine the spatial behavior of 
underlying variables. The primary tool of these investigations was 
geostatistics, but several botanical and cartographic considerations were 
also taken into account.

The section below is focused on the following problem. Given a set 
of interrelated variables their spatial characteristics are determined in 
order to find the most suitable resolution to sample and map them. If 
these characteristics turn out to be different, a pointwise classification 
based on these variables will lead to heterogeneous patches. Having a 
control categorical variable, the spatial variability of the individual 
variables can be described by patches. How can those patches be found, for 
which all spatial variances will be lower than an acceptable threshold?
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This way one can identify class-membership for any given location with 
predefined accuracy.

The variables included in this study cover a wide range related to 
salinity status, soil chemistry, soil texture, etc., as well as microrelief and a 
number of botanical variables. The typical alkali soils in the Hortobagy 
National Park, mainly heavy-clay solonetz soils, can be characterized by 
varying depth of A horizon (Rajkai et al., 1988), and that variation 
corresponds to the dramatically different surface conditions. It is an 
erosion process on an almost completely flat plain induced by local 
disturbance (Toth et al., 1990a). Eroded surfaces occur as micro-valleys, 
and there is a well-known toposequence from elevated spots through the 
slopes down to the valleys. As the A horizon is washed away pH, salt- 
content (S%), and exchangeable sodium percentage (ESP) increase, while 
ecological diversity decreases. This spatial pattern which is seemingly 
dominant in the meter range horizontally and in the centimeter range 
vertically produces a highly complex terrain over the whole extended 
area.

The mapping strategy must be based on understanding the 
interrelationships between soils and vegetation forming a complex 
ecological system. A 15 m by 15 m plot was selected as a test-site for 
detailed analysis, a number of 60 - 500 m long transects were sampled, 
while remotely sensed data were collected for regional extrapolation, 
inventory and monitoring (Toth et al., 1990b). From an environmental 
point of view the task is to assign description of spatial variation to 
patches, in terms of variables and resolution, which otherwise would 
appear as equally homogeneous in terms of salinity status.

Figure 4. summarizes some of the data collected for the test-site. 
Systematic sampling was applied along the 1.5 m by 1.5 m grid, while 
stratified random sampling was carried out for the distinct floors of the 
toposequence, i.e. for hills, slopes and valleys. Soil samples were collected 
for 100 cm3 samples, i.e. with approximately 5 cm2 ground resolution, 
while botanical data for individual species and total coverage were 
recorded corresponding to 50 cm by 50 cm quadrats.

The geostatistical evaluation of measurements revealed that there 
are sharp differences between the spatial characteristics of individual 
variables, even though they play more or less similar roles in describing 
salinity status. For example, while pH clearly showed well-defined spatial 
structure on the test-quadrangle with a characteristic range of about llm, 
that of clay percentage came out to be about 14 m with very high nugget, 
but salt-content had an unbounded semi-variogram. If one wanted to 
characterize a given surface within the region, there were always 
variables, which showed too high estimation variance, or others must 
have been oversampled. Therefore, an optimum sampling scheme for 
classification of salinity status based on these variables could not be 
computed.

Stratified sampling was controlled by botanical data Elevated spots 
are characterized by more complex associations and more surface cover, 
while valleys are dominated by one species. This is due to the dramatic 
difference between their salinity status: Where the A horizon is present, 
pH and salt-content is lower, while on eroded spots severe salinization
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Figure 4. 
Environmental data for resolution study (Hortobagy National Park, E-Hungary) - systematic

and stratified random sampling
[Distribution and classification of major botanical associations on the test-site (sketch-map,

top); Descriptive data along cross transect for vegetation quadrats (top left graph) and for
related variables (low left graph); Semi-variograms of two soil properties with curves to

guide the eye (top right graph); Descriptive statistics (mean and standard deviation) for pH
and salt-content for two-classes of the toposequence (low right graph) - see text for details]
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occurs. Although this relationship supported the initial classification, 
descriptive statistics showed an interesting side-effect. On the hills pH and 
root-dry weight had significantly higher variance than in the valleys, or 
on the slopes, while this relationship was reversed in case of, for instance, 
salt-content. This observation leads again to a conflict, if one wishes to 
determine the necessary number and distribution of samples to classify a 
given location.

As a summary of this example the hierarchical nature of the 
possible solution should be pointed out. On a general soil map this area 
would be shown as a "highly variable salt-affected" area. Neither does this 
description contain explicit information about the amount or nature of 
this variation, nor does it provide reasonable estimates of the key 
variables by means of descriptive statistics. Having a detailed survey data 
set, say in a GIS, overlaying pH on salt-content leads to different results 
depending on which salinity class gets preference in determining 
classification criteria. It is because the objects to be mapped, in this case 
salinity classes, have class-dependent links between the mapping space 
and the feature space. Therefore, for example, more saline surfaces can be 
better identified with finer resolution, taking into account more non- 
spatial variation in salt-content, than non-eroded surfaces, and so on. 
Furthermore, this information can eventually be incorporated in the data 
structure as well.

CONCLUDING REMARKS

The evolution of geographical information analysis has resulted in 
conflicts with the common sense of "resolution". It has been shown that 
there is inherent uncertainty involved in data models applied in 
geographical information systems. Several approaches have been applied 
to spatial data to deal with this uncertainty, but they handle the mapping 
and feature space separately. In environmental mapping, when 
resolution of spatial sampling is theoretically unrestricted and 
classification does not define the spatial objects themselves, the problem 
of determining an optimal resolution, which provides a given constant 
attribute accuracy leads to a contradiction. A soil mapping example 
outlines that the most promising path for further research is context- 
dependent merging of criteria defined in mapping and feature space, 
rather than separating them as independent properties of objects to be 
mapped. The various statistical tools one can apply through data models 
permit not only control of accuracy, but they can contribute to the 
evolution of data structures, which incorporate this information. These 
data structures should be object-oriented, since there are no objects unless 
they can be recognized with certain probability, and can be located with 
certain accuracy.
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ABSTRACT

Current GIS do not support wide flexibility for the performance of map 
generalization operations so users have limited opportunity for creating 
views of data at different levels of resolution. This paper describes a 
context for computer assisted generalization and reports on a set of 
generalization operators. The generalization operators are embedded 
within a larger scheme for a map design system which could be attached to 
a GIS. The selection and sequencing of operations is not fully automated 
but relies on user interaction. This approach is adopted to allow users 
maximum flexibility in tailoring maps to their individual needs. The 
system, however, is designed to provide substantial support for the user in 
negotiating this process. The final section of the paper describes data 
structures for supporting the operations within the context of this 
interactive environment.

INTRODUCTION

In many studies or projects, we wish to see some piece of geography 
represented or displayed in a simpler or more abstract form. We may also 
at any time wish to change the level of detail or level of abstraction of a 
representation. Although the ability to change the resolution of spatial or 
non-spatial information in a representation is highly desirable, this 
capability is not well supported by current GIS. Most commercial GIS 
software packages support generalization as one or two algorithms for line 
simplification (Joao 1990). These systems can be tricked into performing 
other generalization functions (Daly 1990), but the capabilities are not 
explicitly documented such that they are readily available to the casual 
user. The need for flexible and efficient changes in resolution warrants an 
expansion of generalization capabilities which are easy and intuitive for 
users to employ. Mackaness and Beard (1990) describe a user interface 
concept for a map design and generalization system. This paper expands 
on this earlier concept but focuses more specifically on generalization 
operations to be included in the system, the context in which they are 
applied, and proposed structures needed to support them. The paper
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begins with an overview of the system to provide a context for the 
generalization operations.

CONTEXT FOR THE GENERALIZATION OPERATORS

McMaster and Shea (1988) and Shea and McMaster (1988) consider the 
important questions of why, when, and how to generalize. Much of the 
motivation and selection of type and degree of generalization is driven by 
user needs and purpose. The remainder is dictated by graphic media and 
format. This section develops a context for when and how to generalize 
within the proposed system based on two controlling factors: the user and 
graphic constraints.

The proposed map design system
The system as proposed by Mackaness and Beard (1990) assumes a vector 
GIS database exists. Characteristics of this database are described in greater 
detail in Section 4. It further assumes that users will .interact with the 
database to select and extract information to compos! views of the data at 
different levels of resolution or detail. Generalization operations in this 
case do not create new databases at coarser resolutions, but create 
materialized views of the original database. Views have been described in 
the database literature as an interface between a user (or application) and 
the database which provides the user with a specific way of looking at the 
data in the database (Langerak 1990).

In this system, we embed generalization operations within the basic 
functions of map composition and design. As itemized by Keates (1988) 
these include

  selection of geographic area,
  selection of information content,
  specification of format,
  specification of scale and
  specification of symbols.

These functions are intricately linked, but not necessarily in sequential 
order. Although at the outset one would most logically begin with 
selection of a geographic area, specification of the remaining functions 
could occur in any order including the ability to revise the size and 
configuration of the geographic area.

Full automation or system specification of these variables is probably not 
practical. Map design and generalization decisions depend largely on 
knowledge of map purpose so user interaction is highly desirable if not 
required. As Turk (1990) points out, improvements in human computer 
interaction will require shared cognitive responsibility between operator 
and computer. The proposed system therefore supports a high degree of 
user interaction, but is designed to assist the user in navigating through 
the process. The balance between user specification and system support is 
based on a consideration of which functions are best handled by the
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system, which by the user, and which in some supportive arrangement 
between the two.
Figure 1 provides an overview of the system with an indication of which 
steps are user controlled and which are shared or managed by the system. 
Figures 2a-d illustrate user interface design for specification of the 
functions shown in Figure 1.

* User

Select Scale *-> Set Display Device

* System/User * System/User

* System/User

Figure 1. Overview of the system showing relationships between map design functions. 
Asterisks indicate functions which are controlled by the user and/or the system. There is an 
implied order to the functions given by the tree structure but the arrows indicate an ability 
to move freely between the various functions.

Select flrea

flsia 
Europe 
United States

Figure 2 a. Illustration of user interface for selecting geographic area.
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County

O;

Expression

(Cancel)

( OK )

^Change flrea) (Set Page/Scale) (Set Symbols)

Figure 2b. Illustration of the user interface for selecting information content for inclusion on 
a map. Buttons on the bottom allow users to move to the other functions/menus.

Set Page/Scale

Pagesize 
E3 Monitor 
D fl D R4 

D fl3 
D R2
D R1
D RO

DB 
DC 
Do 
DE

1:1
Messages

Maplimits H

Scale

Snap to scale

1:20m

( Change Selection ) 

C Change flrea )

( Cancel ) 
C OK )

Figure 2c. Illustration of the user interface for selecting scale and/or page format. Users can 
move to the area selection menu or the information content selection menu from this screen.
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Figure 2d. Illustration of the user interface for specifying symbology. The selected 
information content is displayed on the left, and a symbol palette for making symbol 
choices appears on the left. The system indicates an appropriate range of dimensions for 
symbols given a scale. Selection of a default symbols set is also possible.

Once the user has made preliminary selections, the system can build on 
this information to provide clues and recommendations for subsequent 
steps. For example, if a user selects a geographic area which is 4 by 5 miles 
and selects, as a format, E size paper with a map area of 20 by 24 inches, the 
system computes a scale. As illustrated in Figure 2c, a computed scale 
would appear in the scale box and an appropriate scale range would be 
indicated by the shaded area on the slider bar for selecting scale. 
Alternatively, if the user specifies an area, information content, and scale, 
the system can recommend a range of appropriate formats. User 
specification and system feed back iterate toward an eventual result which 
meets users requirements and assures a legible display.

Specification of a geographic area, information content, format, scale, and 
symbology sets the scene for generalization. The combined specification of 
these five items can generate spatial conflicts or graphic interference, and 
to create useful and legible products these conflicts must be avoided or 
resolved. Conflicts can be avoided by re-specifying any one or more of the 
functions just described or resolved by generalization. In this paper we 
focus on resolution of conflicts by generalization operations.

Context for identifying and resolving conflicts
The types of conflicts which occur in map design are related to minimum 
requirements for maintaining graphic clarity and legibility. These
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minimum requirements have been generally well documented in 
cartographic texts and cartographic production specifications. They are 
based on avoiding:

  areas which are too small
  line segments which are too short
  items which are too narrow
  items which are too close.

Items being too close results in congestion, coalescence, or conflict. The 
result of items being too small is imperceptibility and the same applies to 
segments which are too short and items which are too narrow. 
Congestion, coalescence, conflict, and imperceptibility are conditions 
described by Shea and McMaster (1989) that require some type of 
generalization for resolution.

These minima can be fixed as thresholds in any appropriate display units 
(eg. inches as shown in Table 1). Given a specified scale, format, and 
symbology, items selected from the database for display are screened 
against these thresholds to identify and locate conflicts. These conflicts 
are the minimum set of items or features which must be generalized. If 
any of the specifications are revised, the set of features which must be 
generalized will change

Conflict

Too small

Too short

Too narrow

Too close

Threshold

.01 sq. in.

.08 in.

.15 in.

.20 in.

Table 1. Illustrates fixed thresholds for legibility. In map construction these are 
transformed according to the selected scale and compared against dimensions of objects in 
the database.

Assume now the system has identified a list of all features and locations 
which are: too small, too short, too narrow, and/or too close (includes 
areas of overlap and coincidence). The specific function of the 
generalization operators is to resolve these identified problem areas. A set 
of rules could be formulated to direct the selection and application of 
generalization operators, but as generalization is intricately tied to map 
purpose, appropriate operations are difficult to anticipate for all cases. A 
simple rule would be to omit all areas which are too small. The user, 
however, may not wish to omit all small features, but exaggerate some or 
merge them with other nearby objects.
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If the desired result is to be achieved from the users perspective, the user 
must have some involvement in orchestrating the operations. This 
prompts another balancing of tasks between operator and computer. In 
this case users are allowed to freely apply operators as they chose, but the 
system directs them to areas requiring generalization. An important 
function of the system is to clearly display all conflicts to the user and 
indicate when they have been resolved. This is handled by two methods. 
One is by listing objects which are in conflict with themselves or one or 
more other objects. The other is through graphic display of the conflicts. 
In the graphic display, all items in conflict (those falling below the 
thresholds) are displayed in red. All features which can be legibly displayed 
appear black. The items in red are the conflicts which must be resolved. 
As conflicts are resolved by generalization operations they are re-displayed 
in black and their resolution is also indicated on the corresponding tabular 
listing. Figure 3 provides an example of the interface for displaying 
conflicts to the user.

File Edit Operators Laqout Font Style Symbols

CD

Conflicts
Hudroaraohu
Ponds 
Streams
Roads
Interstate 
State Highway 
State Rid Highway 
County

Buildings
Church 
School

Majn Map

Figure 3. Example of the interface for displaying conflicts to the users. Conflicts are 
graphically (spatially) identified in red (dashed here) on the map as well as in the listing 
on the left.

GENERALIZATION OPERATORS

The function of the generalization operators in this context is to adjust a 
selected set of objects such that they can be legibily displayed at a specified 
scale, format and symbology. This section identifies a set of proposed 
generalization operators. Several cartographers have generated 
comprehensive lists of generalization processes (Steward 1974, Brassel 
1985, McMaster and Monmonier 1989, McMaster 1990). Using these 
inventories, we can apply a structure to assist in identifying an appropriate 
set of operators. This structure distinguishes between operations on
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graphic symbols and operations needed to simplify digital representations. 
These are referred to as structural operators: those that simplify or abstract 
the level of detail, and display operators: those that adjust the graphic 
display to ensure legibility. Structural operators can be seen to perform 
three basic operations: reduction in the number of objects, simplification 
of spatial detail, and simplification of attribute detail, with combinations 
of the three possible (Beard 1990). Display operators include operations 
such as displacement, masking, and symbol changes needed to resolve 
symbol collisions when a representation is displayed. This structure can 
be applied to McMaster's (1990) list of operations, for example, to assemble 
a toolbox of operators. For this system, operations from each category are 
selected to provide users a range of options and tailored for the purpose of 
resolving the conflicts identified above.

Proposed generalization operators
In this system we include the following operators:

Operations which reduce the number of objects
  select
  omit 

Spatial operators
  coarsen
  collapse
  combine 

Attribute operators
  classify 

Display operators
  exaggerate
  displace

The names of many of these operators have appeared in the literature 
previously (Shea and McMaster 1989, Nickerson and Freeman 1986, 
Brassel 1985, Lichtner 1979), but their functions may differ here to 
specifically respond to conflict resolution. The functions of these operators 
as used in this system are described below.

SELECT: This is a special operator which must precede all others. It is 
required to initialize the composition of a graphic view of the database 
which can then be displayed on a monitor or as hardcopy output. The user 
is informed of information stored in the database and from this they may 
select items by theme, feature type, or instance (see Figure 2b). This 
operation allows the user to explicitly choose only desired items. For 
example, the user may select the theme roads, in which case all roads in 
the selected geographic area will be extracted for display. The user may 
also be more specific and select only Interstate Highways or to be most 
specific, select only Interstate 95 for example.

OMIT: Once items have been selected for display, the omit operator allows 
removal of objects. These objects are only removed from the display list 
and not from the database. As with the SELECT operator, individual 
objects may be removed or objects may be removed by theme, feature type,
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or conflict type. For example the OMIT operator could be used to remove 
all objects which were too small.

COARSEN: This operator removes fine spatial detail (crenellations from a 
line). This operator could be applied to objects stored in the database with a 
high level of spatial detail, and which the user wishes to display in less 
detail. This operator works primarily on metric detail, but may change the 
topology of objects. Figure 4 illustrates an example of application of this 
operator to a lake with an island. In the resulting figure, the metric detail 
has been modified and the island has been removed, changing the 
topology.

4 a 4b
Figure 4a. shows a lake with an island at the level of detail it is stored in the database. 
Figure 4b show the same lake after application of COARSEN. The areas in conflict are 
show by dotted line (in color, these would be shown in red). In the resulting figure the 
conflicts have been resolved.

The user need not specify parameters for this operator. They only need 
select the object or objects to be coarsened and apply the operator. The 
operator uses the minimum thresholds which have been computed for 
the selected scale or format. The resulting representation is therefore 
appropriate to the selected scale. As shown in Figure 4, the small bays and 
island which fall below the threshold for areas too small, items too close, 
or items too narrow are removed by the coarsen operator. This operator 
can be applied to individual objects, themes or feature types.

COLLAPSE: The collapse operator substitutes a ID or OD representation for 
a 2D representation. This operator could be applied to objects stored in the 
database as areas, but which a user wishes to display as points or lines. 
Figure 5a and 5b show examples of COLLAPSE as applied to an estuary and 
a city. This operator must be preceded or succeeded by a symbol change. 
COLLAPSE resolves the legibility problem of items being too close, or 
COLLAPSE followed by a change in symbol width could resolve the 
problem of items being too small or too narrow.

} / s^ L^Cf^
/ ^~

Figure 5a. COLLAPSE applied to an estuary 
city.

Figure 5b. COLLAPSE applied to a
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COMBINE: The combine operator simplifies a spatial representation by 
merging objects which are nearby in space into a single new object. For 
example a cluster of small islands may be combined to form a larger 
island. The operator applies only to two or more selected objects and the 
result is always one new object. Thus COMBINE is strictly a localized 
operator. This operation must be preceded or succeeded by the CLASSIFY 
operator so that the resulting object is properly identified. Figure 6a and 6b 
illustrate an example of COMBINE. COMBINE resolves items being too 
small or too close.

Figure 6a. COMBINE applied to islands. Figure 6b. COMBINE applied to fields.

AGGREGATE: This operator is similar to COMBINE but merges objects 
which are adjacent rather than those with intervening spaces. CLASSIFY 
must precede this operator as well. The aggregate operator can be applied 
globally by theme or by feature class.

CLASSIFY: This operator allows individual objects, feature types or 
themes to be assigned to a new class. The classification may be based on 
shared attribute characteristics of objects. The user or systems selects a set 
of objects and assigns a new class label (eg. For all objects with attribute D, 
Class = M). A symbol change must follow this operation, and when the 
new symbol is assigned, all objects assigned to the new class inherit the 
symbol. This operator does not directly resolve conflicts but is required as 
a supporting operation for operators which change the nature of an object 
(i.e. COMBINE and AGGREGATE).

EXAGGERATE: The exaggerate operator expands the size or width of 
objects. It can be applied by theme, feature type, instance or conflict type. 
The operator expands the object to meet the minimum threshold for 
legibility and therefore requires no parameter specification by the user. 
For a line or point representation, the width or radius is expanded. This 
can be accomplished by redimensioning a symbol. For an area, the 
operation performs a localized scale increase.

Figure 7a. EXAGGERATE applied to an inlet 
roads

Figure 7b. EXAGGERATE applied to
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DISPLACE: This operator is applied locally to two or more objects which 
are too close or overlapping.

Conflicts can be resolved by several different generalization operators with 
choice dependent on the desired outcome. Objects which are too small can 
be resolved by omitting them, exaggerating them, or combining them with 
other nearby objects. Objects which are too close can be resolved by 
omission, collapse, simplification, combination, or displacement. The 
selection and application of the operators is left to the user to allow them 
the most freedom in constructing a map to fit their needs. Some order is 
imposed in that some operators will not be accessible depending on the 
state. For example, SELECT is the only operator which can be accessed 
initially, and AGGREGATION may not be applied without first applying 
CLASSIFICATION.

Another key aspect in the design of operators is that they obey one overall 
rule. That is they are to resolve one or more conflicts when invoked and 
create no new conflicts. This rule is used to avoid convoluted iterations of 
operations in the resolution of conflicts. In particular this implies that all 
symbol specification occurs prior to generalization. For clearly, if symbol 
re-dimensioning occurs subsequent to generalization operations, new 
conflicts will arise and the generalization must be renegotiated.

SUPPORITNG STRUCTURES FOR GENERALIZATION OPERATIONS

For effective interactive use of the system, two tasks in particular must be 
performed efficiently. Conflict areas need to be identified rapidly so users 
can be quickly informed of the number and location of conflicts. Secondly 
the operators themselves must perform efficiently. In this section we 
consider supporting structures for facilitating each of these tasks.

Conflict Identification
Section 2 identified four types of conflicts. The first was areas too small to 
be legible. Identification of these conflicts is relatively straightforward. We 
first assume that areas are computed and stored as attributes of closed 
polygonal objects. Then, once a scale has been specified or computed, the 
minimum area threshold is derived, and conflicts are returned from the 
boolean function:

AREATOOSMALL = OBJECTAREA < THRESHOLD 

If AREATOOSMALL then DISPLAY (OBJECT, RED)

The number of comparisons required is of order N, the number of 
polygon objects selected for display.

Identification of the remaining conflicts depends on finding the euclidean 
distances within and between objects that are smaller than the minimum 
threshold computed from scale and symbol dimensions. This three 
additional boolean functions:
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SEGTOO SHORT = SEGLENGTH < SEGTHRESHOLD 

WIDTHTOONARROW = OBJECTWIDTH <, WIDTH THRESHOLD 

TOOCLOSE = POINTTOPOINT < CLOSETHRESHOLD

To support these functions, we could conceivably pre-compute and store 
all distances between objects (objects in this case being points) as an 
ordered list. Discovery and retrieval of all violating objects could then 
follow by a search using distance as the key through the set of records 
ordered by distance between and within objects. This approach is 
sufficient to identify conflicts and provide the information to display 
conflict areas. The cost of computing and storing distances, however, is 
too high to justify simply the identification of conflicts. On the other hand 
if the cost can be spread over several other operations it becomes more 
justifiable. Our second criteria was to support efficient performance of 
generalization operations. In the next section we examine how pre- 
computed and stored distances figure into the resolution of conflicts and 
performance of the generalization operators.

Data Structures and Operator Performance
The number of operations dependent on knowledge of distance between 
objects implies the need for a database organized by spatial proximity. Such 
databases have been previously researched (Matsuyama 1984, Samet 1984) 
and arguments made for their use in the context of map design and 
generalization (Mackaness and Fisher 1987). Matsuyama's method, 
however, does not explicitly represent distance relationships among 
objects. Vornoi diagrams and the dual Delauney triangulation have also 
been proposed for representing spatial proximity relationships (Green and 
Sibson 1977, Brassel 1978, Gold 1987,1989), but these also do not implicitly 
or explicitly store a full complement of distance relations. In Figure 8, 
form triangle edges we could derive distances from P6 to P4-P9 but not 
directly to PI or Pll.

Pi

P10 
Figure 8. Distance relationships in Delauney Traingles.

In most cases, queries to these structures can return a spatial neighborhood 
or the set of objects within a neighborhood. Distances can then be
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computed for these smaller sets. In this system, access to distance 
relationships is required frequently and uniformly over a geographic area. 
Given the level of interaction, the system also requires fast performance. 
The COARSEN, DISPLACE and EXAGGERATE operators in particular can 
benefit from immediate access to stored distance relationships. The next 
section describes a structure for storing and retrieving distance 
relationships. It assumes distances between points have been pre- 
computed.

A data structure for storing and retrieving distances.
Recall that the function of the generalization operators is to resolve 
identified conflicts and create no new conflicts. To assure that conflicts are 
resolved and no new ones created requires knowledge of distances 
between and within objects. Operators therefore need information beyond 
an ordered list of distances sufficient for identifying conflicts. In this case 
we need to know not just that a distance is sub-threshold but the locations 
where sub-threshold distances occur. The search condition thus involves 
the combination of three keys (Distance, X and Y), creating a 
multidimensional or range query problem. Assuming a threshold 
distance T, what we are after is a piece of the XY plane that yield dusters of 
points less that T distance apart.

The structure required is an indexed sequential data structure. Such a data 
structure accommodates both random and sequential access to records. In 
this case we adapt a method described by Orenstein and Merrett (1984). 
This involves interleaving bits of the tuple (DIST, X, Y) and storing the 
'shuffled' tuples in the database. Interleaving the bits of a tuple maps a k-d 
space (3 in this case) to a 1-d space, creating a Z-ordering. The Z-ordering 
assures that points which are close in k-d space will be close in 1-d space. 
A similar ordering was first used by Morton (1966) for CGIS and has been 
replicated and expanded since by several others (Bentley 1975, Burkhardt 
1983, Orenstein 1983, Ouksel and Scheuermann 1983, Tropf and Herzog 
1981).

As Orenstein and Merrett (1984) note, the domains of the attributes in the 
tuple need not be the same size. An array [attr] can be used to indicate the 
attribute from which each bit was taken, yielding the shuffle function h(t) 
= [attr]{i} = i mod k where t is any tuple and k is the number of attributes 
per tuple.

Each bit in the 'shuffled' tuple corresponds to a split of a region of the 
three D space into two subregions of equal size. The bit equals 0 for one 
subregion and 1 for the other. Each additional bit splits the previous two 
subregions into two sub-sub-regions and so on. The direction of the split 
is given by the attribute [attr] from which the bit originated.

Sub-regions can be described by prefixes of the shuffled value. The 
addition of bits to the prefix refines subregions as described above. 
Smaller prefixes in other words correspond to larger pieces of the XY plane 
and larger distances.
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Information retrieved from this structure can support identification of 
conflicts and provide direct input for the COARSEN, DISPLACE and 
EXAGGERATE operators. We discuss retrieval next in the context of the 
COARSEN operator.

Information is retrieved from the structure by a 3d search region SR. 
Initially SR is the entire space. A query region QR is posed given by the 
minimum bounding rectangle (MBR) of an object selected for 
COARSENing and by the threshold TOOCLOSE. If SR is outside QR, then 
SR contains no tuples satisfying the query and no action is required. If SR 
is inside QR, all points in SR satisfy the query and are unshuffled and 
returned. If SR overlaps QR but is not within it, SR is split into two new 
SRs. This step is applied recursively until SR is within QR. Several SRs 
may be required to cover a given QR, a weakness of this scheme which 
Orenstein and Merrett note. Once the final set of SRs is determined, 
tuples are actually retrieved by both random and sequential access. To use 
Orenstein and Merrett's notation SRi0 : SRhi denotes a range of shuffled 
values corresponding to a prefix. Retrieval of all points from an SR 
requires retrieving the tuples (t) such that SRi0 ^ shuffle(t) < Srhi. The data 
structure can be randomly accessed using SRi0 as the search argument. 
Then sequential accesses retrieve tuples until the shuffle value of a tuple 
exceeds SRhi-

The set of tuples (DIST, X, Y) returned by this search procedure provide 
direct input for COARSEN. COARSEN performs a cluster analysis on the 
returned points and distances. The outcome of the cluster analysis is a 
reduction in the number of points such that no two are closer than 
threshold T. Simplified objects are then recomposed from the remaining 
points (see Figure 4).

A similar retrieval of records supports DISPLACE. DISPLACE is a 
localized operator applying to a small area. The area in which 
displacement will occur can be selected by clicking and dragging to define a 
rectangle. This rectangle and threshold TOOCLOSE define the query region 
QR. The search procedure returns the set of points within the rectangle 
and the distances between them.

SUMMARY

This paper discusses the context for a flexible and interactive approach to 
generalization. The design of the system seeks a balance between user 
responsibility and discretion and system intelligence to assist the user. 
The user makes initial selections for geographic area and information 
content. They may also specify scale, format and symbology or allow the 
system to compute or set defaults. Four types of graphic conflicts are 
identified as arising from these specifications. The selected objects can be 
too small, too short, too narrow or too close for the given scale and 
symbols dimensions. The purpose of generalization operators is to resolve 
such conflicts and assure a legible display. Identification and location of 
conflicts requires knowledge of distances between and within objects.
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Distance computations are costly no matter how they are approached, but 
they are critical to operation of the system. The high degree of interaction 
demands high performance from the system. To support efficient 
interaction, we investigated methods for pre-computing and storing 
distances. An indexed sequential data structure is proposed to support 
efficient retrieval of information, but this must be subjected to testing to 
assure adequate performance.
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ABSTRACT

All current G1S systems assign discrete, static attribute values to geometric 
objects (vector, pixel, or voxel). This is not how the world usually works. Physical 
objects of geographic importance are heterogeneous things. The width, depth, 
and flow-rate of a river, the porosity, density, and permeability of a rock body, the 
pressure, temperature, and velocity of the air or water, all of these things vary in 
complicated, sometimes chaotic, and convoluted ways; ways that affect our experi 
ence and ways that would effect our computer models, if we took them into 
account, and knew how to deal with them. Given this fact-of-life, the next genera 
tion of G1S systems must have a mechanism to model truly continuously variable 
attribute values. Spline functions gives us one such a way.

Spline functions have long been used in CAD/CAM to represent geometric 
forms, curves and surfaces, a use that they are well qualified to perform in GIS 
applications (see for example Auerbach (1990)). But splines are a much more 
general concept than a convenient way to store geometry; they are a way to effi 
ciently approximate, to any degree of accuracy, any function. By shifting our para 
digm, we can make the dimensions of the splines simultaneously represent both 
geometry and attribute distributions.

INTRODUCTION AND BACKGROUND

Any information system must be able to model the reality of its application (Casti 
(1989)). A database designer begins with a methodology (for example, entity, 
attribute, relation modeling), that at an abstract level, uses a model of reality onto 
which he will impose his data concepts by a series of data transformations, eventu 
ally mapping the highest level abstractions by stages to a concrete storage mecha 
nism (Date (1983), LJllman (1988) and (1989), Codd (1990)). This resultant 
storage mechanism unfortunately puts restrictions back upon the scope of the orig 
inal abstract model, often restricting the attributes of a data item to the 
fundamental data types of integer, floating point, character string and variants 
thereof. In addition, the data types are usually considered independent of the 
methods needed to manipulate them, leaving the application the requirements to 
supply not only ingenious storage work arounds, but also the edit, analysis, query
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and mechanisms needed. This compounds the fundamental database manage 
ment system problems of data integrity and semantic data control (see Ozsu 
(1991)). With the advent of abstract data types (ADT), this is no longer the case 
(Gorlen (1990)). Using ADT's, the database designer can encapsulate a complex 
data storage format with the methods for its creation, manipulation, analysis, 
query, and display. This process is beginning to make its way into commercially 
available relational data bases (RDB) such as Empress, Oracle, Informix, and 
Ingres, and is the foundation of the new object oriented technology, such as 
Versant (VERSANT Object Technology), and Ontos (Ontologic) (see Khoshafian 
(1990)). This paper investigates the use of spline functions as an ADT for the 
storage of both space varying and time varying attributes.

Spline functions (see Farin (1990), Bartels (1987), Faux (1979)), often used in 
computer aided design and manufacture (CAD/CAM), are actually part of a very 
old branch of mathematics, approximation theory. Basically, splines allow us to 
approximate any function by the specification of a set of control points in the 
range of the function (called "poles", not necessarily function values) which 
control a varying weighted average based upon a set of functions (called "weight 
functions"). In CAD/CAM applications, the poles are 3-D points, and the weight 
functions map a compact subset of a Euclidean space (of dimension 1, 2, or 3) to 
the unit interval [0,1] = {xGR|0<x<l}. The resulting range of the spline is 
a geometric object (contained in the convex hull of the poles). This object is 
either a curve, surface, or solid depending upon the dimension of the domain 
space; 1, 2 or 3 respectively.

More simply put, this paper proposes that we take the CAD/CAM inter 
pretation of a spline, and extend the dimensions of the both the domain (source) 
and range (target) space; so that a CAD/CAM 3D point (x, y, z) becomes a GIS N- 
D point (x, y, z, time, density, porosity, permeability, ...). This approach basically 
generalizes the use of geometry to represent geography into the use of geometry 
to represent any measurable quantity; an old, well known and understood concept 
that most people encounter in a first algebra course.

The remainder of this paper develops the theory of splines to support this 
concept and gives examples of the type applications most likely to useful in GIS 
applications. Anyone wishing to learn about splines for their own sake is directed to 
the references, especially Farin (1990) which presents a more geometric develop 
ment than most, and Auerbach (1990) which is a good example of the use of 
splines in geographic visualization. The development presented in this paper will 
emphasize some particular aspects of splines in ways peculiar to their use in 
supporting the spatial and temporal distribution of attributes.

FUNCTIONAL REPRESENTATIONS

A functional geometric description used in CAD/CAM is a generalization of the 
algorithmic construction objects used in vector data sets (line, polyline, polygon, 
circles, ellipse, general conies, etc.). Each functional geometric object consists of a 
domain (source or parameter space) and a function mapping the domain into the
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range coordinates system, usually E\ 3-dimensional Euclidean space. Domains 
are usually some subset of a Euclidean space, the most common of which are I 
(the closed interval from 0 to 1, [0,1]) or some unit cube I" (the cartesian product 
of I with itself, n times).

Spline functions are defined as a variable weighted average, using weight func 
tions, over the domain of some specified set of points in the target coordinate 
space (poles) (see Farin (1990), Rogers (1990), Bartels (1987) or Faux (1979)). 
Formally, for a three-dimensional data set, we have a (interval) spline as a func 
tion:

f:In -» E3

where t is a vector in I", P( are points in E3 and w^) are functions from I" into I 1 
such that:

0 < w( (t) < 1 for every t = (t t , ...,tn) G I"
Y" w(t) =1Zji=i i v '

The affect of any one of the poles P is felt only where the associated weight func 
tion \v is non-zero (called the support of w().

Geometrically speaking, the weight functions are usually bell-shaped curves 
with a single maximum point (the parameter value of which is usually a "knot" asso 
ciated to the pole), tapering off to 0 in all directions away from this central peak. 
Because of this, the poles of a spline are often near critical points of the spline, 
often the value of the spline as evaluated at the knot. A spline passes through a 
particular pole, in general, only if the associated weight function is 1 at its knot 
value (which implies that all other weights are zero).

On I n, the most common splines are based upon the n'th tensor product of 
weight functions for I. Given collections of weights, w and W we can define a 
collection of w<8>W by (w<S>W) (u,v) = w.(u) W (v). This set of functions can be 
used as weights since I is closed under multiplication and

Ju (w<g)W) |j (u,v) = £ ^ w,(u) W(v) = £w(u) £\V(v) = 1X1 = 1

Splines built using such tensor product weight functions are tensor splines. Most 
commercially available packages use exclusively tensor splines for higher dimen 
sional functions due to their ease of computation, see Faux (1979).

Generalizations of these standard cubes can involve the choice of a different 
interval to support either computational convenience or added geometric inter 
pretations of the parameter; for example it is often computational advantageous 
to use time or arc length for curves (discussed below), see Farin (1990). Unless 
otherwise stated, we will assume that the parameter cubes I, I2, ... , I" can be based 
upon any intervals in Euclidean space, as needed to support interpretations.

Some earlier nontensor higher dimensional spline work used triangles in place 
of cubes producing what is called a simplical spline (see Farin (1990)). This type
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of splines has generated some interest in the GIS applications, specifically in 
contour preserving surface visualization using a simplical decomposition or triangu 
lated irregular network (TIN) based upon a constrained Delaunay triangulation, 
in Auerbach (1990).

A special case of the spline function is the B-spline. B-splines use piecewise poly 
nomial or rational functions for weight functions. Each weight function's support 
spans an interval defined by a set of knots (the number of which is the order of the 
spline). This gives the spline designer a "local control" that allows him to adjust 
pole values while only affecting the spline is a very restricted neighborhood of the 
pole's knot. Further, given a set of sample points (t, v) t e I, v e En, 1 < i < m, 
there are closed form solutions to finding m poles for which the associated spline 
exactly fit the samples, or for finding least-square "best fit" splines with a fewer 
number of poles (see Bartels (1987)). All of this discussion can be generalize to 
TIN's and to general simplical complexes (see Farin 1990).

Derivatives

It should be noted here that, while not always precisely spline functions them 
selves, the various derivative of a spline have easily calculable forms. Given a differ-

 > 
ential form D (i. e. something like   , 1 < k < n), the value of the form applied to a

spline can be expressed as (a result of simple calculus):

In all cases, this is not a spline function as it is written (the sum of the derivative 
weights would necessarily be a constant 0, since 2 D w = D (2 w) = D (1) = 0), 
but calculations of the various D f() is not significantly harder than the calculation 
of the spline values themselves. Further, for particular classes of splines, such as 
Bezier splines, there is collection of poles that will represent D f() as a spline func 
tion of a different degree (see Faux (1979)).

Curves

Curves can be represented as one-dimensional splines:

The continuity and differentiability of the curve are determined by the smooth 
ness of the weight functions. The various derivatives of the curve as a function 
have exactly what you might expect. c'(t) is a tangent vector to the curve, with 
magnitude equal to the velocity of "t" with respect to arc length (thinking of t as a 
time component). c"(t) is acceleration, with a component parallel to the curve 
(parallel to c'(t)) giving the acceleration of t with respect to arc length, and the 
remaining component vector normal to the curve pointing directly away from the 
center of curvature. The component of c"'(t) perpendicular to the c'(t), c"(t) plane is 
a binomial indicating the direction of the torsion (twisting) of the curve (tendency of 
the curve to leave a planar surface) (see Rogers (1990)).
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Using different parameterizations, gives some other interesting physical inter 
pretations to c'() and c"(). If c() is parameterized by the arc-length (usually 
written as "s") of the resultant curve, then the c'(s) is the unit tangent and c"(s) is 
in the normal with the length of c"(s), written as |c(s)||, being the local Gaussian 
curvature of the curve c(t), the inverse of the radius of curvature. The accelera 
tion vector, c"(t), will always line in the plane of c'(s) and c"(s), so that we could 
write

c"(t) = a c'(s) + b c"(s)

where "a" is the magnitude of the force of acceleration along the curve, and "b" is 
the magnitude of the force of acceleration due to change of direction (a sort of 
steering force).

Surfaces

Surfaces can be represented as two-dimensional tensor splines:

s:I 2 -E 3

The images of the domain lines in the surface give a spline grid of constant 
parameter values. The partial derivatives of a surface spline give us the tangents 
to the surfaces in the direction of the associated parameter curves. Another inter 
pretation of a surface tensor spline is as a parameterized set of curve splines. 
Assuming that we have a surface spline, s(t, u), we can define

VUG I, cu(t) = s(t,u).

Applying our knowledge of curves, we know that

And, swapping the roles of u and t, we also have

Interpreting this in terms of the geometry, we can say that the partial derivatives 
of the surface spline are tangent vectors to curves totally contained within the 
surface. Assuming that the surface spline function is well behaved, the two 
tangent vectors give us a spanning set for the plane tangent to the surface at the 
corresponding point.

Simplical splines are closely related to triangulated irregular networks (TIN). 
Based upon a triangulated domain, the most common methodology would be to 
use the underlying geographic surface as the spline's domain. The use of a general 
ized full 3D triangulation would allow the surface to fold back over itself by 
allowing multiple s values for a single (x,y).

50



Volumes

Solids (volumes) can be represented in two distinct manners. The most common 
representation is as a collection of surfaces which form the boundary of the solid. In 
terms of distributions of attributes, this formulation would be useless, since it does 
not distribute the parameter space into the interior of the volume. In the second 
technique, generalizing from the above, we can always consider solids as represent- 
able as three-dimensional splines:

Such volume splines must usually be almost everywhere one-to-one to prevent 
the function from collapsing multiple points from the parameter space into single 
points in the range space (the mathematical equivalent of "spindle, fold and muti 
late"). The most common exception to this is where the boundary of the param 
eter space is collapsed to give us non-rectilinear ranges.

If we apply the same technique to the parameters of a volume as we did above 
to the surface, we can view the function as a parameterized set of surfaces or as a 2- 
parameter set of curves. The embedded surfaces are called a "foliation" of the 
volume.

The generalization of the TIN based spline uses simplices of dimension 3 (tetra 
hedrons), see Herring (1990). For geographic use, the underlying tetrahedron 
irregular network would normally be a simplical complex spanning the volume of 
interest.

Higher Order Geometries

All of the above geometric descriptions can be extended to a 4th or higher 
dimension entity using the same techniques. An interesting hybrid is to use 
temporal spline curves P(t) to describe the motion of the poles of a spline through 
time. For the tensor splines, this is simply going to a spline of one higher dimen 
sion. For a simplical spline, this forms the tensor product of the existing spline 
with the temporal curve, as opposed to forming a 4D simplical complex. Even for 
simplical splines, tensoring with time curves is probably the preferable technique, 
since this most closely matches the way in which one thinks of time and motion. 
For most applications where time can be treated as an independent dimension, 
this technique should be applicable without much difficulty.

DISTRIBUTIONS

Distributions of attribution can be addressed by spline and other functional repre 
sentations in two basic manners. The first technique includes the definition of the 
attributes with the geometry in a single spline function, The second technique 
uses multiple splines over a single parameter space. Other approaches can be 
viewed as combinations, and multiples of these first two.

In the first approach, given an attribute or a set of "k" attributes, each of which 
is expressible as a real value, and each of which is a continuous function of space,
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we can generate spline functions whose first three range coordinates (dimension 
of target geometry) represent points, and whose k trailing range coordinate values 
are for the attributes along the spline:

f: I n -»  E 3 (geometry) x E k (attributes)

This generalizes to temporal variability through the use of a space time 
geometric component, giving us:

f: 1 n -» E 3 (geometry) x E1 (time) x E k (attributes)

In the second approach, the attributes are generated by separate spline func 
tions, but sharing a common parameter domain. Thus, we have a set of functions, 
f() , fj? etc.. The first functions gives us a mapping from the parameter space to the 
geometry, and each additional function generates a single attribute or a set of 
related attributes. The value of an attribute "a" at a point is then given by an 
implicit equation:

V t G I" f (t) = value of attribute a at the point fQ(t)

In using splines or other functional geometric descriptions for the distribution 
of attribute values, we are creating a tensor sum model that makes no implementa 
tion distinction between geometry and other numerically measurable attributes 
(Herring (1990)).

Distributing Attributes Along a Line Feature

To distribute an attribute along a line feature, two pieces of information are 
needed. First, we need a parameterization of the line to use to associate spine 
values to positions on the line. Second, we need a set of sample values of the 
attribute along the line, or a mechanism to generate those values. Putting these 
pieces of information together, we now have a set of sample pairs consisting of the 
parameter values and attribute values:

S = {(t,a) t E I, a the attribute value at the point on the line associated to t}

value of attribute at point

c(t) = (x,y,z) 
geometric graph

f(D = a 
ttribute graph

parameter space parameter space 

The General Approach
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We now have to choose a set of poles P and weights w :I-»[0,1] (1 < j < m), that will 
generate a spline function

f = Y"' w (t)P
Li-i r ' j

such that:

V(t,a) eS, f(t) a a\ t > I/ ' V |/

To associate a spline function to an existing line, we have to define how the 
parameter space is mapped to positions along the curve.

The spline case: If the line is already a spline (geometric) we can use this 
geometric spline's parameterization.

If our samples are at knots in the spline's parameter space, then we can 
augment the existing geometric poles with and additional dimension for the 
attribute, adjusting the pole-attribute values (a1 ), until the sample attribute values 
are achieved. This gives a combined geometric-attribute representation, as follows:

vtei, fo(t)=^,(t)(P,a'i )

Assuming that we have n such geometrically correlated attributes, we have an 
extended spline function as follows:

Vtei, f (t) =Y m w(t) (P , a' , a' ,...,a' )
' O v ' /j\=\ i v ' v i ' l,i' 2,r n, i'

Where P [ is the original geometric pole, and each a'ki is an appropriately chosen 
value so that the k'th attribute value is achieved at the i'th knot.

If the attribute values are statistically independent of the shape of the geometry, 
or we do not have attribute values for the knots of the geometry spline, then the 
above method will not work. But using the same parameterization, we can define 
separate splines for each attribute or set of correlated attributes, using only the 
common parameter space to synchronize curve geometry and attribute distribu 
tion. Given a set of sample values (x^z^a), 1 <i<k, of the attributes along the 
line feature, using the geometry spline f0(), we solve for t( such that:

f(f) = (x,y.z)O v / v i''i i'

This gives us a set of spline functions samples (t, a), which we can use to generate 
a spline (using weights "W") that precisely fits the samples with k poles, or an 
approximation with fewer poles, giving us a spline f^) such that:

VtGl, W^wWP

and f1 (t)=2;. 1 W(t) a',

and the value of attribute "a" at fQ(t) is f^t).

Multiple attributes can be handled either in single splines (as was done with the 
geometry spline above or as separate splines.
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The Polyline and General Case: If the geometry of the line does not come with its 
own parameterization, then we can use any function, such as arc-length of a point 
from the line's beginning, as a distribution parameter. Using arc-length as a param 
eter defines the domain interval of the spline as I = [0, L] where L is the total 
length of the line feature. Using this parameter, we are essentially in the second 
case from the section above. The new equation for the t is:

t = distance along the line from start position to (x, y, Z ()

Distributing Attributes Through an Area Feature, Across a Surface

The area, or surface distribution problem revolves around a restriction on the 
types of spline functions used for higher dimension. Most common software pack 
ages use tensor product splines. This places a restriction on the types of knot spac- 
ings that can be used. If kt is the knot associated with w () and k' is the knot associ 
ated to w'Q, then the knot associated to W..() = w w'() is (k,k'). This means 
that the knots are geometrically dispersed in the parameter space in rows and 
columns (possibly nonuniformly spaced). There are three basic alternatives: 1) 
use a regular geometric grid as a spline parameter domain, 2) use a tensor spline 
geometric description of the area, or 3) use a simplical spline.

regular grid tensor spline parameter grid simplicial spline poles (TIN) 

Pole Geometries for Alternative Distibution Types

If we chose to use a regular grid parameter space, we would create orthogonal 
profiles in a coordinate block large enough to encompass the entire area, associ 
ating the grid points internal to the area to interpolated attribute values, and 
external grid points to extrapolated attribute values. Here the basic problem is 
the "regularization" of the data to the grid points (discussed below).

In either of the other two alternatives, there are two problems. First, we have to 
disperse knots and geometric poles to describe the surface (x,y,z) or area feature 
(x,y). Second, we have to obtain attribute values for the points on the surface asso 
ciated to each of the knot pole pairs. Having these, we can apply the algorithms 
described above to obtain attribute values for the poles that will give us the 
required distribution function.

Picking the Grid Points: If we already have a spline representation of the 
surface and the attribute values for the corresponding points on that spline 
surface, the simplest solution is to use the geometric knots (a direct analogy to the 
line cases).
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If we do not have a spline surface and we wish to use a tensor spline, we can 
create a pseudo grid across the feature by digitizing two sets of profile lines, cross- 
hatching the area, using the intersections of these profiles to associate to a simi 
larly set of orthogonal profiles in the chosen parameter space, creating a tensor 
spline surface that approximated the area feature. Using this method would not 
necessarily obtain a spline surface whose edge exactly matched the boundary of 
the boundary of the delineated area (splines can be made to fit a finite number of 
points, not usually an entire curve). The accuracy of the fitted surface would be a 
function of the complexity of the area boundary, and the order and number of 
poles of the chosen spline, but as long as the new surface covered the area feature, 
every point in the area would have an associated attribute value by the resultant 
spline distribution.

Alternately, if simplical splines can be used, a tessellation of the surface can be 
made using the Delaunay (or other) triangulation of the input attribute data 
samples.

Regularization of the data: In either or the grid techniques, it is probable that 
after getting a spline approximation of the area, the attribute values for the points 
on the spline surface will have to be approximated. Various such approximation 
techniques exist. Using the Delaunay triangulation of samples and either linear or 
"stolen area" interpolation (Gold (1989) and (1990)), simplical splines (Auerbach 
(1990)), kriging (Journel-78, David-76), and cokriging are good examples. The 
interpolation scheme may be chosen depending upon the particular application or 
depending on a priori assumptions about the data. Recall that the knots, or 
weights used for the geometric approximation need not be the ones used for the 
attribute approximation, as long as the parameter space is the same. In the 
simplical spline case, assuming the data points were chosen with care, little or no 
interpolation of Pole values should be necessary.

Distributing Attributes Throuuh a Volume

The volume case is similar to the area case, except that a 3-dimensional approxi 
mating spline, a 3-dimensional regularization technique, or a 3-dimensional tetra 
hedron irregular network, as appropriated, are needed.

Vector Fields, Differential Equations and Trajectories

The use of splines to represent vector fields, and the ability to take derivatives of 
splines leads to their use to represent differential equations and systems of differen 
tial equations. For example, suppose that we have a spline representation of 
current flow in a hydrologic system. Thus, we have a function 
F(u,v,w) >(x,y,z,dx,dy,dz) that maps a three dimensional parameter space into 
position and velocity. We can define a solution, or trajectory, to the differential 
equation:

(c,c') = F
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as a function c(t) -* (x,y,z) as one such that:

C(t) = 77 F(U,V,W) ^> C'(t) = 77,,, F(U,V,W) v ' x,y,z V » ' / V ' dx,dy,dz V ' ' /

where "TT" is the projection onto the subscripted coordinates.

A NOTE ON EXPERIMENTATION

Much of what is presented here can be classified as speculative, and in a normal 
situation, I would have waited for until more experimental results in specific appli 
cations could have been simultaneously reported. I choose not to delay for a 
variety of reasons. First, a great deal of work has gone into the various geometric 
aspects of spline curves and surfaces and, in a very real and meaningful way, this 
paper is simple a reinterpretation of those results. For example, Auerbach (1990) 
could be interpreted to show results on the distribution of a single attribute value 
over an area feature; its geometric representation (graph) resulting in a surface   
contours representing isoclines. Secondly, a large part of this paper is a survey of 
some simple mathematical truths, viewed from an unusual perspective. Unlike 
physical science, most mathematical papers do not require experimental results to 
be valid. Third, and most important, is the potential scope of the applications of 
this sort of technology is broad enough to require multiple efforts to validate it. 
For example, the distribution of attributes along lines may solve the dynamic 
segmentation problem in road maintenance systems. The distribution of attrib 
utes in areas has applications in any field which needs to represent heterogeneous 
dispersions; forest or soil management, ecological applications such a predator 
prey simulations, etc.. Splines have the potential of solving some of the data 
volume problems associated to grid based map algebra systems. In 3 dimensions, 
spline distributions have a great deal of potential in representing heterogeneous 
aggregate both in geology and in engineered materials.

Given the potential of spline distributions and the track record of splines in the 
geometric applications, it seemed that the probability for successful experimenta 
tion in a wide variety of potential applications is very high.

SUMMARY AND IMPLICATION

Spline functions can be used to approximate a large variety of attribute distribu 
tions, through any standard geographic feature, to any accuracy or representation 
quality required. The implications of the methods outlined here are far reaching.

They can change the way we think of attribution. Attributes need not be 
thought of as static constants, but can be set to vary of both time and space. 
Attributes can include complex mathematical structures such as vector fields, set 
of trajectories for differential equations, etc.. Such attributes can be represented 
to any degree of accuracy required via the use of standard spline functions.

They can solve some long standing storage problems. Spline functions are 
known to be extremely efficient storage mechanisms, requiring as little as a tenth
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or a hundredth of the space as compared to vector representations of equal accu 
racy and quality of representation and visualization.

B-splines and NURBS (non-uniform rational b-splines), which are a standard in 
CAD applications and deliverable as standard software packages, meet the accu 
racy and representation requirements of these geographically and temporally 
distributed attributes. As a software engineering bonus, common geometric repre 
sentations such as splines simplify system development.

Simplical splines solve some of the problems found in the standard tensor 
splines, and are a mechanism to visualize distributions from raw sample data. 
Theoretically, they should have many of the advantages of TIN based DTM's over 
grid representations.
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NEW PROXIMITY-PRESERVING ORDERINGS 
FOR SPATIAL DATA

Alan Saalfeld 
Bureau of the Census1 
Washington, DC 20233

ABSTRACT

This paper presents new methods for ordering vertices or edges in a tree 
(connected acyclic graph). The new orderings are called tree-orders; they can be 
constructed in linear time; and they are fully characterized by a useful proximity- 
preserving property called branch-recursion. The paper describes how tree-ordering 
techniques can be applied to find orderings for other types of spatial entities:

  ordering points in the plane,

  ordering points in higher dimensional spaces,

  ordering vertices of any graph,

  ordering edges of any graph,

  ordering line segments in two-dimensional networks,

  ordering line segments of networks in higher dimensions,

  ordering regions in the plane,

  ordering (n — l)-cells in n-dimensional polytopal regions,

  ordering n-cells in n-dimensional cell decompositions.

For each of the spatial entities listed above, the orderings produced by ex 
tending the tree-ordering methods exhibit important proximity-preserving prop 
erties. The paper includes a description of several potential applications of the 
new orderings of the diverse spatial objects.

PRELIMINARIES

At its most elementary level, database management is the art of organizing or 
ordering data so that they may be accessed and utilized most efficiently for some 
particular set of operations of interest. This paper presents a new way of ordering 
data that will permit a collection of important operations related to clustering 
and to systematic sampling to be carried out efficiently and effectively. In this

1 The views expressed herein are those of the author and do not necessarily represent the views 
of the Bureau of the Census.
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section we review and summarize some definitions and basic concepts needed to 
describe our ordering techniques.

Orderings and Lists
Throughout this paper, ordering or order, without any qualifying adjectives, will 

refer to a total order or linear order of a finite set of n elements. Such an order 
is nothing more than a sequencing of the n elements, a one-to-one association 
of the elements of the set with the integers 1 through n, or a listing of the n 
elements. A set of n elements that have been ordered will be called a list or an 
ordered list.

In a list of n elements, the (i + l)st element is the successor to the ith 
element; and every element except the nth or last element has a unique successor. 
Similarly, every element except the first element has a unique predecessor. We 
may build a cyclic list or a cyclic order from a list by naming the first element to 
be the successor to the last element (and the last element to be the predecessor 
to the first). Cyclic lists are often useful because they have no distinguished 
elements that require special case handling. For example, with a cyclic list, one 
may begin anywhere in the list and exhaustively enumerate elements by taking 
successors until one returns to the chosen starting element.

Spatial Queries
Points in two-dimensional and higher dimensional space are often assigned an 

order or primary key to facilitate their storage in and retrieval from databases. 
Space-filling curves, such as the Peano key and Hilbert curve ([FALl] and [FAL2]), 
have proved quite useful for range queries and nearest neighbor queries. These 
curves are instances of a large class of orderings called quadrant-recursive order- 
ings ([MARK]). The defining property of quadrant-recursive orderings is that, in 
any recursive decomposition of a rectangular region into subquadrants, the points 
of any sub quadrant always appear consecutively in the quadrant-recursive order 
ing. Points within any subquadrant are enumerated exhaustively before exiting 
the subquadrant. We will see in the section on branch-recursion that quadrant- 
recursive orderings are a special case of a more general class of orderings called 
branch-recursive.

Systematic Sampling
Systematic sampling traditionally refers to selection of a subset from a list, 

where the subset is formed by selecting elements at regular intervals (called the 
skip interval) [KISH]. Elements may be weighted to adjust their probability of 
selection (see figure 1).

If all weights are 1, then a skip interval of k produces a 1/fc sample. We may 
think of the sampled elements as having the induced order of their sequenced 
systematic selection achieved by skipping through the list.

If points in the plane are assigned any quadrant-recursive order, then a sys 
tematic selection procedure will sample every subquadrant, no matter what its 
size, to within one unit of the overall sampling fraction. This representative 
coverage property was noted and utilized for Peano key ordering by Wolter and 
Harter [WOLT].

If we regard systematic sampling as a means of ordering subsets, then trivially 
we may recover the original order of an unweighted list by sampling with skip 
interval equal to 1. This seemingly trivial means of recovering an ordering will 
be exploited in the section on tree-ordering vertices to build an ordering when
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Figure 1: Systematic Sampling from Lists

we sample a set systematically after breaking each element into weighted pieces 
having total weight 1.

Graphs and Maps
The linework of any map has an underlying structure of a graph2 . We will use 

the usual combinatorial definitions of graph theory found in the standard text 
by Harary [HARA]. A graph G = (V,E) consists of a finite non-empty set V 
of vertices together with a set E of unordered pairs of vertices called edges. A 
vertex v and an edge {u, iu} are incident if and only if v = u or v = w. The 
degree of a vertex is the number of edges incident to the vertex. A walk of the 
graph G consists of a sequence (v\v^vz • • • v*) of vertices u,-, not necessarily all 
distinct, such that for each j = 1,2,. . . , (k — 1), {vy,vj+i} is an edge of G. A 
tour is a walk (viv^vy • •  «*) such that Vi = v*. A path is a walk with no edges 
repeated. A cycle is a path (v\v^v^ • • -vt) with k > 3 such that Vi = u*. A tree 
is a graph with no cycles. A tree as we have defined it is sometimes called a free 
tree to differentiate it from a rooted tree, which possesses a distinguished vertex 
called the root.

PROPERTIES OF TREES

We describe some properties of trees that make them easier to work with than 
graphs in general. We will show in the sections on ordering vertices and edges in 
a graph how problems of ordering graph components can be converted to prob 
lems of ordering tree components for a derived tree. Computer scientists have 
developed a number of ways of ordering the vertices of rooted trees embedded in 
the plane [AHO2]. We will be looking at new orderings for free trees.

Combinatorial Properties
We list some important properties of trees.

2 For some applications it may be preferable and even necessary to regard the linework of a 
map as a pseudo-graph, a structure which allows multiple edges between two vertices. For the 
applications which we are examining here, the distinction is unimportant.
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Property 1 Every tree with n vertices has exactly (n — 1) edges. 

Property 2 A connected graph having n vertices and (n — 1) edges is a tree.

Property 3 Adding a new edge to a tree (between existing vertices) always cre 
ates a cycle.

Property 4 Removing an edge always disconnects a tree.

Figure 2: Edge Removal Creates Two Branches

We say that each edge determines two branches which are the disconnected 
component subtrees resulting from that edge's removal. Always one of the 
branches determined by the edge {u,v} contains u and the other branch always 
contains v.

Planar Embeddings
Not every graph can be drawn in the plane with non-intersecting line-segment 

edges, but a tree can always be represented or realized as a straight-line drawing 
in the plane. Moreover, suppose that for each vertex in a tree, we arbitrarily 
assign a cyclic order to the edges incident to that vertex. Then there is always 
a drawing in the plane of that tree with straight-line-segment edges such that 
the clockwise order of the edges incident to any vertex is the arbitrarily assigned 
cyclic order of the edges about the vertex.

EULERIAN TOURS

An Eulerian tour of a tree is a special well-balanced tour that traverses every 
edge exactly twice, once in each direction. We give two equivalent descriptions 
of an Eulerian tour of a tree. Each description depends on our having assigned 
a cyclic order to the incident edges of each vertex.

Geometric Version
Draw the tree so that the assigned cyclic order of edges at each vertex is the 

clockwise order. Start a tour at any vertex x. Depart along any incident edge 
{x, u} toward u. Upon arriving at u, depart along the edge {u,u} that is next to 
{z, u} in the clockwise order around u. Upon arriving at u, depart along the edge 
{v,z} that is next to {u, v} in the clockwise order around u, etc., until finally 
you return to z along the edge that precedes {x, u} in the clockwise order (see 
figure 3).

The tour that we have described will traverse each edge twice, once in each 
direction and visit every vertex a number of times equal to its degree.

This tour can also be visualized as follows: imagine that the tree itself is the 
top view of a wall. Walk next to the wall with your right hand continuously
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Figure 3: Geometric Depiction of Eulerian Tour

touching the wall. You will eventually return to your starting point, at which 
time you will have touched both sides of every wall. Thus, had someone else 
been walking on top of the wall and keeping up with you, that person would 
have walked every edge of the tree exactly twice.

Combinatorial Version
An Eulerian tour of a tree on n vertices is a walk (viV^v^ • • -t^n-i)? where the 

v,-'s are vertices, clearly not all distinct, satisfying

1. Vi = t>2n-l.

2. For t = 1,2,..., 2n  3, {ut-+i, ^+2} is the successor to {u,-, u,-+i} in the cyclic 
ordering of edges about the vertex v,-+i.

3. {vi,v2 } is the successor to {t>2n-2 5 Vi} in the cyclic ordering of edges about 
the vertex v^.

4. For every edge {u, v} of the tree, the sequence uv and the sequence vu each 
appear exactly once in the walk (v\vi • • • u2n-i)-

5. Each vertex except v\ appears as often as its degree.

6. The vertex ui appears one more time than its degree.

Notice further that if uv appears before vu in the Eulerian tour, then the 
subwalk between uv and vu that starts and ends at u completely consumes every 
edge and vertex in the v-branch determined by edge {u,v}. Moreover, this 
subwalk touches nothing but the v-branch of the tree (see figure 4).

Figure 4: A Subwalk Consumes an Entire Branch

Similarly, the remainder of the tour (the part before uv and after vu) com 
pletely consumes every edge and vertex of the u-branch resulting from the re 
moval of the edge {u, v}. Clearly, no vertex or edge that appears in the v-branch 
can ever appear in the u-branch.

We summarize this partitioning of the tour into two non-intersecting walks 
in the following lemmas.
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Tour Splitting Lemmas

Lemma 1 Let (      x • • • uv • • • y • • • vu • • • z • •  ) be an Eulerian tour of some tree, 
with x, y, z, u, v vertices on the tour. Then u ^ y, x ^ y, and z ^ y.

Lemma 2 Let (      UjV       xu2      ) be an Eulerian tour of some tree, with u\ = u2 
and no other occurrences of u\ between Ui and u2 . Then v = x.

Figure 5: Edge Removal Splits the Tour

Figure 5 illustrates the proof of both lemmas. The subwalks uv and vu are 
the only means of getting from one branch to the other.

Eulerian Tree Orderings
During the course of an Eulerian tour, all of the vertices and edges are visited at 

least once. Suppose we wish to assign the integers 1 through n to our n vertices. 
A procedure that visits the vertices in Eulerian tour order, assigning either the 
next available number or no number to every visit of each vertex, hi such a way 
that exactly one of the visits of each vertex receives an order number, will be 
called an Eulerian tree-ordering (ETO) of vertices.

A procedure that visits the edges in Eulerian tour order, assigning either the 
next available number or no number to every visit of each edge, in such a way 
that exactly one of the two visits of each edge receives an order number, will be 
called an Eulerian tree-ordering (ETO) of edges.

Garey and Johnson [GARE] and others [PREP], [EDEl] describe one such 
Eulerian tree-ordering of vertices of a Euclidean minimum spanning tree (EMST) 
obtained by starting anywhere on the Eulerian tour and assigning the next avail 
able number to the first visit to each and every vertex (see figure 6).

Figure 6: First-Visit Eulerian Tree-Ordering

Their ordering, or for that matter, any other Eulerian tree-ordering of a 
EMST will always approximate a Euclidean Travelling Salesman Tour to within 
a factor of 2, since the Eulerian tour itself is never more than twice the length of 
the Euclidean Travelling Salesman Tour.

We now describe a simple procedure for generating all other Eulerian tree- 
orderings of the vertices of a tree.
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TREE-ORDERING VERTICES

Suppose that we are given a tree and an Eulerian tour (vj_, t>2 ,      , «2n-i) for that 
tree (equivalently we are given an embedding of the tree in the plane and a 
starting vertex and edge). Then to order the vertices we will proceed as follows.

Setup: Weighting Vertex Visits
For i = 1,2,3,..., (2n 1), regard each v,- that appears in the tour (ui, u2 ,      , vzn-
as a vertex visit.

For i — 1,2,3,..., (2n — l), assign a non-negative weight u;,- to the ith visit 
so that the sum of weights for all visits to any fixed vertex v is one:

For every v 6 V, ^ u;,- = 1. 
{ ><=«>

We call any such weight assignment a unit-sum weight assignment.
An important instance of a unit-sum weight assignment assigns the same 

weight to all visits to the same vertex. Because each vertex u,- is visited deg(v,-) 
times3 , that uniform weight is exactly given by:

, for i = 1,2,..., (2n - 2); and
deg(r;,-)

«>2n-l = 0.

Building the Sampling Interval
As we walk the Eulerian tour, we begin accumulating weights, (exactly as is 

done to build a weighted list for systematic sampling) .

Let WQ = 0, and

An Illustration: Uniform Weighting. We illustrate the accumulating of 
weights for the uniform weighting scheme for the walk (defegehedbabcbd) drawn 
in figure 7.

The total accumulated weights are exactly n and the total weight correspond 
ing to each vertex of the tree is exactly one. We can assign numbers to the vertices 
by skipping through the weighted interval with skip interval equal to 1. This is 
the same as assigning an order number to a vertex each time a vertex visit takes 
us up to or past the next whole integer:

If [Wj'-iJ < L^'J» tnen assig11 vertex v, the number \Wj\.
Because some vertices appear in several places in our accumulated weighted 

interval, one may suspect that our numbering scheme may assign more than one 
order number to a vertex. This cannot happen.

Proofs of Correctness
The proof that the selection procedure outlined above actually produces an 

ordering of the vertices follows immediately from the following lemma and its 
first corollary.

3 Because the Eulerian tour is cyclic, we like to count vi and vzn-i as the same visit. We 
should only assign the appropriate weight to one or the other. We have chosen to assign the 
uniform weight to v\.
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Figure 7: A Tour and its Accumulated Weights

Lemma 3 (Integral-Branch-Weights) The fractional vertex weights accumu 
lated between any two consecutive visits of the Eulerian tour to a multivisited 
vertex always add up to an integer.

Proof: The proof of this lemma rests entirely on the observation that between 
two consecutive visits to any vertex u, one must depart and enter along the same 
edge, and an entire branch emanating from that vertex v is completely consumed 
by the subwalk of the Eulerian tour, as seen in lemmas 1 and 2.

In consuming an entire branch, one must visit every vertex in that branch as 
many times as possible, i.e. as many times as the degree of that vertex. Thus 
each vertex in the branch gets fully counted. In other words, the sum of weights 
for all the visits for any individual vertex during the walk of the branch is 1. And 
the sum of weights for all the visits of all vertices during the walk of the branch 
is an integer, equal to the number of distinct vertices in the branch. D

Figure 8: All Vertices of a Branch are Consumed

This lemma has two useful corollaries. To prove the first corollary we will 
want to talk about the fractional part of a number or an interval of numbers. 
Our meaning is the usual one: the fractional part of 5.35 is 0.35. The fractional 
part of an interval such as [17.32, 17.84) is just the set of all possible fractional 
values: [0.32, 0.84).

Corollary to Lemma 3.1 Every vertex gets hit exactly once by skipping one 
unit at a time through the n-interval.

Proof: Consider any vertex v of degree = k. Let the visits to the vertex v occur 
at 11,1*2,    ,»*. Then the visits to the vertex v will result in intervals of length
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u;,-!,«;,-,, • • • ,Wfk being added to the cumulative interval. We want to prove that 
the fractional parts of the accumulated sub intervals corresponding to v, namely,

(Wu-i.WiJ,^.!,^],--., and (Wtt . lt Wit ] t

in the total interval of length n have no overlap. From lemma 3, it is clear 
that each successive interval, (W<y-i, WiJ, corresponding to a visit to v has its 
fractional part begin (at W»._i) where the fractional part of the previous interval 
(W, j-i, Wj ], corresponding to a visit to v left off (at W^^J, since an interval 
of integer length (i.e. having no fractional part) corresponding to all of the vertex 
visits of the branch consumed, has intervened.

Since the intervals (W^-i.WiJ, (Wia _i,Wia ],      , (Wit _i,Wit ], have no frac 
tional parts overlapping and have total length equal to one, the fractional parts 
of values assumed in the accumulated intervals corresponding to any individual 
vertex must span all of the values between 0 and 1.

This last observation tells us that we can take a random start r in [0,1), take 
skip interval 1 once again, and we will again produce an ordering of the tree 
vertices. Any real number r or integral augmentation r + m of r can hit at most 
one of the k intervals of determined by visits to u; and there is exactly one integer 
mo such that r + mo will hit one of the A; intervals, n

Figure 9: Cyclic Ordering with Uniform Weighting

Because the Eulerian tour is cyclic, we can make our cumulative interval 
cyclic and our resulting ordering cyclic as well by removing the dependence on 
the starting point of the tour when building our cumulative vertex-visit weight 
interval, as shown in figure 9. Putting all of the lemmas and corollaries together, 
we have the following theorem:

Theorem 1 While making an Eulerian tour of a tree, build a separate (cyclic) 
interval of total length n units by assigning a non-negative weight to each vertex 
visit in any way so that the total weight for all visits to any individual vertex 
is one. Then every vertex gets hit exactly once by skipping one unit at a time 
through the cyclic n-interval.

Branch-Recursion
Throughout this section we will regard the orderings generated by our ordering 

procedure as cyclic by making the first vertex successor to final vertex.
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The next corollary follows immediately from lemma 1 and the proof of 
lemma 3.

Corollary to Lemma 3.2 The collection of vertices of any branch of the tree 
always constitute a complete interval (i.e. appear consecutively) for any cyclic 
Eulerian tree-ordering.

We will say that any cyclic vertex ordering that keeps vertices of a branch 
together for all branches is a branch-recursive ordering. Corollary 3.2 states that 
every Eulerian tree-ordering is branch recursive. It is not difficult to prove the 
converse using induction on branch size. We leave the proof of that theorem as 
an exercise.

Theorem 2 Every branch-recursive cyclic ordering of the vertices of a tree is 
an Eulerian tree-ordering for some Eulerian tour of the tree and some unit-sum 
weight assignment to the vertex visits of that Eulerian tour.

Branch-recursion constitutes a very strong proximity preservation property, 
where proximity is measured by the link-distance in the tree or graph. Branches 
of a tree may correspond to data clusters in cases where we have built minimum 
spanning trees. All quadrant-recursive orderings of a point set in the plane may 
be realized as orderings induced on the leaf subsets of branch-recursive orderings 
(i.e. Eulerian tree-orderings) of the quad-tree of those points.

Analysis of Complexity
An analysis of the time complexity of our tree-ordering algorithms depends on 

the choice of data structure with which we represent the tree. If we have a 
topological data structure which allows us to find the adjacent edge to any edge 
at any vertex in constant time, then we can order the vertices in linear time. If 
we need to build topology from an elementary list of vertices and edges, we can 
do so in time O(nlogn), then proceed in linear time to complete the ordering 
procedure.

Space complexity is even easier to analyze. The Eulerian tour is always linear 
in the size of the tree. It is exactly of size (2n   1). The cumulative interval of 
weights that we must build is also of that size.

Enumerating Orderings
If we allow arbitrary unit-sum weighting schemes and arbitrary Eulerian tours, 

then we can generate all possible branch-recursive orderings. The number of 
branch-recursive cyclic orderings can be shown to be:

as follows. Since there are (deg(u)   1)! ways of cyclically ordering the edges 
incident to the vertex v, there are:

possible distinct cyclic Eulerian tours, hi each Eulerian tour, a vertex v may be 
enumerated immediately prior to any of its deg(u) branches. This results in
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distinct cyclic orderings for each Eulerian tour. If, however, we only consider 
uniform unit-sum weighting schemes for fixed Eulerian tours, then we have proved 
[SAAL] that there are no more than:

LCM{deg(v) | v G V} distinct cyclic orderings;

where LCM is the least common multiple. This translates into the following: 
If the maximum degree in the tree is 3, then there are at most 6 distinct cyclic 
orderings (independent of the number of vertices) for a fixed Eulerian tour. Max 
imum degree 4 translates into at most 12 distinct orderings; and maximum degree 
5 or 6 results in at most 60 distinct cyclic orderings.

Some important trees have small maximum degree. A Euclidean Minimum 
Spanning Tree (EMST) of points in the plane, for example, has maximum degree 
6. The EMST for points in general position has a canonical Eulerian tour as well; 
so the unique EMST generates at most 60 distinct cyclic orderings of points in 
general position in the plane, no matter how many points are hi the point set!

TREE-ORDERING EDGES

Many of our results and methods for ordering vertices are equally valid for edge 
ordering. Theorem 1 for vertices has an exact counterpart for edges:

Theorem 3 While making an Eulerian tour of a tree, build a separate (cyclic) 
interval of total length (n — l) units by assigning a non-negative weight to each 
edge visit in any way so that the total weight for all visits to any individual edge 
is one. Then every edge gets hit exactly once by skipping one unit at a time 
through the cyclic (n — 1) -interval.

The proof the theorem 3 is identical to the proof of theorem 1: between consec 
utive vertex visits to some vertex, all (both) edge visits to any particular edge 
within a branch are exhausted.

Uniform Edge Weighting
A uniform weighting scheme for edges instead of vertices would have each edge 

getting weight exactly 1/2 (since every edge is visited twice in the Eulerian Tour). 
But giving every edge weight 1/2 amounts to nothing more than skipping every 
other edge in our selection procedure. So we have the following corollary to 
theorem 3:

Corollary 3.1 While making an Eulerian tour of a tree, number every other 
edge visited. Then every edge gets exactly one number assigned to it.

We also see immediately that:

Corollary 3.2 Edges which are consecutively numbered using a uniform weight 
ing scheme are never more than link distance 2 apart.

Analysis of Complexity
As before, an analysis of the time complexity of our tree-ordering algorithms 

depends on the choice of data structure with which we represent the tree. With 
a topological data structure we can order the edges in linear time. If we need 
to build topology from an elementary list of vertices and edges, we can do so in

69



time O(nlogn), then proceed in linear time to complete the ordering procedure. 
Space complexity is once again linear for edge ordering.

Branch- Recursion
As with vertices, every Eulerian tree-order of edges in branch-recursive in the 

same sense:

Corollary 3.3 The collection of edges of any branch of the tree always con 
stitute a complete interval (i.e. appear consecutively) for any cyclic Eulerian 
tree-ordering of edges.

And, conversely,

Theorem 4 Every branch-recursive cyclic ordering of the edges of a tree is an 
Eulerian tree-ordering of edges for some Eulerian tour of the tree and some unit- 
sum weight assignment to the edge visits of that Eulerian tour.

Enumerating Edge Orders
As with vertex orders, the number of branch-recursive edge orders is equal to 

the number of Eulerian tours times the number of distinct edge orders for every 
fixed Eulerian tour. Since each edge may be weighted so that it gets enumerated 
either on its first visit in the Eulerian tour or on its second visit, then as long as 
these two visits are not adjacent in the Eulerian tour, they will produce different 
orderings. Two edge visits to the same edge are adjacent in an Eulerian tour if 
and only if the edge is incident to a leaf vertex. A tree with more than two edges 
and t leaf vertices has exactly n   £   1 non-leaf edges. Thus for a fixed Eulerian 
tour and an arbitrary unit-sum edge weighting scheme there are 2n~*~ 1 possible 
orderings. The number of branch-recursive edge orderings is, therefore:

Enumerating uniform-weight edge orders for a fixed Eulerian tour is even more 
trivial than enumerating uniform vertex orders. There are exactly two uniform- 
weight edge orders if the tree has 3 or more edges.

ORDERING SPATIAL OBJECTS

In this section we will adapt our tree-ordering techniques to order spatial objects. 
Our approach in every case will be to convert the ordering problem to a tree- 
ordering problem, then solve the tree-ordering problem by a uniform- weight ing 
of vertices or edges, as appropriate.

Ordering Points in the Plane
Suppose that we want to assign an ordering to a set of points in the plane. 

We know how to order vertices of a tree. So we may convert the points into 
vertices by building a tree (adding edges); and one natural tree to build is a 
Euclidean minimum spanning tree (EMST) . The EMST is unique if the points 
are in general position or if no two interpoint distances are equal. So the steps 
needed to convert the problem of ordering points in space to one of ordering tree 
vertices are:

1. Build Euclidean minimum spanning tree.
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2. Walk Eulerian tour, tree-ordering vertices.

We can build a Euclidean minimum spanning tree hi time O(n log n) [AHO2], 
sorting the edges at each vertex in clockwise order as they are inserted. The 
planar embedding of the tree gives us the geometric version of the Eulerian tour 
for free (i.e. the usual clockwise ordering of edges around a vertex). We can then 
walk the Eulerian tour and order the vertices in O(n) additional time.

A Cluster Sampling Application. Cluster sampling is a survey sam 
pling strategy of selecting small groups (clusters) of neighboring points instead 
of selecting individual points randomly distributed. Within-cluster correlation 
may reduce the efficiency of such a strategy from a pure sampling viewpoint, but 
that consideration is often outweighed by the economic impact of reduced travel 
costs for interviewers.

A serious limitation to successfully selecting clusters from lists, however, is 
the fact that proximity in the list does not guarantee proximity on the ground. 
Selection of points from a list that has been ordered by performing our uniform- 
weight tree-ordering algorithm on a EMST of the points will guarantee very 
strong proximity correspondence. The following theorem holds:

Theorem 5 Order points in the plane by building their EMST and applying the 
uniform-weight vertex tree-ordering algorithm. Then two consecutive points in 
the order have a maximum link distance of six and an average link distance of 
less than two.

Proof: The degree of any vertex in a EMST is less than or equal to six. Thus 
the uniform-weight tree-ordering algorithm accumulates a weight of at least 1/6 
with each vertex visit. Moreover, in any tree, the average degree is ^p^-

Ordering Points in Higher Dimensional Spaces
To apply the methods of the section on points in the plane to points in higher 

dimensions, we must first address two issues: (1) building a EMST hi higher 
dimensions, and (2) defining an Eulerian tour in higher dimensions.

There are straightforward O(n2 ) time algorithms for building a EMST in 
higher dimensions [AHO1]. Some exact algorithms are known with complexity 
slightly sub-quadratic [YAO].

Building an Eulerian tour in higher dimensions is not so straightforward. It 
requires establishing a cyclic order of edges about every vertex. One possibility 
is to project the edges onto some two-dimensional subspace, then order the pro 
jection of the edges clockwise on that plane. Another more canonical approach, 
suggested by Herbert Edelsbrunner [EDE2], is to map the edge configuration 
about a vertex onto points on the surface of a sphere of dimension one less than 
the space of the EMST, then apply the ordering scheme to those points on the 
sphere recursively (i.e. build then- EMST and order them in a space of smaller 
dimension).

In any case, if all we require is some ordering of the edges around each vertex, 
we can find one in O(nlogn) time. We summarize the steps needed to convert 
the problem to a tree-ordering problem.

1. Build EMST.

2. Cyclically order edges at each vertex.
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3. Walk Eulerian tour, tree-ordering vertices.

A Sample Stratification Application. Sample stratification is a par 
titioning of the universe into groups which are similar across several character 
istics. The characteristics should be hi some sense comparable (dealing with 
relative incomparability is sometimes known as the Scaling Problem). Stratifi 
cation is often accomplished by treating the observations as n-tuples of the n 
characteristics (i.e. as points in n-space) and finding a hyperplane or collec 
tion of hyperplanes that optimize separation of the points across the half-spaces 
or n-cells created. A more straightforward approach to stratification (and one 
that would be computationally much simpler) might be to partition a EMST of 
the points into branches of greatest separation. With branch-recursive ordering 
methods, this operation boils down to list splitting! We at the Bureau of the 
Census will be comparing results of using tree-ordering methods to the standard 
more complex stratification algorithms.

Ordering Vertices of any Graph
If we are only concerned with ordering the vertices of a graph, we may think 

of the graph as a tree with too many edges. So we throw away the least useful 
edges until we have whittled the graph down to a tree. If the edges have costs 
associated with them, we may wish to minimize the cost of the resulting tree, for 
example. We know exactly how many edges to throw away. We will discard an 
edge as long as it does not disconnect the graph and we still have (n — 1) edges 
left. We summarize the steps needed to convert the problem to a tree-ordering 
problem.

1. Build a (minimum) spanning tree.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering vertices.

Ordering Edges of any Graph
In the section on ordering vertices in a graph, we regarded our graph as having 

too many edges; and we threw some away. To order the edges of our graphs, we 
regard our graph as having too few vertices to be a tree; and we add vertices 
by splitting the vertices of the graph and creating more vertices with the same 
number of edges. Once again we use our knowledge of the edge/vertex relation 
ship in a tree to know when'to stop splitting vertices. We summarize the steps 
needed to convert the problem to a tree-ordering problem.

1. Split vertices.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering edges.

We must next order the tree edges about each split vertex. Then the tree edges 
may be assigned a cyclic order based on selecting alternate hits from an Eulerian 
tour of the corresponding edges of the derived tree.

Since we can certainly split vertices in O(nlogn) time using sorting and a 
plane sweep operation, and also order edges about each vertex in some arbitrary 
fashion in the same tune complexity, we can accomplish the following ordering 
for the edges of any connected graph efficiently:
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Corollary 5.1 One may find a cyclic ordering for the edges of any connected 
graph in O(nlogn) time so that any two edges which are consecutive in the cyclic 
ordering never have link distance greater than two in the graph.

Ordering Line Segments in Two-Dimensional Networks 
This is just the graph-edge ordering problem, but with fewer decisions to make 

because the Eulerian tour is given by the geometry. The word network will 
also imply that the topological information of the graph permits linear-tune 
generation of the ordering. The steps for converting a connected-network edge- 
ordering problem to a tree-edge-ordering problem are:

1. Split vertices.

2. Walk Eulerian tour, tree-ordering edges.

Ordering Line Segments Of Networks in Higher Dimensions 
The difference between this section and the section on 2-D networks lies in 

establishing a cyclic ordering of edges about each vertex. There may be such 
a structure implicitly or explicitly embedded in the topological structure of the 
network. We summarize the steps needed to convert the problem to a tree- 
ordering problem.

1. Split vertices.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering edges.

Ordering Regions in the Plane
There is planar graph dual to every graph or pseudograph in the plane that is 

itself a pseudograph. Every region of the plane corresponds to a vertex in the 
new pseudograph; and two vertices in the new pseudograph are adjacent (share 
an edge) if and only if the regions shared a face or common side. This dual is 
called the adjacency pseudograph; and to reduce a pseudograph to a tree on the 
same vertex set, the procedure is the same as with a graph you throw away 
edges.

We summarize the steps needed to convert the problem to a tree-ordering 
problem.

1. Build adjacency pseudograph.

2. FindMST.

3. Walk Eulerian tour, tree-ordering vertices.

Application to Block Numbering. Consider the problem of numbering 
regions of a map in such a way that consecutively numbered regions are adjacent. 
It is well known that not every arrangement of blocks can be so numbered. In 
fact, when formulated as a problem in the adjacency graph, block numbering 
is nothing more or less than the problem of finding a Hamiltonian path for the 
adjacency graph (i.e. a path that passes through each vertex exactly once). Even
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the problem of merely deciding whether such a path exists for an arbitrary planar 
graph is NP-complete.

By throwing away edges so as to minimize the maximum degree of vertices 
in the resulting pruned tree, one may guarantee that the link distance between 
blocks numbered consecutively is no greater than the maximum degree of the 
resulting pruned tree by the same argument used to prove theorem 5.

Multistage Sampling. Sampling is often done in stages. Regions may be 
selected; and then individual households within selected regions may be subsam- 
pled. Region clustering, the capability of selecting groups of nearby regions, is 
important to reduce travel and other operational costs of surveys. Non-compact 
region clustering involves the selection of nearby, but non-adjacent regions. Non- 
compact clustering is an attempt to gain the benefits of reduced travel costs 
without the negative impact of high correlation.

Ordering regions by tree-ordering a pruned version of their adjacency graph 
will provide a reliable means of forming non-compact region clusters.

Ordering (n — 1) -Cells in n-Dimensional Polytopal Regions 
The adjacency dual pseudograph can be constructed for higher-dimensional cell 

decompositions. We may split vertices to realize the edges of the adjacency 
pseudograph as edges of a tree, as we do in this section; or we may prune edges 
and keep the vertices of the adjacency graph, as we do in the next section. We 
summarize the steps needed to convert the problem to a tree-ordering problem.

1. Build adjacency pseudograph.

2. Split vertices.

3. Cyclically order edges at each vertex.

4. Walk Eulerian tour, tree-ordering edges.

Ordering n-Cells in n-Dimensional Cell Decompositions 
We summarize the steps needed to convert the n-cell ordering problem to a 

tree-ordering problem.

1. Build adjacency graph.

2. FindMST.

3. Cyclically order edges at each vertex.

4. Walk Eulerian tour, tree-ordering vertices.

CONCLUSIONS AND FOLLOW-UP

This introduction to branch-recursive orderings does not include empirical evalu 
ations of the performance of those orderings. There was neither time to conduct 
those evaluations nor space to include them in this restricted paper. However, 
the principal reason for not assessing the performance empirically is that it is 
evident that these orderings will not do very well for the usual tasks of im 
age analysis, range search, and nearest-neighbor-finding as studied in the recent 
comparative paper by Abel and Mark [ABEL]. Objects which are adjacent in the
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branch-recursive ordering are fairly close in space; however, objects which are 
adjacent hi space may be rather distant in the branch-recursive ordering. And 
there is no easy way to predict how distant or when discontinuities will occur 
with general branch-recursive orderings, as is the case with the more common 
quadrant-recursive orderings. The somewhat unorthodox nearness properties 
that are described in this paper should, nevertheless, prove very useful for sam 
pling activities and analysis related to those activities.

The fact that many spatial entities can be realized as or identified with vertices 
or edges of trees or graphs makes our results widely applicable. The following 
example illustrates both strengths and weaknesses of our methods. Consider the 
two tasks of (1) finding a cyclic ordering for n points all lying on a straight line, 
and (2) finding a cyclic ordering for n points all lying on a circle. The reason for 
considering the two tasks simultaneously is that their Euclidean Minimum Span 
ning Trees are topologically the same: they are both linear trees, as illustrated 
in figure 10.

Figure 10: Cyclic Ordering of Collinear and Co-circular Points

The uniform weighting strategy will cause us to skip every other point in our 
numbering scheme (except at the ends of our linear tree). For the collinear points, 
this is clearly optimal hi the following sense: This strategy minimizes the maxi 
mum distance between neighbors (i.e. adjacent elements hi the cyclic numbering 
scheme). On the other hand, for the co-circular points, the uniform weighting 
strategy may produce a distance nearly double that of the optimal numbering 
strategy in terms of minimizing the maximum distance between neighbors.

What this example illustrates is that we necessarily lose some shape informa 
tion when we embed our data in a tree and use only the topological structure of 
the tree from that point on. What the example also illustrates is that we may in 
some cases get optimal performance for cyclic orderings.
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Zenithial Orthotriangular Projection

A useful if unesthetic polyhedral map projection to a peculiar plane

Geoffrey Dutton1
Spatial Effects

150 Irving Street
Watertown, MA 02172 USA

qtm@cup.portal.com

Abstract

This paper describes the construction, properties and potential 
applications of a cartographic projection recently developed by the 
author, called the Zenithial Orthotriangular (ZOT) projection of an 
Octahedron. ZOT maps a planet to a plane by modelling it as an 
octahedron (a regular solid having 8 equilateral triangular facets), 
which is then unfolded and stretched to fit within a square. As 
described below, ZOT is developed from a regular octahedron 
mapped in North polar aspect, by cutting octant edges of the 
southern hemisphere from pole to equator, and stretching all 
octahedral facets to occupy eight identical right triangles 
(extensions to the ellipsoid are described). The North pole lies at 
the center of projection, while the South Pole occupies all four 
corners; points along map borders are mirrored across the central 
axes. After discussing its cartographic properties, ZOTs relation to 
the Quaternary Triangular Mesh (QTM ) global tessellation is 
explored. The use of ZOT is shown to facilitate recursive definition 
of QTM's geodesic graticule of nested triangles. Computationally, 
this structure is handled as a quadtree, even though its elements 
are triangular in shape. Basic procedures for mapping geographic 
coordinates to QTM quadtree addresses via ZOT are presented and 
discussed, and suggestions given for standardizing how QTM tiles 
are addressed in ZOT space.

1 The author gratefully acknowledges encouragement and support for this 
work from Prime Computer, Inc.
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Polyhedral Maps

There is a family of maps called polyhedral projections that 
apportion regions of Earth to coincident facets of some concentric 
polyhedron. If the polyhedron is one of the five platonic solids, 
these facets will be either square, pentagonal or most likely, 
triangular, and all the same size and shape. While these figures 
may be torn apart and unfolded in a number of ways, no regular 
polyhedron beyond the tetrahedron can be unfolded to lie on the 
plane in a maximally compact way; there will always be concavities 
whatever arrangement of facets is used. As a consequence, 
polyhedral maps tend to have convoluted, lobed shapes, rather 
than fitting neatly into a rectangle, as do most projections. This 
apparently frustrates cartographers, who often seem to feel that 
polyhedral projections involve excessively complicated 
computational procedures. This is only partly true: however odd 
and enigmatic such constructions may be, they are at least regular 
and enumerable.

Mapping regions of the Earth to facets of a polyhedron can 
involve any of a number of map projections, the most natural of 
which is the gnomic. This is one of the few projections in which all 
coordinates relate to a single point of reference (the center of the 
planet). Although gnomic projections are not suitable for large 
areas, their distortions are quite minor when limited to the facets 
of enclosing polyhedra. Most azimuthal projections (such as the 
stereographic) require multiple reference points in order to portray 
the entire globe. This paper describes an azimuthal mapping of of 
an octahedron to a square in North polar aspect.

Projective Properties

The ZOT projection is zenithial (azimuthal) because meridians 
remain straight and of constant radial spacing; longitudes may be 
measured directly with a protractor. There is, however, more than 
one azimuthal origin, as longitudes are only true within a 
hemisphere. As the South pole is separated into four locations, 
meridians in the southern hemisphere originate at each of the four 
corners of the projection. ZOT also has the equidistant property; 
distance between parallels is constant throughout the map. The 
projection has been named orthotriangular because it maps spherical 
triangles to right triangles in its domain. These properties are 
evident in the world map in Figure 1. ZOT is also doubly periodic; 
that is, it may be repeatedly tiled in two directions to fill a plane, as 
Figure 2 illustrates.
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ZOT is neither equal-area nor conformal. Along parallels, map 
scale varies inversely with latitude, with the error factor growing 
from unity at the pole to V3 at the equator. This occurs because the 
equilateral facets of the octahedron are mapped to right triangles, 
causing their equatorial bases to expand. Along any given 
meridian, map scale is constant. However, the scale varies linearly 
from one meridian to the next, from unity (at 45, 135, -135 and -45 
degrees) to V2 (at 0, 90,180 and -90 degrees longitude), cycling four 
times around the equator. In general, there is no scale error at the 
poles, a small amount in the vicinity of the 8 octa face centers and 
more near their edges, being greatest along the four equatorial 
edges, and increasing toward the four equatorial vertices (which 
occupy the midpoints of ZOT map margins).

Despite this variability, all meridians map to straight lines 
which flex at the equator, and parallels to straight lines which flex 
at each 90th meridian, due to the piecewise continuous (polyhedral) 
nature of the projection. In most polar azimuthal projections, 
parallels map to circles or ellipses. In the orthotriangular 
projection, they map to diamonds (squares). This derives from the 
distance metric ("Manhattan") employed, and reflects the fact that 
the projection maps a sphere to the planar facets of an octahedron. 
This rectalinearity and modularity makes the projection very easy 
to compute, as it permits geographic coordinates to be mapped to 
the plane using linear equations, without recourse to trigonometric 
formulae, square roots or, under restricted conditions, real 
arithmetic.

One obvious, even disturbing, property of ZOT is the 90e 
change in direction of parallels at every 90th meridian. This causes 
strange distortions in the shapes in all major land masses other 
than South America and Australia. Likewise, the flexing of 
meridians at the equator distorts Africa and South America. The 
former effect can be minimized by offsetting meridional octant 
edges roughly 25Q to the West, which bisects land masses at more 
natural locations. The latter effect cannot be mitigated, as the 
equator cannot be shifted in any useful way. For computational 
purposes ZOT's orientation is rather immaterial, but should be 
standardized (see suggestion below).

Computing ZOT Coordinates

When a point is to be projected, its colatitude is multiplied by 
the map scale; the product is multiplied by the point's longitudinal 
displacement from the left edge of the octant and divided by 7i/2. 
The result is either an x or y offset from the pole's location, 
depending on the octant within which the point lies. We compute
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the other offset by subtracting the first one from the scaled 
colatitude; this fully determines the point's x,y location on the 
map.The procedure's simplicity derives from using "city block" 
distances (Manhattan Metric), in which distance between points is the 
sum of x and y displacements, instead of Pythagorean distances. In 
other words, all points along a given ZOT latitude are equidistant 
from the pole closest to them (the sum of x and y is constant and 
proportional to colatitude). The locus of all points along a given 
latitude is a straight line cutting through the octant at 45Q (parallel 
to its equatorial base); a given distance traversed along a parallel 
has a size proportional to longitude, another simple linear function. 
The ZOT projection for the North polar aspect may be derived as 
follows:

Derivation of ZOT x.v coordinates from eeoeraphic Locations

double Plat 
double Plon 
double Diam 
double S 
double P2

Parameters:2

int OCT
double R[l]
double R[2]
double C[l]
double C[2]
int FLOPS[8]

Set uv Octant:

int
int
int
int
int
double
double
double
double

ORG
OCT
XI
X2
HS
R[X1]
R[X2]
C[X1]
C[X2]

Latitude being projected ~ In Radians
Longitude being projected - In Radians
Map diameter - Cm, inches or other linear unit
Diam / TC -- Absolute scale factor
T: / 2 - Constant for right angle

Octant occupied by point - 
X-coordinate Scale factor - 
Y-coordinate Scale factor - 
X-coord origin for octant - 
Y-coord origin for octant - 
{1,1,-1,-1,-1,1,1,-D

in N, 5-8 in S Hemi
- Sign only varies by octant
- Sign only varies by octant
- Center, left or right side
- May be center, top or bottom
- Meridional edge orientations

: (P2 - Plat) div P2 
= (ORG + 1) * (Plon 
= 2 - ((OCT + ORG -
= 3 - XI

= 1 - (2 * ORG) 
: S * FLOPS[OCT] 
: - S * HS * FLOPS[9 
= - ORG * R[X1] 
= - ORG * R[X2]

- Map origin (0 = center, 1 = corner) 
div P2) -- Octant occupied (1-8) 
1) mod 2) - 1 if Lat maps to X, 2 if to Y

~ 2 if Latitude maps to X, 1 if to Y
-- Hemisphere Sign (1 in N, -1 in S)
-- X or Y factor (-R left, +R right) 

- OCT] -- Y or X factor (-R top, +R bot)
- X or Y Center (Zero in N hemi) 
~ Y or X Center (Zero in N hemi)

2 The parameters and variables in this algorithm are typed according to 
their basic cardinalities. Certain int parameters are also used in floating point 
expressions (performed in double precision, we presume); ints to can be 
converted to real as one's programming environment may require.
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Project Point:

double CLP = P2 - (HS * Plat) -- Absolute Colatitude of point
double OLP = CLP * (Plon mod P2) / P2 - Long offset (prop, to Colat)
double PX = R[X1] * abs(CLP - OLP) - Relative X or Y offset
double PY =R[X2]*OLP --Relative Y or X offset
PX = C[X1] + PX - Projected X Coordinate
PY = C[X2] + PY - Projected Y Coordinate

After initial octant setup calculations (which involve computing 
only 9 numbers and, in most cases, need be done but a few times for 
a given set of coordinates), the above algorithm uses 4 additions, 4 
multiplications, 1 division and 2 rational function calls to map one 
point from the sphere to the plane. In situations where the octant 
points occupy changes frequently, setup can be table-driven based 
on an octant number, just as table FLOPS provides signs of scale 
factors and axis origins.

Note that while the above algorithm assumes a spherical 
Earth, its principle can also be applied to ellipsoids, at the expense 
of some additional arithmetic. Table FLOPS represents lengths 
(unity) and orientations (sign) of edges of an octahedron enclosing 
the planet. Were this object to have non-uniform semiaxes, the 
entries in FLOPS would have values differing slightly from unity; 
this data could be used to anchor the projection to any specified 
ellipsoid. In the spherical case, one computes Y coordinates along a 
line having its intercept at Plat and a slope of unity, scaling X from 
Plon; for ellipsoids, the procedure involves slopes differing slightly 
from unity, but is otherwise handled identically to those more 
complex cases.

Related Antecedents

The ZOT is not the first world projection into a square domain 
having double periodicity, nor is it the first to exploit the geometry 
of the octahedron. It apparently is the first to employ a Manhattan 
distance metric, and one of the few which can be constructed 
without trigonometric functions (such as the Peters or 
equirectangular). One of its more interesting predecessors is the 
Quincuncial projection, developed in the 1870's by Charles Sanders 
Peirce. Based on elliptic integrals, this remarkable and elegant 
construction is conformal and doubly periodic,3 Despite its obvious 
octahedral symmetry, Peirce apparently never related his projection 
to polyhedra. Although widely appreciated, it fell into disuse, 
although the Coast and Geodetic Survey used it in a 1947 world 
navigation map (Eisele, 1963).

3 Quincunx is a Latin word meaning "arrangement of five things." Peirce's 
Quincuncial projection is just that, as it places the South pole at the corners of 
a square and the North pole at its center.
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Also related to ZOT is Cahill's Butterfly projection (Fisher and 
Miller, 1944), an interrupted conformal projection of the globe onto 
eight triangular facets arranged in a butterfly-like shape. In each of 
its octants, the equator and central meridian are straight and all 
other meridians and parallels bow outward. As a result, assembly 
of the Butterfly results in a lumpy shape somewhere in between an 
octahedron and or a sphere. Also, indexing map locations is 
complicated both by the mathematics required for the Butterfly 
projection and the arrangement of its facets.

Buckminster Fuller's Dymaxion projection dates from the 1940's 
and seems to have undergone a metamorphosis from an initial 
cuboctahedron basis4 to the icosahedral form of the version 
currently marketed (Life, 1943; Fisher and Miller, 1944; Fuller, 
1982). Fuller's and Cahill's motivations seem to have been similar 
in producing these projections; to minimize scale errors and to 
exploit polyhedral geometry to produce a globe that can be folded 
from a single sheet of paper. Fuller was keen on using his 
projection to convey thematic data about "Spaceship Earth", (he 
envisioned a large Dymaxion geodesic globe studded with 
computer-controlled miniature lamps to depict global statistical 
data, but seems never to have done this). Most versions of the 
Dymaxion employ gnomic projections.

The "polygnomic" world projection onto an icosahedron may 
have first been realized by Fisher (Fisher, 1943), even though Fuller 
enjoyed taking credit for it. Indeed, the idea (if not its execution) 
can be traced back to the work of Albrecht Diirer in the sixteenth 
century (Fisher and Miller, 1943, p. 92). This invention suited 
Fuller's purposes perfectly, as it represents chords of great circles 
with straight lines, like the struts of one of his geodesic domes. 
ZOT, however, is not polygnomic; it is oriented to the poles, not to 
the center of the Earth. Consequently, most great circles are not 
straight lines in ZOT space (but the equator and all meridians are).

4 A cuboctahedron is a 14-sided polyhedron having 8 triangular and 6 
square facets. Unlike the five regular polyhedra, the facets are tangent to two 
concentric spheres, complicating construction or calculation of features that 
cross facet edges.
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Error Adjustment

Nearly any area or distance measured from an ZOT projection 
will be incorrect by as much as a factor of two. As it is almost as 
simple to calculate the scale error at any point as it is to compute 
coordinates, and only slightly harder to derive the error involved 
when distances between points or polygonal areas are computed 
(with cases involving more than one octant presenting the most 
complexity). This means that size and distance calculations may be 
corrected as required; the greater the precision, the greater the 
cost. Tables can be developed to facilitate such corrections.

Polyhedral Addressing

ZOT is not esthetically pleasing, especially in comparison to the 
sweeping curves of Peirce's Quincuncial. ZOT generates angular 
discontinuities at octant boundaries, violating a number of 
cartographic precepts. No claim is made for it as an optimal visual 
matrix for presenting global spatial data. Still, ZOT projection may 
have considerable computational utility when applied to tessellated 
polyhedra embedded in a well-defined spherical manifold, as the 
following section explains.

The best uses for ZOT may be those which capitalize on its 
computational simplicity. In particular, there is a strong affinity 
between ZOT and the geometry of the Quaternary Triangular 
Mesh (QTM) global location coding model (Dutton, 1989; 
Goodchild and Yang, 1989). Figure 3 and Figure 4 illustrate how 
QTM's recursive subdivision of octahedral facets into four tiles 
each is mapped to a completely regular mesh of right triangles 
when projected via ZOT. This mesh densifies in the same manner 
as a rectangular quadtree does, but also includes diagonal elements 
(parallels of latitude). Note how each triangle's edges split in half, 
and how its hypotenuse follows a particular latitude. This may be 
exploited to derive QTM facet addresses from latitude and 
longitude, as Figure 5 shows.

The arithmetic used in this procedure consists of testing sums 
and differences of x and y displacements against one parameter 
(s/2 in fig. 5) that is constant for all QTM tiles at a given level of 
detail. In addition, the algorithm needs to know the '"basis number" 
of each node (vertex) in the QTM network in order to assign a 
QTM ID to every tile in the hierarchy; each vertex is identified with 
a 1-node, 2-node or 3-node (its basis number), and all higher-level 
nodes at a particular location continue to manifest its original basis 
number. This digit is common to all four QTM cells surrounding 
each octa vertex, and all six cells that surround the nodes that 
appear in subsequent subdivisions. Central (0) cells are associated

85



86



Z.8



with no node, but their vertices (and subsequent cells that surround 
them) themselves have node identifiers.

To map geographic coordinates to QTM identifiers, an 
additional procedure is therefore needed: one which identifies the 
"pole node"5 (the right-angled vertex) of each QTM cell, and also 
assigns correct basis numbers to all three nodes (pole nodes can 
have IDs of 1, 2 or 3). This is a property not of the ZOT projection 
itself, but of the sequencing of 1- 2- and 3-cells at each level in the 
tessellation, which may be done as specified here, as Goodchild and 
Yang (1989) describe,6 or in some other way. Another aspect of 
navigating QTM which must be parametrized is the geometric 
orientation of principle axes with respect to the pole node of each 
facet, which can be either of two arrangements per octant, one for 
ID's 1, 2 and 3, the other involving ID's of zero. When a point 
occupies a central (0) facet, the facet's orientation inverts, rotating 
180 degrees. This new arrangement persists until a zero ID recurs, 
at which point the facet shrinks by 50 percent and flips into the 
other orientation. The rule is: all facets within a given octant share 
its orientation unless their QTM codes contain an odd number of zeros; 
in such cases the current x and y scale factors interchange and change 
sign.

When a 0-tile comes into being, its pole node is a reflection of, 
and has the same ID as its parent QTM facet's pole node. What 
had been half of its parent's x-extent becomes the 0-tile's y-extent, 
and vice versa. In cases where the child tile is in the triangle 
dominated by the parent's pole node, its ID will be the same as its 
parent's. In either of the remaining two (nonzero) cases, the ID of 
the child's pole node flips from that of the node to which it is 
closest to that of the other non-pole node. Once embedded in the 
ZOT plane, transitioning to certain QTM ID's involves horizontal 
displacement, while vertical movement is used to reach others (x 
and y in ZOT space; see Figure 5). Three of the six possible 
arrangements of nodes within an octant are enumerated in Table 1 
and diagramed in Figure 6.

5 This is the local origin of each facet, the vertex in the QTM mesh that, as 
projected via ZOT, has edges that all meet at right angles. Local ZOT distances 
are measured with respect to this origin, which moves each time a QTM ID 
assumes a new value.

6 Goodchild and Yang number the tiles their mesh from 0 to 3 in one of 
two patterns that spiral out from the the central (0) tile first either North or 
South (1), then Southwest or Northwest (2), then East (3). While this scheme 
may simplify trilocation (generating tile IDs), it lacks one important property: 
There is no correspondence between tile ID's and vertex basis numbers; this 
makes it more difficult to relate tiles to the nodes they surround (their QTM 
Attractors).



One derives QTM code digits 
recursively by, at each level, 
identifying which of four tiles 
encloses a point occupying 
latitude (0) and longitude (x). 
This position is referenced to a 
local origin ("pole"), yielding 30 
and dx (angular displacements 
within a QTM cell). The number 
returned identifies the closest 
QTM attractor (node).

s = 90.; side length in degrees 
s/2 = 45.; half side length 
dy = 30; latitude change from origin 
dx = 3x - dy; other coordinate 
If (dx+dy) < s/2 then return (1); 
If dy> s/2 then return (2); 
if dx > s/2 then return (3); 
else return (0);

Get s; the length of triangle legs. 
Get s/2; half of s. 
Get dx; point x-offset from origin 
Get dy; point y-offset from origin 
{s is angular; := 180 / (2 A level), 

as measured from pole} 
{dx & dy are also angular offsets}
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Table 1

Basis numbers of nodes of children of an octa facet 

(3 of 6 orientations)

OTM Tile

Parent
0
1
2
3

OTM Tile

Parent
0
1
2
3

OTM Tile

Parent
0
1
2
3

Pole

1
1
1
3
2

Pole

2
2
3
2
1

Pole

3
3
2
1
3

- Figure 6

- Figure 6c

- Figure 6d

Note how in each case, if a point lies nearest the parent's pole 
node, the child will have the same pole, but the x-node and the y- 
nodes interchange ID's.

Computational Properties

Because planar geometries are generally much more straight 
forward than spherical ones, it is almost always easier to compute 
relations such as distances, azimuths and polygon containment on 
the plane rather than on the sphere. The former may involve 
square roots and occasional trig functions, but rarely to the degree 
demanded by geographic coordinates, where spherical 
trigonometry must be used no matter what ranges may be involved 
(unless approximations will suffice). Polyhedral geometry, being 
closed and faceted, is globally spherical but locally planar. The 
maximum practical extent of localities varies, both in cartesian and 
faceted cases, according to the projection employed (for cartesian 
coordinates) or the type and level of breakdown (for hierarchical 
polyhedral tessellations).

One essential operation that ZOT can facilitate is computing 
polyhedral facet addresses (geocodes) from geographic coordinates. 
Called trilocation (Dutton, 1984), it recursively identifies the ID's of
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tiles containing a given location, generating a sequence of L 2-bit 
codes, where L is the depth of recursion. The simplest general 
algorithm for trilocating a point in QTM determines which of four 
tiles it is in by comparing squared distance from the specified point 
to the centroids of the central QTM tile and each of the three outer 
ones to find the closest one; this requires 1 to 3 squared distance 
computations and comparisons per level, or O (2L) comparisons per 
point. If performed in global space, great circle distances are 
needed, but in the plane cartesian distances will suffice (in neither 
case need square roots be extracted, as we need only order 
distances, not measure their absolute magnitudes). In ZOT space, 
computing a QTM ID requires only one addition, one subtraction, and 
one, two or three tests of inequality, as demonstrated in Figure 5.

ZOT casts trilocation into a well-defined planar geometry 
where triangular cells can be efficiently identified. Moreover, one 
may compute facet ID's to 15 levels of detail using coordinates 
stored as 32-bit integers (attempting greater precision would cause 
overflows and aliasing of IDs beyond the 15th level). Projecting 
candidate points from longitude and latitude into ZOT coordinates 
only involves solving several linear equations per point. ZOT 
distances order themselves the same as geodesic distances, and as 
just described, are much easier to compute.

Orientation Options

The ZOT projection has been shown in a specific orientation 
throughout this paper. As mentioned above, it is trivial to rotate 
the Prime Meridian to cross any point on the equator. This 
relocates four QTM cardinal points and all octant boundaries; one 
may be tempted to do so to avoid spreading areas of interest over 
more than one or two octants. Such schemes are always to the 
advantage of certain territories at the expense of others. Such 
suboptimizations are probably self-defeating, and in any case 
violate the spirit of the model: QTM can best identify locations on 
a planet if its mesh is embedded in a particular manifold 
(topological reference surface) in an agreed-upon way. Differently- 
oriented manifolds generate different QTM codes for the same 
location; this complicates spatial analysis, as codes from QTM 
model variants that do not share a common orientation are not 
commensurate, even when they represent identical locations.

QTM isn't very useful unless it is standardized, as are latitude 
and longitude. If nothing else, QTM is a coordinate system, 
designed to recursively encode (at some specified precision) 
locations on planets into unique triangular facets. It is therefore 
desirable that all QTM codes having a given address map to the 
same location on a planet, no matter who specified the address,
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where they came from or for what purpose. This implies that 
certain areas will always be inconveniently split by octant 
boundaries. Such situations can be handled by methods which knit 
facets together along octant edges, such as associating them with 
QTM attractors7 (which as figure 3 shows, follow the same pattern 
in all eight octants). Were everyone who used the framework to 
agree on how to orient it, all their QTM codes would also agree. 
Little additional data (mainly an ellipsoid model) is required beyond 
a common definition of the octahedron's orientation to the planet 
concerned.

Table 2 proposes a standard way to orient QTM to ZOT, used 
in illustrating this essay. It is defined by three parameters that 
relate QTM nodes to ZOT space: (1) The projection's aspect (North 
polar); (2) the longitudinal offset, if any, for the prime meridian (0Q); 
(3) the cardinal direction from the central axis along which the 
prime meridian runs (-Y). If the geographic North and South poles 
are assigned ID's of 1, and the intersection of the equator with 
longitude 0Q and 180e are labeled 2, the remaining two octahedral 
nodes (where the equator and longitudes -90Q and 90Q cross) 
therefore have ID's of 3. This fully defines the basis number of 
every node in the entire QTM hierarchy. The ZOT coordinates for x 
and y nodes are given in terms of the map radius (which is the 
length of octahedral edges as projected). These are either zero, or 
plus or minus unity.

7 QTM nodes are also called attractors because all coordinates in the vicinity 
of a node alias to it, hence can be thought of as being attracted to that location. 
All QTM nodes beyond the original six octahedral vertices propagate their ID 
to six surrounding tiles, and all coordinates falling within those tiles are 
associated with the attracting node.
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Table 2a

Proposed QTM Orientation Standard for Octa Vertices

(Octa vertices define 3 orthogonal axes 
upon which all QTM codes are based)

Latitude Longitude Pole

90 N
90 S
0 N/S
0 N/S
0 N/S
0 N/S

(0)
(0)
0 E/W

180 E/W
90 E
90 W

1
1
2
2
3
3

0
 1
'0

0
1

-1

0
 1
1

-1

0
0

Table 2b

Proposed QTM Orientation Standard for Octa Facets

(-x = left; +x right; -y up; +y down w.r.t. Pole node, 
Signs are descriptive only; node IDs are positive)

Octant N/S Pole X-ID Y-ID

1
2
3
4
5
6
7

N
N
N
N
S
S
S

1
1
1
1
1
1
1

3
3

-3
-3
-2
-2

2

2
-2
-2

2
-3

3
3

8 S 1 2 -3

Projected Implications

It is not foreseen that zenithial orthotriangular projection will 
ever be widely employed in published maps. ZOT is too peculiar to 
serve as an aid to navigation or to be used to convey thematic data 
(unless its double periodicity can be exploited) 8. What it offers, 
however, is a computational shortcut for spatially indexing 
locations on a planet. This approach follows the lead of Lucas 
(1979), Diaz and Bell (1986) and others in attempting to define 
special arithmetics for tessellated spatial data in order to take 
advantage of properties of particular tessellations. Although the 
spaces in which most such arithmetics operate cannot be visualized 
as readily as ZOT space can, tessellar methods can have 
considerably higher computational efficiencies than standard 
geometric calculations.

8 One might convey bivariate (or even trivariate) attribute data using a 
tiling of ZOT maps (as Figure 2 shows). For example, a thematic variate, such 
as population densities, could be displayed in a grid of M maps across, each 
column representing a different date in history (e.g., 1950,1970 and 1990); each 
of N rows of the grid might display a different spatial resolution (one could 
display densities computed over the areas each nation, province or canton, 
one row for each scale).
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ZOT can greatly simplify repetitive geometric operations in a 
quaternary triangular mesh, as we have tried to describe. QTM 
facets are optimally arrayed in ZOT space, and their addresses are 
highly tractable to compute. Deriving QTM ID's from geographic 
coordinates via ZOT is algorithmically inexpensive, growing more 
or less as O(L logL). So, ZOT may prove to be a useful cartographic 
abstraction, at least to the extent that QTM is a felicitous 
framework for spatial data.
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ABSTRACT

This project is a case study of extraction of roads and houses from low- 
resolution infrared aerial photographs of city block areas. Houses and roads 
are about 2 pixels wide. Infrared renders houses, connecting driveways, and 
roads light, with significant blurring. The situation is challenging because of 
the similar imaging of the objects of interest and the low resolution.

We show how to combine regions from thesholding, a residual-based 
edgefinder, and spot (house) identification through a modified Gaussian curva 
ture to obtain road networks and houses. A tree growing procedure for aggre 
gating points in the plane is developed, and applied to find smooth trajectories 
through detected building locations, yielding rows of houses along roads. In 
addition to proposing a practical method for this problem domain, we hope 
that this and similar studies contribute to development of techniques for low- 
level feature extraction and methods for combining them.

INTRODUCTION

This project is a case study of extraction of roads and houses from low- 
resolution infrared aerial photographs of city block areas. Houses and roads 
are about 2 pixels wide. Infrared renders houses, connecting driveways, and
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roads light, with significant blurring. The situation is challenging because of 
the similar imaging of the objects of interest and the low resolution. We are 
interested in extracting maximum information from low resolution data 
because this reduces the number of images that need be captured, and because 
in surveillance applications, low resolution data may be all that are available.

We show how to combine regions from thesholding, a residual-based 
edgefinder, and spot (house) identification through a modified Gaussian curva 
ture to obtain road networks and houses. A spanning-tree-based procedure for 
sending smooth paths through points is developed. Such a procedure has 
numerous applications because significant physical objects tend to have 
smooth boundaries, while feature detectors often produce fragments. One can 
deduce the boundaries by reassembling the fragments. This module is tested 
by applying it to house locations, yielding rows of houses along roads. In 
addition to proposing a practical method for this problem domain, we hope 
that this and similar studies contribute to development of techniques for low- 
level feature extraction and methods for combining them.

Figure 1 summarizes our results.

PREVIOUS WORK

There has been much work in this area, due to the variety and volume of data 
awaiting availability of practical systems, and suitability of numerous sub- 
domains as testbeds for different techniques.

Emphasis of work in the area includes low-level primitives (Nevada and Babu 
1980), detection of cultural objects by rectangular or smoothly curving con 
tours (Fua and Hanson 1987), complete systems based on applying special 
knowledge of particular sub-domains (Huertas et. al. 1987), and general 
mechanisms for applying knowledge constraints (McKeown et. al. 1985). 
Most work spans the range from use of low level vision to acquire basic data, 
to application of domain-specific knowledge, whether it be applied as a special 
case or through a general mechanism. It is typical for authors to comment on 
special characteristics making their domain challenging to automatic analysis. 
The present study considers a particular sub-domain - low resolution infrared 
city blocks ~ and shows how mathematically well-behaved primitives can be 
used in conjunction with world constraints to extract features. A general sys 
tem will function most efficiently with a library of such sub-domains and a 
kernel of mathematically precise low-level detectors. Binford (1982) argues 
lucidly that success in large domains using model-based analysis will require 
strong low-level modules.
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Figure la. Source picture CIRCLE. 
128 by 128.

Figure Ib. Features located in CIR 
CLE. Straight line segments from 
roads are plotted different shades of 
gray. Isolated black dots are build 
ings.

Figure Ic. Picture BLOCK. House 
Locations found via gaussian curva 
ture marked black. Source image is 
128x128.

Figure Id. House grouping results 
from BLOCK after line fitting (shown 
in black). Results of road extraction 
algorithm are shown in grey.

Figure 1: Summary of road and building extraction techniques.

Cultural Feature Detection
Huertas, Cole and Nevatia (1987) demonstrated a system for detection of air 
port runways from very high resolution photographs. This work showed a nice 
balance of simple but well-considered low (lines) and middle (APAR) level
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vision, use of hand-tooled high level constraints from the problem domain, and 
a working demonstration. APARS are approximately parallel edges of oppo 
site contrast (Anti-PARallel), useful for detecting bars or slowly varying rib 
bon shapes against a contrasting background. They point out that while run 
ways are essentially elongated rectangles, the problem is very challenging 
because of runway markings, non-uniformity of runway surface (oil spots and 
shoulders), repair work, vehicles on the tarmac, and intersections. LINEAR 
(Nevada and Babu 1980) is used to produce line segments and APARS. A 
variety of 5 by 5 masks are used to detect edges, which are then thresholded, 
thinned, linked, and approximated as piecewise linear. APARS are then 
identified. APAR-based approaches tend to produce many false candidates, 
especially when a feature has parallel sub-features (eg lines down a runway), 
and each line can then contributes to many APARS. This is handled by histo- 
gramming APAR widths, and selecting candidates with widths appropriate for 
runways, shoulders and markings. APARS are joined by analyzing continuity, 
collinearity, and gap texture. Finally, hypotheses of positioning of runway 
subfeatures are verified from FA A specifications.

Fua and Hanson (1985) used parallel and perpendicular line segments to locate 
cultural objects in high resolution images. Undersegmentation was resolved 
by using linking to connect almost-collinear lines, complete corners, and close 
open-ended U's and parallels. Subsequently (Fua and Hanson 1987), they pro 
posed detecting roads by using linear edge segments to calculate road width 
and center; fitting a spline to the center; then using the center spline to locate 
splines for each side of the road. This allows the road to be continued even 
when one side is lost due to imaging conditions, occlusion, junctions.

Pavlidis and Liow (Pavlidis and Liow 1988) detected regions by following an 
oversegmented split-and-merge phase with boundary and edge modification 
based on contrast, boundary smoothness, and image gradient along boundaries.

The integration of top-down and bottom-up analysis has been advocated by 
many authors. In particular, Matsuyama (1987) presented an image under 
standing system that generates hypotheses to test for the existence and location 
objects, according to the results of low-level vision techniques.

Similarly, Nicolin and Gabler (1987) demonstrated a knowledge-based system 
for interpretation of aerial images of suburban scenes. Their system is divided 
into several functional units. One unit contains a methods base of low-level 
image processing techniques and a second unit contains a knowledge base for 
suburban scenes. The system's control module uses the knowledge base to 
decide which techniques from the methods base should be applied to the 
image.

McKeown and Denlinger (1988) constructed a system for high-resolution 
imagery based on cooperation between a surface correlation tracker and edge 
tracing. They detect edges using a 5 by 5 Sobel gradient. The correlation 
tracker, after a design of Quam (1978), looks for patterns such as lane markers



and wear patterns. Starting position of the road, its direction, and width are 
assumed given. The hypothesized road trajectory is tested by pushing a cross- 
section of the road forward and testing for cross-correlation.

Aviad and Carnine (1988) presented a method for generating hypotheses for 
fragments of roads, intended to be fed to a road tracker. The Nevatia and 
Babu (1980) edge finder is used, followed by Road Center Hypothesis detec 
tion by antiparallel edges. RCH's are then aggregated by a greedy linker. 
This is followed by editing by a smoothness checker, and a final linking.

Point Grouping
In our paper, we examine how to group points in the plane (houses locations) 
into smoothly varying curves that will lend insight into the feature composi 
tion of an aerial image. Zahn (1971) applied graph theoretic algorithms to 
detection of clusters in arbitrary point patterns. By constructing a minimal 
spanning tree, he is able to cluster dots into groups according to their point 
density, measured by calculating the local average length of the spanning 
tree's edges. A histogram of the local point densities is then calculated and 
categorized. All edges having neighbors of two (or more) different point den 
sity categories are deleted. The resulting graph contains a spanning tree for 
each point cluster.

Stevens (1978) showed that orientation patterns in a field of random dots 
can be detected by the use of a local support algorithm. Local orientation is 
found by drawing virtual lines between neighboring points and then searching 
for the predominant orientation of the virtual lines. For example, Stevens' 
algorithm can deduce local relationships in a pattern consisting of an original 
set of random dots together with a duplicated translation, or with a duplicated 
set expanded about a center. It will also group isolated one-dimensional 
curves. Since it finds the major orientation in two-dimensional neighbor 
hoods, it is not well suited to grouping houses, where there are nearby linear 
strings of different orientation. Likewise, Zucker (1985) presented an 
orientation-based process to infer contours from a collection of dots by locally 
finding the tangent fields.

Tuceryan and Ahuja (1987) performed clustering and linking according to 
properties of the Voronoi polygons induced by the dots, including area, eccen 
tricity, isotropicity, and elongation. For example, dots around the boundary of 
a cluster can be identified because they are eccentric within their polygons.

Vistnes (1987) used a statistical model for the detection of dotted lines 
and curves embedded in a random dot field. His model is based on a local 
operator that detects regions of differing dot densities.

ROAD AND HOUSE DETECTION

The goal of this phase is efficient generation of a map of as many of the main 
roads and houses as possible. When in doubt we are conservative, identify-
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ing those features in which we have high confidence. We pay particular atten 
tion to connectivity of the road networks as this is a key semantic feature.

APARS tend to produce disconnected representations at junctions, (e.g., at a Y 
junction in a road) since the generating parallel edges do not continue all the 
way to the center of the junction. In contrast thinning naturally preserves the 
connectivity at the junction. Centers between APARS are much less sensitive 
to small glitches in data than thinning in finding skeletons for wide objects, 
but thinning is suitable for the present domain because features are only a few 
pixels wide. These data are a difficult (though possibly feasible) case for edge 
linking and APAR detection because very close proximity of houses causes 
the edge-finder to wander. Our greedy thresholding quickly and simply yields 
good connectivity over large segments. 
Road and house detection runs in 6 steps.

1. (Greedy thresholding): Undersegmented regions consisting of houses, 
roads driveways, and some adjoining areas are thresholded from the 
source.
2. (Residual edge cutting): The Lee/Pavlidis/Huang (1988) residual 
edgefinder is tuned to handle these small-scale data, and edges are used to 
further segment the regions.
3. (Thinning and small component removal): Resulting regions are 
thinned. Thinning is careful to respect connectivity, which can now be 
deduced by local analysis of neighbors. Small components are removed.
4. (Gaussian curvature spot detector): A modified Gaussian curvature 
spot detector is applied, yielding most house positions.
5. (Trimming): House locations and connectivity of the road network are 
used to trim the network down to major roads.
6. (Line fitting): The network is decomposed into line segments.

Thresholding
This data set is interesting because neither the regions from thresholding nor 
edgefinding by themselves yield adequate information about the road net 
works. A greedy threshold does maintain good connectivity, but blurs the 
houses into the roads. Adjacent houses blur together, mimicking the linear 
structure of the roads. More conservative thresholds curtail this aggregation 
somewhat, but even when the threshold is reduced to the point where the roads 
begin to disconnect, significant aggregation of distinct features remains. Fig 
ure 2 shows the regions obtained at 2 threshold values.

Edgefinding
Our edgefinder is based on the residual technique of Lee, Pavlidis and Huang 
(1988). They detect edges as zero-crossings of the difference between source 
image and a regularization of the image. We found that effects of small varia 
tions in the image were reduced by applying a mild smoothing to the image 
first. So, edges are the zero-crossings of the difference of a mildly regularized
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(2 a) Image CIRCLE threshold > 80 (2 b) CIRCLE threshold > 110

Figure 2: A greedy theshold yield excellent road connectivity but blurs houses into 
roads. More conservative thresholds yield neater road segments, but leave gaps, 
eliminate small roads, and still leave some building and driveways attached. We 
take the undersegmented greedy image and use edges to refine it.

image ((5= 5.0), and a smoother image (p= 1.0). Zero-crossings are thres- 
holded by slope.

We compared Canny and residual edgefinders at different resolutions. The 
residual finder tended to generate more closed or almost-closed contours 
around small features like houses, which is especially useful in the trimming 
technique we are using. Figure 3 shows Canny and residual edges.

A common method for recording an edge map is to mark edge pixels on a ras 
ter the same size as the source image. Here one might choose to mark the 
edge on the darker side, the lighter side, or on the side nearer zero. Doing so 
in this case blurs nearby linear features (eg adjacent roads) together. For 
tunately zero-crossings have more structure than this - they form contours. A 
zero-crossing falls between raster positions having positive and negative resi 
dual values. We use a zero-crossing tracker which walks this boundary, break 
ing zero-crossing contours into smooth segments. A raster twice the size of 
the source is used, with cells having even coordinates holding the source pic 
ture, and with zero-crossing information stored between.

This data structure is now used to prune the regions. Since we are trying to 
preserve the lighter structures, the zero crossing segment walker sets every 
pixel on the darker side of a zero-crossing to black. This corresponds to a cut 
when lighter areas are chosen by thresholding. Figure 4 shows the result of 
removing edge points.
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(3 a) Edges from residual edge finder 
for image CIRCLE

(3 b) Canny edges, a = 1.0

Figure 3: Residual and Canny edges. Stronger edges are plotted darker. We found 
that the residual edges yielded more road boundaries, and tended to trace closed 
contours around houses.

(4 a) Image CIRCLE with edge points 
removed (black)

(4 b) Image CIRCLE: edge points 
removed from greedy threshold

Figure 4: Tnresholded regions have good connectivity; Edges are sparse but have 
good spatial accuracy.

Residual edges in this example accurately delineate many physically 
significant boundaries but are sparse and would present a difficult case for a 
purely edge-based technique. A purely edge-based analysis might be possible 
and would be very interesting.
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Thinning
The image is thinned (Pavlidis 1982), and small components are removed. 
The results are in Figure 5.

Figure 5: Image CIRCLE after thin 
ning and removal of small components

Gaussian curvature spot finder
Gaussian curvature can be used to construct an efficient operator which 
responds strongly to small bright spots (eg, houses around 2-3 pixels wide, as 
they are in our source image), but does not respond to straight edge data 
(roads).

Gaussian curvature of the gray level picture g(x,y) is given by:

9* 2 9jg2
3*2 3v2

1 + dg
ox

-\2

dxdy

2 
+ dg

dy

2

o4s

(See, e.g., Spivak (1970) or Horn (1986). We have been using the numerator 
of this expression to locate spots. It can be rewritten:

By
x By Bx ' By

In this rendering as cross-product of directional derivatives of gradient vectors 
we can see directly why there is no response to straight edges. All gradients 
point normal to the direction of the edge. Therefore derivatives also point in 
this direction, yielding a zero cross-product. This quantity is invariant of
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orientation of the coordinate system because the Gaussian curvature and 
denominator both are invariant.

In discrete image space at point (x , y ) this curvature c can be computed as:

- \8x-l, y+l ~ 8x-l,y-l

d_sq_x = gx+i >y + gx-i,y -2gx ,y
d_Sqj> = gx,y+l+gx,y-l-2gx,y

c = d_sq_x • d_sq_y -

Our Gaussian curvature module finds bright spots by first convolving the input 
picture with a gaussian; then finding points of high curvature. A spot is 
reported at locations whose curvature is greater than a specified threshold, and 
not less than the curvature of its 4 compass neighbors. This tends to mark a 
single pixel for each bright spot. Figure Ic shows the results of the Gaussian 
curvature operator.

Trimming via Connectivity analysis
At this point the constructed network has much of the connectivity structure of 
the underlying roads. Junctions can be located by locally counting neighbors. 
One must allow for diagonal connectivity to a neighbor if there is no 4- 
connectivity, as in Figure 6(a). Junctions of degree greater than 3 may be 
spread over neighboring pixels (Figure 6b).

(a) (b)

Figure 6: (a): In looking for junctions, cell "a" should count "n" as a neighbor 
only if neither of their common 4-neighbors is occupied, (b): When > 4 roads 
meet, the junction can be spread over nearby cells.
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Strings of nearby houses tend to blur together, producing linear bright strips 
which mimic road structure. A two-stage preening is now undertaken to elim 
inate these. First, starting from each house point, road pixels are deleted back 
up to a distance 7, but not past junctions. Stopping at junctions deletes drive 
ways up to a main road without interrupting it. Then short stubs are deleted, 
by starting at endpoints and looking for a junction within 5 pixels. If a junc 
tion is found, the segment from the endpoint the junction is deleted. Figure 7 
shows the results.

(7 a) Source picture ANGLE; 70 by 
80. May be better viewed from a dis 
tance (like Harmon's Abraham Lin 
coln).

(7 b) Spots from Gaussian curvature 
detector in white. Linear segments 
attached to houses, to be deleted, in 
black.

(7 c) Remaining short stubs to be 
deleted.

(7 d) Final results after line fitting.

Figure 7: Deletion of driveways and aggregated houses. Starting from house 
locations, road pixels are traced and deleted up to distance 7, but not past 
junctions, (b): Result after thresholding, edge cutting, thinning, small com 
ponent deletion, with road segments to be deleted in black, (c): Remaining 
short stubs to be deleted, in black.
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Line Fitting
Straight lines are fit to the thinned segments by testing line segments between 
successively more distant data points, and breaking at points of sufficiently 
large maximum distance between the test line and data (Pavlidis 1988b).

DOT GROUPING

In this section, we develop an algorithm for grouping points in two- 
dimensional Euclidean space, and apply it to detecting the curvilinear structure 
of houses lying beside roads. The algorithm takes as input a set V of points 
from R 2 (the detected locations of houses in our application), and constructs a 
forest joining certain vertices in V. The forest is grown as a sequence of trees, 
and each tree is grown by adding edges. The cost metric C(T,v,w) designates 
the cost, possibly   , of adding edge (v,w) to the partially constructed tree T. 
The algorithm is structurally similar to Prim's (1957) greedy algorithm for 
constructing a minimum cost spanning tree. Our model differs in allowing the 
metric to be a function of the partially constructed tree. A great deal of con 
trol over the grouping can be exercised by varying the metric.

Grouping algorithm
Let TI j denote the i-th tree after ;' edges have been added.

1) (Start a new tree): Let i be the number of trees constructed so far. 
We let Tj+1,1 consist of the edge joining a pair of vertices at minimum 
Euclidean distance, among all vertices not contained in any tree. If no 
edge is found, the construction is complete.

2) (Grow the current tree): Among all vertices w not in any current 
tree, and all vertices v in the current tree 7,-, find a pair (VQ,WQ) minim 
izing C(T,,v 0,H'o). Add it to T, and iterate this step. If no finite-cost 
addition can be found, go to (1) to start the next tree.

We have found it computationally and semantically advantageous to disallow 
edges longer than a parameter D max. This can be subsumed in the model by 
assigning any edge of length greater than D max infinite cost, and leads to an 
implementation where vertices can be assigned to local buckets of size 2D max 
by 2D max, and search for an appropriate neighbor of vertex v can be con 
strained to at most 4 buckets.

We now demonstrate how our state-dependent metric can be used to advan 
tage. Let

CPci«rv* 1a(7',v,w) = 0, * Dist (v ,w) + ( 1 -cc) * angle (T ,v ,w) .

angle(T,v,w) is the absolute value of the angle (in degrees) that is formed 
between the new branch and the neighboring branch (already included in the 
current tree T) having the most similar orientation. Parameter a determines
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the relative weighting between orientation and proximity, with a = 1 being the 
simple minimum Euclidean distance metric. The value a= .9 has produced 
good results in grouping houses in this dataset.

Figure 8a. Example 1: Minimum Figure 8b. Example 1: Tree con- 
Euclidean distance spanning tree. structed by orientation-sensitive

metric CCMn,g>a= .9

Figure 8c. Example 2: Minimum Figure 8d. Example 2: Tree con- 
Euclidean distance spanning tree. structed by orientation-sensitive

metric Ccurve>ot= .9

Figure 8: Two examples of smooth curve tracking ability of the orientation sen 
sitive metric. Left column shows the minimum cost spanning tree under the 
Euclidean metric; right column shows the metric Cc«m;,a=.9 combining distance 
and change in orientation.

108



Figure 8 shows how use of orientation information can assist in tracking 
smooth intersecting curves: Ccum>,o=.9 follows the curves (Figure 8 b, d) better 
than the pure proximity-based metric (Figure 8 a, c).

Figure 9a shows the result of applying CCUrve,a=.9 to detected building locations 
in our dataset. Much of the linear structure of the house groups is captured, 
but some of the branches selected do not lie parallel to the nearby road but 
instead cross perpendicular to it. This occurs when houses on opposite sides 
of the same street are close enough to form a link. These stubs can be avoided 
by looking ahead for a smooth extrapolation: if we are trying to extend from 
vertex v in the current tree to a new vertex w , the extension is allowed only if 
there is an additional vertex x with the angle between (v,w) and (wjc) close to 
180 degrees. This yields a new cost metric:

Cbokahead,a,e(T ,V ,VV ) =

C curve ,a(T ,v ,w ) if there exists a vertex x, with the angle 
between (v ,w ) and (wjc) differing 
from 180 degrees by at most e;

<» otherwise.

This metric prevents the growth of branches that form stubs, but keeps corners 
and crossings intact as shown in Figure 9.

Figure 9a. Ccurve,a=.9 tracks curves 
well, but tends to generate short cross 
links between segments.

Figure 9b. C/oo^^ a=9 inhibits 
cross links by requiring that there be 
at least 2 adjacent edges lying nearly 
along a straight line.
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Finally, we calculate the two most frequently occurring house link orientations 
and delete any links whose orientation differs significantly. This is reasonable 
since communities generally have roads that run in two primary directions. 
Then a simple line fitting program (Pavlidis 1988) is used to straighten the 
house clusters. The house clustering results together with the results of the 
road extraction algorithm are shown in Figure 1.

Future work on clustering
The next step would be to integrate the roadfinding with building grouping. 
Our building groups occasionally cross roads, and this could be inhibited. 
Where houses are relatively sparse the roadfinder alone tends to work well. 
With dense houses, the similarity of house and road imaging tends to compli 
cate the roadfinding, but the houses group well, providing additional semantic 
clues. Grouping algorithms tend to be more tolerant to noise in the case of 
high density. The algorithms should synergize well, as in most places they 
agree, but there are places in the image where one algorithm has strongly 
located a road ( or road segment) in which the other algorithm has difficulty or 
misses completely.

SUMMARY

The residual edge-finder tends to produce strong contours around small 
objects. For this data set, these edges can be used to significantly improve seg 
mentation of low resolution road networks obtained from thresholding. A 
variant of Gaussian curvature is effective in locating buildings. We have 
developed a spanning tree technique sensitive to angles between branches, and 
shown it to be effective in detecting smoothly varying trajectories through 
given points.
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Abstract

This paper describes a software system for automatic digitization of large scale maps. 
The system is capable of converting raster data into structured vector data. Strategy 
and configuration of the software are explained. Some tests on German maps are 
introduced in brief.

1. Introduction

A GIS is a computerized database management system used for the capture, storage, 
retrieval, analysis and display of spatial data. Of these items, especially storage and 
analysis of mass data are what makes a GIS such a powerful tool. However, the 
problem remains to get the mass data into the computer.

Digital data flowing from the environment into the computer may be managed 
solely by remote sensing techniques. Satellite images supply up-to-date information, 
but such information is restricted by pixel resolution, multispectral classification and 
visibility of the features. Terrestrial topography produces data which are very accu 
rate, but field work is time-consuming and expensive. For these reasons, digitization 
of area! photography or existing maps has become the most common method for data 
capture in large scale mapping.

As mentioned above, data capture is defined as part of a GIS. If you look around 
at the tools GIS products offer, most of them prefer manual digitization by hand 
held cursor. Such conventional systems are easy to handle and adapt well to different 
tasks. Unfortunately, manual digitization is a laborious procedure, and human labour 
is costly today.

To overcome this problem some companies have provided semi-automatic systems 
which support manual digitization by line following algorithms. The operator has just 
to indicate the beginning of a line, the computer then traces the line until the next 
node. Line following systems are quite effective with isoline maps, but interaction 
increases with the number of nodes on complex maps.

Data capture by scanner is very fast and requires a minimum of human inter 
action. Result of scanning is a raster image. Pixel format performs excellent with 
two dimensional coverages in small scales, but whenever linear features, topology or 
non-geometric attributes have to be handled vector data are better suited. Especially 
in large scale mapping, vector format satisfies the demands much better than raster 
data. Thus, scanned data needs to be converted into structured vector data.
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At present, visual recognition of printed texts with computers seems to have 
no problem any more. On the other hand, automatic interpretation of drawings is 
still a matter of research. Nevertheless, some algorithms of text recognition may 
as well be applied on maps. Scientists at the Institute of Cartography, University 
of Hannover have developed a software system which combines common methods 
of Optical Character Recognition with specific algorithms for mapping applications. 
Concepts and results will be described in the following.

2. Strategy

Input of the recognition system is a raster image, while output is structured vector 
data. In other words the system has to handle both raster- and vector data, including 
raster-to-vector-conversion. Pattern recognition methods may be performed using 
both types of data.

Automatic interpretation of maps splits into two parts: First the contents of a 
raster image have to be broken down into graphic primitives, such as arcs, letters 
and symbols. Prior to application of character recognition procedures, the texts and 
symbols are separated from the rest of data. Next the shape of the features has to be 
described by numerical characteristics. Finally the features are classified according 
to these characteristics using methods of statistical pattern recognition. The features 
are treated one by one without considering any context.

In the second step the recognition system combines primitive elements into ob 
jects of a higher level. In contrast to the first step, not isolated elements but relations 
between features are examined. Classification of relations and structures is perfor 
med using rules which build a model of the map. Two approaches are known: the 
knowledge-based approach and the procedural approach.

The knowledge-based approach takes advantage of Artificial Intelligence tools. 
A knowledge-based system consists of a knowledge base and an inference engine. 
The knowledge base holds rules and facts about map features. The inference engine 
enables classification by matching the rules with the data. Sequence of the rules 
and facts in the knowledge base should play no role at all. Therefore updating of 
the system is quite easy. The knowledge-based system does not require information 
about a certain solution strategy   the inference engine tries to reach a goal without 
human help so long as the knowledge base supplies sufficient information. Thus 
knowledge-based systems are very flexible and user-friendly.

Unfortunately, the inference engine slows down rapidly with the increasing number 
of rules. Efficient applications are limited with nowadays technologies to a number of 
about 300 rules. If you consider the variety of graphic representations in map design, 
this is much less than required. Therefore the performance of the inference engine has 
to be improved by information which defines the combination of rules. As a result, 
application of rules tends towards a fixed sequence, and the knowledge-based system 
converts into a procedural system.

A procedural system follows the principles of traditional software engineering. 
The programmer evaluates a strategy by arranging rules in a fixed sequence, which 
turns to be an algorithm. Algorithms run very fast and effectively   depending 
on the skills and experiences of the programmer. Building up a procedural system
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for automatic digitization of maps means to develop specific algorithms for different 
representations of spatial features. The expenditure on software development is very 
high. Once a procedure is established its application is limited to a specific type of 
map.

Recently procedural systems seem more suitable to practical applications with 
large sets of data than knowledge-based systems. In this context, the system deve 
loped at Hannover is oriented to the procedural approach. Nevertheless, research 
on knowledge-based methods continues and may replace the traditional methods in 
future /Meng,1990/.

3. The recognition procedure

At the Institute of Cartography, University of Hannover a software system named 
CAROL (Computer-assisted Recognition of linear features) has been developed du 
ring the last five years. Goal of the system is automatic digitization of large scale 
German maps. As mentioned above, the system follows a procedural strategy.

3.1 Data aquisition

First of all, the map has to be scanned. Scan resolution relies on the type and 
quality of map. With low resolution, details might get lost. With high resolution, the 
amount of data and noise within the raster image will increase. In most applications a 
resolution of 50 fim (500 dpi) proved sufficient. The maps dealt with in Hannover used 
to be black and white, so raster data is organized in binary format. In case of colour 
maps, binary images are obtained either by scanner firmware (colour separation) or 
image processing (multi-spectral classification).

3.2 Raster-to-vector conversion

Raster-to-vector conversion is performed by the software tool RAVEL /Lichtner,1987/. 
Using distance transformation and topologic skeletonization algorithms, the vecto- 
rization program extracts lines from the raster image and arranges them in an arc- 
and-node-structure. At further steps, connected lines are linked to line networks. 
Iconic polygons are computed from the line network. So far, only geometry and 
topology of the map are known. The map graphics are broken down into primitive 
elements.

3.3 Segmentation

To enable character recognition, letters and symbols have to be composed from arcs 
and separated from the rest of line graphics. Since such features are in most cases 
isolated networks, segmentation can be carried out quite easily by checking the size 
of a circumscribing rectangle. If texts and symbols intersect with the line network, 
additional information like line width or straightness have to be considered. Charac 
teristic of segmentation procedures is that they take advantage of simple classification 
operations. Figure 2 demonstrates the effect of some threshold operations on the vec 
tor data. Segmentation procedures structure the data in a rough way and therefore 
help to reduce the expenditure on detailed classification.
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a) Detail of German Base Map scale 1 : 5000 b) Line Width > 6 Pixels
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Figure 2 Segmentation of unstructured vector data

3.4 Recognition of texts and symbols

Next isolated texts, symbols and numbers have to be classified. This task is similar to 
the objectives of Optical Character Recognition, and so Cartography may make use of 
existing methods. Template matching counts as the easiest approach. A template is 
defined as an ideal pattern of the class. This template is matched against the raster 
image. The procedure reveals high success rates, although computations are very 
simple. Unfortunately, template matching works only on features with uniform size 
and rotation. Thus the method does not satisfy the demands of many applications.

So procedures have to be considered which extract characteristics independent 
of size and rotation. A method adopted in the CAROL system is expansion of the 
contour in a Fourier series /Zahn,Roskies 1972/, /Illert,1988/. While tracing the 
contour of a feature the angular change is summed up and perceived as a function of 
arc length from the starting point. This angle versus length function is expanded in 
a Fourier series. The Fourier descriptors (i.e. amplitudes and phase angles) are taken 
as chracteristics. Figure 3 demonstrates the method by reconstructing the original 
contour polygon from Fourier Descriptors of increasing degree. An expansion up to 
degree ten already yields sufficient information for shape recognition. In addition 
to Fourier Descriptors further characteristics like number of nodes or arcs may be 
included to improve the results of classification.

The classification itself is based on statistical analysis. The n characteristics of a 
feature define its location in the so-called n-dimensional feature space. Similar fea-
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Contour Polygon Reconstruction from Fourier Descriptors up to Degree:
n = 2 4 7 10 20 40

Figure 3 Expansion of contour polygons in a Fourier series

tures of a common class produce clusters in feature space. Therefore a class may be 
described by parameters of normal distribution. Limitations to the statistical model 
lead to different classification methods, such as maximum-likelihood-classification or 
minimum-distance-classification. However, experience reveals that success of clas 
sification depends much more on the choice of suitable characteristics than on the 
statistical model.

3.5 Analysis of complex features

The preceding steps structured the data into arcs, letters and symbols. Now these 
primitive features have to be combined into objects of higher level. The structure of 
a map feature in regard to its primitive components is reflected in the map legend. 
Some graphic structures are common to a lot of map types (e.g. dashed lines, hatching 
etc.), but a good part is unique for a special type of map. In the CAROL system, 
procedural analysis of complex features is performed by algorithms like:

  recognition of dashed lines : The system examines the data for repeated se 
quences of dashes, dots and gaps.

  recognition of hatched areas : The system extracts groups of parallel lines and 
computes an outline polygon.

  combine symbols in strings ( digits to numbers, letters to texts ) : The system 
checks relative position, rotation and size. Feature codes may be changed due 
to context ( e.g. Number '0' and uppercase 'O' or number '!', uppercase '!' 
and lowercase T ).

  Decoding of attributes: Texts, numbers and symbols are assigned to spatial 
features ( lines, polygons, points )
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The set up of the procedure, the choice of parameters and the sequence of algorithms 
should be supervised by an expert. Extensive installation work is necessary whenever 
the procedural system faces a new type of map.

To enable knowledge-based interpretation, basic rules have to be derived from the 
algorithms and put into a knowledge base. When applied to a set of arcs, nodes and 
texts, the inference engine performs the interpretation task. With a global knowledge 
base no specific set-up would be required, but on the other hand technology does not 
yet support such ideas.

4. Applications

4.1 Hannover town plan scale 1:20.000

The city of Hannover has published a town plan at the scale of 1:20.000. Size of the 
map is 120 x 90 cm2 . The map is printed in 12 colours. Recently local authorities 
have introduced vector-based GIS software. One of its applications will be thematic 
mapping. In this context the town map acts as topographic base map.

The City of Hannover, Department of Cartography maintains about 20 printing 
separates, each of them showing a certain category of features like public buildings, 
industrial plants, forests or hydrography. Ten of these black-and-white separates 
were scanned with a resolution of 50 /im, resulting in ten raster images of 25.000 x 
18.000 pixels. Raster-to-vector-conversion yields ten sets of vector data, either centre 
lines (in case of linear features like isolines or small rivers) or contour polygons (in 
case of area! features like buildings, forests etc.). The centre lines are organized in 
an arc-and-node structure, whereas polygons are structured hierarchically in regard 
to feature outlines and enclosed blank areas. Finally, lines are smoothened, and the 
data sets are merged by affine transformation. The whole process took about one 
week on microcomputer equipment, resulting in a data base of about 300.000 lines 
and 50.000 polygons.

4.2 Isoline maps scale 1 : 5000

German isoline maps at the scale 1:5000 show topography complementary to the 
ground situation in base map 1:5000. The graphic of isoline maps comprises solid 
lines with height numbers (height interval 10 m), dashed intermediate lines (intervals 
5 m, 2,5 m or 1 m depending on gradient), height spots with numbers and slope 
symbols.

Computation of a DTM requires height data in digital form. For that the map 
sheets were scanned and vectorized. Next dashed lines were recognized. Then seg 
mentation operations by parameters number of nodes, extension in X and extension 
in Y help to subdivide the data in slope symbols, isolines and numbers. Recognition 
of digits zero to nine is performed using Fourier Descriptors. After classification the 
digits were linked to height numbers and assigned to the 10 m isolines or to height 
spots respectively. Finally, height values have to be assigned to the intermediate 
isolines through interpolation within the 10 m intervals.

Interactive work is reduced to a maximum of one hour for each map sheet of 40 x 40 
cm2 . The procedure is detailed in /Yang,1990a/.
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Printing Separates Results of Vectorization

Figure 4 Digitization of Hannover town plan scale 1:20.000

4.3 German base map scale 1 : 5000

The base map covers the whole area of West Germany with few exceptions in the 
south. Ground situation is displayed in detail. The features like buildings, roads or 
forests are hardly affected by generalization due to the large scale. By this the map 
is an ideal source for GIS data bases.

The recognition procedure is set up as explained in section 3. Scanning and vec- 
torization of a 40 x 40 cm2 map sheet produce a set of unstructured vector data, 
ranging from 20.000 arcs in rural areas to 100.000 arcs in densely populated areas. 
Recognition of texts and symbols has to classify about 80 different features. Algo 
rithms have been established to analyse some of the most common map features, 
such as

buildings ( hatched polygons )
forests ( polygons + texture of tree symbols )
meadows ( polygons + symbols: two neighbored dots in level )
gardens ( polygons + symbols: three dots arranged in a triangle )
roads ( long and narrow polygons, inside blank or street name )
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Structured Vector Data:

Detail of German Base Map,scale 1 : 5000

Meadows

Figure 5 Digitization of German base map scale 1:5000
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Examples are displayed in Figure 2 and 5.

First tests have been carried out with data aquisition for the ATKIS system of Ger 
man Surveying Agencies which requires information of some 10.000 map sheets. Au 
tomatic digitization reveals success rates of 80 to 95 % (see Figure 5) /IIlert,1990/'. 
However some problems may still arise:

1. Geometry of vector data obtained by scanning has to be enhanced to meet the 
high quality standards of German cadastre.

2. The classification software should be embedded in a CAD system to support 
interactive editing of errors during the recognition process.

3. Success rates rise with complexity of algorithms, but on the other hand the 
system becomes less flexible in regard to application on different map types. 
Because of that the knowledge-based approach should be kept in mind.
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ABSTRACT

Map generalization, as a means of portraying the complex real 
world, has to date been confined to the manipulation of map data. With 
the advent of new data acquisition techniques, particularly remote 
sensing, data sources for spatial analysis have greatly increased. 
However, map generalization from image data is a challenging 
problem. In this paper, the conceptual and technical problems in 
generalizing cartographic objects from remote sensing imagery are 
addressed. A two-stage generalization framework is proposed for 
thematic mapping from imagery. Specific interest is focused on 
mapping land use from SPOT satellite imagery.

INTRODUCTION

Thematic mapping is a major activity in both cartography and 
remote sensing. However, due to independent developments in remote 
sensing and cartography, the theoretical bases for thematic mapping 
are considerably different. In cartography, thematic mapping is 
considered as a process of generalization in which the spatial context 
and attributes of objects from a source map are transformed into a target 
map. This is done according to a scale change through generalization 
operators such as selection, simplification, symbolization and 
classification (Robinson 1984; Shea and McMaster 1989). In remote 
sensing, however, thematic mapping is considered to be a process of 
pattern recognition in which the spectral responses of pixels are 
grouped into a number of defined classes using statistical modeling 
techniques. The process is also called image classification or pixel 
allocation (Burrough 1986). A problem with this process is that because 
of the complexity of the real world, spectral responses for a high 
resolution image show great spatial variability (Woodcock and Strahler 
1988). From such heterogeneous data, it is difficult to directly generate 
homogeneous polygons, such as those presented in conventional maps. 
It is suggested that the concept of map generalization can be introduced 
to solve this problem.

It is well known that map generalization involves 
transformations in both the spatial domain and the thematic domain 
(McMaster 1989). In the spatial domain, map generalization refers to 
the transformation of points, line and polygons; in the thematic domain, 
it refers to attribute transformation. Traditional numerical
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generalization has focused on spatial transformation, specifically line 
generalization (Douglas and Peucker 1973; Shea and McMaster 1989; 
Muller 1990). This primarily involves a scale change.

In thematic mapping from remote sensing images, the key issue 
is the change in thematic representation. This may not involve 
procedures used in traditional map generalization, e.g., simplification. 
However, it could include other functions associated with raster 
representation, e.g., feature selection and feature smoothing 
(Monmonier 1983). At the same time, the process may not involve a 
scale change. We wish to argue that the classes obtained from image 
classification may not correspond to certain cartographic objects, as 
their spatial appearances are usually heterogeneous and their class 
membership may be uncertain (Robinson and Frank 1985). In this 
paper, we use the term 'entity' to describe the classes obtained from 
image classification. Map generalization, therefore, is concerned with 
the transformation of entities to cartographic objects.

In this paper, the aim is to extend the traditional map 
generalization concept into land use mapping from remote sensing 
imagery. To do this, a new procedure for mapping land use from 
satellite imagery has been devised. In this procedure it is assumed that 
land uses are highly generalized objects. As a result, they cannot be 
generalized directly from remote sensing imagery. The procedure has 
to be undertaken in two steps: image-to-entity generalization and entity- 
to-land-use generalization.

A CONCEPTUAL FRAMEWORK FOR MAPPING FROM IMAGERY

Map generalization is a complex mental process involving 
perception, cognition and other intellectual functions. "It focuses on the 
extraction of the general, crucial elements of reality" (Brassel and 
Weibel 1988, p.230). It is usually related to the functions of selection, 
simplification, emphasis, classification, etc., by which observed reality 
is structured into a number of individual entities; then important 
entities are selected and represented on the map. Brassel and Weibel 
(1988) proposed a five-step conceptual framework for map 
generalization:

  Structure Recognition aims at the identification of objects, 
understanding their spatial relations and the establishment of 
measures of relative importance. It is the basic understanding 
of the essential structures of the spatial information available 
in the original database.

  Process Recognition is to establish the relationships between 
source objects and generalized objects (e.g., linguistic 
relations, spatial relations and statistical relations), based on
the structure of the original database and the control 
parameters (e.g., objective).

  Process Modeling can be considered as a compilation of rules 
and procedures derived from a process library and the pre 
setting of the process parameters that were established during 
process recognition.

  Process Execution and Data Display are operational 
procedures (e.g., classification, simplification and 
symbolization) which convert database and information 
structures into the target and generalized databases. These
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procedures have been addressed in many existing approaches
(McMaster 1989; Steward 1974).

Mapping from imagery is a generalization, which represents a 
process of transformation from the digital (spectral) domain to thematic 
and spatial domains. This process, however, is different from 
conventional cartographic generalization because the spatial units for 
generalization are not cartographic objects. In other words, they are not 
points, lines and polygons, but rather they are pixels which do not have 
any thematic meaning.

A two-stage procedure for mapping from imagery can be 
structured: statistical generalization and cartographic generalization. 
In statistical generalization, the original imagery is divided into a 
number of entities derived under statistical control. This represents 
processes of data reduction and transformation. The result is not a map 
but an entity image which shows basic spatial structures and thematic 
components of the remote sensing imagery. In cartographic 
generalization, the object is highly generalized, selective and subjective. 
Relationships between information entities and cartographic objects are 
modeled to produce a smooth, uniform map. A conceptual framework 
for mapping from remote sensing imagery is shown in Figure 1.

Statistical Generalization Cartographic Generalization

Figure 1 A conceptual framework for mapping from imagery.
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In statistical generalization, the imagery should first be 
examined according to the mapping objectives. From this examination, 
a list of entities should be prepared. There are two types of entity: 'pure' 
entity and 'fuzzy' entity. A 'pure' entity is one which is homogeneous 
and can be clearly identified on the image, while a 'fuzzy' entity consists 
of mixtures of 'pure' entities and is ambiguous when observed on the 
image. The original image can be transformed into an entity image 
containing the two types of entity. These entities constitute the basic 
information for a cognitive model in cartographic generalization. In the 
process modeling stage, sampling procedures can be employed to extract 
spectral signatures in order to link the spectral values of the image with 
entities. In the process execution stage, a classifier can be used to 
assign each image pixel to an entity label, based on the results of the 
sampling.

In cartographic generalization, the relationships between entities 
and cartographic objects (such as logical relation, spatial relation and 
statistical relation) need to be identified in order to develop a cognitive 
model. Based on this model, a rule base for the generalization can be 
designed. The rule base may be constructed as a simple logical 
operation or as a more sophisticated expert system, depending on the 
complexity of the mapping task. In the final stage, process execution, a 
map is generalized from the input entity image.

A CASE STUDY

Based on the conceptual framework presented above, a case study 
of land-use mapping from SPOT imagery was carried out. The land-use 
mapping procedure was divided into two steps: entity extraction and 
land-use map generation.

Study Area and Data Description
The test site selected for the study is part of the city of 

Scarborough, one of the fastest-growing municipalities in Metropolitan 
Toronto, Canada. The study area is dominated by residential areas at 
different stages of development; industrial and commercial land uses 
are also prevalent. The image used for study was a subscene (256 x 256 
pixels) from a multispectral SPOT image with 20 m x 20 m spatial 
resolution pixels. It was acquired on June 4, 1987 (Figure 2).

Entities and Land Uses Identifiable from the Image
Based on the generalization concept, two types of entity in the 

image, the 'pure' entity and the 'fuzzy' entity, were identified. 'Pure' 
entities have a distinct spectral appearance on the image and have 
relatively narrow spectral distributions (i.e., the digital values have 
relatively low standard deviations). A 'fuzzy' entity is not defined 
precisely, but it has a relatively wide range of spectral values. In Table 
1, eight entities which were recognized on the image are listed. Asphalt 
surface, concrete surface, bare surface, and the two types of trees are 
'pure' entities; the other three are 'fuzzy' entities.

The objective of the case study was to map land use from the 
image. Six land uses were categorized (Table 2). As can be seen, each 
land use is composed of several land-cover entities (Campbell 1983). It 
should also be noted that the relationships between land-use types and 
entities are quite complicated and that many land uses have similar 
entity components.
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Figure 2 A SPOT image of northern Scarborough, Ontario, Canada 
recorded on June 4,1987.

Modeling Generalization from Entity Image to Land-Use Map
Modeling the generalization from entity image to land-use map 

involves establishing relationships between entities and cartographic

Table 1. Entities and Their Descriptions

Code Entity Description Gray Level

1
2
3
4
5
6
7
8

Asphalt surface
Concrete surface
Bare surface
Soil surface
Deciduous trees
Coniferous trees
Low-density grass
High-density grass

roads, house roof, parking lot
building, warehouse, parking lot
land cleared for construction
wasteland, non-cultivated surface
deciduous trees
coniferous trees
grassland, lawn
grassland, lawn

1
2
3
4
5
6
7
8
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Table 2. Land Uses and Entities Contributing to Them

Code

A
B
c
D
E
F

Land Use

Old residential
New residential
Industrial/Commercial
Land under construction
Open space
Woodland

Composition*

1, 2, 4, 5, 6, 7, 8
1, 2, 4, 7, 8
1,2,4,5,6,7,8
1, 2, 3, 4, 7, 8
4,7,8
5,6

Gray Level

1
2
3
4
5
6

^Numbers represent codes in Table 1

objects (i.e., building a cognitive model). However, the relationships 
between entities and land uses are complex; there is no one-to-one 
correspondence between them. It is, therefore, important to select the 
key factors or parameters to model the generalization. A simple 
arithmetic aggregation of entities into a specific land-use type, such as 
land use A = entity 1 + entity 3 + entity 5, is insufficient to accomplish 
the generalization process from entities to land use. Fortunately, the 
proportional distributions of different entities vary from one land use to 
another. Therefore, it is possible to model the generalization process 
from entity-image to land-use map using the spatial frequency of each 
entity as a parameter (Gong 1990). For example, high-density grass 
(entity 8) has contributions to both residential (land use A and land use 
B) and open space (land use E), but the spatial frequency of high-density 
grass in open space is much higher than in residential areas. Based on 
the different spatial frequencies and entity compositions, the various 
land uses can be distinguished.

Entity-Image Generation
The procedure used to produce the entity image was a supervised 

maximum-likelihood classification. First, spectral signatures of the 
eight entities were obtained using a supervised training algorithm. The 
entire image was then classified according to these spectral signatures 
using a maximum-likelihood classifier. Figure 3 shows the entity 
image obtained using this method; gray levels are listed in Table 1.

Generalization from Entity Image to Land-Use Map
Two procedures were employed to carry out the generalization 

from entity image to land-use map. The first procedure, based on 
differentiating entity frequencies, was used to derive old residential 
(land use A), new residential (land use B), industrial and commercial 
(land use C) and land under construction (land use D). The second 
procedure, arithmetic aggregation, was used to extract open space (land 
use E) and woodlot (land use F).

In the entity-frequency-based procedure, a pixel window (9 x 9) 
was first moved over the entity image to extract an entity-frequency
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Bare surface 

Soil surface

Decid. trees 
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L-dens. grass 

I I H-dens. grass

Figure 3 An entity image generalized from the SPOT image.

vector F(iJ) = (fjdj), f2(ij), •••, f8dJ)}T- f(ij) was associated with the 
center pixel of each pixel window at row i column j on the image. 
Q^fffdJ) <81 (k = 1, 2, ..., 8) denotes the occurrence frequency of entity k in 
a pixel window. To determine whether pixel (ij) belonged to one of the 
land-use types A - D, a city-block distance measure was used:

where dm(ij) is the distance from the entity frequencies at pixel (ij) to 

the average entity frequency cm =(cmj, cmg, ..., cmg/r for land use m (m = 
A, B, C, D) ; cm was obtained from supervised training on the entity

i(ij) was obtained, it was compared with a threshold B
image.

Once
(0<C<81). If dm (iJ)</3, pixel (i,j) was a candidate for land use m. 
Otherwise, pixel (ij) was rejected from land use m. If more than one 
land use was a candidate, pixel (i j) belonged to the land-use type for 
which the distance was the shortest. A detailed description of entity- 
frequency extraction and land-use identification based on entity
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frequencies can be found in Wharton (1982), Zhang et al. (1988) and Gong 
(1990).

In arithmetic aggregation, two aggregation rules were used:
land use E = entity 4 + entity 7 + entity 8
land use F = entity 5 + entity 6.

However, entities 4, 5, 6, 7, and 8 are also components of land uses A - D. 
Therefore, a conflict will arise when an entity label at pixel (ij) belongs 
to one of the land uses A - D and one of the land uses E - F. Under such 
circumstance, pixel (i j) was assigned to one of the land uses A - D. This 
is reasonable because in the first procedure both entity information from 
pixel (ij) and neighborhood entity information from a pixel window 
were included in the identification.

After the two procedures, a number of pixels remained unlabeled. 
These unlabeled pixels were relabeled using the entity-frequency-based 
method, but without thresholding the distances dm(ij).

= 600 Metres

Old resid. 
New resid. 
Ind./com.

HHH Land- const. 
Eiiiii Open space 
I I Woodland

Figure 4 A land-use map generalized from the entity image.

Results and Discussion
The map in Figure 4 is a result from this preliminary study. It 

shows homogeneity in polygon distribution, which is consistent with a 
conventional cartographic product. By visual comparison, most land 
uses on the map have corresponding locations on the image. The
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results show the potential for mapping from remote sensing imagery 
using the generalization concept. However, there are still some 
problems to be overcome:

  The old residential land use is confused with open space, 
because there is high spatial frequency of grass cover in the old 
residential area.

  There are still some "salt-and-pepper" patterns on the map; 
smoothing is required.

  The selection of land uses is restricted. Some land uses, which 
can be identified by visual interpretation (e.g., recreational 
land use), are not generalized.

These problems result from modeling during the generalization. 
In modeling, only component factors were considered, while in human 
perception, spatial features such as shape, size, linearity and spatial 
adjacency are also important. It may not be possible to represent these 
factors by a statistical model; a fuzzy model or a logical model may be 
more appropriate. It is apparent, however, that more sophisticated 
models are required in the entity-to-map generalization procedure, such 
as an expert system. In future studies of entity-to-map generalization, a 
fuzzy-set-theory approach and a knowledge-based approach should also 
be considered.

CONCLUSIONS

It is concluded that thematic mapping from remote sensing data 
is a challenging issue in numerical map generalization. It involves a 
process of thematic information extraction and entity-to-cartographic- 
object generalization, during which a scale change may not be involved. 
Research on this topic is limited. In this paper, we proposed a 
conceptual framework for mapping from imagery, based on the 
generalization concept. The aim of this approach was to extend the 
conventional cartographic generalization concept to remote sensing 
data, and to rethink the theoretical foundations for mapping from 
remote sensing. A case study of land-use mapping was undertaken to 
verify the theoretical model. A homogeneous land-use map was 
presented as a preliminary result for this procedure. Although the 
result is still not as good as that in human perception, it demonstrates 
the potential of the new methodology for mapping from remote sensing 
imagery. Further work involving more sophisticated models is justified.
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ABSTRACT

This discussion explores alternatives to standard GIS command procedures. 
The goal is for the user to describe the information he or she seeks rather 
than the data manipulations that should be performed so the system can 
provide appropriate display content and format. If the same information 
model were used for both user input and display generation, then spatial, 
temporal, or thematic questions could be matched to tabular or graphic 
answers. Using a model of geographic information, the potential for an 
artificial language that would permit a user to phrase geographic questions 
using English-like grammar and language is examined.

INTRODUCTION

Since their inception, GISs have become increasingly more sophisticated in 
terms of standardization, data structuring, error control, and analytical 
options. However, ease of use is still a major obstacle to the full exploitation 
of GIS technology. Many systems force new users to enter the world of GIS by 
navigating a maze of command-line interfaces, voluminous documentation, 
and user-built displays. This initial investment in learning a new tool may be 
beyond the means of busy analysts with other options for performing their 
analyses. It also speaks ill of the GIS discipline; if the main responsibility of 
an information system is communication of information, it follows that no 
mattter how sophisticated the storage and analytical capabilities, these systems 
somehow fail unless communicative powers are developed (Webber 1986b).

The harshness of the GIS user environment is gradually softening. On-line 
help sequences and self-explanatory point-and-click input forms are changing 
the book-on-the-knees posture so common to users of command-line GISs. 
Special-purpose systems that address the specific needs of a particular 
application (for example, oil exploration) tend to be simpler to use because 
they are geared to users whose expertise is expected to be in areas other than 
GIS. But the difficulty of formulating a set of commands in a multi-purpose 
GIS and the tedium of selecting an appropriate display format for responding 
to queries to the system remains.

Special-purpose cartographic query languages do exist. Nyerges (1980) 
developed a query language geared specifically to cartographic purposes that 
permitted users to request information via a grammar and keywords that the 
system could decode. Frank (1980) developed a query language that could 
automatically produce a display of the data selected if relational logic alone

133



were used. Broekhuysen and Dutton (1983) describe the design of the Odyssey 
command language and their efforts to achieve the effect of a dialog with the 
computer. Morse (1987) describes an expert system for forest resource 
management that accepts if-then statements from a user, translates those into 
GIS commands, and produces a standard report.

Shortcomings of the present approach
A universal problem among current approaches is the intuitive barriers that 
users face when combining relational and spatial logic to describe a course of 
action to the computer. Egenhofer et al. (1989) have addressed this problem 
by augmenting the query language style with "point and click" methods of 
indicating the objects involved. While this approach will ease the plight of 
the user, it does not change the fundamental fact that so-called "query 
languages" are essentially ways of defining a subset of data to retrieve without 
indicating the purpose of the retrieval. In contrast, the ideal mode of 
discourse with a GIS is for a user to describe what information is sought 
rather than how the system should manipulate the data to produce the 
information. Compare a high-level programming language to assembly 
language.

High-level: Add 2 + 3 and store the results in A.

Assembler: Place the values 2 and 3 in registers, add the registers, place the 
result in another register, whose number the user must track for 
subsequent manipulations of the result.

Today's GISs users express their information needs in the semantic 
equivalent of assembly language. A preferable mode of discourse with the 
system would provide the user with a means to express his or her 
information needs, as opposed to data-manipulation steps. Compare the 
following dialogs.

Ideal: Tell me where cow pastures border this stream.

Current: Build a narrow buffer around the stream, overlay the buffer with 
the data, select cow pastures from within the buffer, create a map 
whose extent covers the stream, shade the agricultural areas in a 
selected pattern or tint.

The fact that the logic of data retrieval and spatial overlay is slippery to many 
GIS users does not imply that GIS users are slow when compared to users of 
other information systems. Rather, the methods we presently use to interact 
with computers are designed to be straightforward to computers rather than 
to humans. Katzeff (1989) tested novice database users on their ability to 
construct a query and predict a response. Most of the users did correctly 
predict the response, but only one-fifth were able to construct a correct query. 
A question and a desired answer may be clearly in mind, but translating that 
question into a command sequence that produces the desired answer is a 
challenge.
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Given that questions and answers are clear, while the precise data 
manipulations needed to obtain an answer are not, it is worthwhile to 
investigate whether an information system could be designed to receive 
"raw" questions and produce comprehendable answers without involving 
the user in the specification of data manipulations. Information needs are 
easily expressed as questions to the system. Where are all the slopes steeper 
than 10%? Who owns this parcel? When did this parcel last change hands 
and who was its previous owner? If a user could inform a system of the 
information being sought, the system would have the raw materials to 
provide more helpful help sequences, on-line documentation, and default 
displays. A move toward this ideal requires two major enhancements to the 
current approach: users need a more straightforward way to express their 
information needs and GISs need an automated method of choosing a display 
format.

Natural language is one route to facilitating human/computer dialogs. But 
practical considerations demand that we proceed to investigate a higher level 
of human-machine discourse without waiting for natural language 
processors, since work in that area is still in its infancy (see Quillian 1985, 
Schank and Rieger 1985, and Webber 1986a for surveys of the natural 
language approach; see Morse 1987 and McGranaghan 1989 for geographic 
applications of natural language). A simple artificial language that operates at 
a similarly high semantic level could produce results comparable to a natural 
language, since it appears that syntactical constraints do not impede users if 
the underlying logic of the discourse is clear. Borenstein (1986) compared the 
learning abilities of users equipped with natural-language help sequences to 
those who used a verb-noun artificial command language and found no 
significant difference. Thus, this work investigates the design of an artificial 
language to describe geographic questions.

The next section describes the problem in more detail and is followed by a 
presentation of a theoretical basis for designing a high-level question-answer 
mode of discourse for users of GISs. Later sections examine the elements of 
an artificial language to express geographic questions in such a way that the 
computer can answer with default displays, and summarize the goals and 
findings of this study.

STUDY GOALS

A high-level method of human/computer dialog that describes information 
needs rather than data-processing instructions is evidently desirable. The 
issues that must be addressed for such an improvement to become a reality 
are

What syntax would the artificial language use?

How would questions be linked to data-manipulation commands?

How would the system choose appropriate display formats?

The first and last of the three issues are open questions. The second issue, 
while equally challenging, has been treated to some degree. Wu et al. (1989)
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describe a frame-based GIS that can receive an expression in a high-level 
formal language, translate the expression into primitive data manipulation 
procedures, order the primitives by predefined optimization rules, and 
execute the commands. The query language developed by Nyerges (1980) also 
had a multi-level structure comprised of a query language, query decoder, and 
query processor. While enhancements are always useful, the work of Wu 
and Nyerges demonstrates the premise that GISs can be informed with 
sufficient intelligence to match high-level commands to low-level procedures 
(Table 1).

Table 1. Producing answers to geographic questions. An event sequence 
includes intermediate dialog between the human and the computer to verify the 
treatment of a question.

Human Computer
Frame a question or questions. Match the questions to a set of commands. 
Verify the command structure. Propose a default display format. 
Verify display format. Perform requested data manipulations.

Produce display format.

To address the questions of syntax and display selection, it is useful to form 
some preliminary requirements. The query syntax should implicitly embed 
the information needed to select the appropriate content and format of a 
response display. If that were the case, standardized answers to questions 
could be produced in a range of formats without burdening a user with 
cartographic decisions, either at the micro (e.g., color or gray scale, pattern, 
shape, generalization, font) or macro (e.g., map type, geographic window, 
scale selection, entities depicted) level. Several interesting attempts have 
been made to automate the type of decisions referred to here as "micro" (see 
Robinson and Jackson 1985, Muller 1986, Mackeness 1987, and Weibel and 
Buttenfield 1988). It is the "macro" decisions that remain unaddressed. 
Macro decisions are linked less to legibility than to semantic integrity; in 
other words, a person may respond to a question in well-modulated tones 
and correct grammar, but if the answer is off target, the effort is in vain.

If questions are straightforward (e.g., "Where are all the forests in this area?") 
a display is relatively easy to produce automatically. Frank (1982) describes a 
GIS query system that could match simple queries with displays by 
automatically determining a window and scale, then selecting the requested 
relational entities that would appear. But as demands on GISs become more 
intricate and GISs themselves become more complex (e.g., by incorporating 
temporal information), the selection of default displays s becomes 
correspondingly more complex. Entities may be mentioned in a question that 
are not included in the display that answers it. More complex questions 
require more complex syntax and a broader system vocabulary. And many 
output formats become possible and needed (Table 2).
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Table 2. Different questions require different formats for answering.

Question
Where are the pastures 

in this watershed?

What are the different types 
of agricultural land use 
in this watershed?

Who owns the pastures 
that border the stream?

What is the grazing density of 
the pastures beside the stream?

Where does the stream border 
pastures?

What pastures have changed from 
nonagricultural use?

When did they change?

How many acres changed?

Format Content
Map Highlight pastures

Map Color or list by 
Listing agricultural type

Map Color or list by owner 
Listing

Map Shade or list by density 
Listing

Map Highlight stream segments

Map Highlight or list pastures 
Listing

Map Shade or list by years 
Listing

Value Number of acres

The problem of default displays becomes more complex when a GIS includes 
temporal data, since, in addition to spanning space, the queries can span time 
and space/time. For example, the simple question of where a given feature or 
attribute type occurs becomes more complex when the question of occurrence 
concerns a time in the past (i.e., where it occurred ten years ago); a timespan 
(i.e., where it has occurred any time during the past ten years); flows, motion, 
or trends (which imply a timespan when the movement occurred); or a 
change over time (i.e., where it has changed from one feature or attribute to 
another over a given timespan). Vasiliev (1990) discusses different forms of 
temporal maps and provides examples of the many methods available for 
expressing spatial change in graphic terms.

Current GISs place the onus for specifying how the reply should look on the 
user (Figure 1). Will it be graphic or tabular? If graphic, will it be an outline 
map dotted with point symbols or a choropleth map? What colors, shapes, 
and patterns should be used? If the display is tabular, what are the rows and 
columns? How wide should they be? Ideally, the next generation of GISs will 
shoulder this responsibility unless a user specifically asks to share it.
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What display would best 
answer the question?/ ^

listing?
\
What should be the 
rows and columns?

map?

What type of map? 
What should appear on 
the map?

What precision and codes What colors, shapes, or patterns 
should be used? should be used?

\

Figure 1. Display options for answering a question posed to a spatial database.

THEORETICAL BASIS

Evidently, some mechanism must exist for mapping questions to formats for 
answers. Two general approaches are possible: enumerate high-level 
information requests and map each to a default display, or develop a 
classification scheme for questions and answers and a means of recognizing 
what class of question has been posed.

Enumerating GIS operations
Many different attempts have been made to enumerate GIS operations. The 
capabilities that different authors describe as useful to a GIS can be divided 
into two groups: information desired, and functions available. Table 3 is an 
aggregated listing of these two classes that was collected from Nystuen (1968), 
Salmen (1977), Honeycutt et al. (1980), White (1984), Wu et al. (1989), and 
Guptill (1989).

Table 3. Types of GIS information and functions.

information desired
multi-scale analysis
multi-map compositing
spatial clustering and aggregation
edge detection
direction of flow
comparison
precedence
coincidence
proximity
adjacency
interpolation
corridor delineation
slope and aspect
optimum path
feature recognition from geometry
weighting
intervisibility

functions available
windowing
rotate, shift, scale
attribute aggregation
map overlay - union
map overlay - intersection
map overlay - negation
calculate area, length, volume
calculate aximuth, bearing, coordinates
calculate statistics from tabular data
buffer zoning: erode and dilate
search (locate all)
line smoothing or simplification
point in polygon
point in line
line in polygon
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The problems of enumeration become apparent when one investigates the 
enumerations that exist: no two enumerators have arrived at identical 
listings, the completeness of any given enumerations is debatable, and none 
include a temporal dimension. Given the immaturity of GISs in general, and 
temporal GISs in particular, few would argue that any enumeration of 
information needs could be considered exhaustive. A question-to-answer 
mapping built on this approach would need to be adjusted or expanded 
continually.

Classification of operations
The alternative to "hardwiring" questions to answers is to adopt a 
classification scheme for both that permits questions to be mapped to answers 
of the same class. Logically, a classification scheme must be built on a 
reasoned understanding of the information involved. This follows the 
thinking of Booth (1989) and Jarke and Vassiliou (1985), who argue that 
establishing a mutual conceptual framework aids in arriving at a mutual 
understanding of the topics being discussed. Even in the very restrictive 
setting of a human/computer dialog, a common view of the information 
being treated seems fundamental. Various authors offer conceptual 
frameworks concerning the nature of geographic information and operations. 
None was designed to be used as a semantic basis for a human-computer 
dialog; however, each has merit.

The first framework considered was that of Tomlin (1983), who names three 
types of geographical modeling operations.

- The output value is a function of a point.
- The output value is a function of neighborhood or adjacency.

Neighborhoods can be immediate, extended, or indeterminate (i.e., the 
neighborhood must be computed or estimated after the process is 
underway)

- The output value is a function of a vicinity or region.

These three types of operations would be multiplied in a temporal database, 
since each type of data could exist at a point in time or in a trajectory through 
time, and each modeling operation could consider a point in time or a 
trajectory through time.

A second prospective framework is that of Rucker (1987), who describes a 
mathematical treatment of reality that could serve as a basis for a model of 
geographic information. As stated by Rucker, the five archetypical patterns of 
mathematics are number, space, logic, infinity, and information. A 
geographical region can be used to illustrate these concepts.

- Number. A region contains a certain number of buildings and a certain 
number of wetlands. The buildings have a certain height and length that 
can be measured numerically; the wetlands have measurable moisture, 
animal populations, and acreage. The area of the region itself can be 
measured, as can its population.
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- Space. A region is not flat, as it might appear on a map. It exists in four- 
dimensional space/time. It has no holes (as defined here), and it connects 
to other regions. It follows the curvature of the earth, its stream network 
branches in a one-dimensional pattern, and the earth's relief forms roughly 
conical bulges in three dimensions. The region has subregions, which 
might by accessed by White's (1984) windowing, buffering, boundary, and 
endpoint operators. Subregions also may intersect, coincide, or be included 
within one another.

- Logic. The subregions within a region are interconnected. The region also 
reacts to external changes. A dammed stream floods land upstream. A 
zoning change alters land use. Tax disparities between regions cause 
outmigration or unpredictable settlement. Interconnections and reactions 
also exist that are unknown or poorly understood.

- Infinity. By zooming out from the region, one might see that it forms a 
pattern with other regions. By zooming in, one might notice greater detail 
and apparent structure within that detail and cells, and then atoms come 
into focus. What meets the eye when examining a region relates closely to 
the scale at which the region is examined.

- Information. Over time, a region is subject to random influences that 
leave their mark. Rucker suggests two ways to measure the information 
content of an entity: by the number of questions required to build a replica 
of the entity, or as the length of the shortest computer program required to 
answer any possible question about it.

As one might expect, this mathematical model addresses conceptual units 
and measurements, which could be useful in selecting map formats. 
However, it is not linked to the components of geographic information and 
hence would need to be extended considerably to meet the needs expressed in 
this discussion.

A more promising framework is that of Sinton, whose 1978 work on spatial 
data representation is useful for organizing spatiotemporal information 
because it addresses all three components of spatial information: attribute, 
location, and time. Sinton argues that traditional representation methods can 
measure only one of these attributes. A second is fixed to a constant value, 
and the third is controlled to a range of values or a set of categories (Table 4).

Sinton starts with a map and classes it according to how the map treats the 
various components. If it were possible to start with a question and class it 
according to how the question treated each component, then Sinton's 
framework provides a likely starting point for addressing issues one and three 
because questions could be matched to the appropriate formats for answers.
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Table 4. The representation of geographic data in various formats (extended 
from Sinton 1978).

	Fixed
Soils data time
Topographic map time
Census data time
Raster imagery time
Weather station reports location
Flood tables location
Tide tables location
Airline schedules location
Moving objects attribute

Controlled
attribute
attribute
location
location
time
time
attribute
attribute
location

Measured
location
location
attribute
attribute
attribute
attribute
time
time
time

Sinton's framework revolves around the components of the information 
itself, rather than functions or measures alone. In addition, the framework is 
tied naturally to graphic forms, so an artificial language that is structured to 
express what components are fixed, controlled, or measured could also 
indicate what output form is appropriate. Returning to the goal of a dialog 
based on questions and answers, we can see that Sinton's framework can be 
mapped readily to question words.

Attributes: what, who, how many, how much 

Location: where

Time: when, how long

Using that mapping, a tie between question and answer is already evident, 
since the "question word" indicates the measured variable.

AN ARTIFICIAL LANGUAGE FOR POSING GEOGRAPHIC QUESTIONS

A high-level artificial language built upon questions designed to elicit 
answers would alleviate the difficulty of using a GIS. Today's GISs force the 
user at the helm to express information needs using a combination of 
relational and spatial logic. Questions are not asked directly, so the system 
has few options for providing meaningful help sequences or display formats.

How it would work
The high-level language would be designed to sit atop of the attribute and 
spatial command languages that dictate data manipulations. High-level 
commands would call lower-level commands, just as a high-level 
programming language decomposes to machine language before functions 
are performed. This concept is similar to the methods adopted by Nyerges 
(1980) and Wu et al. (1989), although in those two implementations, the top- 
level query language did not disassociate the user from data-manipulation 
commands, as supported here. As demonstrated by Wu et al., the effect of the 
high-level layer on performance is negligible; the translation of question-to-
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command occurs before commands are executed, and a language can be 
designed for direct translation into commands.

The high-level language would be comprised of a limited set of verbs, nouns, 
and modifiers and a grammar to describe sequence within an expression. The 
system would parse the expression and select the appropriate data retrieval 
and manipulation commands to execute. At the same time, the sequence in 
which entities are mentioned would indicate which elements of the 
expression were fixed, controlled, or measured. That information, and 
identifying whether the data types are point, line, or area, would indicate 
what output format to select.

Although this study has not defined a query language that meets the goals 
listed above, certain patterns in the sequence of words in questions indicate a 
possible syntax. It is useful to note the natural syntax of English questions to 
ensure that an artificial language is truly "English-like" and easy to learn. 
Using the questions from Table 2 (above), Table 5 describes how natural 
English grammar contains clues concerning measured components, content 
desired, and window.

Table 5. Common English grammar used to 
indication of the format required to answer, 
examples of Table 2. In all cases, the region of

frame questions gives a basic 
Questions are taken from the 

interest in "this watershed."

Measured 
component

Where are

What is

Who is the 

What is

Where does

What 

When did

How many

Primary 
subject

pastures

agriculture

owner 

grazing density

stream

pastures 

pastures

acres

Attribute 
modifier

by type

of pastures 

of pastures

changed from 
nonagriculture

change from 
nonagriculture

changed from 
agriculture to 
nonagriculture

Relative Period of 
location interest

now

now

by stream now 

by stream now

border pastures now

past 
ten years

ever

past 
ten years

To map from a question to an output format is not entirely straightforward, 
even when the natural-language version appears so easily parsed. Aside 
from the question "where...," which is answered most naturally via a map,
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most "question words" can be answered in either map or tabular format. 
Accordingly, a user should be able to select either a map or a listing as output 
unless one is patently inappropriate. Ideally, the system can recognize when 
only one ouput format will do. Use of the word "where" is one clue. Others 
also exist; the single question listed in Table 5 that requires a listing has a unit 
of measurement as its primary subject.

A second problem of selecting a map design by default is informing the 
computer of the data types involved. Attributes can use nominal, ordinal, 
interval, or ratio measures, and the mapped entities can be points, lines, 
areas, or surfaces. Each combination has a set of appropriate mapping 
techniques. The logic required to select an output format would follow the 
lines offered in Table 6. Once again, criteria for each decision will be collected 
from different parts of the question. The question word combined with the 
subject indicates the level of measurement. For example, a "where" question 
requires only nominal symbols to answer, but a "what" can require an 
ordinal, interval, or ratio answer depending on the subject. What is the 
agriculture by type? requires a different map response than What is the 
grazing density? A reasonable approach to automating this decision is to 
include the level of measurement for each data attribute in the data 
dictionary.

Table 6. Deducing an appropriate output format given a question to answer.

Select entities to appear on the map using the region and period of interest, the
primary subject and attribute modifiers, and constraints on relative location. 

Determine whether the primary subject is point, line, or area. 
Determine whether the measure is nominal, ordinal, interval, or ratio. 
Select format.

Although Table 5 decomposes the questions only to a coarse level of detail, 
more information exists in the natural expressions that help describe the 
desired manipulations and output format to the computer. For example, the 
verbs include tense, which indicate a temporal map and an excursion into the 
past-tense database. In addition, certain words (e.g., "border..." and 
"change...") are keywords that describe a buffering and a temporal operation, 
respectively.

Possible enhancements
Several measures are possible to move the dialog to yet a higher level of 
discourse. Specialized views or objects could be developed to express to the 
system combinations of data that have special meaning to the user. Using 
Table 5's example, the watershed could be stored as a named MBR in the 
database so it could be referenced by name and a window automatically 
selected. Alternately, a user could indicate the region of interest on the 
screen, as described in Egenhofer et al. (1989).

Other enhancements to a question-oriented query language could include 
using expert system techniques to shorten the instructions necessary to 
describe certain concepts to the computer. Two excellent examples of "mini"
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expert systems are found in the temporal information system literature. 
Overmyer and Stonebraker (1985) describe the development of a "time 
expert" within a relational database that permits the system to interpret such 
terms as "lunch," "today/1 incomplete dates, and ranges of dates. Kahn and 
Gorry (1977) describe a "time specialist" that interprets temporal constructs 
needed in problem solving. The Overmyer and Stonebraker system operates 
within an INGRES QUEL environment, while Kahn and Gorry's system is 
designed to interpret natural language expressions. Input method could 
equally well be query-by-example, graphics, or a fourth-generation language.

Additional bonuses
The focal purpose of developing a question-oriented query system is to 
relieve users of the task of specifying data-manipulation procedures to the 
computer, and to permit the computer to produce default displays 
automatically in response. The latter in particular is most effective if the 
computer understands the information sought.

If the human-computer dialog informed the computer of what information is 
sought by the user, conceivably the system could supply more useful help 
sequences. These would include model questions that the user could choose 
from and edit, and listings from the data dictionary. Incorrect syntax could be 
corrected through gentle feedback from the computer regarding correct 
options and the results they would produce.

Assuming that the high-level query language were built on the georelational 
architectures in common use today, the high-level question would be 
decomposed by the system into a series of SQL and spatial commands. One 
option for experienced users would be to list these commands and permit 
them to be edited for greater control over output. New users also could 
employ such a listing as a learning tool.

SUMMARY AND CONCLUSIONS

This discussion does not introduce a finished high-level query language. It 
does, however, supply a basis for continuing investigation into the topic. It 
argues the following.

- The next generation of GISs should relieve users of the burden of
specifying data manipulations and output formats by permitting them to 
specify their information needs (rather than data-processing needs) in an 
English-like artificial language supplemented by point-and-click inputs.

- The design of any cartographic query language should be linked to the 
problem of how a query's response should be formatted. At present, 
systems permit users to design and save an output format, and reference 
that format as the desired output for a query. Arguably, this level of 
automation can be increased and system designers can relieve users of the 
burden of map specification altogether.
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- Sinton's theory of geographic representation provides a possible starting 
point for developing a conceptual framework for questions and answers 
that the human and computer can share.

Continuing research in this area can take two parallel tracks by attacking the 
problem from its two ends: the query language and the output format. 
Development of a query language requires an investigation of the natural 
phrasing of geographic questions and how their elements decompose and 
map to data manipulations, and further examination of how Sinton's theory 
applies to geographic questions. Development of default output formats 
requires a better understanding of what formats best answer what questions, 
and how the components of the question indicate the composition of the 
format.

Many have argued for the importance of cartographers in the GIS discipline. 
Given the current state of human/GIS communication, however, one might 
wonder at how involved cartographers have been to date; the cartographer's 
purported interest in communication has not apparently improved the state 
of affairs for GIS users. Until now, much of the harshness of the GIS 
environment could be attributed to the immaturity of hardware and software 
systems. But the raw materials do exist now to better the lot of GIS users 
considerably; it is our understanding of geographic questions and answers 
that lags behind.
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Abstract
Spatial reasoning is very important for cartography and GISs. Most known 
methods translate a spatial problem to an analytical formulation to solve 
quantitatively. This paper shows a method for formal, qualitative reasoning 
about cardinal directions. The problem addressed is how to deduce the 
direction from A to C, given the direction from A to B and B to C. It first 
analyzes the properties formal cardinal direction system should have. It 
then constructs an algebra with the direction symbols (e.g., {N, E, S, W}) 
and a combination operation which connects two directions. Two examples 
for such algebras are given, one formalizing the well-known triangular 
concept of directions (here called cone-shaped directions) and a projection- 
based concept. It is shown that completing the algebra to form a group by 
introducing an identity element to represent the direction from a point to 
itself simplifies reasoning and increases power. The results of the 
deductions for the two systems agree, but the projection bases system 
produces more 'Euclidean exact' results, in a sense defined in the paper.

1. Introduction
Humans reason in various ways and in various situations about space and 
spatial properties. The most common examples are navigational tasks in 
which me problem is to find a route between a given starting point and an 
end point. Many other examples, such as decisions about the location of a 
resource, which translates in a mundane household question like "where 
should the phone be placed?", or the major problem of locating a nuclear 
waste facility require spatial reasoning. Military applications using spatial 
reasoning for terrain analysis, route selection in terrain, and so on. (Piazza 
and Pessaro 1990) are frequent. Indeed, spatial reasoning is so widespread 
and common that it is often not recognized as a special case of reasoning.

Spatial reasoning is a major requirement for a comprehensive GIS and 
several research efforts are currently addressing this need (Abler 1987, p. 
306, NCGIA 1989, p. 125, Try and Benton 1988). It is important that a 
GIS can carry out spatial tasks, which include specific inferences based on

i Funding from NSF for the NCGIA under grant SES 88-10917, from 
Intergraph Corp. and Digital Equipment Corp. is gratefully 
acknowledged.
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spatial properties, in a manner similar to a human expert and that there are 
capabilities that explain the conclusions to users in terms they can follow 
(Try and Benton 1988, p. 10). In current GIS systems, such spatial 
reasoning tasks are most often formalized by translating the situation to 
Euclidean geometry then using an analytical treatment for finding a 
solution. This is admittedly not an appropriate model for human reasoning 
(Kuipers 1978, p. 143) and thus does not lead to acceptable explanations, 
but Euclidean geometry is a convenient and sometimes the only known 
model of space available for rigorous analytical approaches. A similar 
problem was found in physics, where the well known equations from the 
textbook were not usable to build expert systems. Using more qualitative 
than quantitative approaches, a formalization of the physical laws we use in 
our everyday lives was started, the so called 'naive physics' (Hayes 1985, 
Hobbs and Moore 1985, Weld and de Kleer 1990).

This paper addresses a small subset of spatial reasoning, namely qualitative 
reasoning with cardinal directions between point-like objects. We assume a 
2-dimensional space and exclude radial reference frames, as is customary 
in Hawaii (Bier 1976). We want to establish rules for inference from a set 
of directional data about some points to conclude other directional relations 
between these. We follow McDermott and Davis (1984, p. 107) in 
assuming that such basic capabilities are necessary for solving the more 
complex spatial reasoning problems. A previous paper with the terms 
'qualitative reasoning' in its title (Dutta 1990) is mostly based on analytical 
geometry. In contrast, our treatment is entirely qualitative and we use 
Euclidean geometry only as a source of intuition in Section 4 to determine 
the desirable properties of reasoning with cardinal directions.

Similarly, the important field of geographic reference frames in natural 
language (Mark, et al. 1987) has mostly been treated using an analytical 
geometry approach. Typically, spatial positions are expressed relative to 
positions of other objects. Examples occur in everyday speech in forms like 
"the church is west of the restaurant". In the past these descriptions were 
translated into Cartesian coordinate space and the mathematical 
formulations analyzed. A special problem is posed by the inherent 
uncertainties in these descriptions and the translation of uncertainty into an 
analytical format. McDermott and Davis (1984) introduced a method using 
'fuzz' and in (Dutta 1988) and (Dutta 1990) fuzzy logic (Zadeh 1974) is 
used to combine such approximately metric data.

The problem addressed in this paper, described in practical terms, is the 
following: In an unknown country, one is informed that the inhabitants use 
4 cardinal directions, by the names of 'al' "bes 1 'eel' and 'des', equally 
spaced around the compass. One also receives information of the type

Town Alix is al of Beta, Celag is eel of Diton, Beta is des of Diton,
Efag is eel of Beta, etc.

We show how one can assert that this is sufficient information to conclude 
that Alix is al of Efag.

Our concern is different from Peuquet (Peuquet and Zhan 1987), who gave 
'an algorithm to determine the directional relationship between arbitrarily- 
shaped polygons in the plane'. She started with two descriptions of the

149



shape of two objects given in coordinate space and determined the 
directional relationship (we say the cardinal direction) between the two 
objects. We are here concerned with several objects. Cardinal directions 
are given for some pairs of them and we are interested in the rules of 
inference that can be used to deduce others.

This paper lists a set of fundamental properties cardinal directions should 
have and defines what exact and approximate qualitative spatial reasoning 
means. It then gives two possible methods to construct a system of cardinal 
directions. They seem quite different, one based on a cone shaped or 
triangular area for a direction, the other based on projections, but they 
result in very similar conclusions. The projection based is slightly more 
powerful and easier to describe. The set of desirable properties are 
formally contradictory and contain some approximate rules, but these seem 
to pose more of a theoretical than a practical problem; however, clearly 
more research is necessary to clarify this point.

An approach that is entirely qualitative, and thus similar to the thrust in 
this paper, is the work on symbolic projections. It translates exact metric 
information (primarily about objects in pictures) in a qualitative form 
(Chang, et al. 1990, Chang, et al. 1987). The order in which objects 
appear, projected vertically and horizontally, is encoded in two strings, and 
spatial reasoning, especially spatial queries, are executed as fast substring 
searches (Chang, et al. 1988).

This work is part of a larger effort to understand how we describe and 
reason about space and spatial situations. Within the research initiative 2, 
'Languages of Spatial Relations' of the NCGIA (NCGIA 1989) a need for 
multiple formal descriptions of spatial reasoning both quantitative- 
analytical and qualitative became evident (Frank 1990, Frank and Mark 
1991, Mark and Frank 1990, Mark, et al. 1989). Terence Smith presented 
some simple examples during the specialist meeting .

"The direction relation NORTH. From the transitive property of 
NORTH one can conclude that if A is NORTH of B and B is NORTH 
of C then A must be NORTH of C as well (Mark, et al. 1989)"

The organization of this paper is as follows: In Section 2 we introduce the 
concept of qualitative reasoning and relate it to spatial reasoning using 
analytical geometry; we define 'Euclidean exact' qualitative reasoning 
based on a homomorphism. In the following section, we list the properties 
of cardinal directions and in Sections 4 and 5 we discuss two different 
systems for reasoning with directions and compare them. We conclude the 
paper with some suggestions for future research.

2. Qualitative approach

2.1. Qualitative reasoning
In this paper, we present a set of qualitative deduction rules for a subset of 
spatial reasoning, namely reasoning with cardinal directions. In qualitative 
reasoning a situation is characterized by variables which 'can only take a 
small, predetermined number of values' (de Kleer and Brown 1985, p. 
116) and the inference rules use these values and not numerical quantities
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approximating them. It is clear that the qualitative approach loses some 
information, but this may simplify reasoning. We assume that a set of 
propositions about the relative positions of objects in a plane is given and 
we have to deduce other spatial relationships (Dutta 1990, p. 351)

"Given: A set of objects (landmarks) and
A set of constraints on these objects.

To find: The induced spatial constraints".
The relations we are interested in are the directions, expressed as symbols 
representing the cardinal direction.

Without debating whether human reasoning follows the structure of 
prepositional logic, we understand that there is some evidence that human 
thinking is at least partially symbolic and qualitative (Kosslyn 1980, Lakoff 
1987, Pylyshyn 1981). Formal, qualitative spatial reasoning is crucial for 
the design of flexible methods to represent spatial knowledge in GIS and 
for constructing usable GIS expert systems (Buisson 1990, McDermott and 
Davis 1984). Spatial knowledge is currently seldom included in expert 
systems and is considered 'difficult' (Bobrow, et al. 1986, p.887).

In terms of the example given in the introduction, the following chain of 
reasoning deduces a direction from Alix to Efag:

1. Use 'Alix is al of Beta' and 'Efag is eel of Beta', two statements 
which establish a sequence of directions Alix - Beta - Efag.

2. Deduce 'Beta is al of Efag' from 'Efag is eel of Beta'
3. Use a concept of transitivity: 'Alix is al of Beta 1 and 'Beta is al of

Efag' thus conclude 'Alix is al of Efag'.
We shall formalize such rules and make them available for inclusion in an 
expert system.

2.2. Advantage of qualitative reasoning
A qualitative approach uses less precise data and therefore yields less 
precise results than a quantitative one. This is highly desirable (Kuipers 
1983, NCGIA 1989, p. 126), because

  precision is not always desirable, and
  precise, quantitative data is not always available.

Qualitative reasoning has the advantage that it can deal with imprecise data 
and need not translate it to a quantitative form. Verbal descriptions are 
typically not metrically precise, but are sufficient for finding the way to a 
friend's home, for example. Imprecise descriptions are necessary in query 
languages where one specifies some property that the requested data should 
have, for example a building about 3 miles from town. It is difficult to 
show this in a figure, because the figure is necessarily overly specify or 
very complex. Qualitative reasoning can also be used for query 
simplification to transform a query from the form in which it is posed to 
another, equivalent one that is easier to execute.
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A town

Figure 1: Overspecific visualization Figure 2: Complex visualization

In other cases, the available data is in qualitative form, most often text 
documents. For example, (Tobler and Wineberg 1971) tried to reconstruct 
spatial locations of historic places from scant descriptions in a few 
documents. Verbal information about locations of places can leave certain 
aspects imprecise and we should be able to simulate the way humans deduce 
information from such descriptions, (for example in order to automatically 
analyze descriptions of locations in natural science collections) 
(McGranaghan 1988, McGranaghan 1989, McGranaghan 1989).

2.3. Exact and approximate reasoning
We compare the result of a qualitative reasoning rule with the result we 
obtain by translating the data into analytical geometry and applying the 
equivalent functions to them. If the results are always the same, i.e., if we 
have a homomorphism, we call the qualitative rule Euclidean exact. If 
the qualitative rule produces results, at least for some data values, which 
are different from the ones obtained from analytical geometry, we call it 
Euclidean approximate.

I- !•
dir 

Figure 3: Homomorphism

This is a general definition, which applies to the operation to combine two 
directions and deduce the direction of the resultant (introduced in 4.3, see 
figure 5). We establish a mapping from analytical geometry to symbolic 
directions using a function dir (PI, P2), which maps from a pair of points 
in Euclidean space to a symbolic direction (e.g., west). Vector addition, 
with the regular properties is carried to (i.e., replaced with) the symbolic 
combination oo.

DEFINITION: a rule for qualitative reasoning on directions is called 
Euclidean exact (for short 'exact') if dir (Pi, P2) is a homomorphism 
(Figure 3).

dirCPi.Pi) oo dir (P2 , P3) = dir ((P,, P2) + (P2 , P3))
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2.4. Formalism used
Our method is algebraic (specifically, a relation algebra) and the objects we 
operate on are the direction symbols S for south, E for west, not the points 
in the plane. Arguments involving pairs of points, standing for line 
segments between them, are used only to justify the desirable properties we 
list.

An algebra consists of
  a set of symbols D, called the domain of the algebra - comparable to 

the concept of data type in computer programming languages (e.g., D 
= {N, E, W, S)

  a set of operations over D, comparable to functions in a computer 
program (primarily operations to reverse and to combine directions), 
and

  a set of axioms that set forth the basic rules explaining what the 
operations do (Gill 1976, p. 94).

Specifically, we write (Pi, P2) for the line segment from PI to P2, and dir 
(Pi,Pa) = di for the operation that determines the direction between two 
points PI and P2, with di the direction from P! to P2 expressed as one of 
the cardinal direction symbols.

3. General properties of directions between points
We are interested in two types of operations applicable to direction:

  the reversing of the order of the points and thus the direction of the 
line segment (the inverse operation), and

  the combination of two directions between two pairs of consecutive 
points (the combination operation).

Using geometric figures and conclusions from manipulations of line 
segments, we deduce here properties of these two operations. These 
properties form then the basis for the qualitative reasoning systems defined 
in the next two sections.

We define direction as a function between two points in the plane that maps 
to a symbolic direction:

dir: p x p -> D.
The symbols available for describing the direction depend on the specific 
system of directions used, e.g., {N, E, S, W} or more extensive {N, NE, 
E,SE, S, SW,W, NW).

In the literature, it is often assumed that the two points must not be the 
same, i.e., the direction from a point to itself is not defined. We introduce 
a special symbol, which means 'two points too close that a meaningful 
direction can be determined', and call it the identity element 0. This makes 
the function total (i.e., it has a result for all values of its arguments),

for all P dir(P, P) = 0. 
3.1. Reversing direction
Cardinal directions depend on the order in which one travels from one 
point to the other. If a direction is given for a line segment between points
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PI and P2, we need to be able to deduce the direction from P2 to PI (Figure 
4). Already (Peuquet and Zhan 1987) and (Freeman 1975) have stressed 
the importance of this operation: "Each direction is coupled with a 
semantic inverse". We call this 'inverse' (this name will be justified in 
4.3.5) written as 'inv' .

inv: d -> d such that inv (dir (P^ P2)) = dir (P2 , PI) 
and

inv (inv (d)) = d because inv (inv (P1,P2)) = inv (P2 , PI) = 
(P1,P2).

P2
"^

P3 
P1 

Figure 5: Combination

3.2. Combination
Two directions between two contiguous line segments can be combined into 
a single one. The combination operation is defined such that the end point 
of the first direction is the start point of the second.

comb : d x d -> d , always written in infix format: di    d2 = da 
with the meaning:

dir (Pi,P2)  o dir (P2 , P3) = dir (Plt P3).
This operation is not commutative, but is associative, and has an identity 
and an inverse.

Combinations of more than two directions should be independent of the 
order in which they are combined (associative law) and we need not use 
parenthesis:

aoo(booc) = (a  b)  c = a ob oc (associative law) 
This rule follows immediately from Figure 6 or from the definition of 
combination:

dir (P t , P2) oo ( dir (P2, P3 )    dir (P3 ,P4)) =
dir (P,, P2) oo dir (P2 , P4) = dir (P,, P4).
( dir (Pi, P2) oo dir (P2, P3)) oo dir (P3 ,P4) =
dir (P,, P3) oo dir (P3 , P4) = dir (P t , P4).

P3

P1
Figure 6: Associativity
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The definition of an identity element states that adding the direction from a 
point to itself, dir (Pi,PI) to any other direction should not change it.

doo() = 0ood = dfor any d.
In algebra, an inverse to a binary operation is defined such that a value 
combined with its inverse, results in the identity value. From Figure 4 it 
follows that this is just the inverses of the given line segment:

dir (Pi, P2) oo dir (P2 , P,) = dir (P l5 P,). 
In case that two line segments are selected as in Figure 7, such that

dir (Pi, P2) = d! and dir (P2 , P3) = d2 = inv (dj) 
computing the combination

dir (Pi, P2) oo dir (P2 , P3 ) = di    inv (di) = 0
is an approximation and not Euclidean exact. The degree of error depends 
on the definition of 0 used and the difference in the size of the line 
segments - if they are the same, the inference rule is exact.

This represents a type of reasoning like New York is east of San Francisco, 
San Francisco is west of Philadelphia; thus the direction from New York to 
Philadelphia is 'too close' in this reference frame to determine a direction 
different from 'the same point' (which is defined here as an additional 
element of the possible values for a cardinal direction).

• P2

Figure 7: d    inv (d) 

We find that this combination is 'piece-wise' invertable:
inv ( a oo b) = inv (a) oo inv (b).

Combinations of directions must have the special property that combining 
two line segments with the same direction results in the same direction. In a 
relation-oriented approach, this is a transitivity rule (as quoted in the 
introduction).

dir (P,, P2) = dir (P2 , P3 ) = d then dir (Pt , P3) = d
or short: d °° d = d, for any d.

3.3. Summary of Properties of Cardinal Directions
The basic rules for cardinal directions and the operations of inverse and 
combination are:

  The combination operation is associative (I 1 ).
  The direction between a point and itself is a special symbol 0, called 

identity (1) (2')
  The direction between a point and another is the inverse of the 

direction between the other point and the first (2) (3').
  Combining two equal directions results in the same direction 

(idempotent, transitivity for direction relation) (3).
  The combination can be inverted (4).
  Combination is piece-wise invertible (5).
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dir(Pi,PO = 0 (1) d o(dood) = (d od)ood (I 1 ) 
dir (?!, P2) = inv (dir (P2 , PI)) (2) dooO = 0  d = d (2 1 ) 
d  d = d (3) dooinv(d) = 
for any a, b in D exist unique x in D

such that
a oo x = b and x oo a = b (4) 

inv (a oo b) = inv (a) oo inv (b) (5)

Properties of direction Group properties
Several of the properties of directions are similar to properties of algebraic 

groups or follow immediately from them. Unfortunately, the idempotent 
property (transitivity for direction relation) (3) is in contradiction with the 
remaining postulates, especially the definition of identity (3'). Searching for 
an inverse x for any d oo x = 0, we find x = d (using (3)) or x = 0 (using 3'), 
which contradicts the uniqueness of x (4). It is thus impossible to construct a 
system which fulfills all requirements at the same time. Human reasoning 
seems not to insist on associativity.

4. Cardinal directions as cones
The most often used, prototypical concept of cardinal directions is related 
to the angular direction between the observer's position and a destination 
point. This direction is rounded to the next established cardinal direction. 
The compass is usually divided into 4 major cardinal directions, often with 
subdivisions for a total of 8 or more directions. This results in cone shaped 
areas for which a symbolic direction is applicable. We limit the 
investigation here to the case of 4 and 8 directions. This model of cardinal 
direction has the property that 'the area of acceptance for any given 
direction increases with distance1 (Peuquet and Zhan 1987, p. 66) (with 
additional references) and is sometimes called 'triangular'.

4.1. Definitions with 4 directional symbols
We define 4 cardinal directions as cones, such that for every line segment, 
exactly one direction from the set of North, East, South or West applies.

for every PI, P2 (Pi * P2) exist d (Pi, P2) with d in D4 ={N, S, E, 
W}.

South 

Figure 8: Cone-shaped directions

An obvious operation on these directions is a quarter-turn, anti-clock-wise 
(mathematically positive) q, such that >

q: d -> d, with q(N) = E, q(E) = S, q(S) = W, q (W) = N

156



and four quarter turns are an identity:
q (q (q (q (d))))= q< (d) = d. 

Reversing a direction is equal to 2 quarter turns (or one half turn)
inv (d) = q2 (d).

Finally, we just define the combination of two directions, such that 
transitivity holds

d ood = d 
but every other combination remains undefined.

These definitions would fulfill the requirements for the direction except 
that we did not define a symbol for identity. Very few combinations of 
symbols produce results.

4.2. Completion with identity
Introducing an identity element, we eliminate the restriction in the input 
values for the direction function

for every PI, P2 exist d (Plf P2) with d in D5 = {N, S, E, W, 0}. 
A quarter turn on the identity element 0 is 0

q(0)=0 
and thus

inv ( 0 ) = 0 from q(q(0)) = q (0) = 0
dooO = 0«>d = d from group properties
0 oo 0 = 0 from d oo d = d.

The inverse must further have the property that a direction combined with 
its inverse is 0

d oo inv (d) = 0.
These definitions contain the previously listed ones as subset D4 (not 
subgroup, because identity is not in the subset). Both the set D5 and the 
subset IXj is closed under the operations 'inverse' and 'combination'.

From the total of 25 different combinations, one can only infer 13 cases 
exact and 4 approximate; other combinations do not yield an inference 
result with these rules. Summarized in a table (lower case indicate 
approximate reasoning):

N 
E 
S 
W 
0

N
N 

o 

N

E

E

o 
E

S
o 

S 

S

W

0

W 
W

0
N 
E 
S 
W 
0

4.3. Directions in 8 or more cones
One may use a set of 8 cardinal directions D9 = {N, NE, E, SE, S, SW, W, 
NW, 0}, using exactly the same formulae. In lieu of a quarter turn, we 
define a turn of an eighth:
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e (N) = NE, e (NE) = E, e (E) = SE, .... , e (NW) = N, e (0) = 0 
with 8 eighth turns being the identity

e8 (d) = d 
and inverse now equal to 4 eighth turns

inv (d) = e4 (d).
All the rules about combination of direction, etc., remain the same and one 
can also form a subset {N, NE, E, SE, S, SW, W, NW} without 0.
An approximate averaging rule combines two directions that are each one 
eighth off. For example, SW combined with SE should result in S, or N 
combined with E should result in NE.

e (d) oo _e (d) = d
with -e (d) = e7 (d), or one eight turn in the other direction) 

One could also assume that if two directions are combined that are just one 
eights turn apart, one selects one of the two (S combined with SE results in 
S, N combined with NW results in NW).

e(d) oo d = d and d    e(d) = d 
Human beings would probably round to the simple directions N, E, W, S, 
but formalizing is easier if preference is given to the direction which is 
second in the turning direction. This is another rule of approximate 
reasoning.

This rule can then be combined with other rules, for example to yield 
(approximate)

e(d) oo inv d = 0 and e(d) oo e (inv (d)) = 0.
In this system, from all the 81 pairs of values (64 for the subset without 0) 
combinations can be inferred, but most of them only approximately. Only 
24 cases (8 for the subset) can be inferred exactly; 25 result in a value of 0 
and another 32 give approximate results. We can write it as a table, where 
lower case denotes Euclidean approximate inferences:

N
NE
E
SE
S
SW
W
NW
0

N
N
n
ne
0

o
0

nw
n
N

NE
n
NE
ne
e
o
o
o
n
NE

E
ne
ne
E
e
se
0

o
o
E

SE
0

e
e
SE
se
s
o
o
SE

S
o
o
se
se
S
s
SW

0

S

SW
0
0

0

s
s
SW
SW

W

SW

W
nw
o
o
o
SW

SW

W
W

W

NW
n
N
o
0

o
W

W

NW
NW

0
N
NE
E
SE
S
SW
W
N-W
0

5. Cardinal directions defined by projections

5.1. Directions in 4 half-planes
Four directions can be defined, such that they are pair-wise opposites and 
each pair divides the plane into two half-plains. The direction operation 
assigns for each pair of points a combination of two directions, e.g., South
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and East, for a total of 4 different directions. This is an alternative 
semantic for the cardinal direction, which can be related to Jackendoff s 
principles of centrality, necessity and typicality (Jackendoff 1983, p. 121). 
Peuquet pointed out that directions defined by half-planes are related to the 
necessary conditions, whereas the cone-shaped directions give the typical 
condition (Mark, et al. 1989, p. 24).

North
West

South

NW
East

SW

NE

SE
Figure 9: Two sets of half-planes Figure 10: Directions defined by half-planes

Another justification for this type of reasoning is found in the structure 
geographic longitude and latitude imposes on the globe. Cone directions 
better represent the direction of 'going toward', whereas the 'half-plane1 
(or equivalent parts of the globe) better represents the relative position of 
points on the earth. However, the two coincide most of the time. To reach 
an object which is northhaif-piane on the globe one has to go northco^.

For half-plane directions, one defines the cardinal directions as different 
from each other and E - W and N - S pair-wise inverse (Peuquet and Zhan 
1987, p. 66). In this system, the two projections can be dealt with 
individually. Each of them has the exact same structure and we describe 
first one case separately and then show how it combines with the other.

The N-S case, considered the prototype for the two cases E-W and N-S has 
the following axioms:

for every P,, P2 (P, * P2) dirns (P,, P2)= dns with dns in {N,S} 
The inverse operation is defined such that inv (inv (d)) = d holds:

inv (N) = S, inv (S)= N.
Next we define the combination of two directions, such that transitivity 
holds:

for all d in {N,S} d  o d = d (which is N    N = N, S    S = S) 
We now combine the two projections in N-S and E-W to form a single 
system, in which we have for each line segment one of 4 combinations of 
directions assigned.

D4 = { NE, NW, SE, SW}
We label the projection operations by the directions they include (not the 
direction of the projection):

pns : d4 -> dns , dns in {N, S}
pew :d4->dew, dew in {E, W} 

and a composition operation
c: dns x dew -> d9 such that c ( pns (d), pew (d)) = d. 

The rules for dew are the same as for dns explained above, replacing N by E 
and S by W:
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inv (E) = W, inv (W) = E
E    E = E, W o\V = W. 

The inverse operation is defined as the inverse applied to each projection:
inv (d) = c (inv (d^), inv (dew)) 

and combination is similarly defined as combination of each projection
dl oo d2 = C (dns (dl) oo dns (d2), dew (dl) oo dew (d2)).

Unfortunately, combination is defined only for the four cases
NE oo NE = NE NW oo NW = NW
SE oo SE = SE SW oo SW = SW 

and others, like
NEooNW

which should approximately result in N, cannot be computed. This system, 
lacking an identity, is not very powerful, as only 4 of the 16 combinations 
can be inferred.

5.2. Directions with neutral zone
We can define the directions such that points which are near to due north 
(or west, east, south) are not assigned a second direction, i.e., one does not 
decide if such a point is more east or west. This results in a division of the 
plane into 9 regions, a central neutral area, four regions where only one 
direction letter applies and 4 regions where two are used.We define for N- 
S three values for direction dns {N, P, S} and for the E - W direction the 
values dew {E, Q, W}.

NW

W

SW

NE

SE
Figure 11: Directions with neutral zone

It is important to note, that there is no determination of the width of the 
'neutral zone' made. Its size is effectively decided when the directional 
values are assigned and a decision is made that P2 is north (not north-west 
or north-east) of PI. We only assume that these decisions are consistently 
made. Similar arguments apply to the neutral zone of cone shaped 
directions, but they are not as important.

Allowing a neutral zone, either for the cone or projection based directions 
introduces an aspect of 'tolerance geometry'. Strictly, whenever we assign 
identity direction dir (Pi, P2) = 0 for cases where PI * P2 we violate the 
transitivity assumption of equality.

dir (Plf P2) = 0 and dir (Pi, P3 ) = 0 need not imply dir (P2 , P3 ) = 0 
A tolerance space (Zeeman 1962) is mathematically defined as a set (in this 
case the points P) and a tolerance relation. The tolerance relation relates 
objects which are close, i.e., tol (A, B) can be read A is sufficiently close to 
B that we can or need not differentiate between them. A tolerance relation
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is similar to an equality, except that it admits small differences. It is 
reflexive and symmetric, but not transitive (as an equality would be)

tol (A, B)
tol (A, B) = tol (B, A). 

A tolerance relation can be applied to geometric problems (Robert 1973).
Using the same methods as in 5.1 for the definition of the operations in 
each projection first and then combine them, we find for the inverse 
operation the following table:

d= NE N NW E WO SE S SW 
inv(d)= SW S SE W E 0 NW N NE 

The combination operation, again defined as the combination of each 
projection, allows one to compute values for each combination. Written as 
a table (again, lower case indicates approximate reasoning):

N
NE
E
SE
S
SW
W
NW
0

N
N
NE
NE
e
o
w
NW
NW
N

NE
NE
NE
NE
e
e
o
n
n
NE

E
NE
NE
E
SE
SE
s
o
n
E

SE
e
e
SE
SE
SE
s
s
o
SE

S
o
e
SE
SE
S
SW
SW
w
S

SW
w
o
s
s
SW
SW
SW
w
SW

W
NW
n
o
s
SW
SW
w
NW
W

NW
NW
n
n
o
w
w
NW
NW
NW

0
N
NE
E
SE
S
SW
W
NW
0

The system is not associative, as
(N oo N) oo S = N oo S = 0 but N oo (N oo S) = N oo N = N. 

In the half-plane based system of directions with a neutral zone, we can 
deduce a value for all input values for the combination operation (81 total), 
56 cases are exact reasoning, not resulting in 0, 9 cases yield a value of 0, 
and another 16 cases are approximate.

6. Assessment
The power of the two systems which lack an identity element, the 4 
direction cone-shaped and the 4 half-plane directional system, is very 
limited; most combinations cannot be resolved. The two systems with 8 
direction and identity, the 8 direction cone-shaped and the 4 projection 
based directional system, are comparable. Each system uses 9 directional 
symbols, 8 cone directions plus identity on one hand, the Cartesian product 
of 3 values (2 directional symbols and 1 identity symbol) for each 
projection on the other hand. The reasoning process in the half-plane based 
system uses fewer rules, as each projection is handled separately with only 
two rules. The cone-shaped system uses two additional approximate rules 
which are then combined with the other ones. An actual implementation 
would probably use a table look-up for all combinations and this would not 
make a difference.
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Both systems violate some of the desired properties. One can easily observe 
that associativity is not guaranteed, but the differences seem to not be very 
significant.

An implementation of these rules and comparison of the computed 
combinations with the exact value was done and confirms the theoretical 
results. Comparing all possible 106 combinations in a grid of 10 by 10 
points (with a neutral zone of 3 for the projection based directions) shows 
that the results for the projection based directions are correct in 50% of the 
cases and in only 25% for cone-shaped directions. The result 0 is the 
outcome of 18% of all cases for the projection based, but 61% for the 
cone-shaped directions. The direction-based system with an extended 
neutral zone produces a result in 2% of all cases that is a quarter turn off, 
otherwise the deviation from the correct result is never more than one 
eighth of a turn (namely in 13% of all cases for cone-shaped and 26% for 
projection based direction systems). In summary, the projection based 
system of directions produces a result in 80% of all cases that is within 45  
and otherwise the value 0.

7. Conclusions
This paper introduces a system for inference rules for completely 
symbolic, qualitative spatial reasoning with cardinal distances. We have 
first stressed the need for symbolic, qualitative reasoning for spatial 
problems. It is important to construct inference systems which do not rely 
on quantitative methods and need not translate the problem to analytical 
geometry, as most of the past work did. The systems investigated are 
capable of resolving any combination of directional inference using a few 
rules. Returning to our example in the introduction, we cannot only assert 
that Alix is al of Efag, but also that Alix is al-des from Diton and Celag, 
etc.
We used geometric intuition and the definition of a direction as linking two 
points. From this we deduced a number of desirable properties for a 
system to deal with cardinal directions. We use an algebraic approach and 
define two operations, namely inverse and combination. We found several 
properties, e.g.,

- the direction from a point to itself is a special value, meaning 'too 
close to determine a direction'

- every direction has an inverse, namely the direction from the end 
point to the start point of the line segment

- the combination of two line segments with the same direction result in 
a line segment with the same direction.

We defined the notion of 'Euclidean exact' and 'Euclidean approximate' as 
properties of a qualitative spatial reasoning system. A deduction rule is 
called 'Euclidean exact' if it produces the same results as Euclidean 
geometry operations would.

We then investigated two system for cardinal directions, both fulfilling the 
requirements for directions. One is based on cone-shaped (or triangular) 
directions, the other deals with directions in two orthogonal projections.
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Both systems, if dealing with 4 cardinal directions, are very limited and 
when dealing with 8 directions, still weak. The introduction of the identity 
element simplifies the reasoning rules in both cases and increases the power 
for both cone and projection based directional systems. The deductions in 
this section use only the algebraic properties and does not rely on 
geometric intuition or properties of line segments.

Both systems yield results for all the 81 different inputs for the 
combination operation. But the projection based system more often yields 
an Euclidean exact result than the cone based one (49 vs. 25 cases). It also 
produces the value 0 less often (9 vs. 25 cases).

Another important result is that the two systems do not differ substantially 
in their conclusions, if definite conclusions can be drawn, i.e., not the value 
0. This reduces the potential for testing with human subjects to find out 
which system they use, observing cases where the conclusion to use one or 
the other line of reasoning would yield different results.

We have implemented these deduction rules and compared the results 
obtained for all combinations in a regular grid. The projection based 
system results in 53% of all cases in exact results and in another 26% in 
results which are not more than 45  off. In 18% of all cases the application 
of the rules yields a value of 0. The results for the cone-shaped directions 
are less accurate. It will be interesting to see how this accuracy compares 
with human performance but also if it is sufficient for expert systems and 
for query and search optimization. The methods shown here can be used to 
quickly assess if the combination of two directions yields a value that falls 
within some limits and thus a more accurate and slower computation should 
be done.

There is not much previous work on qualitative spatial reasoning and 
several different directions for work remain open:

- Qualitative reasoning using distances,
- Combining reasoning with distances and directions,
- Hierarchical system for qualitative reasoning,
- Directions of extended objects, and
- Reasoning systems, human beings use.

Qualitative reasoning using distances - There is a good, 
mathematically based definition for distance measures expressed as real 
numbers. This can probably be carried over to qualitative distance 
expression, e.g., {Near, Far} or {Near, Intermediate and Far}, and rules 
for symbolic combinations similar to the one listed here deduced.

Combining reasoning with distances and directions - Combining 
the reasoning with directions and distances can be more than just 
combining two orthogonal systems; there are certainly interesting 
interactions between them (Hemandez 1990). Most of the approximate 
reasoning rules are based on the assumption that the distances between the 
points discussed are about equal. This is not as unreasonable as it may 
sound, as directional reasoning is probably more often carried out 
regarding objects of the same import and thus at about the same distance.
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Nevertheless, it is a weak assumption and further work should approach 
spatial reasoning on distances and then combine the two.

Hierarchical systems for qualitative reasoning - A system for 
reasoning with distances differentiating only two or three steps of farness is 
quite limited. Depending on the circumstances a distance appears far or 
near compared to others. One could thus construct a system of 
hierarchically nested neighborhoods, wherein all points are about equally 
spaced. Such a system can be formalized and may quite adequately explain 
some forms of human spatial reasoning.

Distances and directions of extended objects - The discussion in this 
paper dealt exclusively with point-like objects. This is a severe limitation 
and avoided the difficult problem of explaining distances between extended 
objects. Peuquet in (Peuquet and Zhan 1987) tried to find an algorithm that 
gives the same result than Visual inspection'; however, visual inspection 
does not yield consistent results. It might be useful to see if sound rules, 
like the above developed ones, may be used to resolve some of the 
ambiguities.

What system of qualitative reasoning do humans use? - We can
also ask, which one of the systems proposed humans use. For this, one has 
to see in which cases different systems produce different results and then 
test human subjects to see which one they employ. This may be difficult for 
the cone and projection based direction system, as their deduction results 
are very similar. Care must be applied to control for the area of 
application, as we suspect that different types of problems suggest different 
types of spatial reasoning.
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Abstract

Current GIS technology tends to impede problem-solving for 
many of its users and is difficult for vendors to develop and 
support. Why this may be the case and what might be done about it 
is explored in this paper. Three problems shared by most 
commercial GIS' are identified and examined: inadequate data 
models; inferior application development tools; insufficient on-line 
expertise. It is argued that each factor inhibits robust spatial 
analysis, and limits the usability of analytic and cartographic GIS 
outputs. Suggestions based on recent research directions and 
emerging software engineering practices are given for addressing 
deficiencies in these three realms. Certain properties of and 
synergies among data models, application toolkits and expert 
systems are explored as keys to improving data and knowledge 
management, user interaction and spatial analysis in geographic 
information systems.

Introduction

Geographic Information Systems (GIS) are a protean 
emerging technology involving many primary data sources 
(spatially sampled measurements of the natural and human 
environment, surveying and photogrammetric data, digitized maps 
and remotely-sensed images), diverse data structures (points, 
polygons, networks, rasters, quad - or whatever - trees), complex 
databases (geometric, topological, attribute and metadata, 
relational, hierarchical, distributed and hypermedia), evolving 
analytic methods (network and surface synthesis and analysis, 
feature extraction, spatial overlay, temporal change and other 
attribute analysis), high-quality cartography (2+D rendering, what- 
if graphics, engineering plans, thematic maps) and high sensitivity 
to data quality (positional accuracy, feature coding, resolution and 
scale effects, and spatial/temporal aliasing). GIS emerged from 
laboratory gestation in the mid-1980's to confront an explosion of 
environmental challenges and applications. But while computing 
hardware capable of manipulating complex spatial data is 
increasingly within the reach of users, GIS developers do not
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completely agree about how spatial software should best be built, 
spatial data structured, applications wrought and spatial analysis 
conducted. This is in part due to a lack of high-level tools, but also 
is a consequence of relying upon low-level constructs that are 
proving increasingly inadequate. Twenty-five years of GIS progress 
should not prevent us from re-evaluating our basic assumptions 
and prevailing models. Doing this might broaden our perspectives 
and invigorate our technology.

Solving spatial problems

GIS evolved from early attempts to conduct spatial analysis 
using digital cartographic data in vector and raster form. Success 
has always been limited by the amount of information encoded into 
cartographic databases. Sets of points, lines and polygons, while 
fully defining entities in a "geographic matrix" (Berry, 1964), fail to 
model spatial relationships among them. To such descriptions 
topology has been added (Corbett, 1977), defining how 
cartographic entities connect to one another. Other, potentially 
valuable capabilities not now in use have been proposed: data 
quality documentation (Chrisman, 1984); global hierarchical spatial 
indexing (Dutton, 1989; Goodchild and Yang, 1989; Fekete, 1990); 
temporal data management (Langran, 1989). While these 
approaches could be incorporated into existing systems, the effort 
and cost required would be formidable; a new generation of 
software may be needed instead.

In any case, alternatives to current spatial data models are 
already needed. In the author's view, if academia and industry are 
to meet the challenge of supporting global environmental science, 
developers will have to retool GIS databases at a rather basic 
level. This is because so many of the "coverages", "partitions" and 
"projects" by which GIS's administrate databases are modeled as 
planar, cartesian chunks of the world, represented as maps. 
Although many systems can perform transformations between 
projections and into latitude and longitude, this is usually only done 
to "register" coverages by mapping coordinates into a preferred 
planar projection. Certain special-purpose and in-house GIS's store 
spherical coordinates in their databases, and thus are in principle 
capable of working on a global scale. But the mathematics involved 
in manipulating such data can be costly, and the ambiguities 
inherent in attempting to positively identify points and their loci 
will continue to confound applications, especially when data quality 
information is lacking or goes unused.

Despite the fact that most vendors heavily promote "solutions" 
(sets of niche applications) GIS isn't really the sum of vertical 
markets; it's a technical infrastructure (like DBMS) upon which
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applications may be erected. While different applications of spatial 
data have unique if not conflicting analytical requirements (what 
methods do crop assessment and network analysis have in 
common, for example), their implementation usually insures that 
their data will remain incompatible. It may be that geographic data 
deserves support at the system level, commensurate to the facilities 
hardware vendors now provide for manipulating text, numbers, 
tables, images, abstract datatypes and user interfaces. Given 
sufficiently capable data structures, methodologies, and advice 
packaged in forms accessible to end-users, more robust and 
specialized GIS applications could be generated more easily; these 
would effectively combine known spatial analytic and cartographic 
methods with canonical ways of storing, retrieving and 
manipulating spatial data, guided by facts about data domains and 
rules that apply to them.

Solutions beget problems

In a recent paper describing a systems-level architecture for 
supporting use of hypertext within and across diverse applications, 
Kacmar (1989) identifies several problems that existing hypertext 
implementations exacerbate:

Current hypertext systems have attempted to a provide an all-inclusive 
work environment for the user. However, few systems have been able to 
realize this goal. Thus, users are required to utilize several applications 
for their activities and must enter and exit applications in order to 
accomplish specific tasks. The hypertext system becomes yet another 
application and other user interface mechanism which must be learned 
and used. (Kacmar, 1989, p. 98)

One can substitute "GIS" for "hypertext system" in this text 
without changing its sense, just its context. In contrast to hypertext 
authors, however, GIS users must be more than casually aware of 
the nature of the database and .data structures their systems 
manipulate, due to the various special properties of spatial entities 
that they model (hypertext data mainly consists of text fields linked 
as a semantic net having abstract, user-imposed and self-specified 
"spatial" relationships). That is, while all the semantics of a 
hypertext database are user-specified, much of the semantics of 
spatial information is given or constrained by physical laws, 
common law, administrative regulations, data structures and 
measurement theory. When a GIS is used to model spatial 
semantics, the ways in which rules are applied and information is 
communicated to users tend to vary greatly in completeness, 
consistency and complexity.

When enhancing their systems, GIS vendors tend to maintain 
compatibility with earlier versions (to safeguard users'
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investments), even though it might be technically advisable to 
radically redesign applications. One result is that new commands 
or modules tend to be added on top of or alongside of existing 
ones; this can steepen the learning curve for affected applications, 
and still not assure that the tools provided will serve users' 
purposes. Only highly-motivated users may exercise the more 
complex applications and options, often to discover that useful 
features or parameters in enhanced applications aren't available in 
other, related contexts. As GIS data grows more complete and 
complex (that is, as systems incorporate more information about 
spatial semantics), the "span of control" confronting users will also 
increase, and vendors will have to work hard to make systems 
uniformly and consistently usable. This will be necessary regardless 
of what type of user interface is involved (command lines, menus, 
direct manipulation, hypermedia).

Problems (sort of) fade away

Like hypertext, GIS is not yet a mature technology. This should 
not, however, be used as an excuse for perpetuating difficulties 
involved in learning and applying GIS. Cooke (1989) argues that 
we are about to enter the "post-GIS era", in which the bulk of data 
capture activities will have already been accomplished or become 
relatively automated. In such a milieu, our attention will naturally 
turn toward modeling and analyzing spatial phenomena; much of 
the output from GIS will be non-graphic (such as inventories of 
property, estimations of resource acquisition and operating costs, 
environmental status of specified areas, or the address of the 
nearest elementary school), and users will demand error reports, 
confidence limits and sensitivity analyses for data they analyze. 
They will also need assistance in browsing through ever-larger 
spatial inventories, in formulating queries to extract data relevant 
to their purposes and in specifying the steps necessary to perform 
particular analyses. Still, progress will inevitably occur, in Cooke's 
view, leading to a flourishing of environmental applications:
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Technical issues of digitizing, coordinate conversion, map-edge 
matching and topological editing will fade into history. We finally will 
be able to turn our creative energies to solving real problems, of which 
we have plenty. Pollution, ozone depletion, the greenhouse effect, all 
are exacerbated by the inefficient logistical operations resulting in 
unnecessarily burning fossil fuel. (Cooke, 1989, p. 55)

But will data maintenance tasks and data quality problems 
ever fade away, and if so, what will cause this to happen? Major 
users of GIS and CADD, such as local governments, seem unable 
to keep up with the pace of change in their jurisdictions, and it is 
hard to imagine that their digitizing activity will ever cease. New 
versions of TIGER and other base files will be issued, but it may 
never become trivial to integrate them with an organization's 
database. It seems apparent that spatial data is not going to get 
easier to handle just because it is growing more complete and 
accurate, and can be obtained in digital form, even though much 
drudgery may be eliminated for users. Integrating spatial data isn't 
inherently difficult; it has been made difficult by a plethora of local 
coordinate systems, differing (and inadequate) data models and 
data structures, primitive data interchange standards, insufficient 
data quality information and a disinclination to use it. 
Metaphorically speaking, we have built a maze of datatypes, tools, 
techniques and topology, and are getting frustrated because we 
can't find our way out. Perhaps a good sales slogan for our 
industry would be "Lose yourself in GIS (it's easy)!"

Retooling GIS

To save GIS from crippling itself and to help users meet the 
challenges that their work presents, GIS researchers and 
developers need to take a critical look at the factors that limit the 
effectiveness, reliability and usability of current technology. In the 
author's view, such reexaminations should focus on three problem 
,areas, which seem to map to three scales of software engineering 
and involve three groups of actors. These key problem areas, or 
realms, are:

1. Data models; How spatial data is represented for computation
2. Application toolkits; Better ways of constructing custom software
3. On-line expertise. Access to knowledge about data and methodology

Table 1 describes an operational context for these realms.
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Table 1 

Three Critical Realms of GIS Technology and Application

REALM SCALE ACTORS CURRENT PROBLEMS

Data models Micro Researchers Need to improve, standardize
Application toolkits Meso Developers More flexible, customizable
On-line expertise Macro Users et al Better help, reports, advice

"Scale" refers to the extent of software modules that reify the 
realms (e.g., functions, libraries, subsystems). "Actors" are those 
professionals who are most central to implementing the realms. As 
many GIS professionals have played all the above roles at one time 
or another, they should be aware of the impact of each of the 
realms on actors' activities. This is not to exclude the effects of 
related topics (such as object-oriented software, numerical 
algorithms, hypermedia and user interface design) on the state of 
the art. But these and other realms are receiving attention not only 
in the GIS community but in software engineering in general. The 
three realms listed in Table 1 pose direct challenges to GIS, and 
will have to be addressed by both our industrial and research 
enterprises.

Data Models

Most GIS employ data models (the conceptual organization 
used for spatial and aspatial data) inherited from computer 
cartography, CADD and civil engineering, image processing and 
management information systems. They tend to be, as Cooke (1989) 
points out, based on the "map-as-graphic" paradigm rather than 
"map-as-database". The variety of data models (e.g., image, object, 
network, layer) and many variations in the data structures used to 
implement them (arc-node, grids, quadtrees, TINS) has led to 
difficulties in comparing and exchanging datasets, even when 
"standard" interchange formats are used; some relationships may 
not be encodable, hence are lost, unless they are later reconstructed 
  often at great expense. It has also bred a somewhat cavalier 
attitude that encourages incompatible data structures to coexist, 
even within the same database. Thus, the decades-old "vector v. 
raster" debate, having never been resolved, has been made moot by 
concessions that each structure has unique strengths; as one may 
always be converted to the other, there is no need to make a choice 
other than for tactical expedience.

While vector- and raster-encoded spatial data may in some 
sense be equally good (both are certainly useful), they can also be 
considered to be equally bad. Raster files tend to be bulky, 
unstructured and insensitive to variations in data density. Vector 
data structures can be cryptic and complex to manipulate, and
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often fail to express variations in data quality. Both models tend to 
ignore or filter out important aspects of spatial structure in 
abstracting geographic data. To compensate for these losses, 
ingenious and sophisticated methods have been built into GIS's: 
"fuzzy overlay", "rubber-sheeting", and resampling and filtering in 
both the spatial and spectral domains. But rarely are the 
tribulations that these methods are designed to overcome traced 
back to their source: loss of information in exchanging, digitizing 
and scanning maps and images due to impoverished data models.

Remote sensing technology has succeeded in recovering 
remarkably useful data from rather imperfect platforms, and has 
developed a canon of tools and techniques for correcting geometric 
and radiometric errors and finding structure in image data, often 
implemented as black-box functions which are tricky to integrate 
and easy to misuse.1 Cartographic digitizing methods have also 
improved, especially in terms of avoiding, identifying or 
compensating for operator blunders and errors (White and Corson- 
Rikert, 1987). Most GIS's still express the quality of digitized data 
rather simplistically, relying on a few global parameters (such as 
U.S. map accuracy standards express), which fail to express local 
variations in spatial uncertainty inherent to the phenomena being 
captured. Even if this information were to be provided, prevailing 
GIS data models tend to have no place to put it, and their analytic 
procedures generally make little use of data quality information in 
their deliberations.

This state of affairs represents an ironic twist of autocarto 
evangelism2 : After SYMAP and other software enabled digital 
thematic mapping, a lot of effort went into explaining to 
cartographers what polygons were, and this eventually instilled in 
them an abiding attachment to coordinates, which for awhile they 
resisted, then embraced just around the time they were told that 
polygons weren't enough, and they needed to learn about topology. 
After DIME (A.D.) embedded map networks in a rigorous 
mathematical framework (Cooke and Maxfield, 1967), it seemed 
for awhile that topology would solve most spatial data-handling 
problems, because coverages could now be verified to be complete 
and correct. The naivete of this presumption was made evident by 
the advent of GIS; as soon as analysts began to merge and overlay

1 Beard (1989) identifies use error as the "neglected error component" in GIS 
applications. While human error is difficult to quantify, it seems apparent 
that the more commands, options and parameters that a user confronts at a 
given moment, the greater the likelihood that (s)he will make a mistake.

2 Many highlights and sidelights of the development of computer carto 
graphy and GIS are related in a recent issue of The American Cartographer (vol. 
15, no. 3, July 1988), subtitled "Reflections on the revolution: the transition 
from analogue to digital representations of space, 1958-1988".
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map data derived from different sources they found that while 
their computer could connect complex mazes of dots and lines into 
a single network and name all the objects therein, many if not most 
of these often turn out to be artifacts that have no basis in reality.

Today, c. 24 A.D., the source of such hassles is widely ack 
nowledged to stem from failures to maintain data quality inform 
ation within spatial databases. What is not as widely appreciated is 
that this may directly issue from twenty-five years of representing 
spatial locations as two- and three-dimensional coordinate tuples 
that have no inherent scale, only precision. This peculiar myopia 
has been termed the fallacy of coordinates (Dutton, 1989b), the (often 
unconscious) leap of faith that coordinates actually exist. It 
describes, but fails to explain, how entire professions and much 
software have come to accept point coordinates as if they were 
natural phenomena, like pebbles or protons. Still, it is not 
surprising that coordinates are reified in a culture which regards 
land as real estate, in which inches of frontage can cost dearly and 
where boundaries need not hew to visible landmarks. It is odd and 
rather distressing to have to preach the heresy that coordinates are 
the antichrist of spatial data handling, given that computer 
cartography and GIS have been around for a quarter of a century. 
But there are times in any walk of life when conventional wisdom 
bears reexamination.

Part of the reason why coordinates prevail is due to the view 
that digital spatial data represents maps, which in turn represent 
the world. It seldom seems to occur to GIS developers that they 
might better serve users by regarding maps as products of, rather 
than as the basis for their systems. As a result, most GIS's use 
"cartographic data structures" (Peucker and Chrisman, 1975), 
which are good at encoding features on maps, but which eventually 
fail to represent much of the evidence available about distributions 
of things and events on our planet. Failure to handle temporality is 
one resultant problem (Langran, 1989), but there are others. 
Goodchild (1988) offers an example of how technical factors have 
shaped and constrained the development of computer cartography 
and GIS:
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In the case of forest inventory maps, the need for accurate inventory 
clearly overrides any question of cartographic clarity and ease of 
perception. However forest inventories continue to be mapped using 
bounded areas to portray homogeneous forest stands, suggesting in this 
case that technological constraints, specifically the inability to show 
transition or heterogeneity, have outweighed any more abstract 
cartographic principles. ... The consequences of those constraints can be 
rationalized as intelligent choices, and are so fundamental that it is 
difficult to consider alternatives, but they are in actuality severely 
restricting, and influence not only the way we portray the world but also 
the way we observe it. (Goodchild, 1988, ps. 312 & 317)

While acknowledging that any data model has limitations, 
Goodchild points to emerging alternative spatial data structures 
which might overcome problems inherent in electronic emulations 
of pen-and-paper technology:

In one sense, [quadtrees] represent a departure from fixed scale in the 
form of fixed pixel size in rasters or fixed levels of spatial generalization 
in vectors. They are non-intuitive in that they correspond to no 
conventional pictorial view, but have meaning only as digital 
representations. In quadtree data structures we are beginning to see the 
emergence of a genuinely new technology in which methods have no 
obvious conventional analogues. At the same time the constraints im 
posed by the technology are radically different. (Goodchild, 1988, p. 316)

It is worth stressing again that limitations of map-as-graphic and 
point-line-area paradigms cannot be overcome without purging 
ourselves of the notion that locations in the real world are 
dimensionless points; neither will we make real progress by 
continuing to pretend (at least in our databases) that the Earth is 
flat and that we occupy its lower left-hand corner. The former 
prejudice prevents us from modeling spatial distributions in ways 
that capture their indeterminate and scale-dependent qualities. The 
latter assumption inhibits development of GIS databases and 
techniques that can deal with information from diverse sources and 
operate at continental or global scales. Such databases are being 
built (often haphazardly) at accelerating rates, and global GIS 
issues can no longer be swept under cartesian rugs. According to 
Tomlinson:

The ability to integrate data with a variety of formats (raster, vector, 
street address and tabular) from different sources, at different levels of 
reliability, at different scales, by people with different skills, using 
different computers, in different countries, connected by communica 
tion networks, is a very real requirement in the foreseeable future. 
(Tomlinson, 1988, p. 259).
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One recent approach to meeting these challenges is to design 
spatial databases that represent locations hierarchically, by 
indexing to positions occupied by vertices and faces of nested 
polyhedra, successively approximating the surface of a planet. 
While polyhedral map projections are not new (going back at least 
to the time of the artist Albrecht Diirer), the idea of tessellated, 
polyhedral data storage hierarchies is probably less than a decade 
old and still relatively unexplored (Peuquet, 1988); few schemes 
specific to CIS have been proposed (Dutton, 19843, 1989a4; 
Goodchild and Yang, 1989s; Fekete, 1990), and none of these have 
been demonstrated in fully operational contexts.

While not nearly enough research as been undertaken to verify 
expectations, one can anticipate a number of benefits that might 
flow from implementing such data models. Casting coordinates 
into hierarchical planetary tessellations might mitigate many of the 
data-handling problems that plague current GIS technology and 
short-circuit spatial analysis: using such methods, any planetary 
location can be canonically encoded, regardless of where it is or the 
resolution at which it is identified; features could be modeled more 
readily, matched and integrated more easily, with certifiable 
accuracy; different datasets encoding diverse locations could be 
merged with greater confidence and ease. Multi-resolution storage 
lets primitive data elements specify their inherent accuracy; 
collections of such elements can model complex objects, which can 
be retrieved at a variety of appropriate scales. Such collections may 
be cast into both raster and vector formats, but will have other

3 The geodesic elevation model (GEM) is a dual (cube-octahedron) polyhedral 
tessellation designed to encode terrain relief of planets using two alternating 
ternary hierarchies. This horizontal organization was coupled with 
difference-enoding of elevations to provide a compact, self-calibrating and 
scale-sensitive representation of topographic relief. GEM was simulated, but 
never implemented.

4 The Quaternary Triangular Mesh (QTM ) scheme derives from GEM. 
QTM is a region quadtree composed of triangles. It represents a planet as an 
octahedron comprised of 8 quaternary triangular grids, and can encode lo- 
cational data both as hierarchies and sequences. Collections of such codes can 
be structured to represent geographic objects at specific scales. QTM has fractal 
properties, which may be exploited by modeling locations as basins of 
attraction (attractors), hexagonal regions centered on QTM grid nodes and 
composed of six adjacent triangular tiles, to which all locations in their 
domain alias at some level of detail. Attractors knit together adjacent QTM 
domains, and may aid in identifying and preventing "slivers" when 
overlaying vector-encoded map features.

5 Goodchild and Yang's Triangular Hierarchical Data Structure (THDS) is a 
variation of QTM. What distinguishes THDS from QTM is the simplicity of 
(a) its facet numbering scheme (which ignores attractors), (b) its geodesic 
computations (all subdivision occurs on planar octahedron facets), and (c) its 
indexing algorithms (although transformations between the two orderings 
have been developed).
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qualities (deriving from the properties of recursive geodesic 
tessellations) that may be exploited by new species of data 
structures and algorithms.

Application Toolkits

Spatial analysis tasks range from primitive computations such 
as nearest-neighbor identification and interpolation of point sets to 
multi-stage simulations of urban growth and multi-layer land 
suitability studies. Analysts often engage in ad hoc explorations of 
data before (or in lieu of) settling down to a standard methodology. 
Many vendors hasten to fulfill requests from users for new analytic 
capabilities, resulting in ever-greater arrays of GIS applications, 
commands and options. Some systems let end users cobble together 
the functionality they need as procedures coded in a macro 
language provided by the vendor, similar to the way most 
spreadsheet applications are built. Larger vendors have application 
consultants who extend existing applications by writing source 
code modules and linking them in as new commands. Such 
customization activity is commonplace for any number of reasons, 
including:

  GIS, like CADD systems, must operate in many diverse environments;
  Many spatial analysis procedures are sensitive to details of data models;
  Data items (e.g., "attributes") may reside in various foreign databases;
  GIS applications and analytic methodologies are still evolving.

As GIS's and their applications proliferate, the pace and economics 
of software development make it difficult for vendors to keep up 
with analysts' demands for new functionality, and new users face 
steeper learning curves, requiring increasing amounts of 
documentation, training and time in order to become productive. In 
such a milieu, costs of developing and enhancing applications tend 
to increase, regardless of who performs the work. These seem to be 
problems generic to all applications software systems, and are by 
no means unique to GIS. They do, nevertheless, represent real 
impediments to improving GIS analytic capabilities.

Segments of the software industry have begun to adopt a 
variety of computer aided software engineering (CASE) tools to 
manage various stages of the software lifecycle, from requirements 
analysis and functional specification to user interface construction 
and code generation. In addition, end-user environments for 
building microcomputer applications are gaming in popularity, 
particularly those that provide direct-manipulation visual 
interactive programming (VIP) capabilities (Sabella and Carlbom, 
1989). Many such tools are based on object-oriented (OOP), rather 
than procedural programming styles (Cox, 1987). Proponents of
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this approach maintain that it reduces the need for debugging, 
clarifies program structure, speeds development and increases 
software reusability. Even if these claims are true, OOP method 
ology may not help developers create better algorithms, not be as 
computationally efficient as traditional procedural code, and may 
prove hard to interface with the miscellany of data structures 
typically found in GIS environments.

The jury is still out concerning the utility of CASE, VIP and 
OOP to software developers and end-users. But it is apparent that 
many of the tasks traditionally assumed by developers and vendors 
are, by economic necessity and by popular demand, shifting to user 
domains. It also seems apparent that spatial analysis in a GIS 
environment is most effectively conducted when people most 
familiar with the problem domain actively participate in software 
development. This points to the provisional conclusion that GIS 
vendors ought to be encouraged to provide visual programming 
environments in which users can craft analytic software and other 
finicky functions, such as database interfaces, data filters and 
thematic maps. Such modules should be made as easy as possible to 
create, and this implies that objects in GIS databases need to 
represent themselves with appropriate data structures and 
manipulate themselves with appropriate methods, in transparent 
ways.

An informative account of modeling and visualizing geological 
reservoir data (Sabella and Carlbom, 1989) describes a set of tools 
called Gresmod, a laboratory testbed for rendering heterogeneous 
collections of geometric objects. In this prototype, users at a Xerox 
workstation worked with Gresmod's OOP modeling environment 
and diagrammatic interface to specify a data base of geometric 
structures (curves, planes, and solids encoded as octrees, 
representing oil reservoirs), perform limited analysis, and render it 
in 3D on a high-performance graphic display. Gresmod was written 
in an OOP language called Strobe, which builds a set of knowledge 
bases for class hierarchies, attributes and methods. Gresmod's 
direct-manipulation user interface (also knowledge-based), was 
.built with the Grow toolkit for customizing the Impulse-88 UIMS 
used by Sabella and Carlbom. Strobe, in turn, is implemented in 
Interlisp-D; it includes a graphic editor for objects, a run-time 
environment, and manages knowledge bases. The study provides 
an "object lesson" in how diverse forms of spatial data can be 
manipulated in unified fashion in a visual interactive environment. 
It shows how spatial analysis can be enhanced when tools for data 
modeling, application building and knowledge management are 
provided.

Commercial GIS technology can't do this yet, but is headed in
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these directions. Providing such environments will propel funda 
mental conceptual and architectural changes in system design. It is 
both technically possible and commercially expedient to transfer 
responsibility for application development to user communities, 
rather than continuing to place this staggering burden on vendors. 
This means that vendors must move away from offering solutions 
and toward providing toolkits that enable users to solve their 
particular, idiosyncratic problems. This approach is being adopted 
by vendors of high-performance workstations for data 
visualization (Upson et al, 1989); users may create or modify visual 
models by editing on-screen dataflow diagrams and property 
sheets, without the need for much if any program coding.

On-line Expertise

Printed and on-line documentation for most applications 
software packages generally include tutorials on how to get 
started, detailed command descriptions and one or more examples 
of data processing using sample datasets. As a GIS may include 
dozens of functions (ranging from map digitizing and topological 
editing, through feature and attribute definition, analytic 
procedures and display formatting, not forgetting project 
management activities), each of which may have dozens of 
commands, and its printed documentation can easily fill a four-foot 
shelf. While the general workflow at most GIS installations has 
many common and predictable aspects (digitize, edit, structure, 
extract, merge, overlay, analyze, report, map), the details of system 
configurations and users' data and applications differ enough to 
limit the utility of vendors' printed documentation and on-line help.

While users can normally refer to manuals to find information 
that answers certain types of questions ("What does command X 
do?"; "What commands do Y to data of type Z?"), they often can't 
find answers to many other kinds of questions ("What do I do 
next?"; "How will executing command X affect my database?"; 
"How much error might attribute I of object / have?"). The number 
of paths users can follow through a complex application is 
essentially unlimited. Certain paths may yield equivalent results 
with some data, but produce quite different results with other data; 
such discrepancies may derive from the content and quality of data 
being processed, parameters and options selected by users, the 
order in which commands are invoked, software bugs or be totally 
inexplicable and unreplicatable (known to hackers as the POM   
Phase of the Moon   effect). And while the underlying database 
machinery may be able to roll back transactions that go awry, the 
amount of processing and operator time wasted in doing this can 
be, a great drain on users (GIS transactions are typically quite 
lengthy, and all work performed between a check-out and a roll-
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back may have to be sacrificed, even if most of it produced correct 
results). While such unpleasant surprises may be the results of 
encountering software bugs or pathological data, most stem from 
the impossibility of grasping all the normal consequences of 
executing particular commands in particular sequences on 
particular sets of data.

The sheer complexity of working in a GIS environment is likely 
to increase as applications become more analysis-intensive. Printed 
and on-line documentation cannot even in principle address this 
problem, because most of the complexity is combinatorial, most of 
the questions context-sensitive. And while there are people who are 
skilled at dealing with such matters, such knowledge takes a long 
time to acquire and tends to be idiosyncratic and difficult to 
transfer to others. Even though the population of GIS gurus is 
growing, expertise of this type will remain a scarce resource for 
both vendors and users for the foreseeable future.

Many data-handling decisions are made automatically by 
software, based on options and parameters input by users (or their 
default values) and variables and constants stored in datasets (or 
their estimates). These are applied either on a case-by-case basis in 
the course of processing data items, or less frequently, to select a 
processing strategy for performing a given task (rarely do they help 
to decide what task to do next). In deciding what to do to data and 
how to do it, specifications received from users may prove insuffic 
ient, and certain system defaults may be inappropriate. Intelligent 
subsystems are needed to navigate such situations.

GIS users need help in whittling away options that aren't 
useful at given stages of their work, and could use advice on how 
to specify the options they decide to use. Attempts at providing such 
advice have been made using logic programming and expert system 
shells. Most applications of AI technology to GIS, however, 
attempt to automate data manipulations, such as deciding the size, 
format and placement of feature labels on maps (which may be the 
most popular testbed). This usually involves referring to a set of 
phenomena- and technique-based rules which are evaluated and 
weighed together to make tactical data processing decisions. 
Williams (1989) offers a good description how geographic (or any) 
expertise is cast into AI rules and tools:

Intelligence can be achieved via two fundamental, but integrated 
sources. These sources are those of data relationships and structure, and 
techniques and procedures for manipulating and analyzing the data 
relationships. These sources can be considered as forming expertise. 
Expertise consists of knowledge about a particular domain (real-world 
geographic structures), understanding of the domain problems, and 
skill at solving some of these problems. Knowledge (in any speciality) is
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usually of two sorts: public and private. Public knowledge includes the 
published definition, facts, and theories of which textbooks and 
references in the domain of study are typically composed. But expertise 
usually involves more than just this public knowledge. Human experts 
generally possess private knowledge that has not found its way into the 
published literature. This private knowledge consists largely of rules of 
thumb that have come to be called heuristics. Heuristics enable the 
human expert to make educated guesses when necessary, to recognize 
promising approaches to problems, and to check effectively with 
errorful or incomplete data. Elucidating and reproducing such 
knowledge is the central task of building expert systems. (Williams, 1989, 
p. 558)

There is little difference between providing expert advice to users 
and applying this knowledge to automated procedures. Deciding, 
what-to-do-next and how-to-do-it can be informed by consulting 
expert systems; it is a matter of style whether users choose to 
adjudicate this information themselves or let software handle such 
decisions. Capacities to exercise these options should be built into 
toolkits provided to users. While providing such capabilities may 
increase the possibility of "use error" (Beard, 1989), it can also help 
to avoid them by advising users of the nature and consequences of 
their assumptions, choices and actions.

The native intelligence of a GIS is highly conditioned by what 
information it maintains to qualify data items. The more such 
metadata about objects, locations and attributes that a GIS 
maintains, the more confidently it can be used. But how many 
GIS's document the level of encoding (Boolean, nominal, ordinal, 
interval, ratio, etc.) used for a given variable? How many store, 
much less can interpret, units of measure (e.g., persons per square 
mile, hectares, pH, ppm, BTUs, furlongs per fortnight) for items 
they maintain? Information can be lost, misinterpreted or made 
spurious unless appropriate operations are applied to data items, 
which requires that variables be qualified by their levels and units 
of measure, properties rarely included in GIS data models and 
definitions. As a result, it may be difficult for GIS users to switch 
between English and Metric units in thematic maps or reports they 
generate, or be warned that attributes created by adding or 
subtracting ordinal values may be meaningless. Users may not be 
sure what the units of a variable are, whether a given datum 
represents a percent, a category or a scalar; analytic functions may 
not "know" that multiplying income per capita with population 
density yields units of income density. Ignoring data quality 
information generates wrong results and incurs missed 
opportunities. In most cases, the mechanisms for handling properly 
qualified data are rudimentary; perhaps the fact that it is 
inconvenient for procedural languages to include metadata in 
function arguments has begged the problem, leading us to believe
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that dealing with it requires artificial rather than innate 
intelligence.

What might help GIS software deal with data quality better 
than it now does? Procedures need some additional intelligence to 
enforce metadata-based constraints, and will need to reference a 
few new data structures in order to do this. Implementations 
should avoid both transfer of large data objects between storage 
units and storage of seldom-used fields. OOP architecture may 
help in this regard: attributes of data objects such as parcels or 
rivers can be implemented as instances of classes of data, each of 
which has specific levels and units of measure, spatio-temporal and 
accuracy measures, and rules and methods for their manipulation. 
Because the same attribute class may be shared by otherwise 
unrelated data objects, any OOP environment which handles 
metadata in terms of classes must support multiple inheritance 
(non-hierarchical object composition, as when describing the 
wetlands contained in a lot or the parcels occupying a swamp).

Summary and Conclusions

Geographic Information Systems have been a commercial com 
modity for nearly a decade. This technology has proven its value in 
land record systems, environmental impact analysis, facility man 
agement, land development, urban planning and other areas of 
application. Trained GIS users are in short supply, partly because 
so many of their skills are improvised and so much of the 
knowledge required to run GIS applications is undocumented. But 
as GIS databases grow larger and the features they encode become 
more complex, the pathways of spatial analysis tend to multiply 
and results become more equivocal. Unless we can bring more 
intelligence to bear, our GIS applications may not continue to yield 
as useful, interpretable and replicatable findings as we might wish.

To effectively apply geographic information systems, users 
need better tools for constructing, navigating and processing 
databases. Vendors cannot hope to provide users with "solutions" 
to very many geoprocessing problems in the form of full-featured 
and fully-documented applications. Rather, they should concentrate 
on adopting data models that better express spatial structure and 
process, software tools that extend both system functionality and 
ways to apply it, and advisory subsystems that can identify 
semantic subtleties when users query and analyze spatial-temporal 
data. GIS architecture will have to change at micro, meso and 
macro levels to enable these capabilities. New paradigms, 
unfamiliar data structures and relatively unproven techniques may 
have to be deployed. In the process, researchers, developers and 
users will have to alter their modes of operation. Geographic
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Information Systems have already changed the ways in which we 
think about maps; the time has come to change how we think 
about, build and use this potent but imperfect technology.
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ABSTRACT

During the past years it has become apparent that a general framework 
of spatial data management resting on formal methods is indispensable. One 
aspect of such an analytic framework is the adequate characterization of 
functions so that they may be regarded as abstract models of real topogra 
phic surfaces. The importance of a precise mathematical description like this 
results from the fact that the theoretical requirements of differentiability and 
continuity of the derivatives, which are commonly employed in practical ap 
plications, do not, suffice for functions to represent realizable topographic sur 
faces. The reason for this failure is that continuously differentiate mappings 
may still be endowed with some pecularities which are extremely unlikely to 
appear in reality and thus prevent the functions from being suitable models 
for the topography of a given area. It will be demonstrated that a great 
many of these pecularities are due to structural instability - a phenomenon 
which can easily be explained by the presence or absence of degenerate criti 
cal points and saddle connections. Since it can be proved that any function 
possessing degenerate critical points may be approximated accurately enough 
by another one without such points, mappings of the latter type (so-called 
Morse functions) which have, in addition, no saddle connections should de 
scribe topographic surfaces in an appropriate way. The results arrived at in 
this paper, however, are valid not only for functions defined on the plane 
but also for mappings defined on differentiable manifolds and thus help to 
diminish the deficiency of theoretical knowledge concerning curved surfaces 
as has been complained recently.

1 .INTRODUCTION

As a consequence of the numerous applications of computers in cartogra 
phy during the past years it has become apparent that a general framework 
of spatial data management and analysis is indispensable. This realization 
has given rise to an increasing number of publications concerning the formal 
foundations of numerous cartographic concepts. The different approaches 
covered a wide portion of the field of cartography ranging from the develop 
ment of analytic tools for cartographic generalization (e.g. WOLF 1988a,b, 
1989, WEIBEL 1989) to the design of databases for geographic information 
systems (e.g. PEUCKER 1973, PEUCKER/CHRISMAN 1975, PEUQUET 
1983, BOUDRIAULT 1987, SALGE/SCLAFER 1989).
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The subject of the present paper is the formal analysis of another point 
of interest in computer cartography, namely the adequate characterization of 
functions so that they may be regarded as abstract models of real topogra 
phic surfaces. The importance of a formal characterization like this is derived 
above all from the following four facts: First of all, theoretical results ob 
tained for functions describing topography hold also for functions describing 
phenomena like population density, accessibility, pollution, temperature, pre 
cipitation etc. 1 ; secondly, topographic surfaces represent the underlying con 
tinuous model of DTMs whereby DTM may stand as abbreviation for 'digital 
terrain model' or 'discrete terrain model' respectively; thirdly, a great many 
of the results derived for mappings from jR2  > R are also true for real-valued 
mappings defined on curved surfaces - so-called differentiate manifolds. As 
it has been pointed out just recently especially this point deserves our special 
attention '(since) geographical data (are) distributed over the curved surface 
of the earth, a fact which is often forgotten ... (However,) we have few me 
thods for analyzing data on the sphere or spheroid, and know little about how 
to model processes on its curved surface ...' (GOODCHILD 1990, p.5f.). The 
final and perhaps the most important fact why topographic surfaces should 
be characterized in a formal way is that a formal characterization clearly 
reveals those concepts which are commonly used in practice but which are 
seldom or never explicitely stated.

2.TOPOGRAPHIC SURFACES

In almost any geographic or cartographic application functions /(x,y) 
describing the topography of a given area and associating with each point 
(x,y) its respective altitude are presumed to be at least twice continuously 
differentiable. This concept, however, is just an ideal one since, for example, 
overhanging rocks imply that there is no definite correspondence between 
certain points and their altitudes or breaklines prevent f(x,y) from being 
differentiable. In order to apply the powerful tool of calculus, nevertheless, 
the original concept has to be modified by assuming that the continuously 
differentiable functions are not the terrain itself but rather sufficiently close 
approximations of it 2 (cf. WOLF 1988a, 1990).

The question remaining, which seems to be deceptively simple in ap 
pearance but which, however, leads rather deeply into abstract mathematics 
is whether the theoretical requirements of differentiability and continuity of 
the derivatives suffice for functions to represent realizable topographic sur 
faces. As will be shown within the next chapters, this must not always be 
true because such mappings may be endowed with a number of pecularities 
like degenerate critical points or saddle connections which are extremely un 
likely to appear in real-world applications and thus prevent the functions

1 In order to achieve substantial results in non-topographic applications one will, how 
ever, have to ensure that data points are not too scarcely distributed.

2 This supposition is also valid for mappings describing socio-economic, physical and 
other phenomena.
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from being suitable models for the topography of a given area3 .

Since the detailed investigation of these pecularities requires several 
concepts from multidimensional calculus, it seems appropriate to repeat some 
basic definitions and theorems before continuing with the analysis of the 
addressed phenomena.

Definition 2.1 A function (mapping) f : Rn —» R is a rule associating 
with each (xi,x 2 ,.. . ,xn ) G Rn a unique element /(xi,x2 ,.. -,xn ) G R.

Though the previous definition has been given for the n—dimensional 
case we will restrict ourselves in most instances to two dimensions since 
this is the commonest case in practical applications. A further advantage 
of the restriction to functions f(x,y) of only two variables is the fact that 
these mappings can be easily visualized, thus offering the chance to prefer 
a geometric approach rather than an abstract one. As a consequence, we 
will give - whenever possible - not only formal definitions but also geometric 
interpretations of the concepts being introduced. To start with, let us draw 
our attention to

Definition 2.2 The partial derivative fx of a function f(x,y) with respect 
to the variable x is the derivative of f with respect to x while keepig y constant. 
The partial derivative fy of f with respect to y is defined in an analogous way. 
The partial derivatives evaluated at the particular point (x0 ,y0 ) are denoted 
by fx (xo,yo) and fy (x0 ,y0 ) respectively.

Geometrically speaking, fx (x0 ,yo) specifies the tangens of the angle bet 
ween the tangent to the intersecting curve f(x,y0 ) and the line y = y0 parallel 
to the x-axis. To phrase it differently, fx (x0 ,y0 ) indicates the slope of the 
surface /(x,y) at the point (x0 ,yo) in direction to the x axis. It is hardly 
necessary to point out that fy (x0 ,y0 ) can be interpreted in a similar way.

Provided that /(x,y) has partial derivatives at each point (x,y) e R2 , 
then /x and fy are themselves functions of x and y which may also have 
partial derivatives. These second derivatives (derivatives of order two) are 
defined recursively by (fx )x = fxx , (fx )y = fxy , (fy )x = fyx and (fy )y = fm . For 
partial derivatives of order two the following theorem, which is important 
from a theoretical as well as from a practical point of view, holds4 .

Theorem 2,1 If the partial derivatives fxy and fyx of a function f(x,y) 
are continuous in R2 then fxy = fyx in R2 .

Partial derivatives of order higher than two are defined recursively in 
an analogous way. We will, however, desist from giving their exact definition 
since partial derivatives of first and second order are sufficient for the purpose 
of this paper. Instead we will turn our interest to another point which is 
of utmost importance for the following chapters and concerns the special 
arrangement of the partial derivatives of order two in form of a matrix, the 
so-called Hessian matrix.

3 For the sake of simplicity we will illustrate these phenomena by examining mappings 
which are given explicitly and not in form of sparsely distributed data points in combina 
tion with an interpolation rule.

4 For a proof cf. ENDL/LUH (1976, p.!85f.).
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Definition 2.3 Let f(x,y) be a function whose partial derivatives fxx , 

fxy, fyx and fvy exist. The matrix Hf = I fxx *y I is termed the Hessian
\ Jyx Jyy /

matrix of f.
The Hessian matrix evaluated at a point (x0 ,y0 ) is defined by

xx(x0 ,yo) fxy(xo,yo) \ d . . j L vaenozea oy

The determinant det(Hf) of the Hessian matrix Hf is called the Hessian de 
terminant; when evaluated at the point (x0 ,y0 ) it is denoted by det(Hf)\(XOiyo ).

With the aid of partial derivatives it is now possible to characterize 
those functions precisely which have been commonly employed for the appro 
ximation of topographic surfaces. These mappings are the so-called A;  fold 
continuously differentiable functions whereby in almost any application a 
value of k = 2 has been chosen.

Definition 2.4 A function f(x,y) is termed k-fold continuously differen 
tiable, or of class Ck , if the partial derivatives up to order k exist and are 
continuous. 
A smooth function is a function of class C°°.

3.NONDEGENERATE CRITICAL POINTS AND MORSE
FUNCTIONS

Critical points5 representing the peaks, pits and passes of surfaces play 
a major role not only in cartography but also in a great deal of other scientific 
applications where they represent either the extrema or the saddles of func 
tions to be maximized or minimized. The importance of the critical points, 
which are also termed surface-specific points in computer cartography, for 
this field of research results from the fact that they contain significantly 
more information than any other point on the surface because they provide 
information about a specific location as well as about its surrounding (cf. 
PEUCKER 1973, PFALTZ 1976, PEUCKER/FOWLER/LITTLE/MARK 
1978). As a consequence, their employment does not only ease the charac 
terization and visual analysis of the topography of a given area but their 
application within digital terrain models also results in considerable savings 
in data capture and data management. Before stating two theorems which 
allow the classification of the critical points their formal description will be 
given.

Definition 3.1 A point (x0 ,y0 ) is a (relative, local) maximum of f(x,y) 
if and only if f(x,y) < f(x0 ,y0 ) for all (x,y) <E Ue (x0 ,yo). 
A point (x0 ,yo) is a (relative, local) minimum of f(x,y) if and only if f(x,y) > 
f(%o,yo) for all (x,y) <E Ue (x0 ,y0 ).
A point (x0 ,j/o) is a saddle of f(x,y) if and only if f(x,y) has a local maximum 
along one line leading through (zo,2/o) ana a local minimum along another 
line leading through (xo>yo)-

5 Unless stated otherwise critical points will be assumed to be nondegenerate.
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According to the above definition saddle points are only those points 
with exactly two ridges (lines connecting passes with peaks) and exactly 
two courses (lines connecting passes with pits) emanating from them, thus 
excluding monkey saddles or the like. The following theorem6 enables the 
computation as well as the classification of the critical points of a function 
f(x,y) by applying the concepts of the partial derivatives and the Hessian 
determinant of f(x,y).

Theorem 3.1 (x0 ,t/o) is a local maximum of a function f(x,y), which is 
twice continuously differentiate in R2 , if and only if fx (x0 ,y0 ) = fy (x0 ,yo) = 0, 
det(Hf)\ {xQM ) > 0 and fxx (x0 ,y0 ) < 0 (or equivalently fyy(x0 ,y0 ) < 0). 
(x0 ,y0 ) is a local minimum of a function f(x,y), which is twice continuously 
differentiate in R2 , if and only if fx (x0 ,y0 ) - fy (x0 ,y0 ) = 0, det(Hf)\(Xo<yo ) > 0 
and fxx (x0 ,y0 ) > 0 (or equivalently /yy (zo,2/o) > 0)-
(x0 ,t/o) is a saddle point of a function f(x,y), which is twice continuously diffe 
rentiate in R2 , if and only if fx (x0 ,y0 ) = fy (x0 ,yQ ) = 0 and det(H f)\(XOiVo ) < 0. 
(£o>2/o) is a nondegenerate critical point of a function f(x,y), which is twice 
continuously differentiate in R2 , if and only if fx (x0 ,y0 ) = fy (x0 ,y0 ) = 0 and 
det(Hf)\ (x0iW) + 0.

An equivalent characterization of the critical points of a function f(x,y) 
can be given by examining the eigenvalues of the corresponding Hessian 
matrix (cf. NACKMAN 1982, p.65 or NACKMAN 1984, p.444f.). The 
application of eigenvalues has moreover the advantage that they can also 
be used for the precise mathematical description of ridges, courses, flats, 
slopes as well as convex and concave hillsides of topographic surfaces (cf. 
LAFFEY/HARALICK/WATSON 1982, HARALICK/WATSON/LAFFEY 
1983). We will, however, refrain from discussing all of these topographic 
phenomena since this would go far beyond the scope of the present paper.

Theorem 3.2 Let f(x,y) be twice continuously differentiate in R2 and 
(#0,2/0)   R2 - Further let fx (x0 ,y0 ) = fy (xQ ,y0 ) = 0 and the determinant of the 
Hessian matrix Hf evaluated at (x0 ,y0 ) be unequal to zero. Then there is 
a (local) maximum at (x0 ,yo) if the number of negative eigenvalues of Hf\(XoM ) 
is two,
a saddle at (x0 ,yo) if the number of negative eigenvalues of #/|(IO ,yo ) is one 
and
a (local) minimum at (x0 ,y0 ) if the number of negative eigenvalues of Hf\(xo>yo ) 
is zero.

The number of negative eigenvalues of Hf\(xo ,yo ) is also termed the index 
of (x0 ,j/o); thus a maximum is a critical point of index two, a saddle is a 
critical point of index one, and a minimum is a critical point of index zero. 
The so-defined index of a critical point may be also interpreted as an 'index of 
instability (since) a ball displaced slightly from a relative minimum "will roll 
back" to that minimum. It is a point of stable equilibrium; ... A ball displaced 
from a saddle point may or may not return to that point of equilibrium, 
depending on the direction of displacement; while a ball displaced from a

6 A proof can be found in any standard book on elementary calculus as e.g. in COU- 
RANT (1972, p.!59f.).
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relative maximum is completely unstable' (PFALTZ 1976, p.79, cf. also 
PFALTZ 1978, p.7f.) 7 .

Another advantage of the employment of the eigenvalues of Hf is the 
fact that this concept may be transferee! to n—dimensional differentiate ma 
nifolds which represent generalizations of the Euclidean n space. Formally 
a manifold is characterized by

Definition 3.2 An n-dimensional topological manifold is a separable6 
metric space in which each point has a neighbourhood homeomorphic9 to Rn .

An n dimensional manifold thus represents nothing more than a to 
pological space with the same local properties as the Euclidean n-space. 
MASSEY (1967, p.l) gives a vivid illustration of the two-dimensional case of 
this analogy when describing an intelligent bug crawling on a surface (two- 
dimensional manifold) and being unable to distinguish it from a plane (R*) 
due to his limited range of visibility.

The previously defined manifolds, however, must be given some addi 
tional structure so that the concept of differentiability has meaning, thus 
yielding to differentiable manifolds. For the sake of simplicity and because 
only the concept itself is needed we will drop their formal definition10 and 
imagine them as something looking like Rn but being smoothly curved. 
Examples of two-dimensional differentiable manifolds are the sphere or the 
torus whereas the cube, the cone or the cylinder are none. With differentiabi 
lity being specified for mappings defined on manifolds11 it is possible to inve 
stigate not only functions defined on the plane (7?2 ) but moreover mappings 
defined on surfaces (two-dimensional manifolds) as e.g. functions describing 
the distribution of precipitation over the globe because a lot of theoretical 
results for such mappings can be easily obtained due to the homeomorphic 
relationships between differentiable manifolds and Euclidean space12 . Thus 
the concept of a differentiable manifold as it has been sketched above offers 
the chance to diminish the deficiency of theoretical knowledge concerning 
curved surfaces as it has been complained by GOODCHILD (1990, p.5f.) 
and to counteract his criticism.

Since practice has shown that degenerate critical points are extremely 
unlikely to occur in real-world applications, functions possessing exclusively

7 An intuitive classification of the critical points according to their degree of 

(un)stability has been given by PEUCKER (1973, p.28f.) and WARNTZ/WATERS (1975, 

p.485f.).
8 In a topological space, a set A C B is dense in a set B if A = B. A topological space 

C is termed separable if some countable set is dense in C.
9 Two topological spaces A and B are called homeomorphic if there exists a bijective 

function / : A  » B such that both / and f~ l are continuous.
10 The precise mathematical characterization of a differentiable manifold can be found 

e.g. in GAULD (1982, p.54) or PALIS/de MELO (1982, p.4).

11 For an adequate definition cf. GAULD (1982, p.60).
12 For example, it is possible to characterize the critical points by their partial derivatives, 

to make a distinction between degenerate and nondegenerate ones as well as to classify the 

latter into maxima, saddles and minima according to the number of negative eigenvalues 

of the associated Hessian matrix.
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nondegenerate critical points have been studied comprehensively by nume 
rous authors 13 .

Definition 3.3 A smooth function is termed a Morse function if all of 
its critical points are nondegenerate.

For Morse functions the folllowing four theorems, whose importance 
will become obvious in the next chapters where the concepts of structural 
stability and the problem of approximating functions possessing degenerate 
critical points by mappings without such points will be discussed, hold (cf. 
ARNOL'D 1972, p.83, PFALTZ 1976, p.83, GAULD 1982, p.118, PALIS/de 
MELO 1982, p.89, FOMENKO 1987, p.SOf.):

Theorem 3.3 Each Morse function on a compact manifold has only a 
finite number of critical points; in particular, all of them are distinct.

Theorem 3.4 The critical points of a Morse function are always iso lated14 .

Theorem 3.5 The set of Morse functions is open and dense in the set 
of all k-fold differentiate functions defined on a manifold.

Theorem 3.6 Let f be a Morse function, which is defined on a simply- 
connected domain bounded by a closed contour line, then the number of mi 
nima of f minus the number of saddles of f plus the number of maxima of f 
equals two.

The concept of Morse functions - though not explicitly mentioned - has 
been employed in almost every geographic application since they represent - 
with one restriction, which will be discussed in Chapter five - the prototype 
of mappings eligible to characterize topographic surfaces. One exception, 
however, constitutes the work of PFALTZ (1976, 1978) whose graph theoretic 
model for the characterization and generalization of topographic surfaces is 
based explicitly on attributes of Morse functions and thus represents the 
first attempt to describe those mappings formally which may be regarded as 
abstract models of the topography of a given area.

4.STRUCTURAL STABILITY

Modern philosophy of science requires that natural science accepts only 
those theories which can be verified at any time. As a consequence of this 
metatheoretical view the concept of repeatability saying that the same ex 
periment must give the same result under the same conditions has become 
fundamental in modernrsciences although, strictly speaking, the idea is just 
an ideal one. Ideal, because it is never possible to guarantee exactly the same 
conditions by abandoning all external factors even in the most carefully de 
signed experiment. To an even greater extent one is confronted with the

13 A great deal of the theoretical work is due to Morse (cf. MORSE/CAIRNS 1969).
14 A critical point is called isolated if sufficiently close to it there exists no other critical 

point.
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problem of repeatability in sciences like geography or cartography. For ex 
ample, physical-geographic theories are based on measurements taken outside 
where side-effects are much less controllable than in the physicists' labora 
tories, or digital terrain models rest on digitized data which are affected by 
errors due to machine inaccuracy and/or human intervention.

Since the rigorous interpretation of repeatability would make any scien 
tific work impossible the previously described idealized concept has been 
weakened by tolerating small changes in the conditions under which an ex 
periment is carried out provided that these changes do not affect the result 
significantly. To phrase it differently, 'what we really expect is not that if 
we repeat the experiment under precisely the same conditions we will obtain 
precisely the same results, but rather that if we repeat the experiment under 
approximately the same conditions we will obtain approximately the same 
results. This property is known as structural stability ...' (SAUNDERS 
1982, p.17). Mathematically, deviations from the ideal experiment which 
are caused by external factors are represented by perturbation functions and 
structural stability is the insensitiveness of the mapping or the familiy of 
mappings describing the experiment to these perturbation functions. The 
impact of this concept of structural stability for geography and cartography 
is that in these disciplines questions like the following ones have to be answe 
red: Is a function describing a geographic phenomenon insensitive to small 
measurement errors and thus structurally stable? Is a family of functions 
describing a geographic phenomenon over time insensitive to temporal chan 
ges and thus structurally stable? Is a mapping representing the underlying 
continuous model of a digital terrain model insensitive to measurement errors 
and thus structurally stable?

When using the term 'structural stability', however, one has to distin 
guish between 'structural stability of a function' (cf. POSTON/STEWART 
1978, p.63) and 'structural stability of a family of functions' (cf. POSTON/ 
STEWART 1978, p.92f., SAUNDERS 1982, p.!7f.). In the above-mentioned 
geographic and cartographic applications of 'structural stability' the first in 
terpretation of the term applies to the first and third examples while the 
second interpretation applies to the second example. Since in the present 
paper only the concept of a structurally stable function is of importance we 
will confine ourselves to this aspect of structural stability and proceed with 
an example in order to explain it 15 .

Let us consider the functions fi(x) = x 2 and /2 («) = x 2 + ex with ex 
representing a perturbation function. For the derivatives of /i(x) and /2 (x) 
holds:

f S r \ _ T 2 f I \ _ 1 
Jl\X) — X J2\&) — X

fi(~,\ — 9™ fi (~,\ — 9,
J^JUj — fiX J 2\ ) — "

/?(*) = 2 /»(*) = 2

15 For the sake of simplicity we will restrict ourselves thereby to functions of a single 
variable.
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In order to obtain the critical points of the two functions we set the 
first derivatives to zero, solve the resulting equations with respect to x and 
examine the second derivates which represent the one-dimensional analogue 
of the Hessian matrix.

2x = 0
x = 0

0 = 2>0

= 0
£

2 
2>0

x = —-

The above calculations indicate that the perturbation function moves 
the minimum from x = 0tox =  | in a way depending smoothly on e (with 
e being an arbitrary small number). The type of the critical point, however, 
as well as the structure of the graph of /i(x) in a surrounding of x = 0 are not 
affected by the perturbation (see also Fig. 4.1) and therefore the function is 
structurally stable at x = 0.

(a) (6) 

Fig. 4.1 Graphs of the functions (a) /i(x) = as 2 and (b) /2 (x) = x 2 + ex.

Next let us examine the two mappings gi(x) = x3 and g^(x) = x3 + ex 
with ex representing again a perturbation function. For the derivatives of 
gi(x) and g2 (x) holds:

9i(x) = x3
g[(x) = 3x2

* = 6x g'J(x) = 6x

In order to determine the critical points of g\(x] and gz(x) we again set 
the first derivatives to zero, solve the resulting equations with respect to x
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and inspect the second derivatives.

3x 2 = 0
x = 0

= 0

3a: 2 + e = 0

The previous calculations yield to the following interesting result: While 
the function #i(x) has a degenerate critical point at x = 0, the mapping #2 (x) 
- which is obtained from #i(x) by adding the term ex - has no critical points 
for positive e but two critical points, namely a local minimum at xi = +v/ f

and a local maximum at « 2 = ~\/3' ^or ne§a^ve £ ^nus showing an irregular 
unstable behaviour. Illustrations of the function gz(x) = x3 + ex for different 
values of e are depicted in Fig. 4.2.

Fig. 4.2 Graphs of the function #2 (x) = x 3 + ex for (a) e < 0, (b) e = 0 and 
(c) e > 0.

The different behaviour of the two functions /i(x) and #i(x) in a sur 
rounding of x = 0 can be explained by the following theorem (cf. PO- 
STON/STEWART 1978, p.63f.).

Theorem 4.1 A critical point is structurally stable if and only if it is 
nondegenerate.

In the above example f\(x) has a nondegenerate critical point at x = 0 
while gi(x) has a degenerate one at this location. In the first case, as a 
consequence of the structural stability induced by the nondegenerate critical 
point the perturbation function does not change the type of the point but 
only moves its location. In the second case, however, the degeneracy of the 
critical point causes structural instability resulting in a change of the type
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of the critical point.

A direct consequence of the last theorem is the following one which 
shows once more the importance of Morse functions (cf. POSTON/STE- 
WART 1978, p.70f.).

Theorem 4.2 Morse functions are structurally stable.
At the beginning of this chapter the importance of structural stability 

for scientific work in general has been indicated. At this point its importance 
for geography and cartography will be demonstrated in the light of some pos 
sible applications. The most essential one will certainly concern those fields 
in geographic and cartographic research where the systems approach is al 
ready well established as e.g. in ecology, climatology, demography etc. and 
functions or families of functions are used to describe ecosystems, weather, 
population dynamics etc. The major question to be answered in the above 
examples is whether a given system is stable or unstable over time and in 
the latter case if it will explode or collapse. A second field of applications 
comprises the analysis of functions describing cartographic and geographic 
phenomena like terrain, population density, accessibility, temperature and 
the like. The question to be answered in this context is which data points 
are best selected so that the functions obtained are structurally stable. It 
can be assumed, however, that those mappings that are derived from surface- 
specific points which are taken to be nondegenerate will produce results being 
superior to all others. Finally, a third point worth mentioning in this connec 
tion is the analysis of structural stability due to measurement errors caused 
by machine inaccuracy and/or human intervention - a problem which will 
have to be tackled in combination with the aid of statistics.

5.DEGENERATE CRITICAL POINTS AND SADDLE 
CONNECTIONS

Degenerate critical points form - besides saddle connections - part of 
those phenomena which prevent continuously differentiable mappings from 
being suitable models for the topography of a given area. The reason is 
that degenerate critical points are - according to Theorem 4.1 - structurally 
unstable and thus unlikely to appear in real-world applications since any 
perturbation would immediately destroy them.

Formally, a degenerate critical point (x0 ,j/o) is characterized by the fact, 
that the partial derivatives fx (x0,y0 ) and fy (x0 ,y0 ) as well as the Hessian 
determinant det(Hf)\(xo ,yo ) are zero. Some examples of functions possessing 
degenerate critical points are depicted in Fig. 5.1.

Though its definition sounds deceptively simple, degeneracy is a multi- 
faceted phenomenon with different levels to be distinguished. A first subdi 
vision can be made into isolated degenerate critical points and non-isolated 
ones with the latter being extremely uncommon16 (cf. POSTON/STEWART

16 For this reason they are excluded from further consideration.
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1978, p.53.). From the above sketched functions f(x,y) has an isolated de 
generate critical point at (0,0) while g(x,y) has non-isolated ones along the 
a; axis and h(x,y) along the x— and the y— axes. Besides this subdivision 
of the critical points another one can be made according to their degree of 
degeneracy (cf. FOMENKO 1987, p.80) which is explained next.

(a)
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Fig. 5.1 Some functions having degenerate critical points: (a) f(x,y) = x3 - 
3jct/ 2 (monkey saddle at (0,0)); (b) g(x,y) = x 2 (pig-trough with 
degenerate critical points occuring along the x axis); (c) h(x,y) = 
z2 t/2 (crossed pig-trough with degenerate critical points occuring 
along the x- and the y-ax.es).

Definition 5.1 The degree of degeneracy of a critical point (xQ ,y0 ) is 
equivalent to the number of zero eigenvalues of Hf\(XOiyo ).

To illustrate this concept let us examine the two functions f(x,y) = 
x 3 — 3xy2 and g(x,y) = ^ — £-. By setting the first partial derivatives to 
zero and inspecting the second partial derivatives it can be shown that both 
f(x,y) and g(x,y) possess a degenerate critical point at (0,0).

f(x,y) = x3 -3xy2
fx (x,y) = 3x 2 -3j/2

fv(*,y) = -fay
fxx(x,y) = Qx

fxy(x,y) = fyx (x,y) = -Qy

gm (x,y) = x 2
9v(x,y) = -y

gxx (x,y) = 2x
= gyx (x,y) = 0

9yy(x ,y) = -1

The Hessian matrices of the two mappings run therefore
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Hf = ' -6y -( 

and when evaluated at the critical point (0,0)

2x 0 
0 -1

#/l(o,o) = ( o 0 ) ##1(0,0) =
0 0 
0 -1

In order to obtain the eigenvalues of the two matrices we solve the 
corresponding characteristic polynoms

(0-A)(0-A) = 0 

yielding

Ai, 2 = 0

(0-A)(-1-A) = 0

A! = 0 
A 2 = -1

Thus, in the first case the number of zero eigenvalues and therefore the 
degree of degeneracy of the critical point (0,0) is two, whereas in the second 
case the degree of degeneracy of (0,0) is one. Illustrations of the two functions 
in a surrounding of this location can be found in Fig. 5.2.

(a)
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Fig. 5.2 Graphs of the functions (a) f(x,y) = a; 3 - 3zy2 and (b) g(x,y) =
2 '

Another point of interest concerning degeneracy is the question whether 
functions possessing degenerate critical points can be approximated accura 
tely enough by mappings without such points, or in other words if it is 
possible to substitute degenerate critical points by nondegenerate ones. In 
order to answer this question let us recall that degenerate critical points are 
structurally unstable and that the set of Morse functions is open and dense 
in the set of all differentiable mappings defined on a manifold. It can be 
proved that due to these two properties the question asked earlier can be 
answered affirmatively since the following theorem 17 holds.

Theorem 5.1 // a function has a degenerate critical point, then by an 
arbitrarily small shift of the function it can be ensured that the complicated 
singularity is dispersed into several nondegenerate ones.

The above theorem, however, does not provide any information about 
the number nor about the types of the nondegenerate critical points one 
obtains when splitting a degenerate one. The following examples illustrate 
two possible cases that might occur when mappings are interfered by per 
turbation functions by means of the two mappings f(x,y) = x3 - 3xy 2 and 
g(x,y) = ^ - ̂  both possessing a degenerate critical point at (0,0) (see Fig. 
5.2). Deformations of /(«, y) and g(x,y) by the perturbation functions ey and 
ex respectively yield f(x,y) = x3 - 3xy2 - ey and g(x,y) = ^ - ̂  - ex. When

17 An exact proof of this theorem which is rather complicated and requires several 
concepts like transversality, jet-spaces etc. from such branches of abstract mathematics 
as differential topology or catastrophy theory can be found in ARNOL'D (1972, p.65).
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(*)

Fig. 5.3 Graphs of the functions (a) f(x,y) = x3 — 3xy2 — ey and (b) g(x,y) =
*1 _id _
3 2 ex.

setting the first partial derivatives of / and g to zero, solving the resulting 
systems of equations with respect to x and y, and inspecting the second

201



partial derivatives it becomes apparent that the degenerate critical point 
(0,0) of f(x,y) is substituted by two nondegenerate saddles with locations at 
(v/f> v/f) and ( ./I,./|) respectively, whereas the degenerate critical point 
(0,0) of g(x,y) is substituted by a nondegenerate saddle at (\/e>0) and a 
local maximum at ( ^,0). The visualization of the effect of approximating 
a function having a degenerate critical point by a mapping without such 
points can be achieved by comparing Fig. 5.2 and Fig. 5.3 with the latter 
depicting the graphs of f(x,y) and g(x,y).

It can easily be demonstrated that degenerate critical points are not 
the only phenomena inducing structural instability but saddle connections 
will cause it, too. However, it has been proven that saddle connections may 
always be broken up by perturbation functions which have to be chosen in a 
convenient way (cf. GUCKENHEIMER/HOLMES 1983, p.60ff.). As a con 
sequence of this result and Theorem 5.1 it can be concluded that Morse func 
tions without saddle connections are the most suitable mappings to describe 
topographic surfaces because, on the one hand, they possess only structural 
stable elements like nondegenerate critical points but are, on the other hand, 
also eligible to approximate accurately enough structural unstable elements 
like degenerate critcal points and saddle connections.

6.CONCLUSION

In the present paper the characterization of those mappings which may 
be regarded as abstract models of topographic surfaces has been attempted. 
The importance of a characterization like this is derived from the fact that dif 
ferentiability and continuity of the derivatives do not suffice for functions to 
represent realizable topographic surfaces because continuously differentiable 
mappings may nevertheless be endowed with pecularities which are unlikely 
to appear in reality. An analysis of these pecularities, however, reveals that 
they are primarily due to structural instability of the respective functions - 
a phenomenon induced by degenerate critical points or saddle connections. 
Therefore it has been concluded that mappings describing the topography of 
a given area should be Morse functions without saddle connections. It should 
be emphasized, however, that the results obtained in this article represent 
only the first step in the formal characterization of the topography of a given 
area because a great deal of important phenomena like junctions of channels 
and ridges have not been considered. The analysis of these phenomena and 
its incorporation into a general framework of spatial data management will 
have to be the subject of future research.
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SUMMARY

One of the most widely available procedures packaged with 
CIS for the analysis of a Digital Elevation Model (DEM) 
is the identification of the viewable area, or the 
viewshed. The elevations recorded in the DEM do, 
however, contain error, and the USGS, for example, 
publishes a Root Mean Squared Error (RMSE) for each DEM. 
Research reported here assesses the uncertainty of 
locations being within a viewshed, given the published 
error for the DEM. In this research, repeated error 
fields are simulated with variable spatial 
autocorrelation, and added to the original DEM. The 
viewshed is then determined in the resulting noisy DEM. 
Results show that using the basic assumption of spatial 
independence in the error which is implicit in the RMSE 
remarkably few points are reliably within the viewshed. 
With spatially autocorrelated noise, the reliability is 
higher, but still should be cause for concern to many 
using viewshed procedures.

INTRODUCTION

Research on the propagation of error within CIS 
operations has focused upon the polygon overlay operation 
(MacDougall, 1975; Newcomer and Szajgin, 1984; Chrisman, 
1989; Maffini et al., 1989; Veregin, 1989), at the 
expense of other CIS data types and functions. The 
experiments reported here examine one aspect of the 
propagation of error from a Digital Elevation Model (DEM) 
into the derivative product showing visible locations, 
sometimes known as a viewshed (see also Felleman and 
Griffin, 1990; Fisher, 1990).

This paper starts by briefly discussing the viewshed 
operation, and the nature of error in DEM data. The 
general methodology of simulating error is then 
discussed, followed by its application to a real 
location.
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VIEWSHEDS AND DBMS

The basic algorithm in establishing the viewshed examines 
the line-of-sight between two points (the viewpoint and a 
target), and assesses whether any land or object rises 
above that line-of-sight. If it does then the target is 
not within the viewshed of the viewing location, but if 
no land rises above the elevation, then the target is 
within the viewshed. In establishing the viewshed either 
all possible targets in the area of a database (Clarke, 
1990, 227-228), or only those within some constrained 
portion of the area (Aronoff, 1989, 234), may be 
considered. Several studies have explored differences in 
viewshed algorithms (Anderson, 1982; DeFloriani et al., 
1986; Sutherland et al., 1974), and Felleman and Griffin 
(1990) have compared the output of four different CIS- 
based implementations of the viewshed operation. They 
show the viewsheds delimited to be very different. This 
difference is not particularly surprising given the 
multiple decisions to be made in designing the 
implementation of the viewshed operation. For example, 
decisions have to be made as to whether the viewpoint in 
a gridded DEM is anywhere within the viewpoint gridcell, 
or is just the mid-point; similarly, should the surface 
be treated as the stepped phenomena it is coded as, or an 
interpolated surface? The outcome of such algorithm- 
design decisions may produce dramatically different 
viewshed results in some DEMs.

The viewshed is invariably reported as a binary product, 
a target location is either within or without the 
viewshed of the viewpoint. No shades of uncertainty are 
admitted; neither the likelihood nor the probability of a 
point being within, or of being without the viewshed is 
reported. In the light of the considerable interest in 
database accuracy this seems remarkable, especially when 
each DEM is required to be accompanied by an error report 
(USGS, 1987).

The USGS has adopted the Root Mean Squared Error (RMSE) 
for reporting accuracy in their DEM products (USGS, 
1987). The RMSE for any one DEM is based on the 
comparison between the elevations of at least twenty 
locations on the map, and their elevations recorded in 
the database. It should be noted that most USGS source 
maps are stated to conform to the National Map Accuracy 
Standards, which themselves state that "at no more than 
10 percent of the elevations tested will contours be in 
error by more than one half the contour interval", as 
established by comparison with survey data (Thompson, 
1988, p 104). In generating a DEM from a map, therefore, 
at least two stages are present when error may be 
introduced: map compilation and DEM generation from the 
map. The error reported for the DEM only refers to the 
second of these, and it is only that error that is 
examined here. Some DEMs are generated directly from 
aerial photographs by the Gestalt Photo Mapper II, and,
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in this case, the error may only be introduced in one 
stage.

Error in DEMs is then widely acknowledged, and has been 
the subject of some study. That study has, however, 
concentrated on the nature and description of the error, 
not its propagation into any derivative products. The 
only work known to the current author which provides any 
evaluation of error propagation is by Felleman and 
Griffin (1990). They have compared implementations of 
the viewshed operation, and simulated error in the DEM 
before calculating the viewshed, as is reported here. 
They examined 3 viewpoints in 2 test areas for each of 
which 10 error simulations were run. Results are, 
however, only reported for one test location.

METHOD

SIMULATING ERROR

A Monte Carlo simulation and testing approach is taken to 
studying the propagation of DEM error here. In this 
approach, randomizing models of how error occurs are 
established, and then coded as computer procedures. The 
resulting computer program may be used to generate 
multiple realizations of the random process. Many 
workers have used original data in combination with 
realizations of the defined random process to establish 
the statistical significance of the original data with 
respect to the random process (Besag and Diggle 1977). 
Thus Openshaw et al. (1987) executed 499 realizations of 
the random process to locate two significant clusters of 
incidents of childhood leukemia in northern England.

How the error is distributed across the area of any one 
DEM is currently unknown, and factors that may effect the 
distribution of error is largely unresearched. The 
inference of the error reporting used by the USGS is that 
the error at any point occurs independently of that at 
any other point (i.e. the error is not spatially 
autocorrelated). Therefore, the following algorithm may 
be implemented (Fisher, in press):

1. Define a standard deviation of a normal 
distribution (S = RMSE);

2. Read Original_Value for the current cell: 
2.a Using the Box-Muller (or some other)

algorithm generate a random number drawn 
from a normal distribution with mean = 0 
and standard deviation = S; 

2.b Add the random number to the
Original_Value for the current cell, to 
give the New_Value;

3. Repeat 2 for all cells in the Map_File.
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This assumes that the standard deviation of a normal 
distribution is equivalent to the RMSE. In the absence 
of any other information on error structure, this may not 
be unreasonable. Such independent error is, however, 
very likely to contribute only a small portion of the 
overall error. High spatial autocorrelation is probably 
present, and banding can often be seen in the DEM data. 
To accommodate the occurrence of spatial autocorrelation, 
a version of the algorithm given by Goodchild (1980) was 
implemented, using Moran's I to measure the 
autocorrelation (Goodchild 1986; Griffith 1987). It 
works thus:

1. Define a target autocorrelation (!+-)/ and a
standard deviation of a normal distribution (S 
= RMSE) ;

2. For each cell in the DEM generate a random
value, with a normal distribution with mean = 0 
and standard deviation = S (see first 
algorithm) ;

3 . Calculate the Spatial Autocorrelation of the 
field

Randomly identify two cells in the DEM:
4. a Swap the values in the two cells;
4.b Calculate the new spatial autocorrelation

4.c IF lt > I I AND I2 > !]_ THEN retain the
swap, and 1^ = I2 

OR 
IF It < I-L AND I2 < IJL THEN retain the

swap, and I x = I, 
ELSE swap the two cells back to their

original values;

5. Repeat 4 until (I^-l-jJ is within some 
threshold.

6. For each cell in the original DEM, add the 
value in the corresponding autocorrelated 
field.

This algorithm is simple and can be made computationally 
efficient, and it will be noted is an extension of the 
first algorithm listed.

The random number generator used in programming the 
algorithms was also tested, since like all such 
implementations it is truly a pseudo-random number 
generator (Ripley, 1986) . The generator included with 
Turbo Pascal 5.5 was used here. The runs test was used 
to check for serial autocorrelation, the chi-squared test 
was used to check for a uniform distribution, and serial 
autocorrelation was tested for all lags to check for 
cycling in the generator. The generator performed
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satisfactorily for all cases, when number sequences up 
to 10,000 long were tested (corresponding to the 100 by 
100 array used in the generation of autocorrelation).

MEASURING UNCERTAINTY

Each realization of the random process then resulted in a 
new DEM. The viewshed was calculated for each, and for 
any one view point, all the viewsheds in which the noise 
term had the same RMSE and spatial autocorrelation were 
summed to yield a summation image which describes the 
uncertainty of the viewshed, or the fuzzy viewshed. 
Since the viewshed is reported as a raster image coded as 
0 or 1, the maximum value in the fuzzy image is 20, the 
number of realizations. It is possible to define the 
viewshed with a particular likelihood (probability). 
Thus, with 20 realizations, cells with value 19 in the 
resulting image, have probability, p = 19/20 = 0.95 of 
being within the viewshed, and, similarly, those with 
value 10 have probability, p = 10/20 = 0.5.

THE STUDY AREA

A 200 x 200 cell subset of the USGS Prentiss, NC, 7.5 
minute DEM was acquired covering the Coweeta Experimental 
Watershed (Fig. 1). This DEM has been the subject of 
considerable research on DEM products (Band, 1986; 
Lammers and Band, 1990). Within the area of the DEM two 
test viewing locations (viewpoints) were arbitrarily

Figure 1

The Digital elevation model of the Coweeta Experimental
Watershed, N.C. The two test locations are shown, and the

1 km zone around each indicated.
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identified, one near an interfluve (Point 1), and one in 
a valley bottom (Point 2). All viewsheds calculated in 
the research reported here were only to within 1km of the 
viewpoint, and from an elevation of 2m above the 
viewpoint (corresponding to approximately the near-view, 
and the eye level of an individual, respectively).

The DEM was read into a format compatible with Idrisi 
(Eastman, 1989), a PC based package for Geographic 
analysis, and all further processing was done with either 
Idrisi modules, or implementations of the above 
algorithms written by the author in Turbo Pascal version 
5.5. The VIEWSHED module of the Idrisi package is 
crucial to the research reported here, and so some simple 
test situations were established to examine the veracity 
of the viewable area calculated by that module. In every 
test, the module performed satisfactorily. The module 
operates on a DEM of any size, by using random access 
files, but at great expense in processing time. Only 
examining locations within 1 km of the viewpoint also 
made the processing time required for the research 
realistic.

RESULTS

Tables 1 and 2 report the frequencies of occurrence of 
values in the fuzzy viewsheds derived from the noisy 
OEMs, and those fuzzy viewsheds are shown in Figures 2 
and 3. For each set of viewsheds with a specific spatial 
autocorrelation in the noise, and for a particular 
viewpoint, the tables record in the first column the 
frequencies of cells which are outside the viewshed in 
the original DEM, but inside those in simulated elevation 
models, the second column records those that are in both 
viewsheds, and the last column records the sum of the 
first two. The results all refer to applications of 
noise with variable spatial autocorrelation and with RMSE 
= 7, the value specified for this DEM. Table 1 and 
Figure 2 show results for Point 1, while Table 2 and 
Figure 3 show results for Point 2.

DISCUSSION

It is apparent in both Tables 1 and 2 that when there is 
no spatial autocorrelation in the noise, there are very 
low frequencies of cells with high cell counts in the 
viewsheds of either test viewpoint. 8 and 9 cells occur 
within all 20 of the viewsheds of the two points (i.e. 
the nearest neighboring cells plus 1 in 1 case), and in 
the case of Point 2 only 16 cells have cell counts of 18 
or greater. The viewshed of the higher, ridge-top 
location (Point 1) appears to be more stable, however, 
with higher frequencies of cells with count greater than 
10 (giving p > 0.5 of being within the viewshed), 706 as 
opposed to 443 for Point 2.
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TABLE 1

Frequencies of occurrence of values between 1 and 20 in 
the image resulting from summing all noisy viewsheds, for 
Point 1 where the autocorrelation in the noise varies 
from 0 to 0.9. All points within 1 km of the viewpoint 
are included.

Cell 
Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1=0 
Out In 
View

1456
192
142
122
92
76
60
37
21
15
3
6
4
3

1

9
18
31
45
60
78
97

123
120
94
74
93
80
75
90
81
73
24
9

Sum

1457
192
151
140
123
121
120
115
118
138
123
100
78
96
80
75
90
81
73
24
9

1=0. 
Out In 
View

1425
226
123
117
81
90
63
47
23
21
4
6
3

1
3
1
3
9

14
30
49
66
87
73
73
78

104
84
85
93
86

123
142
71

7 
Sum

1426
229
124
120
90

104
93
96
89

108
77
79
81

104
84
85
93
86

123
142
71

1=0. 
Out In 
View

1574
204
100
68
72
47
35
35
34
31
14
5
7
3

3
2
3
6

16
15
29
32
35
49
48
57
61
63
73
90
82

110
92

101
308

9 
Sum

1577
206
103
74
88
62
64
67
69
80
62
62
68
66
73
90
82

110
92

101
308

The distribution of cell count frequencies becomes 
progressively less skewed towards the low frequencies as 
the autocorrelation in the noise increases. Indeed, in 
the case of Point 1, the distribution becomes strongly 
bimodal when I = 0.9. When the noise perturbing the DEM 
has high autocorrelation, the frequency of cells with 
high counts increases, so that as the value of I for the 
noise increases the number of cells with count 20 
increases dramatically for both Point 1 (9, 71, and 308 
for 1=0, 0.7 and 0.9), and Point 2 (8, 38, and 112). 
There are, however, only slight, but probably useful, 
rearrangements of frequencies in many of the other cell 
counts, and an increase in the number of cells with only 
a count of 1 can be noted in the case of Point 1. At 
Point 2, the number of cells with count 1 is reduced by 
nearly a third, but the number of cells with count 20 
does not increase by nearly as much as in the results for 
Point 1. There is, however, an evening of frequencies 
corresponding to counts from 5 to 20, which is not 
observed in the results for Point 1.

As the spatial autocorrelation increases the number of 
cells that are identified as not even possibly being 
within the viewshed, but within the search distance of
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the viewpoint, does increase with autocorrelation, but 
the change is not continuous in both cases. From Point 
1, the counts are 1456, 1425 and 1574 when 1=0, 0.7, 
and 0.9 respectively, and at Point 2, the values are 
1109, 918, and 897. Furthermore, the number of cells 
that may be within the viewshed (>0 in the fuzzy 
viewshed) but were not in the viewshed in the original 
DEM, increases with autocorrelation at Point 2, (822, 
1013, and 1034 for 1=0, 0.7, and 0.9 respectively), but 
at Point 1 the reverse is true (733, 804, and 655 
respectively). The upper frequencies of cells outside 
the original viewshed changes very little either between 
or within viewpoints (frequencies of 12 to 15 can be 
noted).

TABLE 2

Frequencies of occurrence of values between 1 and 20 in 
the image resulting from summing all noisy viewsheds, for 
Point 2 where the autocorrelation in the noise varies 
from 0 to 0.9. All points within 1 km of the viewpoint 
are included.

Cell 
Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1=0 
Out In 
View

1109
319
179
122
73
46
47
14
8
5
1
5
1
1

1

16
33
89
90

119
122
132
152
137
135
85
99
82
78
64
42
36
18
7
1
8

Sum

1125
352
268
212
192
168
179
166
145
140
86

104
83
79
64
42
36
18
7
1
8

1=0. 
Out In 
View

918
265
205
143
100
83
64
42
45
27
25
10
4

3
12
21
33
46
63
81
76
85
97

101
109
116
107
106
120
97
93
91
49
38

7 
Sum

921
278
226
176
146
146
145
118
130
124
126
119
120
107
106
120
97
93
91
49
38

1=0 
Out In 
View

897
255
177
137
124
88
60
64
45
39
25
9
4
3
4

1
2
6

13
19
29
39
59
66
89

113
88

100
115
113
119
111
109
125
117
112

.9 
Sura

898
257
183
150
143
117
99

123
111
128
138
97

104
118
117
119
111
109
125
117
112

SPATIAL ARRANGEMENT OF UNCERTAINTY

The spatial distribution of these fuzzy values are shown 
in Figures 2 and 3, together with the viewshed in the 
original DEM, the elevation map of the immediate area, 
and a viewshed image derived from the fuzzy image where I
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Figure 2

DEM and Viewsheds of Point 1: A) the elevations in the
near-view; B) the viewshed image from the original DEM;
fuzzy viewsheds where C) 1=0, D) 1=0.7, and E) 1=0.9; and

F) an image showing the viewshed where p>=0.5 from E.
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Figure 3

DEM and Viewsheds of Point 2: A) the elevations in the
near-view; B) the viewshed image from the original DEM;
fuzzy viewsheds where C) 1=0, D) 1=0.7, and E) 1=0.9; and

F) an image showing the viewshed where p>=0.5 from E.
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in the error = 0.9, and value in the fuzzy viewshed >= 10 
(probability of being within the viewshed >= 0.5). In 
those figures therefore, the spatial arrangements of the 
tabulations presented and discussed above can be seen.

In both areas, the application of increasing 
autocorrelation to the noise progressively increases the 
certainty of similar areas being within the viewshed. 
Thus the nucleus of the zones with high probability 
identifiable in those viewsheds where the noise term had 
I = 0.9 are identifiable in images where the noise had I 
= 0.

The ridge-top location, Point 1 (Fig. 2), has a higher 
frequency of high counts in the image. The areas of high 
likelihood of belonging to the viewshed are more 
contiguous for this location than for Point 2 (see Fig. 
3); most of the high likelihood values are in three 
blocks of land, one immediately to the northeast of the 
viewpoint, one to the north, and the other to the 
southwest. From Point 2 (Figure 3), the areas of greater 
certainty are by contrast highly disjoint, although one 
large area does exist to the southwest.

Particularly, it should be noted that in neither test 
location is it possible to identify those areas that are 
of high likelihood in the fuzzy images from properties of 
the viewshed as calculated in the original DEM (Fig 2b, 
and 3b). For example, elevations both above and below 
the viewpoint may contain both high and low certainty.

CONCLUSION AND CONTINUING WORK

Firstly, it is possible to observe that no absolute 
certainty can be placed on the viewshed. Depending on 
the spatial autocorrelation that is applied to the noise 
term, it is apparent that the likelihood of cells being 
in the viewshed, can be very low. Indeed, with the 
assumption of spatial independence (where 1=0, the only 
assumption that is acceptable given the method of 
calculation and publication of the USGS error statement) 
very little if any certainty can be placed upon the 
standard viewshed calculated. Fortunately, perhaps, the 
viewshed from an elevated location seems to be more 
reliable than one in a depression, but work presented 
here is only exploratory.

Although the method used here is too computationally 
intensive for widespread implementation, it does yield 
alternative fuzzy viewsheds from a particular viewpoint. 
In this paper alternative fuzzy viewsheds derived from 
simulated OEMs with variable spatial autocorrelation are 
discussed. The algorithms can already accommodate 
variable RMSE, and can be receded to accommodate 
variability in other parameters.
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This paper points to further work in three main areas, 
the effect of the error, the source of it, and terrain 
control on the stability of the viewshed. In the first 
of these, it is necessary to develop a method to predict 
the fuzzy viewshed, which derives results similar to 
those generated by simulation, but which is more 
computationally efficient, and so possible to use in 
regular CIS operations. To achieve this it is necessary 
to explore further, probably by simulation, the 
relationships between error structures in OEMs, and 
fuzziness in viewsheds. The effects in the middle and 
far view should also be explored. In the area of error 
sources, considerable need exists for more information on 
the structure of the error in the DEM, and the 
relationship between error derived from digitization (the 
only error studied here), and that derived from original 
map compilation. Finally, aspects of relative elevation, 
other relief properties, and further aspects of terrain 
on patterns of fuzziness and the nature of error need to 
be explored.
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Abstract

We describe and analyze the complexity of a procedure for computing and 
updating a Delaunay triangulation of a set of points in the plane subject to 
incremental insertions and deletions. Our method is based on a recent algo 
rithm of Guibas, Knuth, and Sharir for constructing Delaunay triangulations 
by incremental point insertion only. Our implementation features several meth 
ods that are not usually present in standard GIS algorithms. Our algorithm 
involves:

Incremental update: During point insertion or deletion only the portion of 
the triangulation affected by the insertion or deletion is modified.

Randomized methods: For triangulation building or updates involving large 
collections of point, randomized techniques are employed to improve the 
expected performance of the algorithm, irrespective of the distribution of 
points.

Persistence: Earlier versions of the triangulation can be recovered efficiently.

1 Introduction

The Voronoi diagram and its dual, the Delaunay triangulation, are among the most 
useful structures that can be derived from a finite set of n points in the plane. These 
structures have long been recognized as being very useful in automated cartographic 
applications [6, 8]. Although it is known that these structures can be computed in 

worst case O(nlogn) time [2, 5], it is widely felt that the implementation of these 
algorithms involves a significant amount of programming effort. As a consequence 
many implementors have settled for a simple incremental algorithm, which builds the

"The work of this author was partially supported by the Bureau of the Census under giant 3SA 
9-32.

^The work of this author was partially supported by the Bureau of the Census under grant JSA 
9-32 and by the NSF under grant CCR-8908901.
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diagram site by site [3, 5]. Although there are instances in which this algorithm runs 
in O(n2 ) worst case time, it is often observed that the performance of the incremental 
algorithm is rarely as bad as this quadratic bound suggests.

Recently Guibas, Knuth, and Sharir have given a theoretical explanation of this 
phenomenon [4j. They analyzed the complexity of the simple incremental algorithm 
for Delaunay triangulations combined with an novel technique for locating the triangle 
of the triangulation which contains a given point. They showed that, irrespective 
of the distribution of points, this algorithm operates in O(n log n) expected time 
provided that the points are inserted in random order. (Here the expectation is over 
the possible insertion orders.) We extend their result by giving an algorithm which 
can incrementally maintain a Delaunay triangulation through a sequence of insertions 
as well as deletions.

A.n incremental algorithm is said to have an amortized time complexity of f(n) if 
the total cost of any sequence of N operations divided by N is 0(/(n)), even though 
a single operation may have cost much greater than /(n). We show that, given a base 
set of points, any sequence of insertions and deletions to the Delaunay triangulation 
can be performed on-line in expected amortized time 0(log n) per insertion or deletion 
under the assumptions that (1) for insertion, each of the base points not present in 
triangulation is equally likely to be inserted, and (2) for deletion, each of the points 
present in the triangulation is equally likely to be deleted. Here n reflects the number 
of points present in the triangulation at the time of the update. No assumptions are 
made about the distribution of the base points.

Our algorithm has an interesting type of persistence property. In particular, we 
are able to reconstruct any earlier version of the triangulation more efficiently than 
the naive method of simply reversing the recent history of insertions and deletions.

We have implemented our algorithms in order to establish the actual efficiency, 
which was established theoretically by Guibas, Knuth and Sharir. We present a num 
ber of observations on the algorithm and its practical performance, and in particular 
we consider how the algorithm performs when the assumption of random insertion 
and deletion is violated.

The remainder of the paper is organized as follows. In Section 2 we describe the 
incremental insertion of Guibas, Knuth, and Sharir (for the sake of completeness). In 
Section 3 we describe the deletion algorithm and analyze its expected case complexity 
and in Section 4 we consider the complexity of sequences of insertions and deletions 
and how to keep the search structure balanced through such a sequence. In Section 5 
we discuss our implementation of the algorithm and provide a number of graphs 
displaying the essential elements of the algorithm which determine its complexity.

2 Incremental Insertion

In this section we review the basic incremental algorithm as presented by Guibas, 
Knuth, and Sharir [4]. The algorithm is quite simple. Let P = {pi,p2,       ,pn } be a 
set of points and let D(P] denote the Delaunay triangulation of this point set. For 
points a, b, c £ P, let Aafec denote the triangle (not necessarily in the triangulation) 
determined by these points. We consistently label the vertices of triangles in counter 
clockwise order. For simplicity, we make the usual general position assumptions that 
no three points are colinear and that no four points are cocircular. These assumptions 
are handled in our implementation, but we omit discussion of them here since they 
clutter the presentation with undue detail.
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We assume that the point coordinates have been normalized so that they lie within 
the interior of the unit square. It is assumed that the four corners of the unit square 
are always elements of P, and these four points are not eligible for deletion. When 
the algorithm is initiated, the Delaunay triangulation consists of two triangles formed 
by adding a diagonal through the unit square. (These four points actually violate 
our general position assumption, implying that either of the two diagonals could be 
used.)

The insertion procedure operates as follows. Suppose that p is a new point to 
be added to the triangulation. By a point location method (to be described later) 
determine the triangle Aabc of D(P) which contains this point. Replace the triangle 
Aabc with three triangles Apai, Ap&c, and Apca (see Fig. l(a)). This operation is 
called augmentation.

(a) (b)

Figure 1: Incremental point insertion.

To determine whether e'ach of these three new triangles, say Apa6, is a Delaunay 
triangle we perform the following Delaunay test. Let Aqba be the triangle on the 
"other side" of the edge ab. If either (1) no such triangle exists (because edge ab is 
an edge of the unit square) or (2) if the triangle does exist but p does not lie within 
the circumcircle of Ag&a, then Apa6 is Delaunay and no further updating is needed. 
Otherwise replace the two triangles Apafr and Aqba with the two triangles Apa<? and 
Apqb (see Fig. l(b)). This is equivalent to swapping the edges ab and p<?, and hence 
is called an edge swap. Continue the test, this time with the triangles Apa<? and Apgfe 
until all triangles pass the Delaunay test. The Delaunay test is then performed for 
the for the other two triangles Ap&c and Apca. The correctness of this algorithm is 
well known (see, e.g. [5]).

Pseudocode for this algorithm is given below. Guibas, Knuth, and Sharir actu 
ally describe an elegant nonrecursive implementation of this algorithm [4]. We have 
presented the algorithm in this recursive form to emphasize its symmetry with the 
incremental deletion algorithm, which we present in the next section. The procedure 
invokes the primitive in(u,t>,u;,p) which determines whether the point p lies within 
the circumcircle of the triangle Auvw (where u, v and w are given in counterclockwise 
order). The argument p is the point to be inserted, and D is the existing triangulation.

procedure Insert(p, D); 
begin

Find the triangle Aa&c of D containing p;
Replace Aofec by the three triangles Apafe, Ap&c, and Apca in D;
SwapTest(a&, D);
SwapTest(k, D);
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SwapTest(ca, D); 
end;

procedure Swap Test (xJ, D); 
begin

if Tz is an edge of the unit square then return;
Let y be the third vertex of the triangle to the right of ~xz in D;
if in(a;,?/,2,p) then begin

Replace triangles Axj/2, Apxz with Apyz, Apxy in D;
SwaPTest(zy, D);
SwapTest(yz, D); 

end; 
end;

Letting (ux ,uy ) denote the coordinate of the point u, the primitive in( 
is implemented by evaluating the following determinant.

in(u,v,w,p) = det
Wx

\ Px Py Px +Py 1

The data structure used for storing the triangulation can be chosen from any 
number of standard structures for storing subdivisions of the plane, such as the quad- 
edge data structure [5] or the winged-edge data structure [7]. These data structures 
are both edge-based in the sense that the primitive objects of the data structure 
are the edges. In our implementation a triangle-based data structure was employed. 
This is particularly convenient for the triangle-based point location techniques which 
discussed below. The fundamental property required of any data structure for this 
problem is that it be able to move from one triangle of the triangulation to each of 
its three neighboring triangles in constant time.

One important aspect of this algorithm is the particular order in which the tri 
angles are deleted from the triangulation. Consider the set of triangles of the origi 
nal triangulation which were replaced during insertion and let R(p) denote the dual 
graph of this set of replaced triangles (where each vertex of this graph corresponds to 
a deleted triangle, and two vertices are adjacent if and only if these triangles share a 
common edge)

LEMMA 2.1 The dual graph R(p) is a tree. Further, if we take the root to be the 
triangle of the original triangulation which contains p, Aa&c, then the sequence of 
deleted triangles forms a counterclockwise preorder traversal of this tree.

PROOF: The dual graph is a tree because the union of the set of new triangles (those 
having p as a vertex) defines a simple polygon. (In fact this polygon is star-shaped 
with respect to p.) This polygon contains no other points of the point set in its 
interior. Thus the set of deleted triangles forms a triangulation of this polygon. It is 
well known that the triangulation of a simple polygon is a tree.

The fact that the deleted triangles define to a counterclockwise preorder traversal 
of this tree is an immediate consequence of the facts that (1) the edge swap is per 
formed before either recursive call is made, and (2) the two recursive calls made in
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the algorithm are made in counterclockwise order relative to p. D

To analyze the complexity of the algorithm, Guibas, Knuth, and Sharir proved the 
following result [4]. Observe all of the triangles introduced by the insertion algorithm 
are adjacent to the new point p. Thus a triangle never "reappears" once it has been 
replaced (assuming insertions only).

THEOREM 2.1 (Guibas, Knuth, Sharir) Let P be a set ofn points in the plane, which 
are inserted in random order into a Delaunay triangulation using the above procedure. 
The expected number of triangles that appear at any time the construction is 0(n).

Because the algorithm performs only a constant amount of work with each newly 
created triangle, it would follow that the expected running time of the algorithm is 
0(n). However, the important missing element is the time required to determine 
which triangle the newly added point p lies in. It will be this point location problem 
which drives the total expected running time up to 0(n log n). We describe two ways 
in which this point location can be performed.

The first method involves simple bucketing. Let us assume that the set of points 
P is known in advance. When the algorithm is initiated, the triangulation consists 
of a decomposition of the unit square into two triangles. We partition the initial 
point set into two groups, or buckets, depending on which triangle they lie in. As 
the triangulation is updated, we iteratively redistribute the points into finer and finer 
partitions, so that each triangle of the triangulation is associated with the set of 
points which lie within this triangle. (Our general position assumptions allow us to 
ignore the case in which a point lies on the edge of a triangle. In general this is 
handled by devising a rule which consistently forces all such points into one of the 
adjacent triangles. See also [5].) When a triangle is replaced by augmentation, only 
the points contained within this triangle need be rebucketed into one of three new 
triangles. When two triangles are replaced by two others through an edge swap, only 
the points in the original two triangles need be rebucketed into one of the two new 
triangles. (See Fig. 2(a).)

The second method was introduced by Guibas, Knuth, and Sharir. The history 
of the triangulation updates is stored. In particular, whenever a triangle Aa&c is 
replaced by two or more new triangles, Aafrc remains as part of the structure and 
marked as "old", and pointers are added from Aafec to each of the newly generated 
triangles. The newly added triangles are called the children of the old triangles, and 
the old triangles are the parents of the new triangles. The number of children is either 
three (which occurs when an augmentation is performed) or two (which occurs when 
an edge swap is performed). Thus each node has a constant number of children.

Initially the data structure consists of a single node which implicitly represents the 
unit square (the only node which does not correspond to a triangle), and the insertion 
of the initial diagonal produces two triangular children. This process defines a rooted 
directed acyclic graph, which we call the history graph. The history graph is not a 
tree, because a given node may have as many as two parents in this structure (and 
the deletion algorithm of the next section may produce three parents).

In order to locate the triangle containing a newly added point, we start from 
root node representing the unit square, and trace through the chronological chain 
of "old" triangles containing this point until arriving at the triangle of the current 
triangulation which contains the point. At each "old" triangle there are at most three 
triangles at the next level which could contain the point, thus constant time suffices 
to determine the next triangle of the chain in which the point lies. (See Fig. 2(b).)

223



Figure 2: Point location.

Under the assumption that all points of the base set are inserted into the triangu- 
lation, the total time required by the bucketing and the history methods are identical, 
since the same discriminating tests are made for each point, and each point moves 
through the same sequence of triangles in each method. This history approach can 
be viewed as a sort of lazy evaluation of the bucketing scheme since it is only applied 
to the points which are indeed added to the triangulation. Thus if not all of the 
points are added to the final triangulation, the history method has an advantage over 
bucketing with respect to execution time. In addition this method need not know 
all the points in advance. The number of times a point is moved from one triangle 
to another can be as large as 0(n) per insertion. However, Guibas, Knuth, Sharir 
show that the number of triangles through which a point moves, when averaged over 
all the points and all insertions, is only O(log n) in the expected case. From this it 
follows that the incremental algorithm runs in O(n log n) time in the expected case, 
irrespective of whether the bucketing or history method is used.

One disadvantage of the history method is that its space usage is dependent on 
the number of edge swaps performed by the algorithm. Although this number is O(n) 
in the expected case, it could be as large as 0(n2 ) (although the probability of this 
occurring for large n is extremely small under the assumption of random insertion.) 
The bucketing method has the advantage that it never requires more than 0(n) space 
in the worst case even if the point insertion violates the randomness assumption. This 
is true because only the current triangulation is stored.

One big advantage of the history method is a type of persistence. Persistence 
refers to the ability of a data structure to maintain its history. In this case, by 
storing history of the data structure it is an easy matter to restore a recent version 
of the data structure. This is done quite simply by reversing the sequence of edge 
swaps by walking backwards through the history graph. Since the number of edge 
swaps per insertion is expected to be a constant (and we will see that the same holds 
true for deletion), the time needed to restore an earlier version of the triangulation
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is proportional to the number updates performed between the earlier version and the 
present one. This is a logn factor savings in running time over the naive method 
of reversing the string of recent operations. This same persistence will apply for 
deletions also as we shall see in the next section.

3 Incremental Deletion

In this section we introduce a simple incremental algorithm for deleting a point from a 
Delaunay triangulation. It seems inherently harder to implement a purely incremental 
deletion algorithm in the spirit of the insertion algorithm given in the previous section. 
Our deletion algorithm applies the insertion algorithm of the previous section in 
an off-line mode to compute an intermediate Delaunay triangulation, which it then 
uses to guide an incremental sequence of edge swaps to perform the actual deletion. 
Our algorithm has the interesting property that, with careful implementation (and 
assuming that points are in general position), it swaps edges in essentially the reverse 
order from the insertion algorithm. Thus, by calling the deletion algorithm on the 
points in the reverse order of insertion, the algorithm will incrementally disassemble 
the triangulation in exactly the reverse order of its assembly.

As before, let P — {pi,p2,       ,Pn} denote a set of points in the plane (including 
the vertices of the unit square) and let D(P) denote the Delaunay triangulation of 
this point set. Let p G P be the point to be deleted. We assume that p is not one of 
the vertices of the unit square. We make the same general position assumptions of the 
previous section that no three points are colinear and no four points are cocircular.

Let T denote the set of triangles incident to p in the Delaunay triangulation. 
Because p is not a vertex of the unit square, p does not lie on the convex hull of 
P, and hence the union of the triangles of T is a star-shaped polygon containing 
the point p in its interior (and in fact within its kernel). Let F denote this polygon. 
Observe that any triangle in T cannot be part of the triangulation after the deletion 
of p, and that any triangle in D(P) — T (i.e. any triangle which is not incident to p) 
is still empty after the deletion of p. Thus, only the region of the plane covered by 
the polygon F need be retriangulated.

We begin by outlining a nonincremental algorithm, which we will shortly modify 
to give an incremental algorithm. By a cyclic enumeration of the triangles of T, 
determine the boundary vertices of the star-shaped polygon F. Compute the Delaunay 
triangulation Dr of the polygon F by any algorithm (see the remark below). Replace 
the triangles of T by the triangles of Dr giving the new Delaunay triangulation 
D(P ~{p}}.

Unfortunately, this algorithm is not incremental, and it is unclear how to modify 
the point location algorithms to deal with the sudden replacement of potentially 0(n) 
triangles by 0(n) new triangles. However, imagine that p were the last point of the 
triangulation to be inserted, prior to this deletion. The insertion of p would induce a 
particular sequence of edge swaps mapping D(P — {p}) to D(P}. Since we know both 
triangulations, it is a relatively simple matter to perform the edge swaps in reverse 
order to transform D(P) incrementally to D(P — {p}).

We solve this problem by a simple leaf pruning method. Recalling the discussion 
preceding Lemma 2.1, a triangle of Dr is a leaf of the dual graph of Z?r if and only if 
at least two of its sides lie on the boundary of F. From this lemma we know that by 
the preordering of replaced triangles, the edge swaps are performed in such an order 
that the leaves of F are the last triangles to be replaced in the triangulation. Thus,
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D(P)

Figure 3: Leaf Pruning.

to "undo" the effects of the insertion algorithm we locate a leaf triangle &xyz of the 
Dp and remove this triangle first. Let us assume that the vertices of Axyz are given 
so that x and z are neighbors of y along the boundary of F). Assuming that £\xyz 
does not contain p, swap the edges ~xz and py in the triangulation T (see Fig. 3). As 
a consequence, the vertex y is no longer adjacent to p. We can eliminate y from F, 
by connecting x to 2, and apply the algorithm iteratively to the remaining polygon. 

The complete deletion algorithm is given below. The argument p is the point to 
be deleted, and D is the existing triangulation. Leaf pruning is performed recursively, 
to emphasize its symmetry with the insertion algorithm. (Although, as in Guibas, 
Knuth, and Sharir [4], there does exist a purely iterative solution.)

procedure Delete(p, £>); 
begin

Find the set of triangles T C D incident to p; 
Let F be the polyon denned by the union of T; 
Compute £>r, the Delaunay triangulation of F; 
Let Aa6c be the triangle of Dp which contains p; 
UnSwap(ca, Dp, D); 
UnSwap(6c, Dp, D)] 
UnSwap(a6,Z)r,£>);
Replace the three triangles Apab, Apfec, and Apca by Aa6c in Z>; 
Delete the triangulation Dr', 

end;

procedure UnSwap(aTz, Dr, D); 
begin

if ~xz is an exterior edge of Dp then return; 
Let y be the third vertex of the triangle to the right of afz; 
UnSwapd/z', Dp, D); 
UnSwap(xj/, Dp, D);
Replace triangles Apyz, Apxy with Axi/2, Apxz in D; 

end;

REMARK: The most efficient way to construct the Delaunay triangulation of F 
theoretically is by the rather sophisticated linear time algorithm by Aggarwal, Guibas, 
Sha,xe, and Shor [1]. (Although this algorithm is designed for computing the Delaunay
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triangulation of a convex polygon, it is shown in [1] that it can be applied to patch up 
a Delaunay triangulation when a point is deleted.) A much simpler but theoretically 
less efficient way to compute this Delaunay triangulation is to apply the incremental 
insertion algorithm of the previous section to the vertices of F given in random order. 
It is quite easy to show that the boundary of F remains intact in this triangulation 
(because each edge of F was Delaunay prior to the deletion of p), thus the triangulation 
of the interior of F can be determined by discarding all triangles which lie outside of 
the polygon.

This expected case 0(n log n) algorithm is theoretically slower than the linear 
time algorithm. However, since the expected degree of a vertex in a planar graph is 
less than six (by Euler's formula), practically speaking the minute loss of asymptotic 
running time is more than compensated for by the lower constant of proportionality of 
the simple incremental algorithm together with the significant savings of programming 
effort.

Our practical experience has shown that for many natural point distributions, 
the maximum degree in a Delaunay triangulation rarely exceeds 16, independent 
of n. Thus, it may not be entirely unreasonable to apply an O(n^) triangulation 
algorithm. We decided against this approach because (1) the incremental algorithm 
is already available for our use, and (2) if there is even one vertex of degree J7(n) in 
the triangulation, then the expected running time of the deletion. algorithm would 
grow to 0(n}. This is considerably worse than the O(logn) expected case bound, 
which we show below.

Given the structure of the deletion algorithm, it is relatively easy to see that it 
creates triangles in exactly the reverse order of the insertion algorithm, namely in 
a clockwise postorder traversal of the dual tree of Dp. If the points are in general 
position, and the choice of the orientation of the triangle Aaftc in procedure Delete 
is chosen to be identical to the triangle Aa6c of procedure Insert, then the deletion 
algorithm effectively swaps edges in the reverse order as the insertion algorithm (as 
suming that the point deleted is the last point inserted). If the points are not in 
general position (in particular, if four or more points are cocircular) then there may 
be multiple final Delaunay triangulations for F, thus we cannot guarantee that se 
quence of edge swaps is the same. We can force the orientation of the triangle Acz&c 
to be identical in both cases by selecting the point a in some canonical manner (e.g. 
by taking the point whose coordinates are lexicographically maximal).

Observe that the deletion algorithm does not need to deal with point location 
(except perhaps at the level of the user-interface in order to determine which point 
is to be deleted). However, if subsequent insertions are to be performed, the point 
location structures described in the previous section must be updated to reflect the 
change in the triangulation.

When each edge swap is performed we handle it in exactly the same way that 
we handled an edge swap in the case of insertion. For point bucketing the points 
contained within the affected triangles are redistributed among the new triangles. 
For the history graph the affected triangles are marked as "old" and pointers are 
added to the new overlapping triangles. The final step of the deletion algorithm, in 
which the triangles Apa6, Ap&c, and Apca are replaced by AG&C, is the inverse of 
the augmentation step seen in the insertion algorithm. For the bucketing method, 
the three sets of buckets are merged into a common bucket for Aa&c. For the history 
graph method, we store a single pointer from each of the three old triangles to the 
newly created containing triangle.
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Our next task is to analyze the complexity of the deletion algorithm. This task 
is complicated by the fact that the analysis of the insertion algorithm was based on 
the assumption that only insertions are performed and that all points are eventually 
added to the triangulation. To appreciate the difficulties arising when insertions and 
deletions can be combined, consider the case in which a single point is inserted into 
the triangulation and then it is deleted. This process is repeated a large number of 
times, N. If the bucketing method of point location is used, then when a single point 
is inserted all the points in the base set must be rebucketed, requiring 0(n] time. 
If the history method is used then the history graph degenerates into a structure of 
depth 0(N). Thus the expected running time in either case is much worse than the 
desired O(logra).

In the next section we show how to deal with the question of point location in 
such dynamic situations. For now, we analyze the expected running time of one 
deletion. This running time follows almost directly from the analysis of the insertion 
algorithm. Because the particular edge swaps and point movements (arising from 
point location) for deletion are just the reverse of those for insertion, the expected 
number of edge swaps and point movements needed to delete a random point p from 
a triangulation D(P], is identical to the expected number of edge swaps and point 
movements needed to insert the random point p into the triangulation D(P — {p}). 
Under our assumptions of random point insertion and deletion, the sets P and P — {p} 
are random point sets. Thus, this portion of the cost of deleting a random point from 
a triangulation n points is O(log n) in the expected case.

The only other aspect of the complexity of deleting a point p is the cost of com 
puting the Delaunay triangulation of F, the polygon of neighboring vertices. The 
number of vertices in F is equal to the degree of p in the triangulation. To establish 
the expected cost of this operation, let c?i, c?2 ,..., dn denote the degrees of each of the 
n vertices of the triangulation. By Euler's formula we know that the sum of degrees, 
which equals twice the number of edges in the graph, is at most 6n. By the analysis 
of the previous section, the expected time to compute the Delaunay triangulation of 
a set of di points is O(d{ log dt ). Thus, the expected time needed to compute one such 
Delaunay triangulation, under the assumption that each point is equally likely to be
deleted is

1 n 1 / n \ Qn
- Y^(dt log dt ) < - [^ dt log n < — log n = 6 log n.n ,=i n \,=i / n

Thus, the expected time to delete a point from the triangulation is O(logn), from 
which we have our main result.

THEOREM 3.1 Given the above deletion algorithm (ignoring point location issues) a 
point can be deleted from a Delaunay triangulation of n points in expected 0(log n) 
time, under the assumption that each point of the triangulation is equally likely to be 
deleted.

4 Sequences of Insertions and Deletions

As we mentioned in the previous section, in the worst case, where long sequences of 
insertions and deletions are made, the expected case running time of the algorithm 
can be much larger than O(logrc). In this section we consider how to deal with the 
problem.
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Our first observation is that in certain relatively benign cases (which may be 
quite common in many practical applications) there is really no problem at all. For 
example, if insertions are more common than deletions (in the sense that the ratio 
of the number of insertions to deletions is strictly greater than unity) then it follows 
that over a long sequence, the cost of updating the triangulation is dominated by 
the costs of the insertions. Although the deletions cause an increase in the size of 
the history graph, the assumption of randomness implies that these variations in the 
history graph are distributed evenly throughout the graph, and it was shown in the 
previous section that the local effect of each deletion on the structure is essentially 
equivalent to the effect of an insertion.

In steady state situations, where the number of active points in the triangulation 
reaches an equilibrium, a direct application of the deletion and insertion algorithms is 
rather unpredictable. If the number of active points is a roughly a constant fraction 
of the total number of base points, then the randomness of insertion and deletion, 
combined with Guibas, Knuth, and Sharir's arguments about the widths of triangles, 
imply that only a constant number of points will be rebucketed with each change to 
the triangulation. However, if the number of active points is significantly less than 
the total number of base points, then nearly all of the nonactive base points may 
be rebucketed with each update. The history method will fair even worse, because 
irrespective of the number of active points, the history graph grows without bound 
as updates are made.

In this section we will consider how to periodically rebalance the history graph 
so that these problems can be avoided. The idea is that from time to time, we will 
completely reconstruct the history graph from scratch for only the current set of 
active points, and destroy the old graph. (Observe that this will have the unfortu 
nate consequence of destroying the persistence property provided by the unpruned 
structure.) We refer to this process as reorganization. Let n denote the number of 
active (triangulation) points. We show that by applying reorganization at appropri 
ate times, we can maintain an O(logn) expected time cost for insertion or deletion, 
when amortized over sequences of insertions and deletions. The expectation here is 
over possible random choices of which point to insert or delete. The choice of whether 
to insert or to delete is arbitrary.

We assume initially that the triangulation is trivial (consisting only of the four 
vertices and two triangles of the unit square). Let t denote the total number of inser 
tion/deletion requests which have been performed, and let n(t) denote the number of 
active points in the triangulation after the i-th request. Thus, n(0) = 4. Let t0 be 
the time (i.e. the request number) of the last reorganization. After performing the 
£-th operation we test whether

t - t0 > n(t).

If this is the case then reorganization is performed. Reorganization consists of first 
discarding the existing history graph and triangulation, and then constructing a new 
history graph and Delaunay triangulation by inserting (in random order) each of the 
current active points.

THEOREM 4.1 Using this reorganization scheme, the expected amortized time for pro 
cessing an insertion or deletion request for a random point is 0(log n), where n is the 
number of active points at the time of the insertion or deletion.

PROOF: The theorem follows from two observations. The first is that if periodic 
reorganization is applied, then the execution time of insertion or deletion at any time
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(ignoring reorganization) is 0(\ogn). The second observation is that reorganization 
is performed infrequently enough that it does not increase the asymptotic running 
time of the algorithm.

To prove the first observation, let n0 denote the number of active points at the 
time of the most recent reorganization. Because this is the first point at which we have 
performed a reorganization since to, it follows that for all s, t0 < s < t, n(s) > s — to.

The number of nodes in the history graph increases by an expected constant 
amount with each insertion or deletion (since the expected number of new edge swaps 
is constant). Thus the expected size of the history graph after the s-th request is 
roughly proportional to n0 + (s — to).

Since we can lose at most one point at each insertion/deletion request, we have 
n(a) + (s- t0) > no. Thus

n0 + (s - t0 ) < n(s) + 2(s - t0) < n(s) + 2n(s) = 3n(s).

In other words, at no time is the expected size of the history graph significantly larger 
than the number of active points. Because changes to the history graph are made 
randomly throughout its structure, it follows that the cost of searching the graph does 
not increase asymptotically, so the search time is O(log(n0 + s — t0 )) — 0(logn(s)). 
All other aspects of the insertion and deletion routines are 0(\ogn(s)) running time. 
This establishes the first observation.

To establish the second observation, observe that the expected time to perform re 
organization is 0(n log n), where n is the number of active points. Since the expected 
case of insertion or deletion ignoring reorganization is 0(log n), it follows that the 
cost of reorganization will not dominate the overall cost if the number of insertions 
or deletions since the last reorganization is at least as large as n = n(t). However, 
in order to perform reorganization it must be the t — to > n, thus the number of 
requests which have been processed since the last reorganization is at least as large 
as the number of active points. This establishes the second observation. D

5 Implementation Experience

In this section we discuss our implementation of the algorithm. The algorithm has 
been implemented in the C programming language, under the Unix operating sys 
tem. (Currently the reorganization scheme has not been implemented.) It has been 
designed to provide statistics on the execution of the algorithm for the purposes of 
evaluating its efficiency. Rather than measuring execution time by CPU seconds, 
because of its dependence on the particular machine and compiler, we have measured 
two quantities which we feel give a strong indication of the algorithm's general per 
formance. First, we have measured the number of times that a point moves from 
one triangle to another in the bucketing algorithm (equivalently, the number of levels 
that each point travels through the history graph), and second we have measured the 
number of edge swaps which were performed.

We have run the following experiments involving point insertion. (The reasons 
that we did not consider deletion are (1) the number of edge swaps and point move 
ments for deletion are identical in the expected case to insertion, and (2) we have not 
yet implemented the reorganization scheme described in the previous section.)
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Uniform Data: Points were sampled from a uniform distribution over the unit 
square and inserted into the triangulation. Point sets of size 50, 100, 200, 
400, 800, 1600, 3200, and 6400 were considered.

Gaussian Data: Points were sampled from a Gaussian distribution whose center is 
at the center of the unit square and whose standard deviation was 0.2 in each 
of the x and y directions. Point sets of the same sizes as in the uniform case 
were considered.

Sorted Data: To test the sensitivity of the algorithm to violations of the randomness 
assumption, we ran an experiment in which points were selected uniformly from 
the unit square, but were inserted in order of increasing x-coordinate.

Partially Random Data: In this variant of the previous experiment, we inserted 
points in which the first p points were inserted randomly (out of a total of 6400), 
and the remaining points were inserted in order of increasing x-coordinate. The 
values of p tested were 25, 50, 100, 200, 400, 800, 1600, 3600, and 6400.

The results of the these experiments are given below.

Uniform Data: Fig. 4(a) shows a plot of the number of edge swaps performed by 
the algorithm versus n, the number of points. The regression line fitted to the 
data is 2.97n   68.0. Fig. 4(b) shows a plot of Iog10 n versus the average number 
of point movements per point. Standard deviations are indicated by vertical 
lines. The regression line fitted to the data is 9.021og 10 n   3.75.
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Figure 4: Uniform data: Total edge swaps and average point moves.

Gaussian Data: Analogous results for Gaussian data are shown in Figs. 5(a) and (b). 
In the first case the regression equation is 3.01n   77.4, and in the second case it 
is 9.661og 10 n   6.32. Both cases are in close agreement with the uniform case, 
although the number of edge swaps is slightly larger in the Gaussian case.

Sorted Data: Fig. 6(a) shows a plot of the total number of edge swaps performed 
versus n in the case that points are inserted in sorted order. The regression line 
fitted to the data is 4.72n   494. The slope is greater than the previous cases, 
however this supports the observation made by Tipper [9] that the average 
number of edge swaps per point is independent of n. However, the plot of 
Iog 10 n versus the number of point moves showed a striking nonlinear behavior 
(see Fig. 6(b)). It is clear that the assumption of randomness is critical to the 
analysis of the point location schemes.
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Figure 5: Gaussian data: Total edge swaps and average point moves.
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Figure 6: Sorted data: Total edge swaps and average point moves.

Partially Random Data: The results of the previous experiment lead us to the 
question of how many initial points need be inserted randomly in order to 
guarantee fairly good performance in point location. Fig. 1 shows Iog 10 p versus 
the average number of movements per point. Interestingly, with as few as 200 
of the 6400 points inserted randomly (about .03% of the total) the performance 
is within a factor of 2 of the totally random case.
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Figure 1: Partially random data: Average point moves.

6 Conclusions

We have presented and analyzed the complexity of a procedure for computing and 
updating Delaunay triangulations for point insertion and deletion. The algorithm
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is randomized and incremental, based on a recent algorithm of Guibas, Knuth, and 
Sharir. The algorithm has the nice feature that it is asymptotically as efficient (in the 
expected case) and yet much simpler than standard divide-and-conquer algorithms. 
Its expected running time is independent of the distribution of the points, only on 
the order in which the points are inserted or deleted. We have implemented a portion 
of the algorithm for the purpose of empirical analysis. Our studies seem to indicate 
that the running time is quite good even if the assumption of random insertion order 
is violated as long as an initial fraction of the points are inserted randomly.

One interesting open problem raised by this research is whether these results 
can be applied to more general types of triangulations. In particular, in geographic 
information systems, it is quite common to require that certain edges be present in the 
Delaunay triangulation, giving rise to a constrained Delaunay triangulation. It would 
be of interest to develop and analyze the performance of a randomized incremental 
algorithm for constrained triangulations.
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ABSTRACT

Numerous cartographic applications rely on triangulated surface models for accurate 
three-dimensional representations of real-world data. Some applications require a series 
of triangulations to represent a single surface at progressively finer levels of detail. Past 
work has emphasized techniques relying on plane geometry using little or no surface 
data. We propose a technique that adapts the triangulation to surface characteristics. 
Because our adaptive hierarchical triangulation focuses on the topology of a surface, it 
reduces the number of triangles required for a good approximation. It also produces 
fewer long and slivery triangles within each level of detail. Our structure guarantees the 
accuracy of each level of detail. Our structure only retains important triangles, thereby 
reducing the total number of triangles that must be stored and searched. Furthermore, 
the tree-like structure of our hierarchy is well-adapted to multiple resolution views, 
allowing smooth transitions between levels of detail in flight simulators. These advan 
tages add up to a triangulation that provides great accuracy in a model that can be 
rapidly searched, rendered, and otherwise manipulated. Tests on data with digital eleva 
tion input have confirmed the above theoretical expectations. On eight such sets the 
average "sliveriness" with the new method was between 1/5 and 1/10 of old triangula 
tions and number of levels was about one third. Although the number of descendants at 
each level increases slightly, the total number of triangles is lower, implying faster spa 
tial search.

INTRODUCTION

Geographic information systems, flight simulators, and numerous other cartographic 
applications rely on digital terrain models for simulation, visualization, and analysis. 
Increasingly, these applications require both greater accuracy and data compression 
from these models. Triangulated models are popular because triangles are simple to 
manipulate and render. Triangulated Irregular Networks (TINs) offer the additional

t Portions of this paper were included in a paper presented at Visualization '90. For further details 
and examples of this work, interested readers should request a technical report entitled "Hierarchical 
Triangulation Using Terrain Features" from Lori Scarlatos.
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advantage of not being bound by regularity constraints. TINs can therefore approximate 
any surface at any desired level of accuracy using a very small number of polygons. 
Organizing TINs in a level of detail hierarchy provides accurate generalizations meeting 
different application requirements. Hierarchical organization allows easy implementa 
tion of such operations as zooming when viewing the surface. It also facilitates search 
ing and other geometrical operations such as finding the intersection of two surfaces. 
Furthermore, it makes real-time simulation and visualization possible for applications 
that can represent less important areas with less detail in mixed-resolution models.

This paper describes a hierarchical triangulation built from a digital elevation model in 
grid form. Each level in the hierarchy corresponds to a different level of detail that 
approximates the surface within a given tolerance (i.e. maximum error), The top level is 
the coarsest, containing the fewest triangles and approximating the surface within the 
greatest tolerance value to. The i+l'h level in the hierarchy is related to the i th level as 
follows. Tolerance ti+i is smaller than tt . Each triangle T} of the i th level is split into n 
descendent triangles 7/t 1 , ''' , Tf+i at the i'+l'* level, where n can be any positive 
integer.

In the following section, we provide a background of past work on triangulation and 
hierarchical triangulation. We then describe our adaptive hierarchical triangulation 
methodology, and discuss its advantages over other methods. Next, we outline the 
implementation of this algorithm and the resulting data structure. We conclude with a 
discussion of test results obtained from running this implementation.

BACKGROUND 

Triangulation

Triangulation algorithms generally fall into two groups: those that efficiently triangulate 
a given polygon, and those that use triangulation to approximate surfaces. In the former 
category, the primary issues are computational complexity (Aho et al 1974, Garey et al 
1978, Clarkson et al 1989, Fournier and Montuno 1984) or size and shape of the result 
ing triangles (Baker et al 1988). We are more interested in the latter category where the 
primary goal is to produce the best possible surface approximation. This surface 
approximation should contain as few triangles as possible while still meeting given 
accuracy requirements. At the same time, it must minimize the number of very thin, 
slivery triangles which can produce artifacts in renderings of surface models.

Surface triangulation algorithms may be further categorized by the input data they tri 
angulate. Surface triangulation produces a planar graph by adding edges, and sometimes 
even points, to an initial graph. This initial graph, comprised of points (nodes) on the 
surface, may or may not include connecting edges (critical lines) that further define that 
surface.

In the first sub-category of surface triangulation algorithms, the initial graph contains no 
initial edges. Although some of these triangulation algorithms rely on alternate tech 
niques (Mirante and Weingarten 1982, Manacher and Zobrist 1979) most are a variation 
on the Delaunay triangulation scheme (Watson 1981, Dwyer 1987, Preparata and 
Shamos 1985, Watson and Philip 1984 are only a few). Algorithms based on Delaunay 
triangulation have the advantage of producing few slivers. However, Delaunay's 
method was developed to find nearest neighbors on a plane, not approximate surfaces. 
These algorithms tend to ignore the third dimension, and may therefore produce triangle 
edges that contradict the topology of the actual surface (Christensen 1987).
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The second sub-category of algorithms assumes that all points in the initial graph have 
at least one connecting edge. These edges correspond to the linear patterns that charac 
terize many surfaces, particularly natural ones such as terrain. Because these edges 
describe surface topology, they are retained in the final triangulation to maximize model 
accuracy. Some papers such as (Christiansen and Sederberg 1978, Dennehy and 
Ganapathy 1982) deal with triangulating cross-sections from tomographic scans, 
although the methods of both of these papers require human intervention when the con 
tours get complex. Other algorithms for triangulating cartographic critical lines have 
been recently published (Christensen 1987, Scarlatos 1989, Chew 1989).

Hierarchical Triangulation

Hierarchical triangulations provide both multiple levels of detail and a structural order 
ing for fast spatial search. Recent papers (Goodchild 1989, Fekete 1990) propose to 
represent the entire planetary surface with a quadtree-like hierarchy of regular triangular 
tessellations. This is an excellent scheme for dividing huge data bases into manageable 
areas of interest which may be georeferenced in constant time. However, as shown in 
(Scarlatos 1990b), the placement of points in a regular tessellation is independent of the 
surface topology. Hence coarser levels of detail can distort or entirely miss important 
terrain features, and finer levels of detail can cause unnecessary bottlenecks by produc 
ing large numbers of triangles where a few would do as well.

Previous work by one of the authors has researched techniques to find critical points 
and lines (Scarlatos 1990a), triangulate them (Scarlatos 1989) and then refine those tri 
angulations to produce a hierarchy of detail levels for fast spatial search with maximum 
accuracy (Scarlatos 1990b). These algorithms represent significant improvements over 
other algorithms, producing good triangulations. However, the above algorithms do not 
allow for refinement down to a specified level of accuracy.

Although several refinement techniques have been suggested in the literature (Fowler 
and Little 1979, DeFloriani et al 1984, DeFloriani 1989), these algorithms can introduce 
artifacts to a terrain model because they consider only the locality of points in a 2D 
plane instead of actual terrain topology. Consider, for example, DeFloriani's first algo 
rithm for triangle refinement (DeFloriani et al 1984) which splits a triangle by connect 
ing its corners to a selected interior point (usually, the point of maximum distance 
between the surface and the plane defined by the vertices of the triangle). The algorithm 
ignores the coherence of cartographic features such as valleys or ridges which have a 
linear structure.

Figure 1 shows the results of ignoring such coherence. We assume that a ridge (its 
points marked by small circles in (a)) crosses the triangle, (b) shows that the maximum 
point triangulation will produce an unreasonably large number of triangles. Even worse, 
the triangles will have very sharp angles, which is an undesirable property (Baker et al 
1988). Such triangulations may cause numerical stability problems in finite element 
methods and also produce undesirable display artifacts. In contrast, if we realize that we 
deal with a ridge and introduce a dividing line along it as shown in (c) we will end up 
with fewer triangles, none of them slivery. We should point out that triangles with very 
sharp angles may be inevitable for some types of data. For example, if we have a steep 
cliff we will see large differences in the value between adjacent elevation points. Then 
triangles with very sharp angles cannot be avoided.
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(a) (b) (c)

Figure 1. A ridge passing through a triangle has (a) points along that ridge
that are farthest from the triangle which may be triangulated using

(b) the maximum error point to split each triangle, or (c) cartographic
coherence to approximate the ridge line.

METHODOLOGY

Our goal is to reduce the number of splits or refinements required to achieve a desired 
level of detail and limit the number of slivery triangles in the results. A generalization 
of the critical line method could produce better accuracy with fewer triangles. We have 
implemented such a strategy as follows. We start with a coarse triangulation. This may 
be carefully produced by techniques outlined in Scarlatos' three papers, or it may be as 
simple as a rectangular area split in two. We then refine this triangulation by adding 
points from the original digital elevation grid and connecting edges. Our refinement 
technique pays particular attention to terrain characteristics, approximating critical lines 
at each step.
To accomplish this, we determine the best places to split each triangle by calculating 
four error values: one inside the triangle, and one on each of the three edges. All error 
values measure the difference between original grid point elevations and their projec 
tions to the surface of the triangulated model. To avoid quantization artifacts, grid 
points near a triangle edge are considered to be on that edge.

Figure 2 shows the five ways that a triangle may be refined. If an isolated peak or pit 
resides within the triangle, it is split at that central peak or pit point as shown. If a sin 
gle ridge or channel line travels up to that peak or pit, the triangle is split where that 
line crosses the edge of the triangle and at the central peak or pit point. If, however, a 
single ridge or channel line enters the triangle and ends at a saddle point or flat, then 
the center point is insignificant and the triangle is split by one edge as shown. If a ridge 
or channel line passes through the triangle, significant errors will be found on two edges 
of the triangle. A line connecting these points approximates the topographical line, and 
an additional edge splits the remaining quadrilateral. Finally, if a triangular patch 
corresponds to a rapidly fluctuating surface, many points are likely to have significant 
errors. Splitting this type of triangle on all edges segments the high-frequency regions 
which may then be further refined.
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Split in center Split on 1 edge 
(significant center)

Spb't on 1 edge 
(insignificant center)

Split on 2 edges Split on 3 edges 

Figure 2. Split strategies for preserving cartographic coherence.

We repeatedly split the triangles until they all meet the given accuracy requirements for 
the current level of detail. Intermediate triangles, used to produce but not included in 
the final triangulation for the current level of detail, are discarded. This reduces the 
number of levels in the hierarchy and the number of triangles within each level, making 
faster search, display, and processing possible. If polygon constraints are more impor 
tant than the level of error, we can easily check the polygon count and terminate a level 
when the limit is approached.

IMPLEMENTATION OF THE ALGORITHM

We implemented our adaptive hierarchical triangulation algorithm as follows. A main 
program retrieves the input data, calls the appropriate triangulation routines, and writes 
out the results to a data base. Input parameters include an initial triangulation, the 
number of levels to create in the hierarchy, and a tolerance for each level. A main loop 
generates each level of detail. At the start of the loop, the current triangulation 
represents level i in the hierarchy. At the conclusion of the loop, the current triangula 
tion represents level i+l in the hierarchy. The body of the loop splits triangles in the 
current triangulation until all errors lie within the given tolerance for that level.

Data Structures

We generate our adaptive hierarchical triangulation from a digital elevation matrix 
which covers a rectangular area of interest. The region outside the area of interest is 
represented by four neighboring "triangles". These extend infinitely to the north, east, 
south, and west of the area of interest. Points within the area of interest provide the 
endpoints of ~ and are entirely covered by — an initial triangulation. Each point may 
therefore be associated with zero, one, or two triangles. Points acting as triangle ver 
tices have no triangle associations. If the distance from a point to a triangle edge is less 
than the distance between grid posts in the original matrix, then that point is considered 
near that edge. A point on or near a triangle edge is associated with the two triangles
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that share that edge. Otherwise, the point is within a single triangle. A Membership list 
contains records of each point's two associated triangles and a distance to their shared 
edge. When a point is near more than one edge, the membership records form a linked 
list in order of increasing distance values.

A triangle in the hierarchy is defined by three points from the original elevation matrix. 
Each triangle is associated with a level of detail and contains pointers to its parent, its 
children, and three neighboring triangles that share its edges. In addition, triangles have 
temporary structures keeping track of their splitting points, the maximum error found 
within them, and the number of edges to be split. A flag indicates whether the triangle 
meets the accuracy standards of the current level.

Splitting Triangles
For each specified level of detail, our program repeatedly splits triangles until the tri 
angular mesh approximates the surface within the given tolerance. We find errors 
within a triangle by taking all grid points within the boundaries of that triangle, project 
ing them to the surface of the triangle, and comparing the results to the original eleva 
tion values. Errors are found in four regions on a triangle: on each of the three edges, 
and within the triangle. These errors determine if and how the triangle will be split.

Next, we find the point producing the maximum error in each of the four regions for 
each triangle. Notice that the point with maximum error on one triangle's edge will also 
be the point with maximum error for the other triangle sharing that edge. If the error is 
significant, then that point will split the triangle(s) it belongs to. Significance may be 
calculated in two ways. First, if the given value is greater than the threshholded error 
for the current level of detail, then that point is significant. Alternatively, if the given 
value is more than some percentage of the maximum error found within a triangle, then 
that point is significant. In either case, a point is insignificant if its error falls at or 
below the threshhold for the current level of detail.
After all splitting points have been found, we ensure that the splitting point on an edge 
of one triangle is also a splitting point for the triangle sharing that edge. Then we split 
all the triangles. Although each of the five regular triangulation algorithms is different, 
they all follow the same pattern of steps. First the outer edges of the triangle are split. 
If the splitting point does not lie exactly on the outer edge, this will introduce a minor 
bend in the triangle. Extremely thin triangles produce special cases which must be han 
dled separately. Our technical report discusses the necessary special triangulation in 
depth. In the next step we add all the new interior edges. As we modify and add edges, 
we update the point membership list indicating what triangle(s) each point belongs to. 
Finally, new triangle records are added, and triangle neighbor values are updated.
Data Base Structure

This algorithm produces all of the information required to both render the 3D surface 
and search for spatial relationships. A header record includes information such as a 
ground position for the lower-left corner of the triangulation; spacing between posts in 
the original grid; elevation ranges in the triangulation; number of levels. This is fol 
lowed by the level records. Each level has a threshhold of allowable error, used to pro 
duce the triangulation. It also has a number of points, number of triangles, and a list of 
triangles. Each triangle is defined by 3 point indices, and has a parent pointer, child 
pointers, and neighbor pointers. All this is followed by a single point list. Only points 
that appear in the triangulation are written to the data base; all others are unnecessary. 
Points are ordered such that if level L uses N points, then it uses points 1, • • • Jf. This 
reduces retrieval time for a level of detail.
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RESULTS

We tested our algorithm on eight (8) areas of interest (AOI) representing four very 
different types of terrain. AOI 1-2 contains numerous plateas; AOI 3-4 is a relatively 
flat region; AOI 5-6 contains mountains rising out of the foothills; and AOI 7-8 
represents a portion of the Cascade mountain range. Our data comes from the Defense 
Mapping Agency's Digital Terrain Elevation Data (DTED) Level 1 which has three 
seconds of an arc between posts. Each test AOI covers 75x75 elevation points. A tri 
angulation employing all 5625 points in an AOI would contain 10,952 triangles.

We implemented the adaptive hierarchical triangulation algorithm with varying parame 
ters to see which behaved best. The first parameter is how we determine the 
significance of point p 's error ep . Error ep may be considered significant compared to 
1) tolerance value tt for level /, so that ep ^tt , or 2) a percentage N of the maximum 
error etmm found for current triangle t, so that ep & etmai . The second parameter deter 
mines when we split a triangle at one edge and a significant center (as shown in Figure 
2 ). Center point c may be considered significant compared to 1) the error ev of split 
ting point v on the edge of the triangle, so that ec ^ev , or 2) the significance value 
used to determine the significance of all other points, as determined by the first parame 
ter. Hence we ran four optional programs. Option 1 uses tolerance to determine 
significance, and requires a center point to be at least as significant as an edge point in 
order to be used. Option 2 uses 75% of the maximum error within a triangle to deter 
mine significance, and also requires a center point to be at least as significant as an 
edge point. Options 3 and 4 are like options 1 and 2 respectively, except that a center 
point's significance is determined by the usual measures. As a basis of comparison, we 
implemented DeFloriani's first algorithm (DeFloriani et al 1984) and ran it with the 
same test data.

We executed DeFloriani's algorithm and all four options for our algorithm using the 
eight AOIs as input, producing triangulations with a minimum error of 10 meters. All 
tests demonstrated that adaptive hierarchical triangulation works well. Tables 1-4 show 
some of our results.

A better triangulation will produce fewer slivery triangles. The table shows how slivery 
the resulting triangles were. We measured sliveriness with the following ratio, calcu 
lated for each triangle in the triangulation: ^TXrtjger2 • The best possible ratio is 
approximately 20.78 for an equilateral triangle. Larger values represent thinner trian 
gles, so smaller numbers are better. We summed all of these ratios together and divided 
by the total number of triangles to get an average sliveriness figure. We then divided 
that result by the sliveriness ratio for an equilateral triangle. Note that on the average 
most of the triangles have much sharper angles than sixty degrees. Using DeFloriani's 
algorithm, some angles are as small as 0.25 degrees. Notice how much better adaptive 
hierarchical triangulation performed, using all four options. Options 1 and 2 seem to 
work about equally well, indicating that the best measure of point significance is deter 
mined by data characteristics. Options 3 and 4 consistently performed a little worse. 
This leads us to conclude that a center point should only be included in the division of 
a triangle if it is more significant than the edge point.
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Table 1

Measures of Sliveriness*
AOI

1

2

3

4

5

6

7

8

DeFloriani-1

32.294

52.487

35.889

50.682

56.835

40.932

51.261

39.925

Option 1

5.086

9.645

5.934

11.315

14.843

5.305

4.352

5.949

Option 2

5.113

11.882

5.672

10.969

8.757

5.371

4.932

6.200

Option 3

6.301

11.074

6.398

12.581

14.329

7.376

6.089

6.805

Option 4

6.578

11.107

5.998

12.854

8.676

7.437

7.367

7.153

* normalized to 1 for an equilateral triangle 

Table 2

Comparison of Hierarchies

AOI

1

2

3

4

5

6

7

8

Number of 
Levels*

DeFloriani-1

15

17

17

17

19

18

17

18

Option 1

5

5

5

5

5

5

5

5

Average Number 
of Children**

DeFloriani-1

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

Option 1

2.8

2.4

3.6

3.6

2.4

2.5

2.4

2.3

* number of levels specified for new algorithm 
* * number of children assumed to be 2.5 for old algorithm
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A better triangulation will permit fast spatial search. The time required for a search is 
determined by the number of levels that must be searched, and the number of child 
nodes that must be examined at each level. DeFloriani's algorithm, which always splits 
a parent triangle into 2 or 3 children, has an average of about 2.5 children per parent 
node. The number of levels in a hierarchy depend on the number of iteration levels 
required to build the triangulation. Adaptive hierarchical triangulation, on the other 
hand, guarantees a fixed number of levels in the hierarchy, but can split a parent trian 
gle into any number of children. Although one may presume that a very large number 
of children will be produced, table 2 shows that this is not the case. Table 2 shows that 
search times using an adaptive hierarchical triangulation will be as fast as, or faster 
than, the other. Additional results can be found in our technical report.

A better triangulation will result in fewer triangles. Table 3 shows the total number of 
triangles in the hierarchy. Notice that the options that produced the fewest total trian 
gles also produced the least slivery triangles. Table 4 shows the number of triangles at 
the highest level of detail, with a maximum error of 10 meters at each point. Compare 
this to 10,952 triangles for the original grid. Although the difference in values is not 
striking, the adaptive hierarchical triangulation usually produced fewer triangles than 
DeFloriani's algorithm.

Figure 3 demonstrates the significance of the improvements made by the adaptive 
hierarchical triangulation. Figure 3 a shows a view of AOI 1 using the original grid 
data. Figure 3 b shows the same view of the data triangulated with DeFloriani's algo 
rithm for a maximum error of 10 meters. Figure 3 c shows the same view of the data 
triangulated with our algorithm (using option 1) for a maximum error of 10 meters. All 
three views were rendered with Gouraud shading. Notice the severe artifacts caused by 
very thin triangles in the DeFloriani model.

While Delaunay triangulations have been proposed as means for reducing the number 
of very sharp triangles within hierarchical structures (DeFloriani 1989), Delaunay tri 
angulations have serious drawbacks as discussed in (Christensen 1987). In some cases, 
using Delaunay triangulation to add points can actually increase error levels in the 
model, even though the model contains more triangles. The algorithm of Baker et al 
(1988) while it avoids generating obtuse triangles, it generates far too many points and 
triangles for our purposes.
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Table 3

Total Number of Triangles 
in the Hierarchy

AOI

1

2

3

4

5

6

7

8

DeFloriani-1

2918

4198

2576

2007

5433

3935

4908

7962

Option 1

2866

3964

1862

1551

5339

3283

4655

7927

Option 2

2876

4124

1806

1525

5179

3289

4735

8125

Option 3

3208

4344

2022

1737

5508

3624

4995

8312

Option 4

3195

4364

2055

1757

5372

3604

5109

8516

Table 4

Number of Triangles* 
in Highest Level of Detail 
(Tolerance = 10 meters)

AOI

1

2

3

4

5

6

7

8

DeFloriani-1

1741

2474

1547

1211

3185

2318

2883

4568

Option 1

1852

2330

1353

1123

3072

1979

2745

4418

Option 2

1858

2380

1309

1111

3062

1992

2769

4414

Option 3

1942

2442

1439

1196

3127

2167

2899

4436

Option 4

1935

2452

1470

1237

3135

2137

2901

4586

compare to 10952 triangles in grid
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Figure 3. Perspective views of AOI 1 modeled with 
(a) DTED, (b) DeFloriani's algorithm, (c) Adaptive Hierarchical Triangulation.
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CONCLUSIONS

Adaptive hierarchical triangulation, presented in this paper, has the following advan 
tages over other algorithms currently used. First, because our algorithm focuses on the 
topology of a surface, it reduces the number of triangles required to accurately approxi 
mate the surface and produces fewer long and slivery triangles within each level of 
detail. Second, our structure guarantees the accuracy of each level of detail. This may 
be easily extended to impose a polygon limit at each level. Third, our structure only 
retains important triangles, thereby reducing the total number of triangles that must be 
stored and searched. Fourth, the tree-like structure of our hierarchy is well-adapted to 
multiple resolution views, allowing smooth transitions between resolutions in anima 
tion. Because adaptive hierarchical triangulation pays attention to surface topology, this 
transition from low to high levels of detail will cause only minor terrain features to 
appear. Finally, adaptive hierarchical triangulation algorithm is fully automated, requir 
ing only the area of interest and a series of tolerance levels to be defined. This algo 
rithm can also be shown to run in O(n Inn ) time. These advantages add up to a triangu 
lation that provides great accuracy in a model that can be rapidly searched, rendered, 
and otherwise manipulated.
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ABSTRACT

Knowledge-based systems for cartographic symbolization concerned 
with GIS's output have been suggested by a number of researchers. 
The structuring of the knowledge with a proper knowledge 
representation scheme is one of the key issues for the development 
of such a system. The specific requirements for the knowledge 
representation scheme are specified. It is argued that the 
conventional knowledge representation schemes such as rules, 
semantic networks, conceptual graph, object-attribute-value and 
frames are not rich and powerful enough to meet the requirements. 
Then it is suggested to use an object-oriented knowledge 
representation (OOKR) scheme to construct the knowledge. It meets 
the requirements and overcomes major problems of the 
conventional knowledge representation schemes. Further, examples 
are given to demonstrate the power and flexibility of the object- 
oriented knowledge representation scheme.

1. Introduction

The analysis results of a GIS are usually represented by maps which are, at 
present, generated through the relevant facilities of a GIS automatically or 
interactively. The maps are subsequently used as a major tool for decision 
making and communication. Currently, none of the GIS systems includes 
mechanisms to ensure the correct use of graphic functions. This may lead to 
poor use of graphics as GIS systems are widespread, and many of the users 
of GIS's are not professional cartographers. Indeed, many poorly designed 
maps can be observed (Muller and Wang, 1990). To solve this problem, 
considerable investigations on using knowledge-based system technology 
have been conducted and some achievements have been made (Mark and 
Buttenfield, 1988; Muller and Wang, 1990; Weibel and Buttenfield, 1988). 
However, no comprehensive and truly intelligent system has been 
constructed up to now.

Many issues should be addressed for developing a full-scale map design 
knowledge-based system (Mackaness and Fisher, 1986; Weibel and 
Buttenfield, 1988). Among these issues, a proper knowledge representation 
scheme that can be used to organize the relevant knowledge and facilitate 
the relevant issues concerned is fundamental for the development of such 
a system. In the Artificial Intelligence (AI) community, commonly used 
knowledge representation schemes are rules, semantic networks,
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conceptual graph, object-attribute-value(OAV) and frames. Each of them 
has certain advantages and disadvantages. Muller and Wang (1990) used a 
frame-based knowledge representation scheme for cartographic symbol 
design. Wang (1990) proposed a conceptual graph based representation 
scheme for cartographic information representation.

In this paper, it is suggested to use object-oriented knowledge 
representation (OOKR) scheme for a knowledge-based system for 
cartographic symbolization concerned with GIS's output (hereafter we will 
only call it cartographic symbolization). In next section, the specific 
requirements for the knowledge representation scheme are specified. In 
Section 3, it is argued why the conventional schemes are not rich and 
powerful enough to meet the requirements, and why object-oriented 
knowledge representation scheme is suitable. The representation of the 
knowledge of cartographic symbolization by the object-oriented 
representation scheme is illustrated by examples in Section 4. Discussions 
and future work are given in Section 5.

2. The Requirements for the Knowledge Representation Scheme

A knowledge representation scheme is the way in which the facts and 
relationships of the domain knowledge are organized. It is an issue of key 
importance for developing a knowledge-based system. General 
requirements of a knowledge representation scheme can be found, for 
example, in Luger and Stubblefield (1989). Up to now, there has been no 
comprehensive knowledge representation scheme which can be used to 
organize every kind of knowledge. The choice of the knowledge 
representation scheme depends on the characteristics of the domain 
knowledge under consideration. The first question then is: what are the 
requirements of the knowledge representation scheme for cartographic 
symbolization?

First, let us have a look at an example. Suppose a geographic information 
system contains information about the buildings of a municipality. A user 
of the system wants to have the statistical information of each district about 
area of buildings used for residential and industrial purposes respectively, 
and the statistic information must be represented on a map. The common 
procedure for the generation of the map, at present, is: First, one groups the 
two kinds of information on each district (e.g. by SQL) to produce a data file. 
Second, one designs the map type and relevant symbols for representing the 
information based on cartographic symbolization principles. In this step, 
besides the rules used for decision making, some calculation is often 
necessary, for instance, to determine the value and size of a symbol. Then 
the designed map parameters are passed to a package (e.g. GIMMS) to 
generate the map. If a cartographic symbolization knowledge-based system 
is attached to the GIS, it is natural and desirable that the knowledge 
representation scheme could facilitate the issues concerned with the three 
steps mentioned above.
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More generally, the following issues are essential requirements for a 
knowledge representation scheme when developing a knowledge-based 
system for cartographic symbolization.

a. Like any knowledge representation scheme, the scheme must have the 
capabilities to describe the objects and model the relationships between 
the objects concerned with cartographic symbolization. The objects in 
cartographic symbolization are those concerning the interpretation of 
the spatial information to be mapped, the cartographic symbolization 
principles, and the relevant cartographic semiology.

b. An important feature of spatial information, and the relevant 
cartographic symbolization principles is their organization into class 
hierarchies (e.g. Egenhofer and Frank, 1990; Muller and Wang, 1990). 
Thus the ability of the knowledge representation scheme to represent 
the inheritance between a class and its instance objects, and between a 
class and its superclass is essential.

c. As it is believed that the development of a map design knowledge-based 
system should be started from a limited domain (Muller and Wang, 
1990), and thus knowledge may then be gradually acquired in an 
"amplified intelligence" strategy (Weibel and Buttenfield, 1988), it is 
desirable that the knowledge representation scheme should be well 
structured and be able to support modularity and reusability. Hence, 
when the size of the knowledge base increase significantly, the 
knowledge is still manageable, and can be extended and reused.

d. When the knowledge base grows and changes, consistency checking 
becomes important. Moreover, judging from the issues concerned with 
map design knowledge-based systems (e.g. Muller and Wang, 1990), one 
can see that map design and generation are problems that mix logical 
deduction, rule-based inference, and procedure execution (e.g. graphics 
generation). The solution of these problems demands a knowledge 
representation scheme that effectively combines rules and procedures, 
and provides a vehicle for implementing graphics I/O, consistency 
checking, and interactions between objects.

e. When using GIS, spatial information to be mapped is usually from the 
database of a GIS, this information is then used for deduction, reasoning 
and map generation. Therefore the knowledge representation scheme 
should not only be able to support data input through consultation, but 
also be able to facilitate automatic feeding of data from a spatial database. 
This should be considered as an essential feature of the knowledge 
representation scheme.

These issues may be partially addressed by combining existing technologies 
such as database, conventional knowledge representation scheme and 
mapping packages (e.g. Muller and Wang, 1990). However, what is desirable 
is that the issues could be accommodated by a knowledge representation 
scheme in a uniform way. We will see how object-oriented approaches can 
be used to facilitate the issues.
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3. Why an OOKR Scheme is Suitable for Structuring the Knowledge

We will see, in this section, why the conventional knowledge 
representation schemes can not meet the requirements discussed in Section 
2, and describe the promises of the object-oriented knowledge 
representation scheme.

3.1 Object-oriented knowledge representation

Follow Luger and Stubblefield (1989), and Meyer (1988), an object-oriented 
knowledge representation scheme may be defined as the organization of 
knowledge as structured collections of abstract data type implementations. 
In this scheme, everything is defined as an object or system of objects. An 
object can be defined as an independent entity represented by some 
declarative data and a set of methods (such as routines and rules) that 
operate on the object. Relationships between objects and the overall 
problem specification are implemented as messages between objects. In 
addition, objects are abstracted into a hierarchy of classes, allowing the 
inheritance of properties and methods.

For other basic concepts concerned with object-oriented knowledge 
representation such as classes, inheritance, attributes, methods, controls, 
message passing, encapsulation, redefinition, polymorphism, dynamic 
binding, modularity and reusability, we refer to Leung and Wong (1990) and 
Meyer (1988).

It should be noted that object-oriented knowledge representation scheme is 
different from conventional knowledge representation schemes (except 
frames) in that knowledge is abstracted to classes which are instantiated by 
objects. It differs from commonly-called object-oriented approach for 
software construction in that rules are included in methods.

To adequately model a complex system in reality, abstraction mechanisms 
are necessary. The fundamental abstraction mechanisms from the database 
paradigm can be used. These abstract mechanisms are classification, 
generalization and aggregation (Smith and Smith, 1977). Classification is 
the abstraction from individuals with common properties and behavior to 
a class, by which 'instance-of relation is modeled. Generalization is the 
combination of several classes to a more general superclass, by which 'is-a' 
relation is modeled. A class that references one or more other classes is 
called an aggregation of those other classes. By using aggregation, a 'has-a' 
relation between classes is modeled. Using types in the various relations 
and message passing, any kind of specific relations can be modeled (Meyer, 
1988).

3.2 Conventional versus object-oriented knowledge representation

Conventional knowledge representation schemes, such as rules, semantic 
networks, conceptual graph, object-attribute-value triples and frames, are
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commonly used in traditional knowledge-based systems (Luger and 
Stubblefield, 1989; Townsend, 1986). Each of them has its own advantages 
and disadvantages (Leung and Wong, 1990).

As pointed out by Leung and Wong (1990), a common shortcoming in 
rules, semantic networks, conceptual graph and OAV representations is 
that they are not structured enough. Because the knowledge cannot be 
modularized, the interactions among rules and objects become too complex 
when the number of objects or rules in the system increases significantly. 
Thus the system becomes very difficult to manage. When the value of an 
attribute is modified, it is difficult to pinpoint the effects on the whole 
system. Therefore, such knowledge representations are difficult to develop 
and maintain, especially for a large knowledge base like cartographic 
symbolization.

Frames are more structured than rules, semantic networks, conceptual 
graph and OAV knowledge representations, since related attributes and 
rules can be grouped into frames hierarchically. However, modularity of 
knowledge represented in frames can not be clearly defined, and frame 
representation lacks flexibility. In a frame system, relationships between 
frames may be member or subclass links and thus are not unique. 
Moreover, in some systems, a rule is represented by a frame linked to 
another frame with special relationship. These factors greatly reduce the 
structure in a frame system (Leung and Wong, 1990).

Another shortcoming of the conventional knowledge representation 
schemes is that the objects represented in the schemes are not active. Thus 
operations through message passing between objects are not possible. 
Although frames allow the creation of complex objects and the integration 
of procedural and declarative representations, they are passive data 
structures that must be acted on by external procedures. The execution of 
attached procedures requires that the procedure definition be retrieved and 
evaluated by some external agent (Luger and Stubblefield, 1989).

Object-oriented knowledge representation scheme has the following 
advantages over the conventional schemes.

Firstly, like semantic networks and conceptual graph, it is flexible. In object- 
oriented knowledge representation, by storing the names of other objects as 
the attributes of an instance object, relations between instance objects can be 
established dynamically (Leung and Wong, 1990). These relationships have 
the same power as links in semantic networks, and relationships in 
conceptual graph. In fact, the object-oriented construct can be viewed as 
dynamic semantic network. The 'is-a' links of semantic network can be 
implemented in object-oriented representations by relationships between 
classes and subclasses or between classes and instances. The 'has-a' links can 
be implemented by the relationships between classes and attributes.

Secondly, object-oriented knowledge representation supports classes and 
inheritance. In a pure object-oriented system, everything is an object; all 
objects are abstracted to a certain number of classes. This allows inheritance
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of attribute names, values, and methods. In addition, each class defines 
instance variables, which must be instantiated when an individual member 
of that class is created. Instance objects bind these variables to all the 
particular information, such as size and location, that distinguishes 
individuals from each other. The behavior of the members of the class, or 
the set of all messages to which the class responds, is called the protocol of 
the class (Luger and Stubblefield, 1989).

Thirdly, it supports modularity and reusability. Modularity and reusability 
are of prime importance for any truly flexible system. A true modularized 
system should facilitate modular decomposability, modular composability, 
modular understandability, modular continuity and modular protection. 
To achieve these modular capabilities, modules must correspond to 
syntactic units in the language used, every module should communicate 
with as few others as possible, exchange of information between modules 
should be as little as possible, interfaces between modules must be explicit 
and all information about a module should be private to the module unless 
it is specifically declared public. Five issues must be solved before we can 
hope to produce practically reusable modules. These issues are: variation in 
types, variation in data structure and algorithms, related routines, 
representation independence and commonality within subgroups (Meyer, 
1988). Object-oriented approach satisfies the criteria and principles of 
modularity, and provides a remarkable set of answers to the set of 
reusability issues (Meyer, 1988).

Finally, declarative and procedural knowledge can be integrated, and the 
objects are active. Objects in a object-oriented knowledge representation 
scheme are active in the sense that the methods are bound to the object 
itself, rather than existing as separate procedures for the manipulation of a 
data structure. Objects thus have characteristics of both data and programs 
in that they retain state variables as well as react procedurally in response to 
appropriate messages. Objects execute their methods directly in response to 
a received message. It is the active nature of objects that makes the message 
passing, execution of methods (rules, routines, etc.) possible. Such methods 
provide the vehicle for consistency checking, implementing graphics I/O, 
and combining rules and procedures.

3.3 How OOKR scheme facilitates the requirements

Based on the observations in the last two subsection, we then discuss how 
the OOKR scheme facilitates the specific requirements which are specified 
in Section 2.

a. Objects and their relationships can be represented in both passive form, 
and active form by a mixture of attributes, rules, routines, 'is-a' 
relations, 'has-a 1 relations and messages. Therefore declarative and 
procedural knowledge can be integrated in a uniform way, and complex 
knowledge can be adequately organized.

b. Inheritance exists between classes and subclasses. Thus, knowledge can 
be represented in an abstracted form with common features generalized
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in a superclass. Existing classes can be extended and reused by using 
relevant techniques in object- oriented approaches.

c As object-oriented approach facilitates modularity, related rules can be 
well grouped in a class or a module that is independent of other classes 
or modules. This enhances manageability, understandability and 
maintainability.

d. Rules and procedure executions can be defined in methods, thus rules 
and procedures are naturally combined. Routines can be defined by any 
language which produces routines in an executive form, and then 
bound to the objects, hence routines such as graphics generation and 
parameter calculation can be conveniently performed.

e. Data can not only be input through consultation but also be 
automatically feed from a spatial database through the execution of 
relevant methods, therefore a knowledge-based system based on this 
scheme can be naturally attached to a GIS.

Hence it can be concluded that the object-oriented knowledge 
representation scheme provides a set of answers to the specific 
requirements, and gives the promises to fully address the issues concerned 
with cartographic symbolization in a uniform way.

4. Examples of Knowledge Structuring for Cartographic Symbolization

In this section, first an example is used to demonstrate how object-oriented 
knowledge representation scheme can be used to address the issues 
concerned with cartographic symbolization. Then the abstraction of the 
knowledge, the capability of the scheme to support reusability and 
extendibility are discussed.

4.1 Knowledge structuring of cartographic symbolization for
representing statistical building information from GIS - the example

Let us see how object-oriented knowledge representation scheme can be 
used to address the issues concerned with the example mentioned in 
section 2. To solve the problem, classes 'building', 'statistical_map', 
'graphics_map' are defined. The definition of each class is illustrated as 
below. For the convenience of illustration, the definition of the classes is 
condensed. The notation used is those from Luger and Stubblefield (1989), 
except that rules are also included in the methods.
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Class name: building
Superclass: ....
Instance variables: district_identifier, building_identifier,

building_type, area, ... 
Instance methods: ... 

groupQ: begin
message(district_identifier, building_type, total_area) 

end

end 
Class methods: ...

Class name: statistical_map
Superclass: thematic map
Instance variables: mapjype, info_property, title, legend, ...
Instance methods:

info_input(): begin
for i:= 1 to N do begin

message(info_property(i)) 
end 

end 
end 

map_type(): begin
rule: IF info_property = <quantitative> & <absolute> & <multiple> 

THEN mapjype = <graphics_map> 
end

end

Class methods:
begin 
message(map_type l symbol)

map_generation(title, map_type, symbol, legend) 
end

Class name: graphicsjnap
Superclass: ...
Instance variables: symbol_type, no_of_variables, variable_color,

variable_size, ... 
Instance methods:

symbol_type(): begin
rule: IF mapjype = <graphics_map>

THEN symbol_type = <bar_graphs> or <pie_charts> 
end

end
no_of_variables(): begin

message(no_of_variables) 
end 

end 
variable_color(): begin

for i:=1 to <no_of_yariables> do begin 
message(variable_color(i), color)

end 
end 

end 
size(): begin

for i:=1 to <no_of_variables> do begin
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message(variable_size(i), size_calculation)
end 

end 
end

Class methods: ...

After these classes have been defined, the cartographic symbolization can be 
effected by message passing. Through assembling the classes together by 
message passing, building information can be grouped from relevant 
database; consultation can be conducted; the map type can be inferred 
(graphic maps); the symbol can be determined (bar graphs) and the visual 
variables can be calculated (two elements, color and size), and finally the 
statistical map can be generated.

It is easy to see from the example that all issues such as procedures, rules, 
data (described by attributes) can be addressed in a uniform way with the 
scheme. But, this simple example can not completely show the power of the 
scheme. The power of the scheme is the abstraction of complex knowledge, 
the capability to support extendibility and reusability for constructing a 
system in the large, in our case, the construction of knowledge-based system 
for cartographic symbolization. We discuss these issues in the following 
sub-section.

4.2 Abstraction, extendibility and reusability

Although the above example has shown the flexibility and power of the 
object-oriented knowledge representation scheme, one can not see from it 
how the complexity of the knowledge of cartographic symbolization can be 
modeled. In this section, we will first discuss how the knowledge of 
cartographic symbolization can be abstracted by classification, generalization 
and aggregation. We will then illustrate the extendibility and reusability of 
the abstracted knowledge.

Aspects concerned with cartographic symbolization are generally the 
interpretation of spatial information concerned, the choice of map type and 
the design of symbols. These aspects can be sketched as in Figure 1.

cartographic symbolization

building ... population ... land_use ... graphicsjnap ... point_ area_
symbol symbol

Figure 1 Sketched aspects of cartographic symbolization
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To model these aspects in an abstract form, abstraction mechanisms are 
often used. One can see from Figure 1, information contained in a GIS may 
be classified as 'building', 'population1 , 'land use' and so on; these classes 
can then be generalized to a superclass- 'spatial information'. Likewise, map 
symbols are often classified as 'point symbol' and 'area symbol 1 , the 
common property of these classes can be generalized in an abstract form in a 
superclass - 'symbol'.

Let us take the symbol module and go into depth. All point symbols can be 
considered as instance objects of class 'point_symbol' which is defined as 
follows:

Class name: point_symbol
Superclass: symbol
Instance variables: form, orientation, color, texture, value, size
Instance methods:

form(): begin
message(form, circle)

end 
end 
orientation(): begin

message(orientation, 45)

end 
end 
color(): begin

message(color, green)

end 
end 
textureQ: begin

message(texture, 1/5)

end 
end 
valueQ: begin

message(value, value_calculation)

end 
end 
sizeQ: begin

message(size, size_calculation)

end 
end 

Class methods: ...

Class 'point_symbol' can be regarded as subclass of class 'symbol'. By 
generalization, the above definition can be revised as follows:
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Class name: symbol
Superclass: ...
Instance variables: orientation, color, texture, value
Instance methods:

orientation(): begin
message(orientation, 45)

end 
end 
color(): begin

message(color, green)

end 
end 
texture(): begin

message(texture, 1/5)

end
end
valueQ: begin

message(value, value_calculation)

end 
end 

Class methods: ...

Class name: point_symbol 
Superclass: symbol 
Instance variables: form, size 
Instance methods:

form(): begin
message(form, circle)

end 
end 
size(): begin

message(size, size_calculation)

end 
end 

Class methods: ..

The above two definitions are abstractive in the sense that any point symbol 
can be generated through the definitions. They are generalized because 
common visual variables such as orientation, color, texture and value are 
defined in the superclass 'symbol'. This ensures that common behaviors 
across several subclasses (point and area symbols) will indeed have 
common definition, and instance variables and methods in class 'symbol' 
can be inherited by its subclass 'point_symbor.

We then discuss how the definitions can be extended and reused. Suppose 
that a knowledge base only contain the above two classes about symbol, and 
now one wants to add class 'area_symbol' into the knowledge base. The 
question becomes how the definitions can be reused and extended without 
modifying the existing two classes. In this case, the answer is very simple:
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use inheritance and redefinition to define a new class 'area_symbol' as 
illustrated below. In the class 'area_symbol', 'color', 'texture' and 'value' 
are redefined. Only orientation is inherited from the superclass 'symbol'.

Class name: area_symbol 
Superclass: symbol
Instance variables: color, value, texture 
Instance methods:

color(): begin
for i:=1 to N do begin
message(color(i), color)
end
end 

end 
texture(): begin

for i:=1 to N do begin
message(texture(i), texture)
end
end 

end 
valueQ: begin

for i:=1 to N begin
message(value(i), value_calculation)
end
end 

end 
Class methods: ...

After the examples, one can immediately see that knowledge concerned 
with the interpretation of spatial information and determination of map 
type can be abstracted in a similar way. And then can be reused and 
extended by using inheritance, redefinition, polymorphism and dynamic 
binding (Meyer, 1988).

5. Discussion and Further Work

Based on the specification of the requirements of the knowledge 
representation scheme for representing the knowledge of cartographic 
symbolization concerned with GIS's output, it is argued that the 
conventional knowledge representation schemes such as rules, semantic 
networks, conceptual graph, object-attribute-value and frames are not rich 
and powerful enough to meet the requirements. Then it is suggested to use 
the object-oriented knowledge representation scheme to represent the 
spatial knowledge concerned with cartographic symbolization. Discussions 
show that the object-oriented approach meets the specific requirements and 
overcomes the major problems of the conventional schemes.

The flexibility and the power of the OOKR scheme are only partially 
illustrated with examples. The work reported in this paper is still far from 
fully structuring the comprehensive knowledge of cartographic 
symbolization. However, as an approach, the object-oriented knowledge
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representation scheme offers greater potentials for capturing, organizing, 
processing the knowledge and applying it in the digital domain.

Once a reasonable amount of knowledge is specified and structured with 
the scheme, the knowledge base and inference engine can be implemented 
by a suitable media (e.g. a suitable knowledge-based system shell supporting 
object-oriented knowledge representation). Our opinion is that the object- 
oriented approach in general is a whole paradigm, in which object-oriented 
analysis, object-oriented design and object-oriented programming can be 
distinguished (see e.g. Coad and Yourdon, 1990). As far as only analysis and 
design (in this case high level knowledge structuring) are concerned, the 
object-oriented knowledge representation scheme is regarded as a high 
level construct.

To fully structure the knowledge of cartographic symbolization, a number 
of issues are still subject to further investigation.

Firstly, further investigation on the object-oriented knowledge 
representation scheme itself is still necessary, for example, multiple 
inheritance, and semantics to ensure correctness and robustness. These are 
the particular interests of the author and will be investigated in the near 
future.

Secondly, the interpretation of spatial information from a GIS should be 
addressed in detail as it is the fundamental step for the subsequent 
symbolization. Several issues are concerned with this aspect, for example, 
the encapsulation of knowledge in spatial database (this is effected through 
methods in the OOKR scheme), the rules for the interpretation of the 
spatial information, and the relationships between the two. These issues are 
currently under investigation.

Thirdly, much work needs to be done to use the scheme to structure the 
comprehensive knowledge of cartographic symbolization. To address this, 
the comprehensive knowledge concerned should be specified first. After 
sufficient knowledge is specified and captured, the knowledge then can be 
abstracted into classes by using the object-oriented knowledge 
representation scheme. The complicated relationships can be represented by 
'is-a' relations, 'has-a' relations and messages. New knowledge can be 
captured gradually, and added to the knowledge base by defining new 
classes and/or subclasses of existing classes. A full scale knowledge-based 
system for cartographic symbolization then can be eventually achieved.
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Abstract

Metaphors are powerful means to design and learn user interfaces for computer 
systems. This paper discusses metaphors for display operations in Geographic 
Information Systems (CIS). Specifically, the metaphor DISPLAYS ARE VIEWS is 
proposed and analyzed. It is presented as an antithesis to the metaphor DISPLAYS ARE 
MAPS, which is consciously or unconsciously adopted by designers and users of most 
GIS interfaces. Displays are understood here as graphic screen presentations of 
geographic space, maps as static (paper) maps and views as visual fields, containing 
what humans see in a given situation. The major advantage of the visual field as a 
metaphor source is that it naturally accommodates scale changes. Thus, analyzing its 
structure also sheds new light on the generalization problem for displays.

1. Introduction

Metaphors have had a significant impact on general user interface design practice and 
are now established as a powerful means to control complexity in human-computer 
interaction [Carroll, Mack, and Kellogg 1988]. Their potential for improving user 
interfaces of Geographic Information Systems (GIS) is also rapidly gaining 
recognition, as indicated by a series of recent publications dealing with the subject 
[Gould and McGranaghan 1990, Jackson 1990a, Kuhn 1990, Mark 1989, Wilson 
1990]. A common theme of these studies is the selection of appropriate metaphors for 
GIS user interfaces. Currently, map metaphors dominate, but it has been suggested that 
they fail to organize GIS operations adequately [Gould and McGranaghan 1990].

This paper discusses the metaphor question for GIS display functions, where the 
map idea is least controversial and most entrenched, as exemplified by the common 
expressions "virtual map", "screen map", or "CRT map". The paper contends that map 
metaphors are deficient even for display purposes and proposes the contrasting 
metaphor DISPLAYS ARE VIEWS. It shows that human vision provides a rich and 
powerful source of metaphors for retrieving and displaying information. In particular, it
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focuses on the capacity of the visual system to deal with resolution and scale changes.
Research in cognitive science has established that humans perceive, conceptualize 

and deal with the world at multiple levels of detail [Marr 1982, Minsky 1985]. A CIS 
should support this capacity, by representing data at multiple resolutions and offering 
operations appropriate to scale [Buttenfield and Delotto 1989]. Yet, while there has 
been considerable interest in database representations and manipulations at multiple 
levels of resolution [Guptill 1989, Oosterom 1991, Samet 1989], the same cannot be 
said for user interface representations.

Cartographers and GIS specialists are still struggling for a satisfactory 
understanding of the concepts of scale and resolution. There appear to be two 
dominating lines of thought: the "pragmatists" understand resolution in terms of map 
scale, acknowledging the limits of this concept, and the "objectivists" look for 
geographic scale or dimensions in the real world.

Since resolution is also a concept of human vision [Marr 1982], a third way could 
be to explain scale in terms of vision and its properties. Such an "experientialist" 
approach [Lakoff 1987] based on human perception of and interaction with the world 
[Arnheim 1969] is taken here. Specifically, the fundamental relation of scale and scale 
changes to viewing distance is explored. The goal is to apply this elementary human 
experience to GIS user interfaces through metaphors.

The remainder of the paper contains a discussion of interface metaphors for GIS in 
section two, preparing for an analysis of the DISPLAYS ARE VIEWS metaphor in section 
three, after which conclusions are drawn and further work is suggested in section four.

2. Metaphors and GIS interfaces

2.1. Metaphors and image-schemas in human-computer interaction
Johnson [1987, p. XIV] has characterized metaphor as

...a pervasive mode of understanding by which we project patterns from one 
domain of experience in order to structure another domain of a different kind. 

The two domains are commonly called the source and target domains of a metaphor and 
the metaphorical projection can be seen as a mapping (in the mathematical sense) from 
source to target. Johnson's characterization expresses a projective view of metaphor: 
the metaphor imposes a structure on the target domain, rather than assuming similarities 
between source and target.

Lakoff and Johnson have argued convincingly that ordinary (i.e., non-poetic) 
thought, action, and language are structured by metaphor [Lakoff and Johnson 1980]. 
It seems reasonable to presume that this is true for thought, action, and language in 
human-computer interaction as well. Interface metaphors are doing far more than just 
helping novices to learn a new application. They structure the application domain and
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organize the user's tasks. The designer's choice of metaphor(s) determines what 
concepts the users will have to deal with, how the labor is distributed between users 
and system, and in what terms users and system will communicate.

Since metaphorical projections can be described as mathematical mappings between 
domains, what remains invariant under them? Lakoff s invariance hypothesis [Lakoff 
1990] claims that it is the image-based reasoning patterns of the source domain, the so- 
called image-schemas [Johnson 1987, Lakoff and Johnson 1980]. These are idealized 
cognitive structures, consisting of a small number of parts and relations, made 
meaningful by human sensori-motor experience. Examples are the CONTAINER, PATH, 
LINK, NEAR-FAR, PART-WHOLE, and CENTER-PERIPHERY schemas. Image-schemas are 
more abstract than mental images, being essentially reduced to topology, but less 
abstract than logical propositions, being related to sensori-motor experience.

It has been suggested that image-schemas play a fundamental role in user interfaces 
and that they are likely to be especially relevant for GIS interfaces, since many image- 
schemas are spatial, particularly topological, in nature [Mark 1989]. General GIS 
metaphors are further discussed by Gould and McGranaghan [1990]. An extended 
discussion of the role of metaphors and image-schemas in user interfaces, including a 
formalization, can be found in [Kuhn 1991].

2.2. Map metaphors and GIS
Most of today's GIS interfaces have been designed explicitly or implicitly with 
(hardcopy) maps and mapping operations in mind. Consequently, mapping concepts 
dominate the whole spectrum of GIS functions, from data acquisition through analysis 
to display.

Some generic problems with map metaphors have been discussed in the literature 
[Downs 1981, Gould and McGranaghan 1990]: Maps may not be understood well 
enough to serve as a useful source domain, they provide little guidance beyond display 
operations, they tend to hide uncertainty in the data, and they are two-dimensional 
representations of a three- or four-dimensional reality.

At any rate, maps are unlikely to be adequate sources of GIS metaphors for all the 
different kinds of functions which paper maps fulfill, serving at the same time as data 
storage and presentation devices, and as analysis and design tools. For example, maps 
and map sheets are now widely recognized as inappropriate analogues for the data 
storage function of a GIS. The main reason is that maps lead to undesirable 
partitionings of data, both horizontally (sheets) and vertically (layers) [Chrisman 1990, 
Frank 1988]. The evolution from layered mapping systems to seamless geographic 
databases with integrated topological data structures is practical evidence for this 
movement away from the map metaphor in data storage.

What about data presentation functions? GIS displays are generally understood as 
"screen maps", implying the metaphors DISPLAYS ARE MAPS and DISPLAYING IS
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MAPPING. Thereby, they inherit not only useful conventions on symbolisms and the 
goal of graphic excellence, but also some limitations and problems. For instance, paper 
maps handle multiple resolutions in a rigid way through series of scales and pose the 
difficult problem of cartographic generalization, i.e. adapting information and its 
presentation to scale [Brassel and Weibel 1988]. While many aspects of this problem 
will also have to be dealt with for displays no matter what metaphors are chosen, it is 
worth looking for possible differences between requirements for maps and displays.

One way to do this is by asking how the visual system copes with generalization: 
For example, why does one never see a cluttered world (at least not in the sense of a 
cluttered map or display)? Controlling data density, one of the hardest problems in 
generalization, seems no problem at all in human vision. Understanding how the visual 
system achieves this could help solving the problem for displays. Also, objects which 
are too small to recognize are acceptable in visual fields: we ordinarily see things of 
which we cannot make sense because they are too small. On maps:, such 
unrecognizable objects are not tolerable. Displays as well as views, however, can allow 
users to "zoom" in and see more detail (see 2.4. for more detail on this).

2.3. Visual interfaces and CIS
Clearly, electronic screens offer far more possibilities for GIS data presentation than 
paper maps [Moellering 1984, Robertson 1988], despite their yet inferior resolution. 
For example, they allow for reactive, dynamic, and three-dimensional displays 
[Goodchild 1990]. Thereby, an entirely new kind of communication about geographic 
phenomena becomes possible, where users can interact directly with suitable and 
adaptive representations of these phenomena [Mark 1989].

This direct communication between user and system is not limited to the visual 
channel; non-visual means are rapidly gaining importance [Negroponte 1989]. State-of- 
the-art user interface technology, however, favors visual over auditory and tactile 
interaction. GIS interfaces are generally not disadvantaged by this emphasis, given the 
highly spatial nature of vision.

It is well established by now that seeing is more than passive perception [Arnheim 
1969] and typically involves categorizing what is seen [Lakoff 1987]. An entire chapter 
of "The Nature of Maps" [Robinson and Petchenik 1976] is devoted to the discussion 
of how theories of visual perception and cognition relate to geographic data 
presentation. It emphasizes that our visual system is not a neutral input device and that 
seeing is an active process: we make sense of what we see by attempting to construct 
meaningful shapes.

The notion of "visual interfaces" [Tauber 1987] implies such an active involvement 
of the user. Apart from pointing gestures and actions like "dragging" [Apple Computer 
1987], visual interfaces often contain metaphors related to special visual experiences 
like seeing through frames, lenses, and other optical instruments. Examples of these
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metaphors are "windows" [Smith et al. 1982], "panning" and "zooming" [Jackson 
1990a], or "fisheye views" [Furnas 1986].

The widespread occurrence of these viewing metaphors suggests a more literal 
interpretation of the notion of "visual interfaces", exploring metaphors based on the 
human visual system as such, independent of optical instruments. The visual field not 
only offers the logic and functionality expected from displays - being a bounded, 
connected region which can be moved to see something else - it also deals very 
effectively with changes of scale (see 3.1.).

Geometric aspects of visual perception have been discussed, for example, by [Marr 
1982, Zeeman 1962] or, in relation to geography, by [Tobler 1976]. For metaphors 
based on vision, the effects of these geometric properties on visual cognition are of 
interest. An important case of such an effect is the phenomenon that, by moving closer 
to a scene, we not only get to see enlarged objects, but different kinds of objects. For 
example, we may see a house across the street as consisting of walls, windows, a 
door, and a roof and from its front yard, we can identify individual planks and bricks in 
the walls, but don't see the house as a whole anymore (Figure 1).

Figure 1: Getting to see different things by moving closer

265



This basic property of visual cognition, imposing lower and upper bounds on the level 
of detail perceived at a given viewing distance, is the source of many metaphors. In 
everyday language, it is often combined with the metaphor UNDERSTANDING IS SEEING 
to produce expressions like "let's take a closer look at this idea" or "he can't see the 
forest for the trees". In technical as well as colloquial language it is sometimes referred 
to as the "zoom" effect. The connection between levels of detail and the concepts of 
"close" and "distant" is also touched on in the final paragraphs of [Robinson and 
Petchenik 1976]:

"Scale" also refers to the level or depth with which one contemplates or 
analyzes something, as for example whether one "looks closely" at something 
or contemplates it "from a distance."

2.4. Zooming in on "zooming"
The term "zooming" is used in cinematography, photography, computer graphics and 
everyday language to describe getting "close-up" views of something. In the context of 
GIS, Burrough [1986, p. 79] states, for example, that "most graphics systems allow 
the user to zoom in and display an enlarged part of the database". This description 
leaves it open whether "an enlarged part" means "the same, but enlarged" or "a part of 
the database that becomes only visible at a larger scale", or both.

The notion of a "cartographic zoom" proposed in [Bj0rke and Aasgaard 1990] 
applies the concept of zooming to the generalization of map displays. It implies that 
zooming allows a user to see different things at different scales, but the idea of zooming 
is not further explored.

Zooming and panning operations on digital images and map displays have been 
studied and described, independently from the generalization problem, by Jackson 
[1990b]. The main conclusion from this work was that intuitive and effective interface 
tools require a deeper understanding of zooming and panning than one in terms of 
cameras or other optical instruments.

The Oxford English Dictionary (second edition, 1989) defines the original meaning 
of "zoom" as follows:

To make a continuous low-pitched humming or buzzing sound; 
to travel or move (as if) with a "zooming" sound; to move at speed, to hurry. 

The use of the term in photography and cinematography is, thus, already doubly 
metaphorical: It explains the variation of the focal length by a (fictive) motion of 
"rapidly closing in on a subject" which, in turn, is metaphorically related to the 
corresponding sound effect. (Note that one of the key metaphors in visual interfaces is, 
therefore, rooted in auditory perception).

Combined with our visual experience that the viewing distance influences what we
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see, zooming naturally acquires a stronger interpretation than "seeing the same, but 
enlarged". It becomes a mechanism to change the scale or level of detail at which one 
perceives and conceptualizes the world or a computer model.

This understanding of zooming suggests the more general metaphor DISPLAYS ARE 
VIEWS, which also accommodates additional transformations of the visual field. One of 
them is "panning", i.e. moving the view to another part of a "panorama" without 
changing the level of detail. Since transformations of the visual field correspond to 

... basic cognitive processes such as focusing, scanning, superimposition, 
figure-ground shifting, vantage-point shifting [Lakoff 1988, p. 121] 

they are ideal candidates for metaphor sources.

3. The metaphor DISPLAYS ARE VIEWS

3.1. Image-schematic structure
While a general notion of interface "views" has been around for some time [Goldberg 
and Robson 1981], the richness of visual fields as a source domain for interface 
metaphors has not yet been analyzed. The discussion of GIS "user views" in [Mark 
1989] relates views to image-schemas, but concentrates on the notion of database views 
rather than displays.

In order to make the DISPLAYS ARE VIEWS metaphor applicable to user interface 
design, its image-schematic structure needs to be analyzed [Kuhn 1991]. Determining 
the image-schemas underlying views allows designers to define the functionality of 
display operations based on the metaphor.

The basic image-schema involved in the visual field is the CONTAINER schema 
[Lakoff 1987]. It structures the visual field as a bounded space, consisting of a 
boundary, an interior, and an exterior: In a first approximation, things are either in or 
out of sight and they come into or go out of sight.

The visual field has also a center of attention and a surrounding region. Thus, the 
CONTAINER schema is combined with the CENTER-PERIPHERY schema [Johnson 
1987], which provides for distinguishing foveal and peripheral vision.

In addition, and less obviously, the visual field is structured by an interaction of the 
PART-WHOLE with the NEAR-FAR schema. We experience objects in the world as 
configurations of parts, forming wholes. Our perception has evolved so that it can 
distinguish these elements. Visual perception, in particular, requires motion of the body 
or of the objects to extend this distinction beyond the limited range of configurations 
present in one view: Getting certain parts into view involves moving nearer and vice 
versa. This connection is the essence of scale changes and of the zooming mechanism 
described above.

The combination of the PART-WHOLE and NEAR-FAR schemas enters the visual field
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in a second way: Moving nearer entails that only a part of the things one saw before 
remains within the visual field. Thus, the visual field shrinks with respect to the scene 
viewed. This property can be applied to simulate the relative motion of observer and 
objects in interactive zooming operations. By shrinking a frame of reference 
corresponding to the visual field, the user simulates a close-in motion (figure 2) after 
which the system displays a part of the scene at a larger scale.

Figure 2: Combining the PART-WHOLE and NEAR-FAR schemas:
Shrinking the visual field simulates motion in zooming operations.

From [Jackson 1990b].

An interesting deviation from the "normal" behavior of containers defined by Lakoff 
and Johnson is that visual fields are not transitive: It is not necessarily true that, if A is 
in B and B is in sight, then A is in sight, too (even if one excludes the trivial cases 
where "in" means "enclosed by"). For example, if a wall is in sight and it is made from 
bricks, then it does not follow that individual bricks can be seen. Other examples are 
raster dots in an image or leaves in trees.

The superimposition of the PART-WHOLE and NEAR-FAR schemas on the 
CONTAINER schema explains this paradox: It allows a more specific interpretation of "A 
is in B" as "A is part of B" and lets the combination of PART-WHOLE and NEAR-FAR 
determine whether A is in sight or not.

DISPLAYS ARE VIEWS is a metaphor and not a literal equivalence. The matching 
between the two domains of a metaphor is by definition partial. Lakoff s invariance 
hypothesis suggests that some of the image-schematic structure in the two domains 
must correspond to support the metaphorical mapping. In the case of displays and 
views, this correspondence can be established for a combination of, at least, the 
CONTAINER, CENTER-PERIPHERY, PART-WHOLE, and NEAR-FAR schemas. Aspects 
which are non-topological and not image-schematic, such as the shape of the container 
boundary (elliptic vs. rectangular) or the type of optical projection involved (central vs. 
parallel), need not be equal or even comparable. Furthermore, some important features 
of displays, like symbolizations and their explanation, are obviously not accounted for 
by this partial correspondence with views.
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3.2. Metaphor combinations and extensions
The DISPLAYS ARE VIEWS metaphor is both extensible and open to combinations with 
other metaphors in a GIS user interface. For example, GIS displays have to show 
properties and relations of phenomena which are invisible, such as borders, land 
values, or population densities. This situation requires the same additional metaphors as 
it does to explain why maps can represent them.

An extension of the visual field metaphor for displays is the previously mentioned 
idea of "fisheye views". Fisheye views of spatial phenomena are actually just an 
exaggeration of human views, which already have the property that the visual acuity 
lapses toward the periphery [Zeeman 1962]. This property provides a straightforward 
extension of the DISPLAYS ARE VIEWS metaphor. It has rarely been adopted for GIS 
displays, presumably because it violates the idea of a (roughly) constant scale inherent 
in the DISPLAYS ARE MAPS metaphor.

Fisheye views of non-spatial phenomena [Furnas 1986] and proposals for 
"conceptual" (logical, semantic) zooming [Mohan and Kashyap 1988, Tanaka and 
Ichikawa 1988] are all based on the same metaphor extension and combination: The 
idea that concepts are resolution dependent gets extended beyond spatial phenomena. 
The additional metaphor involved is that ABSTRACT SPACE IS PHYSICAL SPACE. Such 
an abstract space can, for example, be a hierarchy or a lattice. Thus it becomes possible 
to zoom in on an organization chart of a company from top-level divisions to individual 
workers.

Another direction of metaphor extension and combination leads beyond displays 
towards interface metaphors for manipulating GIS models. Such an approach is David 
Zubin's proposal to differentiate object classes based on object sizes relative to human 
experience [Mark et al. 1989]. Zubin discusses how shifting our viewpoint results in 
objects of different sizes becoming accessible to vision and manipulation. For example, 
a city which cannot be perceived as a unit when we are in it becomes a scene which we 
can scan when we drive away from it, and part of a single perspective when we are far 
away or flying over it. Zubin's classes of objects or spaces, thus, imply the notion of 
viewing distance and its influence on what object classes humans deal with. However, 
they are defined in terms of physical object sizes which become irrelevant for 
interaction with computer models. Further developing Zubin's ideas, Eric Bier has 
suggested editing paradigms for manipulating objects based on their relative sizes 
[Kuhn and Egenhofer 1991].

A promising extension of a perception-oriented understanding of displays are 
virtual realities [Conn et al. 1989]. GIS are probably the computing systems which 
come closest to dealing with actual three- or four-dimensional reality (although still too 
often only through two-dimensional projections). Thus, they should be ideal 
forerunners to systems which transcend the limitations of physical reality and allow
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users to experience motion through different scales by sight, sounds, and tactile cues, 
e.g. flying over territories or diving into atoms [Brooks 1988].

4. Conclusions

This paper has proposed human vision as a source domain for GIS interface 
metaphors. Specifically, it has argued for interfaces based on the metaphor DISPLAYS 
ARE VIEWS. The analysis of the image-schematic structure of visual fields, particularly 
of the fundamental connection between viewing distance and visible object classes, 
suggests that seeing is in some respects more powerful than mapping as a source 
domain for interface metaphors.

What does it mean to adopt the metaphor DISPLAYS ARE VIEWS? First, it involves 
the user in an active process of viewing rather than observing static maps. Second, it 
acknowledges the key role of the user's point of view in defining display contents. 
Here, "point of view" is still meant spatially. Social, political, and other viewpoints 
may, however, come to play an explicit role in future GIS applications. They are likely 
to fit this framework by direct metaphorical extension. Third, the metaphor allows the 
viewpoint to move conceptually closer to or further apart from a scene, supporting a 
notion of zooming which goes beyond magnification by relating different concepts to 
different scales.

WYSIWYG interfaces, where What You See Is What You Get, will clearly become 
more intuitive and more powerful when you have the kind of control over what you see 
that you have in ordinary visual experience. Spatial query and manipulation languages 
can become entirely different from today's awkward formalisms when they employ 
visual metaphors. A generalized zooming mechanism, for example, naturally integrates 
data retrieval and display operations. These are two aspects of querying which have 
been separated so far, in accordance with the idea that displays are maps, but to the 
disadvantage of the user [Egenhofer 1990].

For the sake of the argument, the notions of maps and views have been contrasted 
rather than integrated in this paper. An alternative approach to improved user interface 
metaphors would be to expand the notion of maps with visual concepts, taking today's 
display technology into account. It is equally valid and potentially leads to the same 
improvements. However, starting with visual concepts forces designers to evaluate 
more radically the role traditional mapping concepts should play in displays.

The contentions of the paper are not meant to imply that cartography has no role to 
play in visual displays. There are indeed many common concerns in the design of 
displays and maps and there is a lot to be learned from mapping and graphic excellence 
for data presentation on screens [Tufte 1983, 1990]. Arguing against the paper map as 
a dominating metaphor source is also not necessarily arguing against symbolization or
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against features like labels, legends, north arrows, and scale indications in displays.
The point made here is that there are important differences between requirements for 

good dynamic (display) and static (map) presentations. They are mainly due to the 
reactive character of electronic display media which supports a direct visual 
communication between user and system. These differences may allow for displays to 
relax some of the constraints on maps, like those on minimal dimensions and 
separations, which make automatic map generalization such a troublesome problem 
[Beard and Mackaness 1991].

It should be kept in mind that a metaphor such as DISPLAYS ARE VIEWS is never a 
literal equivalence. Thus, choosing human vision as a source domain does not restrict 
the scale range of displays to that of human views. The metaphor, establishing only a 
partial correspondence, takes some aspects of visual perception and uses them to 
structure displays. The possibility of zooming is one of these aspects, but restrictions 
of scale range, perspective, and thematic flexibility are certainly not.

The paper has touched on a few possible and actual extensions of the DISPLAYS 
ARE VIEWS metaphor as well as on combinations with other metaphors. While more 
should be said about these and other examples could be given, the point is that they all 
rely on perception-oriented rather than mapping-oriented metaphors. The fact that 
mapping itself is based on perception is not enough. GIS users need powerful dynamic 
control over what they perceive, rather than being presented with more or less static 
results of what a designer thought they want to perceive.

Finally, in order to become applicable to interface design, image-schematic analyses 
of interface metaphors like the one presented for the visual field need to be formalized. 
An approach based on algebraic specifications has been proposed in [Kuhn 1991]. At 
the same time, prototypes of interface tools which implement and visualize the 
metaphors have to be developed, like the ones proposed by Jackson [1990a] for 
zooming and panning in displays of images and maps. Current research addresses the 
question of how these tools can be extended to deal with zoom and pan operations in 
the conceptual domain.
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ABSTRACT

Work has begun on the design and specification of a Standard User 
Interface Environment for use with Geographic Information Systems. 
The work was prompted by the recognition that many of todays 
commercially available GIS products are firstly difficult to learn and 
use, secondly are difficult and time-consuming to customise, and 
thirdly the knowledge gained in using one product is not readily 
transferable or applicable to another. Consequently the aims of the 
research are to produce a prototype environment which is independent 
of the underlying GIS, provides high level analysis, design and 
customisation facilities, and presents the user with an adaptable, 
extensible, easy to learn and easy to use interface. In order to 
satisfy these aims, the research has the following specific 
objectives:

- to identify the common functional components that must be 
supported within a generic spatial language for GIS operations

- to define the form of a generic spatial language processor to 
support the functions while permitting input from a variety of 
sources such as voice, WIMP and command line interfaces

- to build a prototype generic user interface environment with 
interfaces to a number of commercially available GIS products

- to test user response to the interface.

This paper outlines the work performed to date and discusses in 
more detail the architecture of the user interface environment, the 
conceptual model proposed within the graphical user interface, the 
identification of a "standard" set of common GIS functions and the 
approach taken for interface customisation.

INTRODUCTION

Expansion of the Problem
The Use Environment The user environment is a vital element of 

any GIS. Long ignored as an esoteric aspect of GIS design while GIS 
development was driven by the need to extend functionality, the user 
environment is now beginning to attract its due attention. The 
development of the Universal Geographic Information executive (UGIX) 
(Rhind, Raper and Green 1989) is a response to the widely expressed 
need to improve the usability of GIS, especially through the 
improvement and extension of the user interface. However, the 
implementation of a GIS user environment involves considerably more 
than the improvement of the human-computer interaction (HCI) process. 
Since GIS are conceptually complex and involve diverse operations 
ranging from data modelling to geometric transformations, improving 
the HCI cannot be a complete solution to the improvement of GIS use.
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A number of general problems afflict many commercially available 
GIS which can be characterised as failings of the user environment. 
One of the most pervasive is the blurring of the distinction between 
goals, tasks and system functions in the language and process of 
interaction with the system. This means that the user cannot easily 
comprehend the structure of the user environment. In the design of 
UGIX the following definitions are used, and the concepts implemented 
in the interface:

GOAL a user target for spatial data manipulation expressed in
terms of application-specific outcomes
e.g. finding which stands of trees in a forest will come
to maturity in each of the next 5 years 

TASK a spatial data manipulation procedure expressed in terms
of system implementable steps
e.g. searching for certain spatially referenced items in
a database and displaying the results in a map 

FUNCTION a low-level system operation to manipulate spatial data
e.g. plotting a symbol at specified X,Y coordinates on
an output device.

In this scheme tasks and functions refer to system operations, 
while goals apply to conceptual operations which are conceived of 
without reference to a computing environment.

Using this terminology, most GIS offer a command language composed 
of functions which are spatial tools and algorithms of various kinds. 
These commands are often modifiable with arguments and the complete 
expressions used are complex and often obscure. As part of a general 
movement to improve this situation a number of commercial systems have 
begun to offer graphical user interfaces (GUI's) built using window- 
icon-mouse-pointer (WIMP) techniques. However, these developments 
have illustrated the difficulties inherent in assigning icons or menu 
items to functions i.e. while the range of options available is now 
stated, the system structure is still no easier to understand. In 
particular, it is difficult to convert a goal into a task made up of 
the appropriate functions. Added to these implicit difficulties are 
the problems of overfilling the screen with icons or creating very 
long menus, the use of inappropriate screen metaphors and the lack of 
activity indicators to indicate the status of an operation to the 
user.

A further problem is that there are many different user languages 
for space in use, such as those defined by professionals working with 
spatial data (see examples in table 1) . The table (with reference to 
two contrasting applications) shows how the relationship between 
objects in the application domain, user descriptions of space and the 
basic spatial data types supported by GIS products can be complex and 
difficult to understand.

The process by which the user links the concept and implementation 
can lead to confusion and to users making errors in they way they 
specify operations. A well designed user environment requires an 
interface which permits the customiser or expert user to link the 
appropriate user language for space to the system architecture in a 
way which is transparent to the end users. In other words the 
interface should allow the user to manipulate objects that are 
meaningful in terms of the application, like sub-divide a parcel 
rather than split a polygon.
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Application
Entity Types

Land surveyino/
Monument
Centroid
Mates
Bounds
Strip
Abuttal
Easement
Parcel
Aliquot
Tract

Ml T* Surveyincr
Face
Entry
Cross-cut
Pillar
Room

Spatial
Data Type

Point
Point
Line
Line
Line
Line
Line/polygon
Polygon
Polygon
Polygon

Line
Line/polygon*
Line/polygon*
Polygon
Polygon*

Comment

Fixed point located by physical mark
Centre point to which reference code is linked
Boundaries of parcel defined by distance & direction
Boundaries defining position of adjoining parcels
Corridor of fixed width either side of a centreline
Boundary of a parcel on an adjoining parcel
Corridor or area of land parcel set aside
Unit of land ownership
Subdivision of parcel
land segregated by resurvey

Section of mine boundary used for excavation
Centreline/section of tunnel forming access to face
Centreline/section of tunnel at right angle to entry
Area of unexcavated material within mine
Section of tunnel ending in face

* Polygon defined by closure of an open polygon in specified 
circumstances e.g across end of a tunnel

Table 1 
Examples of user language for space for land and mine surveying

User environments of all forms have long lacked good visualisation 
tools for the spatial database data model. Ideally the user should be 
able to see the entity types and their interrelationships graphically 
expressed so that they can formulate queries more easily. Finally, 
the poor quality of help systems for many GIS has also become a major 
drawback for many use environments. Frequently the help is simply a 
formal statement of the command syntax and arguments, and not an 
explanation of its wider usage.

Customisability Commercial GIS software packages are normally 
designed to be fairly general purpose in nature - they are not 
designed for a specific well-defined application within a particular 
organisation. Consequently, they need to be adapted to fit the 
specific application and user requirements of the organisation within 
which they are implemented. This adaptation of the as-supplied system 
is termed customisation. The term customisability is used to describe 
the ease and extent to which a system may be customised.

The objectives of the customisation process are to provide a system 
for the user that supports both the data model and functionality 
demanded by the application requirements, that presents to that user 
an interface specific to the user's application, language and 
experience, which is uncluttered by non-required functions, icons and 

menus, is easy to learn and easy to use.

At present the base products delivered by GIS vendors are little 
more than a box of low-level spatial tools. These general purpose 
tools do not directly satisfy the user's functional requirements which 

are determined by organisational and application specific objectives. 
Furthermore, the tools will often have little meaning or applicability 
to the end user who must be educated in the language, interface and 
conceptual model supported by the product. The customisability of 
existing GIS products is poor, especially in the areas of database
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design and implementation, task definition and user interface design 
and development. The result is that effective customisation of a CIS 
product to satisfy corporate CIS requirements involves enormous 
expense and effort. This problem is so acute that it is not unusual 
to see organisations struggling to use a system that is uncustomised 
and uncustomisable with the available resources. Effectively, the 
application requirements are largely discarded so that the functions 
the CIS supports become the application.

The customisation process incorporates all the normal stages of the 
familiar systems development life-cycle, including planning, analysis, 
design, construction, implementation and operation. The analysis 
stage incorporates both data analysis (resulting in the development of 
data models) and function analysis which involves both process and 
event analysis. The design phase incorporates logical and physical 
database design, task design and user interface design. Construction 
refers to the actual development of the physical database, tasks and 
user interfaces, while implementation is concerned with delivering the 
working system to the user environment.

Non-Transferability of Skills. Each CIS product on the market 
today incorporates its own distinctive environment, being 
substantially different from virtually all other available products. 
Each system tends to have its own unique command language, icon set, 
menu organisation and form layouts. The methods of interaction with 
the system vary considerably, even for such simple actions as 
selecting an object, obtaining help information or indicating 
confirmation of an action. Each vendor tends to use their own set of 
jargon, often in a manner which is inconsistent with other GIS 
vendors.

Even worse, the underlying system architectures show through and 
must be understood by the user before effective system usage is 
possible. In the absence of any other strong conceptual model for the 
system (as might be presented in a fully customised environment), the 
underlying architecture (files, layers, coverages, points, lines and 
polygons) forms the basis of the mental model developed by the user. 
The application problem (e.g. forest resource management) becomes 
mapped to the problem of manipulating the components of the CIS 
architecture (i.e., the coverages, polygons etc.). Consequently the 
skill set acquired by a user is specific to the jargon and 
architecture of a particular product. Since each GIS uses different 
jargon and different architectures, the user's knowledge of one system 
is not readily transferable to another.

Expansion of the Objectives
Identification of Common Functional Components The first phase of 

the research involved identification of a set of common (generic) 
functions that should be supported within the UGIX interface. These 
functions must be independent of any underlying GIS implementation 
strategy (e.g. object, relational or sheet based) and dependent rather 
on the goals of the user. These functions will be accessed via a set 
of icons, menus and forms within the GUI, and as a set of commands, 
operators and procedures within the command language. A "standard" 
set of icons and command names will be provided for the generic 
functions which may be modified (when required) within the customised 
environment. It should be noted that the generic functionality will 
not be implemented within UGIX, but rather, it will be accessible
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through UGIX. This distinction is important, since it restates the 
concept of separating the application from the user interface.

By identifying the functions required to satisfy tasks, and tasks 
to satisfy generic goals, and providing access to these via icons and 
commands, the interface should become more consistent and less 
dependent on the underlying CIS data structures and architecture. It 
is believed that this will make the system easier to learn and use, 
and once learned will provide the user with knowledge that should be 
more readily transferable to other systems.

Definition of a Generic Spatial Language Processor A command 
language for interaction with the GIS database that supports the 
generic functions is being developed. It is intended that the spatial 
language will be embedded within both 3GL and 4GL languages which will 
provide the program logic and control structures. A spatially 
extended form of SQL (SQL-SX) has been designed to provide a standard, 
transportable language suitable for database definition, query, 
insertion, deletion and update. SQL-SX is to be supplemented by the 
set of generic CIS functions identified above. The overall 
architecture for the spatial query processor has now been sketched 
out. It includes layers for SQL-SX, an equivalent iconic query 
language, an inter-process communications interface and a 
customisation environment.

Development of a Prototype Generic Use Environment To test the 
feasibility of the concepts described here and the usability of such 
an interface, a prototype use environment must be developed. Further, 
it must be interfaced to a number of commercially available GIS 
products to prove that the user interface can be detached from the 
underlying GIS product architectures. The more difficult aspects of 
the development are likely to be:

- creating an efficient system to map between the functions 
supported within the generic spatial language and the matching 
functions supported by the underlying GIS,

- hiding the user interface supplied with the underlying GIS.

Testing User Response The resulting prototype must be evaluated 
to determine that it does indeed provide a superior user interface 
environment to the standard interfaces provided by each of the 
underlying GIS products. To test the acceptability of the UGIX 
environment, a number of trials are proposed. Methods for evaluation 
of user interfaces include:

- formal analytical methods where the interface is evaluated in 
isolation from users (Grudin 1989)

- empirical methods where users are requested to perform the same 
tasks using different interfaces, and the performances measured 
and compared

- ethnographic methods where actual users are observed and the 
context and users observations are elicited (Crellin, Horn and 
Preece 1990).

During design of the graphical user interface we propose to 
explicitly adopt accepted guidelines (e.g. proposed ISO guidelines 
Williams 1989, Strijland 1990) as an aid to user interface 
specification. Analytical methods, operating on data gathered by 
automated monitoring of user interaction, may be used subsequently to 
determine interface effectiveness, identify frequent command usages,
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common errors and the relationships between use patterns and error 
occurrences. Chen (1990) describes the use of monitoring facilities 
built into the Xt toolkit to automatically gather appropriate 
information. Empirical studies are also proposed to compare the 
effectiveness of the new environment in direct comparison to the 
interface provided by the underlying GIS. Finally, user acceptability 
will be evaluated based on user interviews. It is intended that this 
evaluation will lead to suggestions for improvement for subsequent 
developments.

Background to UGIX
System Overview The UGIX system design as described by Rhind, 

Raper and Green (1989) contains 3 main modules, viz. (A) containing 
the screen interfaces, dialogues and command processor; (B) containing 
a help and information system for a GIS; and (C) an expert system 
shell or high level system access module. The structure of UGIX is 
illustrated in figure 1. This section describes the approach taken in 
the UGIX project, through first and second generation implementations. 
The major distinction between the generations is that the first aims 
to improve the usability of a specific GIS implementation, while the 
second aims to provide a generic user environment supporting transfer 
of skills between GIS and allowing easier customisation.

Figure 1. The three primary modules of the UGIX architecture.
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The first generation approach to interface design within the UGIX 
project has been to prototype using HyperCard for the Apple Macintosh, 
where the HyperCard application (complete with in-built communications 
software) acts as a client to a host processor running the GIS 
application software (Raper, Linsey and Connolly 1990). This approach 
is similar to the one used by Cowen and Love (1988) to create an 
interface to the South Carolina Historic Preservation Office GIS 
database. HyperCard with its standard set of buttons, scrolling boxes 
and cards makes use of the GIS less daunting for the less technically- 
aware user. In addition, with the rich graphics environment available 
in HyperCard it is possible to show a graphic to illustrate the effect 
of various options available at any one point. It is also desirable 
to display all the commands available to the user in one place, with a 
pop-up explanation for each option.
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Screen design has involved the standardisation of button and text 
field formats as well as card and background layout for different 
areas of activity such as:-

- Introduction and explanation (using a map guide);
- Map and file selection (using standard Macintosh file selection 

dialogue);
- Session screens for command processing;
- Help environment (UGIX (B) based on GISTutor version 2) ;
- A Gallery for maps and images generated in the GIS (along with 

button to redraw them).

Screen metaphors have been developed for each of these areas to 
make location in the system a graphical attribute. The interface also 
displays an activity index to give continuous feedback to the user on 
the status of the session. Currently this system interface 'shell' is 
being implemented for the GIS ARC/INFO, and is known as 'HyperArc': it 
is currently under test with users at 'novice 1 and "competent 1 levels 
of expertise. In addition to feedback on the use of the system, the 
aim of the evaluation phase is to define a core area of functionality 
in common use to help optimise the UGIX system structure.

An important early objective in the development of HyperArc was the 
creation of file handling procedures to harmonise the user's concept 
of maps with that of ARC/INFO. This establishes that maps are both 
'views' of spatial data and sheets within a series i.e., spatial 
tiles. Thus, search routines to find maps with particular names, to 
sort maps by type (e.g. point or polygon based), to access the map 
tiling system and to select the part of the sheet to view have all 
been created. In the first generation of the UGIX project the user 
specifies spatial queries using these system implementation concepts 
which are made comprehensible to the user diagrammatically (user 
testing is helping to refine this aspect). Hence HyperArc forces the 
user to work with ARC/INFO concepts, but tries to connect them with 
the user's view of the problem under study. This is ultimately 
restrictive to the user since the data structure is fixed, and maps 
are files which the user needs to manipulate in some way.

A basic principle of the UGIX design is that in order to make a GIS 
easy to use the process of making a database selection, displaying a 
map or carrying out spatial analysis must be broken down into a series 
of logical parts, linked by a pathway for the user to follow. 
Following such a path and gaining experience with the alternative 
options is an excellent way to improve a user's end-to-end 
understanding of the components of spatial data processing. 
Appropriate information needed for a user to make a decision is also 
retrieved before indicating the command options, for example only maps 
with the correct specifications are presented (e.g. with topological 
relations already created), when this is necessary for the operation.

Another UGIX design principle is that improving access to existing 
GIS can be achieved by converting the current function-orientation of 
the native system interface (primitive and implementation-specific 
operations) to a task-oriented interface (sequences of high level 
spatial operations) usable by a spatially aware user. The second 
generation of the UGIX project aims to build on the experience of 
constructing such task-oriented interfaces to create generic 
interfaces capable of communication with any GIS.
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However, in order to implement such an interface in a generic way 
requires a new form of software architecture which is independent of 
specific implementations, does not enforce a particular data model, 
and adheres to the standards in the user community which are most 
crucial to the success of GIS in heterogeneous computing environments. 
To achieve this a layered model is suggested that protects the user 
interface from the actual implementation mechanisms provided by each 
GIS vendor. Each layer within the model will perform a particular 
task and have a well defined interface to the layers both above and 
below. Some of the layers within UGIX will be able to communicate 
directly with the underlying GIS at a matching level.

UGIX (A)

Design Overview
Separation of the user interface from the application is not a new 

concept. Early work resulted in what is often known as the "Seeheirti 
model" (Green 1985) developed during a 1983 workshop on architectures 
for interactive systems at Seeheim. Subsequently, the identification 
of components of the overall system corresponding to semantic, 
syntactic and lexical aspects, and the relationships between them has 
lead to various alternative architectures. The development of general 
purpose software for managing the user interface as a separate process 
has lead to the comcept of the user interface management system (DIMS) 
(Pfaff 1985). Here the application and the user interface software 
are quite separate and communicate via a well-defined protocol.

Figure 2. The Seeheim model
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The overall architecture for UGIX (A) is similar to the Seeheirr 
model in many aspects. The requirement for a high bandwidth 
communications channel from the GIS application is supported to allovv 
efficient graphics display and manipulation. Figure 3 illustrates 
the overall structure proposed for the UGIX environment.

Figure 3. Overview of UGIX(A) architecture
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Description of Components
The presentation layer incorporates a standard user interface 

toolkit (e.g. Motif, OpenLook etc.) a widget design facility, a screen 
design facility and a screen execution facility. The widget and 
screen design facilities operate within the constraints of the 
toolkit, and will be inplemented as a set of executable screens. The 
customisation environment itself and the actual resulting end-user 
application, will also simply be a set of screens with which the user 
may interact.

The screens will be designed in terms of a set of windows, a set of 
widgets within each window and a set of forms. The behaviour of the 
windows, widgets and forms will be described in terms of the 4GL 
command language. Interaction with the screens will cause the widgets 
to react in the predefined manner and the execution of CIS tasks in 
terms of the spatial command language embedded within the 4GL.

Equivalent commands may be issued directly via a command line 
interface, via widget interaction or using voice input. Each method 
should result in the execution of the same generic functions within 
the dialogue control component. The voice recognition facility issues 
either individual spatial command language tokens which may be used to 
build a complete command, or entire commands. Entire commands may be 
abbreviated into a spoken shorthand consisting of just a few words 
rather than requiring the user to speak the full command syntax for a 
particular task.

The application interface module accepts generic spatial language 
commands and maps them onto the command language of the underlying 
CIS. It then issues these commands to the GIS via an inter-process 
communications mechanism. The GIS responses may include alphanumeric 
information (which may be used to fill a form), status information 
(error and function status) and/or graphics. To support a highly 
interactive graphics environment requires that a high speed channel be 
provided to display the graphical data. However, alphanumeric and 
status data may be routed through the dialogue control module for 
further processing and display.

Figure 4 illustrates the proposed architecture of UGIX(A) in more 
detail.

The Graphical User Interface
Wilson (1990) reviews the use of graphical user interfaces within 

GIS and the applicability of the desktop metaphor. He suggests 
guidelines for building suitable user interfaces. The GUI is described 
as having three components:

- an underlying conceptual model,
- a command structure comprising codes, function keys, buttons etc. 

with which to create a syntax, and
- the visible screen graphics, such as command lines, menus and 

icons.

To date, within the GIS world, most emphasis has been placed on the 
development of a command syntax and the design of menus, icons and 
screens. However, as yet there are no agreed standards for 
interaction with the interface unlike the PC world where techniques 
such as double clicking on an object to activate it, Fl function key 
for help etc. are commonly adopted.
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Figure 4. More detailed breakdown of UGIX architecture 
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This lack of standardisation has lead to a lack of transferability 
of knowledge, long learning periods and generally difficult system 
usage.

Initial attempts at improving usability concentrated on reducing 
the number of interactions, menus, forms and icons that the user had 
to deal with. This approach either reduced the available
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functionality or produced menu hierarchies that were difficult to use. 
An alternative approach is to use existing knowledge of a related 
field that may be applied to the new problem domain.

The Underlying Conceptual Model A major contributing factor 
towards the non-standardisation of the CIS user interface is the lack 
of an underlying conceptual model for the interface. It has been 
suggested (Gould & McGranaghan 1990) that the primary mechanism by 
which a user learns to use GIS is by metaphoric learning. Here the 
user is able to treat the unfamiliar environment like another familiar 
one thus reducing the overall learning period. The general cognitive 
process may be partitioned into metaphoric, analogical and modelling 
processes. The differences between the three processes and their 
implications for computer systems design are reviewed by Wozny 
(1989). The concepts of metaphor and analogy are closely related: 
analogy implies that one domain behaves like another, whereas with 
metaphor, the target domain is more directly mapped onto the other and 
hence becomes the other. Consequently, the use of metaphor within the 
user interface is preferable since it allows a user to interact with 
an unfamiliar system as if it is an environment with which they are 
familiar. This effectively reduces the learning time, reduces stress 
caused by unfamiliarity (i.e. makes for a happy user) and provides a 
conceptual framework for the new environment which may be built upon. 
For infrequent users, the use of metaphor may be more important, since 
they may never progress beyond the metaphor presented to develop a 
mental model of there own (Wozny 1989).

Existing graphical user interfaces for non-GIS applications have 
often been developed using the desktop metaphor as the underlying 
conceptual model. The desktop metaphor is suitable for many business 
related applications since the activities performed by the computer 
based application have direct equivalents with the manual methods. 
However, it may not be readily applicable to many GIS applications due 
to the lack of spatial and mapping related activities that normally 
occur on and around a desk.

The wide variation in GIS applications and the variation in 
experience of GIS users indicates that a single conceptual model is 
unlikely to satisfy or be applicable to all situations. If we 
perceive GIS to be an enabling technology for the integration of 
spatial and aspatial data, we must then consider it to be equivalent 
to a DBMS in generality, and hence not suited to a single model. In 
contrast, a GIS customised to suit a particular narrow application 
(e.g. mains fault analysis in the Water industry) may provide a 
situation where an applicable underlying conceptual model may be 
utilised.

Wilson (1990) pointed out that some GIS applications may have no 
equivalent manual method. However, this does not imply that a 
conceptual model on which to base the user interface cannot be found. 
Rather it implies that analogy or metaphor may be suitable techniques 
for development of the conceptual model.

Current GIS technology imposes on the user a conceptual model of 
geographic space that is a function of the internal structures 
supported by the GIS (e.g. layers, points, lines, polygons). What we 
should be aiming for is a user interface that permits the system 
customiser to present a conceptual model to the user that is relevant 
and applicable to the both the user's background and the application 
in hand.

285



The strength of the desktop metaphor as used within the Macintosh 
and other PC environments for the underlying conceptual model, is that 
it provides an organising framework within which other operations and 
metaphors may exist. Gould and McGranaghan (1990) have extended this 
idea to suggest the need for an organising metaphor within, which there 
may be other nested metaphors (which may themselves be organising 
metaphors). This approach has promise since it provides a structure 
within which applicable and relevant metaphors may be applied, rather 
than trying to apply a single metaphor to all situations.

The Organising Metaphor within UGIX The current thinking for the 
UGIX GUI is to develop an environment supporting nested metaphors. 
The proposed overall organising metaphor is a building, within which 
there are a set of rooms, each accessible via a door. It should be 
noted that the idea of using the room/building metaphor has been 
independently conceived by a number of different groups including 
researchers at Xerox Palo Alto Research Center and University of 
Waterloo (Chan and Malcolm, 1984), and even built into a number of 
existing products (e.g. Rooms from ENVOS and even Xll rev 4 attempts 
to provide a Rooms-like system).

Within UGIX, each room may possess its own organising metaphor. 
Most rooms will be directly accessible from the entrance hall although 
some special-purpose rooms may require access from within another 
room. On entering the system the user is located in the entrance 
hall, a neutral, public space through which the user moves to 
particular environment. Doors provide access to the environments the 
user has access to. The door metaphor is a strong metaphor for access 
into and out of different environments (Catedra 1990) and provides 
features such as locks, opening and closing. These features may be 
used directly for access control, entering and leaving. Within each 
room, a single type of activity occurs, and a single lower-level 
organising metaphor is employed.

For example, one room provides an environment where the desktop 
metaphor is supported. Here general filing, correspondence and 
interfacing to external non-GIS packages (e.g. word processing, 
spreadsheets) takes place. Access to the aspatial part of the GIS 
database is available via card indexes, file folders etc. and 
alphanumeric reports can be created and printed.

A second room contains the drafting office where the map, drafting 
table, map cabinet and light table are the principle metaphors. Now 
access to the GIS database is via the map. Maps may be taken out of 
the filing cabinet, updated, viewed and copies taken for development 
proposals etc. Eventually these may be replaced in the map cabinet 
following approval by the chief draftsman/engineer. Note that 
operations not consistent with the map metaphor may not be applied 
here.

A third room contains a library. Within the library books are kept 
providing reference material, reports, archives and documentation. 
Updating of system documentation is performed here.

A fourth room contains the development and customisation 
environment. A workstation metaphor »is supported which provides 
direct access to the 4GL development and customisation environment.

There is one special door that leads off the entrance hall - an 
external door. Through the door, blue sky and clouds may be glimpsed,
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and on entering this environment the real world metaphor is used for 
access to the CIS database. Here there are no seams, maps or files - 
only a continuous world containing objects. This is where the 
experienced GIS user works and it is also the environment in which 
virtual reality may one-day be accessible (Jacobson 1990).

Users are provided with keys that are able to unlock only some 
doors. It is feasible to consider more specialised rooms leading off 
of others. For example the database administrator and system manager 
may be in their very own room accessible from the development and 
customisation area.

The concepts of buildings, rooms and doors are internationally and 
culturally neutral, providing an almost universally understood 
concept. A further advantage exhibited by this metaphor is that it 
provides an easy facility for extension. To add new environments 
involves simply adding another room (with door!) to the building. 
Within each new environment a different organising metaphor may be 
used to support functions not supported elsewhere. The possibilities 
of this metaphor are seemingly endless - e.g. leaving the system may 
simply be performed by turning off the light switch in the entrance 
hall, or alternatively going through the door that leads out into the 
night.

The Iconic Query Language Access to the functionality provided 
within each environment (room) will be predominantly via icons, menus 
and forms. The icons should fit the organising metaphor for that 
environment so that they have relevance and preferably direct 
applicability. Consequently, the drafting office might be designed 
specifically for experienced cartographers and hence might support map 
cabinets from which maps may be extracted, drafting boards on which 
map updates and viewing may be performed and light tables on which map 
overlay operations may be carried out.

Consistency and simplicity are key considerations when attempting 
to design a user interface, be it for a GIS or for a dishwasher. A 
concise and simple syntax for manipulating the icons and database 
objects is required which is both consistent and meaningful in terms 
of the metaphors used. Existing GUIs such as that used on the 
Macintosh are not fully consistent. Consistency between applications 
has been encouraged since Apple provide a set of guidelines for 
developers to follow (ref Apple Mac developers guide). Consequently 
most packages available for the Mac have a similar look and feel so 
that knowledge of one application/package provides useful knowledge on 
the use of others.

Certain other aspects of the Mac interface are far less consistent. 
In particular the order in which the objects and the operators are 
selected varies from one type of operation to another. Objects to be 
manipulated are usually selected first, and then the operation to be 
applied is selected (e.g. discarding data by moving it to the 
wastebasket, applying a different font and ruler to a section of 
text). However, sometimes the operation to be performed is selected 
first and then the objects to which it is to be applied are identified 
(e.g. select the print function and then indicate which pages to 
print). Hence, even though operations that are common between 
applications are normally presented in a very similar manner the 
syntax for different operations may vary within an application.
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A further level of inconsistency, most frequently observed by 
novices, is the use of the wastebasket. Why is the trash can used to 
eject the disk when it is normally used for deleting data? Most 
novices are unable to find a method for ejecting the disk, since the 
use of the wastebasket for deleting documents and folders implies that 
if the diskette is moved to the wastebasket, all folders and documents 
on the disk will be deleted. This latter example indicates where the 
use of a metaphor has been extended beyond its applicability and used 
in an inconsistent manner.

The impact of the English language on the syntactic ordering of 
operations, parameters and objects (verbs, modifiers and nouns) may 
not have relevance to the iconic interface. Although it is known that 
language structures our concept of space (Talmy 1990), it is not 
thought that language will adversely impact the syntactic structure 
of the iconic interface. In English we generally use a noun-verb- 
modifier ordering to state facts (e.g. Jack closed the door), but a 
verb-noun-modifier ordering for instructions or commands (e.g. close 
the door quietly please) . Most of the operations performed within the 
CIS tend to be instructional in that the user is commanding the system 
to perform some action (e.g. modifying, deleting, reporting), 
supporting the adoption of a verb-noun-modifier ordering.

However, most iconic interfaces require that the objects are 
selected prior to identification of the action (i.e. noun-verb- 
modifier, or object-action ordering). Even though this ordering is 
not common within the English language for instructional sentences, it 
does feel natural for English speaking users of the iconic interface.

Perhaps the most important aspect of this ordering is that object 
selection and the operations to be performed on those objects are 
effectively separated. They have become two discrete instructions 
issued by the user. Furthermore, object selection is common to 
virtually all operations and becomes independent of those operations, 
meaning that a single set of object selection techniques can be 
applied throughout.

One significant disadvantage to the use of object-action syntax 
ordering is that the selection process may select objects for which 
the operation may be invalid. If the operation to be performed is 
identified first, the object selection process can use knowledge of 
the operation to ensure that only appropriate (valid) objects are 
selected. Within existing GUIs, this problem is partially overcome by 
disabling functions for which the selected data is inappropriate. 
However, if it is not obvious which of the selected objects is causing 
the function to become unselectable, much operator frustration is 
likely to ensue.

Within the UGIX GUI, we recommend the use of object-action ordering 
as the basic syntactical construct for icon interaction. Object 
selection will be performed first. Subsequent identification of an 
action will apply that action to the selected set of objects.

The Command Level Interface
The command level interface incorporates a 4GL command language, a 

function mapping facility and an inter-process communications 
facility. It accepts commands from the GUI and the voice recognition 
system in terms of 4GL command sequences. It can also be accessed 
directly to perform ad hoc functions and applications development.
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Srtallworld Magik, an object-oriented (OO) development facility from 
Smallworld Systems has been selected for the development of the 
prototype.

Smallworld Magik: An object-oriented development environment. The 
objective is to support a single command line and development 
environment in which application development, database definition, ad 
hoc queries, menu, form and icon commands, database access and 
graphics are all available. It is also desirable that the full power 
of the underlying CIS, DBMS and UIMS are available. An object- 
oriented development language has been selected since it offers the 
opportunity for high programmer productivity and a structured 
development approach. The use of 00 techniques such as code re 
usability, inheritance and encapsulation can reduce the overall 
development effort for a complex system. The Magik language (Chance, 
Newell and Theriault 1990) is a hybrid of the procedural and 00 
approaches and supports its own interactive development environment. 
It is fairly readable (certainly more so than 3GLs such as C and C++), 
comes with a comprehensive set of standard object classes, methods and 
procedures, and provides the ability to transfer applications between 
hardware and operating system platforms with a minimum of effort. It 
utilises the X-Windows standard for all interaction with the 
workstation.

For the UGIX development, we are extending Magik by adding a new 
set of language constructs to support a spatially extended version of 
SQL.

SQL-SX: A spatially Extended version of SQL The relational 
language SQL (Date 1989). forms a suitable base on which to develop 
spatial extensions due to:

- its widespread acceptance by database users
- its availability within a large number of commercially available 

DBMS (relational and non-relational)
- its acceptance as an international standard
- its ongoing development, thus ensuring a long-term future.

The use of relational database management system (RDBMS) technology 
within the existing GIS user community is virtually universal. 
Further, it is likely that RDBMS will be the major data management 
technology for at least the 1990s, and that SQL will be the major 
language for interaction with those databases. The investment by user 
organisations in training staff in the use of SQL is significant so 
there is consequently a sizeable body of expertise available both 
within GIS user organisations and in the general computing industry. 
The use of a non-standard query language for GIS implementations does 
not appear commercially viable, nor practical in the near future.

A number of GIS vendors are already developing spatially extended 
versions of SQL and have reported their work in the research 
literature including Kork (Ingram & Phillips, 1987), Intergraph 
(Herring, Larsen & Shivakumar, 1988), Wild Heerbrugg (now Prime) 
(Charlwood, Moon & Tulip, 1987) and GeoVision (Westwood, 1989) . Each 
has attempted to provide facilities supporting spatial predicates and 
spatial data manipulation facilities within SQL (or SQL-like query 
languages). Unfortunately, the basic query language in each case has 
been an incomplete implementation of the ANSI/ISO SQL standard (ISO 
1987, ISO 1989), and the spatial extensions were fairly minimal and
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elementary. To make matters worse, the extensions in general do not 
maintain consistent syntactic and semantic constructs with the rest of 
SQL. For example, spatial predicates are not in general supported 
within the WHERE clause, but rather within a separate clause.

Other researchers including Pong-Chai Goh (1989), Sacks-Davis, 
McDonell and Ooi (1987) and Egenhofer (1987) have also provided useful 
contributions towards the development of spatial extensions to SQL. 
However, until recently there has been no proposal for a standard set 
of extensions put forward for discussion. In our recent paper (Raper 
and Bundock 1990) we proposed a set of spatial extensions for SQL that 
could form the basis for an agreed standard between CIS vendors and 
the GIS user community. The spatial extensions are based on the 
existing proposals for SQL2 and SQL3 being studied by the combined 
ISO-ANSI SQL standards working group (ISO-ANSI 1989). These proposals 
include a number of object-oriented concepts, including support for 
abstract data types, methods, operators and functions. In particular, 
the detailed proposal in support of abstract data types (Kerridge 
1989) if implemented, would provide the framework in which to develop 
spatial data types, spatial operators and spatial functions, while 
remaining completely within the SQL standard.

The extensions necessary to make SQL usable within GIS applications 
for query of both spatial and aspatial data include:

- spatial data type(s) e.g. point, node, line, polygon
- spatial operators (predicates) e.g. at, inside, encloses, 

connected_to
- spatial functions e.g. area_of, length_of
- long transaction management statements
- report specification facilities - both textual and graphical

In addition, functional requirements demand that:

- the spatial data types should be displayed graphically as a 
result of being SELECTed

- the data dictionary and DDL support the extensions
- spatial access control (protection) may be provided by inclusion 

of spatial data types, predicates and functions within VIEW 
definitions

- spatial integrity maintenance may be provided by support of 
spatial data types, predicates and functions within the 
CONSTRAINT clause.

The Function Mapping Facility. This facility accepts UGIX commands 
in the form of function specifications and data selection 
specifications, and transforms these to the command language of the 
underlying GIS. For functions supported by both UGIX and the 
underlying GIS, the mapping should normally be moderately 
straightforward. Using 00 techniques, the function mappings become 
methods for the function objects. It is hoped that this technique 
will provide a straightforward approach to allow the support of 
multiple underlying GIS products.

Functions in UGIX not supported by the GIS However, not all 
functions known to UGIX may be available in the underlying GIS. 
Consequently, there will be holes in the UGIX interface for those 
unsupported functions. Icons representing unsupported functionality 
will be displayed in grey, and the matching command level functions 
will possess a method that reports on the function unavailablity.
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Functions in the CIS not supported by UGIX Where the underlying 
GIS supports functions unknown to UGIX, a general purpose facility 
will be provided that allows UGIX to send the system dependent command 
string directly to the underlying GIS. The command string will be 
explicitly declared and may be associated with icons, menus and forms 
in the normal way. In this way, special purpose functionality may be 
readily included in the UGIX GUI, even if it is not considered generic 
enough to warrant inclusion in the generic function list.

SYSTEM CUSTOMISABILITY

The Requirement for Customisation
Customisation of any GIS is required to allow the system to manage 

and manipulate the entity types that exist in the problem domain. The 
system customiser or database administrator, must be able to describe 
to the system the object classes/entity types that are to be modelled 
within the resulting system. They must define the names of the object 
classes, the names and types of attributes the objects possess, the 
behaviour of the objects with respect to operations on the objects and 
the inter-relationships between objects. The object class names, 
attribute names and operation names should each be assigned in terms 
of the language normally used within the application (i.e. the 
application specific jargon - e.g. the land surveying examples of 
table I) not in terms of the language used by the GIS. Defining the 
objects, attributes and operations in terms of the user's language 
allows interaction with the system to use that language.

The user interface may be customised to reflect the names described 
above and the symbols used by the application. Consequently, the 
standard icons representing the object classes, attribute types and 
operations of the application domain must be generated and associated 
with the names of the matching elements. This permits interaction 
with the GUI to be performed with icons recognised by the user as 
being part of the application domain.

The graphical user interface may also be customised to provide a 
conceptual model using metaphors which inexperienced users may 
recognise from previous experience - either application experience or 
experience from other domains. This conceptual model must be 
appropriate to both the application and the user's background.

The customisation facilities must be continually available, rather 
than being used just once to create a fixed, static system. Business 
(research, education, . ..) requirements change, resulting in either 
changes to existing applications or entire new applications being 
created. The user interface must also remain adaptable to match 
individual user preferences, and user-specific tasks.

Integration of Task Analysis Methodologies
A variety of methodologies and associated tools are available today 

to assist system designers and customisers determine the requirements 
for a new information system. User-centered requirements analysis 
methodologies provide a structured approach to performing both data 
and task analyses.

Data analysis results in a detailed description of the object 
classes, their attributes and the inter-relationships between object 
classes that might be managed within the final system. It also 
identifies integrity constraints and any other special behaviour
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exhibited by objects when a change of state occurs. Although this 
information may be recorded on paper in a descriptive manner, it is 
also possible to save it in a database - often refered to as the data 
dictionary. Tools that assist the data analysis task will nearly 
always save this meta-data in a form that may be used at a later date 
for automating the creation of the target database.

Task analysis results in the development of a detailed description 
of the goals, processes and user interaction that must occur for the 
goals to be met. Tools that assist this process may also store the 
task descriptions in a database in a structured form. Formal 
mechanisms have been developed to structure this information in such a 
manner that it may be used later for automating the creation of the 
user interface. For example Extended Task Action Grammar (ETAG) 
(Tauber 1990) may provide such a mechanism, although it is likely that 
the level of detail required to define the target system may be 
significant.

It is intended that UGIX(A) incorporate tools to assist both data 
and task analysis. These tools will be used to gather and structure 
information describing the target environment in such a manner that it 
may subsequently be used to automatically generate the database 
definition and the user interface. Further, the information should be 
in a form to provide input to the help facility supported by UGIX(B) 
since descriptions of the data, the low level functions and the tasks 
will all be available in a structured form.

COMMON FUNCTIONAL CIS OPERATIONS

A Methodology for Identification of Key GIS Functions
Analysis of the functions to be supported directly within the 

interface is based on goal analysis and hierarchical decomposition 
(top-down) techniques rather than task analysis techniques since the 
interface, as delivered, must retain its generality. Task analysis 
might provide a more detailed definition of requirements for a 
particular (well defined) application but is considered too specific 
when attempting to define general requirements. Abstraction of the 
general functionality from a task based analysis might be possible 
given sufficient access to a wide range of actual users in a wide 
range of applications. However, operating within a tight set of time 
and resource constraints, requires the analysis to be performed 
quickly with minimal contact with real users.

To overcome this limitation, the study initially involved :

- a review of existing research literature,
- a review of a number of GIS tenders,
- a review of the functionality supported by a number of 

commercially available GIS products.

A number of authors have reported attempts at classifying GIS 
functionality, including Dangermond (1983) and Maguire and Raper 
(1990). However, Dangermond based his analysis firmly in terms of the 
map concept which partitions the world into discrete tiles. 
Consequently, much of the functionality described is concerned with 
managing these discrete units, to allow queries across multiple map 
sheets, to join multiple maps to form a new composite map, and to 
perform edge matching. This functionality is quite distinct from the 
goals of the user, being the functionality necessary to support a map-
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sheet based GIS implementation. Maguire and Raper describe the 
functional components of a GIS in a more generic manner. Below each 
identified high level function they separate the functionality that 
applies to the spatial data, from that which applies to the attribute 
(aspatial) data. In the current study we attempt to retain the user's 
concept of objects within their application domain which may possess 
spatial and/or aspatial components. This suggested set of generic 
functions will be presented with the first UGIX prototype.

CONCLUSIONS

The development of a GIS independent user interface environment 
capable of interfacing with a number of commercially available 
products while still providing an adaptable, consistent, easily 
learned and easy to use interface, appears at first sight a difficult 
task. A structured approach to this problem is however beginning to 
indicate the feasibility of the project.

Incorporating structured analysis tools into the environment is 
expected to simplify system customisation while improving the 
resultant interface. In particular, it should help provide a user 
interface that incorporates the terminology, icons and conceptual 
models specific to the application and user's background while 
developing the interface in terms of a set of standard guidelines.

The usability of the prototype system will be evaluated and 
compared to the interfaces offered by the underlying GIS products. 
The comparison will eventually prove or disprove the viability of this 
approach. If successful, we would like to promote the concepts 
incorporated within UGIX to initiate discussion between users and 
vendors on the development of standards and guidelines for GIS user 
interface design and construction.
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Abstract
The operations necessary to combine map layers are formalized with algebraic 
specifications. This shows that arithmetic operations upon discrete spatial subdi 
visions are reduced to a single, parametric overlay operation, the actual behavior 
of which is determined by a value operation which combines the non-spatial at 
tributes of the individual cells of the corresponding layers. The novel approach is 
the application of these formalisms to find more efficient strategies for processing 
several overlay operations at an implementation-independent level. Two particu 
lar strategies are investigated: (1) the elimination of equivalent subexpressions to 
reduce the complexity of the overlay operation and (2) the integration of several 
overlay operations into a single one.

1 Introduction
Spatial data models (Peuquet 1984, White 1984, Frank and Kuhn 1986, Herring 
1987, Egenhofer et al. 1989) and spatial data structures (Peucker and Chrisman 
1975, Corbett 1979, Nagy and Wagle 1979, Samet 1989) have been extensively 
studied in the past. More recently, the interest in the relations between spatial 
data models and spatial data structures has increased (Egenhofer and Herring 
1991, Frank 1991b, Frank and Mark 1991, Goodchild 1991). Initial results of 
these investigations are:

• A spatial data model is the formalization of spatial concepts so that they can 
be represented in a computer.
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• A spatial data structure is the implementation of a particular spatial data 
model.

• A spatial data model may have multiple implementations with various effects 
on the performance and the storage requirements.

• A spatial data structure must fulfill the properties of the operations specified 
for the data model, in order to be a valid implementation of a spatial data 
model.

For example, the data model of a regular subdivision of space into squares of 
equal size, frequently called a raster model, may be implemented with different 
spatial data structures, such as a 2-dimensional array, run-length encoded, as a 
quadtree data structure, etc. (Samet 1989).

Within this framework of spatial data models and spatial data structures, a 
question of particular interest is, "How to describe formally the behavior of the 
operations?" This question covers the properties of the operations, i.e., the linkage 
between a data model and its various implementations, but, more importantly, also 
the specifications of the properties of their combinations. Note that it does not 
treat the actual implementation, i.e., a particular data structure or an algorithm.

Formalizations of spatial data models and GIS operations are necessary to 
(1) verify that an implementation, i.e., a spatial data structure, does what was set 
forth by the spatial data model, and (2) compare the semantics of different spatial 
data models (Frank 1987, Smith and Frank 1990). Non-spatial data models have 
been formalized, for example, by the relational algebra which specifies the behav 
ior of the operations upon relational tables (Codd 1970, Ullman 1982), but only 
subsets of spatial algebras exist, e.g., for topological relationships (Egenhofer and 
Herring 1990) or directions (Peuquet and Ci-Xiang 1987, Chang et al. 1989, Frank 
1991a). Each of these approaches is limited to a very specific class of operations 
and no attempts have been made to integrate them into a larger system.

The Map Analysis Package provided the first comprehensive collection of an 
alytical and spatial operations on the basis of regular tessellations (Tomlin 1983, 
Tomlin 1990). It describes map overlay operations informally, without applying 
the mathematical rigor necessary to analyze the behavior of the operations, leaving 
ample space for ambiguous interpretations. One implementation of this MAP alge 
bra describes formally these operations in the C++ programming language (Chan 
and White 1987), but lacks the definitions of the corresponding observe operations 
so that no axioms about the behavior of the operations can be formulated.

More formal approaches are based on the Euclidean plane and the representa 
tion of spatial data in terms of points, lines, and areas. A formalisation of the non 
set-theoretic part of Euclidean geometry (Tarski 1959) gives a collection of thirteen 
elementary axioms. An algebraic specification of graphic data types formally de 
fines the semantics of a simple graphics programming language without geometric 
operations (Mallgren 1982). An algebra for geometric constructions, based upon 
well-known algebraic structures such as rings and fields (Goguen 1989), demon 
strates the use of algebraic specifications for spatial objects, however, it is limited 
to a few, very basic constructs in plane geometry. The geo-relational algebra 
enhances the relational model with computational geometry operations (Guting 
1988). A formalized interpretation of operations upon maps uses set operations
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and a construct similar to constructs in functional programming languages, such as 
mapcar in LISP, applying a user-defined function to each element of a set (Scholl 
and Voisard 1989).

This paper addresses the formalization of operations on regular tessellations to 
assess optimization strategies, particularly for combinations of overlays. The oper 
ations necessary to combine map layers are formalized with algebraic specifications 
and the optimization attempts to identify a more efficient combination of the ini 
tial operations. It employs algebraic methods to substitute complex combinations 
by simpler ones (Ullman 1982), a technique commonly employed in electrical en 
gineering applications (Preparata and Yeh 1973) and compiler design (Aho et al. 
1985).

The remainder of this paper is structured as follows: the next section briefly 
introduces the two formalisms used, i.e., algebraic specifications and decision ta 
bles. Section 3 formalizes a specific map overlay operation and then generalizes 
this formalism so that it becomes applicable for arbitrary overlay operations. The 
properties of value operations to combine layers, cell-by-cell, are analyzed in Sec 
tion 4, ,and strategies are proposed for efficient combinations of multiple overlay 
operations. Section 5 summarizes the results and concludes with directions for 
further research.

2 Formal Methods

2.1 Algebras
Multi-sorted algebraic specifications are a tool commonly used in software en 
gineering to describe completely and formally the behavior of complex sys 
tems (Liskov 1986). They are based on heterogeneous algebras (Birkhoff and 
Lipson 1970) and their extensions to multi-sorted algebras (Guttag 1977). Data 
algebras (Zilles 1979), using equations to define the independent properties of data 
structures, and abstract data types (ADTs) (Goguen et al. 1978) influenced to 
day's understanding of algebraic specifications. An algebraic specification consists 
of three parts (Liskov 1986, Ehrich et al. 1989): (1) a set of sorts, 1 (2) a set of op 
erations defined upon the sorts, and (3) a set of axioms or equations that specifies 
the behavior of the operations. Two kinds of operations are distinguished: (1) op 
erations to create or modify an ADT, called creators, and (2) operations to observe 
some of the properties of an ADT, called observers. A specification is sufficiently 
correct and sufficiently complete in terms of its creators and observers (Guttag 
and Horning 1978).

The following example specifies an ADT point in the Euclidean plane. The 
ADTs integer and boolean are assumed to exist with their usual semantics. The 
syntax of this specification method resembles the syntax of specification-like pro 
gramming languages such as Eiffel (Meyer 1988) and MOOSE (Egenhofer and 
Frank 1988).

1 The term sort does not imply an order (sorting) over the instances. Programming languages 
use the less ambiguous term type in lieu of sort, however, types consider also the structure of the 
sorts (Cardelli and Wegner 1985) which is part of an implementation.
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SORTS2 point USES integer, boolean 
OPERATIONS3 make: integer x integer -» point

x: point —> integer
y: point —•» integer
isEqual: point x point —>boolean 

VARIABLES4 ii, i 2 : integer; pt , p 2 : point 
EQUATIONS5 x (make (i1( i2 )) == ii

y (make (i!, i2 )) == i2
isEqual (pi, p2 ) == integer .isEqual (x (pi), x (p2 )) and 

integer.isEqual (y (pi), y (p2 ))

Specification 1: Point.

2.2 Decision Tables
A decision table is another method to specify formally the behavior of operations, 
particularly those which can be described by a series of rules. It consists of two 
parts: (1) a set of conditions which have to be satisfied simultaneously and (2) the 
corresponding actions to be taken upon the conditions (Metzner and Barnes 1977).

Decision tables are most naturally presented in the form of a table with the set of 
conditions being put into the upper half of the table and the set of corresponding 
actions underneath. Boolean values, T and F, are assigned to the conditions 
indicating whether or not the corresponding action should be taken. If an action 
is taken independent of a condition then a dash in the corresponding decision 
indicates don't care. Since the entries in conditions and corresponding actions are 
logically connected with AND, they are commutative.

Decision tables are a well-suited tool to express some spatial analysis operations 
which frequently use complex algebraic expressions to describe their operations 
and mappings. The following example demonstrates the use of a decision table 
to formalize a particular value operation, the localRating, frequently used in the 
MAP algebra (Tomlin 1990). LocalRating assigns to each n-tuple of values a new 
value. For example, the following localRating combines a layer of altitudes with a 
vegetation layer into a new layer windExposure.

• If the altitude is greater than or equal to 290 and vegetation type 0 then the 
wind exposure is 1.

• If the altitude is greater than or equal to 290 and vegetation types 1-3 then 
the wind exposure is 2.

• If the altitude is less than 290 and vegetation type 0, 1, or 3 then the wind 
exposure is 3.

2The SORTS definition includes the data type to be specified and the types it USES to describe 
its properties.

3 OPERATIONS are defined by their name, the Cartesian product of the input sorts, and the 
sort of the result.

4 VARIABLES describe the instances of the sorts used in the equations.
5 The behavior of each operation is expressed by EQUATIONS in terms of equivalent observe 

and create operations.

299



• If the altitude is less than 290 and vegetation type 2 then the wind exposure 
is 4.

Table 1 shows a decision table which models these rules.

altitude 
vegetation
windExposure

> 290 
0
1

> 290
1 V2V3

2

< 290 
OV1 V3

3

< 290 
2
4

Table 1: The decision table for the local rating of altitudes and vegetation [Tom- 
lin 1989].

3 Formalizing Overlay Operations
The raster model is a particular subclass of the regular tessellations with a discrete 
representation of space (Egenhofer and Herring 1991, Frank 1991b). It partitions 
the area of interest into equally-shaped cells so that (1) the set of all cells forms a 
complete partition, called a layer, and (2) any pair of cells does not overlap. This 
section will demonstrate the use of algebraic specifications to specify formally 
combinations of layers.

3.1 An Overlay Example
The most common queries upon layers are based on the map overlay methodol 
ogy, i.e., the combination of several layers into a new one (Steinitz et al. 1976). 
A simple, but specific example is to show the use of algebraic specifications for 
describing a particular overlay operation. The operation to be specified is the com 
bination of the two layers with regular rectangular cells, both over the same spatial 
extent, in the same scale, and with the same orientation. Each cell is made from 
a location and a value. In this particular example, each value is an integer, with 
the operations equal and maximum and their usual semantics, and each location 
is a rectangle described by its lower-left and upper-right points (Specification 1), 
a creator (make), and three observe operations (Specification 2).
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SORTS location USES point, boolean 
OPERATIONS make: point x point —> location 

lowerLeft: location —» point 
upperRight: location —> point 
isEqual: location x location —»boolean 

VARIABLES pi, p2 : point, lj, 1 2 : location 
EQUATIONS lowerLeft (make (px , p 2 )) == p: 

upperRight (make (pT , p2 )) == p2 
isEqual (li, 12 ) == point.isEqual (lowerLeft (li),

lowerLeft (12 )) and 
point.isEqual (upperRight (li), 

upperRight (12 ))

Specification 2: Location as the Cartesian product of two points.

Cells have operations to make a new one and to access its components, i.e., 
getLocation and getValue (Specification 3).

SORTS cell USES location, value 
OPERATIONS make: location X value —> cell

getLocation: cell —>• location
getValue: cell —>value 

VARIABLES 1: location; v: value 
EQUATIONS getValue (make (1, v)) == v

getLocation (make (1, v)) == 1

Specification 3: Cells.

The resulting layer contains the greater of the two values at the corresponding 
spatial locations (Specification 4).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -> layer

overlayMaximum: layer x layer —* layer 
VARIABLES la, 1 2 : layer; Ci, c2 , c3 : cell
EQUATIONS FOR EACH [G! , c2 , c3] IN [lj, 1 2 , overlayMaximum (lx, 12 )] : 

location.isEqual (cell.getLocation (c3 ),
cell.getLocation (cj)) and 

location.isEqual (cell.getLocation (c3 ),
cell.getLocation (c2 )) and 

value.isEqual (cell.getValue (c3 ), 
value.maximum (cell.getValue (ci), cell.getValue (c2 )))

Specification 4: Combining two layers by selecting the maximum value.
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The syntax of the equations uses a FOR EACH5 loop (Liskov et al. 1981) 
to apply an operation to all elements of a set (Backus 1978), i.e., all cells which 
are part of, or IN, a layer. Actually, this is an observe operation upon a layer 
returning the cells in the aggregate one after another. Simultaneous loops over 
multiple aggregates group the parts and the aggregates pairwise between brackets 
so that the n-th part in on bracket corresponds with the n-th aggregate in the 
other.

This set of specifications for layers, cells, rectangles, and integers completely 
formalizes the behavior of this particular overlay operation.

• Layers are combined by applying a particular operation to corresponding cells, 
i.e., cells with the same spatial location.

• The same value operation is applied to all cells of a layer.

• The value combination of cells preserves the locations of the cells, i.e., the 
location of each cell in the resulting layer is the same as the one of the cells 
combined.

3.2 A Generalized Overlay Operation
The previous specification can be generalized so that it holds for other overlay 
operations as well. Such a generic specification is based upon the definition of a 
generalized value type, a superclass of all possible sorts which may characterize 
the non-spatial properties of a cell.

A value type must provide operations to compare two values for equality (isEqual) 
and to combine values (Specification 5). The specification of its create operation 
is DEFERRED (Meyer 1988), because it depends upon the particular value type used.

SORTS value USES boolean
OPERATIONS create: DEFERRED -> value

isEqual: value x value —»boolean
combine: value x value x ...x value —» value

Specification 5: A generic value.

Likewise, the location specification may vary for different shapes of cells. Be 
sides the make operation, the ADT location must provide an operation to compare 
two locations for equivalence (isEqual) (Specification 6).

SORTS location USES boolean 
OPERATIONS make: DEFERRED -> location

isEqual: location x location —>• boolean

Specification 6: A generic location. 

5 Not to be confused with the for-all quantifier, V, commonly used in calculus.
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The specification of the ADT cell as the Cartesian product of location and value 
stays unchanged (Specification 3). The modified ADT layer has a single overlay 
operation with varying implementations depending on the value operation used to 
combine corresponding cells. The FOR EACH loop runs over the sets of all cells 
in all layers, indicated by c, and 1,, respectively (Specification 7).

SORTS layer USES cell
OPERATIONS make: cell x cell x... x cell -* layer

overlay: layer x layer x ...x layer x value.combine —> layer 
VARIABLES c,, cn : cell; 1,: layer
EQUATIONS FOR EACH [c,, cj IN [1,, overlay (1,, value.combine)]: 

location.isEqual (cell.getLocation (cn ),
cell .getLocation (c,-)) and 

value.isEqual (cell.getValue (cn ),
value.combine (cell.getValue (c,-)))

Specification 7: A parametric layer.

The behavior of any overlay operation is expressed by a particular operation 
upon the values of individual cells (value. combine). The usage of a variable argu 
ment over value operations reduces the specification to a single, generic operation. 
Combine is similar to the operators apply (Scholl and Voisard 1989) and A (Giiting 
1988) in other formalizations.

The generalized overlay specification reveals that the characteristics of these 
overlay operations are exclusively determined by the operation combining several 
values. Conversely, the properties of the value operation immediately map onto 
the properties of the overlay operation. For arithmetic overlay operations, it is 
sufficient to consider each layer as a set of cells, i.e., no topological relationships 
among the cells are used. Since the values are combined over the same location, 
the overlay operation—in terms of relational algebra (extended with arithmetic 
capabilities) (Ullman 1982)—is (1) an equijoin over the same location (Frank 1987) 
followed by (2) an arithmetic operation combining the values of corresponding 
location and (3) a projection of the locations and the combined value.

4 Optimization
An overlay operation over multiple layers results in a new layer which, in turn, may 
be used as an argument in another overlay operation. Frequently, many overlay 
operations are combined this way to perform a more complex operation (Tomlin 
1990). While sophisticated spatial data structures may efficiently implement an 
individual overlay operation, they generally provide only little support for improv 
ing the processing of a series of overlays. It will quickly become time consuming 
to process sequentially each overlay operation by producing an intermediate layer 
after each operation. In lieu of immediately performing each operation, it is more 
efficient to evaluate first the entire operation and identify an execution strategy 
which predicts the shortest processing time. Similar considerations within the re 
lational algebra to gain better performance for complex, combined operations led
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to the area of query optimization (Ullman 1982). To date, only few attempts have 
been made to improve systematically spatial query processing (Hudson 1989, Ooi 
and Sacks-Davis 1989). Current overlay processors calculate interactively one over 
lay at a time (Pazner et al. 1989), though there have been recently attempts to 
pursue more efficient processing strategies (Yost and Skelton 1990). To improve 
the overlay operations of several layers, two strategies are investigated: (1) to iden 
tify equivalent sub-expressions so that they can be computed only once, and (2) to 
integrate several individual overlay operations into a single one. Both strategies 
will be investigated subsequently.

4.1 Notation
The uppercase Greek letter omega (ft) will be used to denote overlay. Its argu 
ments are (1) the ordered set of layers layert , . . . , layern with n > 0, and (2) a 
particular combination operation (Equation 1).

tocombinationVayert , . . . , layern ] (1)

The combination operation may be a function, such as max or average, or a 
decision table. For instance, the value combination specified in decision table 1 is 
applied to the layers altitudes and vegetation, resulting in the layer windExposure 
(Equation 2).

windExposure := Slxabie i (altitude, vegetation) (2)

4.2 Equivalent Overlay Operations
A first step during processing the combination of overlays is to identify those se 
quences of operations that occur several times so that they need to be executed 
only once. The goal for such an overlay optimizer is to find equivalent, but more 
efficient expressions, i.e., expressions which yield the same result within less time. 
This strategy requires a formal knowledge of equivalent expressions. Mathematics 
has the notion of properties of combinations of operations to describe whether two 
expressions are equivalent or not. Most familiar are the commutative, associative, 
and distributive laws, e.g., for the combinations of sets with the operations union 
and intersection. Likewise, the combination of layers with various overlay oper 
ations may be described by their commutative (Equation 3), associative (Equa 
tion 4), and distributive (Equation 5) properties.

, layer?} = ^l eam b mation(layers , layerj ) (3) 
i combination^ combination(layert, layers ), layers ~] =

ttcombinationVayer! ^comtm^o^V^t, layers )) (4) 
combination ̂ a-yer i $l comiinanon2 (layer %, layeT3 }} =

^combination2 (^ combination! (layeTi , layers ), ft combination j (layert , layer s )~) (5)

The specification of the generalized overlay operation (Specification 7) demon 
strated that an overlay varies only over different value operations; therefore, the 
properties of the combinations of overlay operations can be based upon the prop 
erties of the corresponding value operation. For instance, the combination of three
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layers is associative if and only if the value operation is associative as well:

ft combination^ combm^tion^ayer, , layeT2 }, layers ) =
, layer*,)} (6)

value. combine(value. combine^! , vs ), v3 ) =
value. combine(vi , value. combine(vs , vs )) (7)

Since the overlay operations depend completely upon the corresponding value 
operations, they can be optimized by only considering the value operations in 
the same sequence as the corresponding overlay operations. Equivalent overlay 
operations can be found by analyzing the properties of the value operations. These 
properties are described in the axioms of the specifications of the values. For 
example, given a complex query containing the following expressions:

. . . ft add(lo-yeri ,ft add (layer2 Jayer3 )) . . . ft add(layers ,ft add (layers , layer i}) ... (8)

The axioms of the particular value specifications may provide the necessary 
information about the properties of the add operation, e.g.,

SORTS value
OPERATIONS add: value x value -> value 
VARIABLES Vj , v2 , v3 : value 
EQUATIONS add (VL v2 ) == add (v2 , vj

add (YI, (add (v2 , v3 )) == add (add (vt , v2 ) , v3 ))

Specification 8: Commutative and associative properties of the value operation 
add.

Based upon these axioms it can be formally analyzed whether or not these 
two expressions are the same. First, the overlay operation is substituted by the 
corresponding operations upon values (Equations 9 and 10).

ft add^ayert, ft add(layer2, Iayer3 )) =>• value. add(vt , value. add(vs , vs )) (9)
=^ value .add(vs , value. add(vz, vt )) (10)

Then the axioms are applied. With the associative law, Equation (10) is trans 
formed.

value. add(vs , value. add(vg, vt )) = value. add(value.add(vs , v2 ), vt ) (11) 

Finally, the commutative law is applied twice.

value. add(value.add(vs , vs ), Vj) = value. add(vt , value. add(v3 ,
= value. add(vt , value. add(vs , v$)) (12)

Equation (12), the equivalent for (10), is the same as (9), i.e., the two subex 
pressions in Equation (8) are the same and, therefore, only one of them must be 
executed.
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4.3 Integration of Multiple Overlay Combinations
A second strategy to reduce the execution time of a complex combination of over 
lays is to integrate several overlay operations into a single, equivalent one, i.e.,

(13), layers , layers)

Again, the specification of the generalized overlay operation (Specification 7) 
was fundamental in tackling this problem. It shows that this integration means 
to move a value operation, value, oper at ion2 , from the inner FOR EACH loop 
into the outer loop and combine value, oper at ioni with value. operation2 into 
value. operation3 . The validity of such combinations can be checked with the 
axioms specifying the value ADTs.

FOR EACH (ti, t 2 ) IN (A,
FOR EACH (t3 , t 4 ) IN (B, C)

DO value. operation2 )
DO value. operation! 

=> 
FOR EACH (ti, t 2 , t 3 ) IN (A, B, C)

DO value. operations

An alternative approach to this symbolic optimization is the use of decision 
tables to evaluate the combinations. Given the sets of values on each layer, the 
decision tables can be applied to analyze the property of the combination of op 
erations.

The following example demonstrates such an integration. Four layers, AI, A2 , 
BI, and B 2 , with the four respective sets of values, {2, 4, 8}, {6, 10}, {3, 4}, and 
{1, 2, 3), should be combined such that

result := Slmm (^,en,,(Ai,Ag ),Sl TM,tt(Blt Bg)) 

The decision table 2 shows the combinations for the two inner overlays.

(14)

A t 
A 2
x,

2 
6
4

2
10
6

4 
6
5

4 
10
7

8 
6
7

8 
10
9

Table 2: (a) Xt := average(A t ,A 2 ) and (b) Xt := (Bt ,B2 }.
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Table 3 shows the result of the combination of the two intermediate results with 
the operation min.

xt
xz
X

4 4 
2 1
2 1

4 
3
3

6 
2
2

6
1
1

6 5 
3 2
3 2

5 
1
1

5 
3
3

7 7 
2 1
2 1

7 
3
3

9
2
2

9 9 
1 3
1 3

Table 3: X :=

The sequence of operations may be expressed by a single table. Its condition 
part contains the Cartesian product of the values in the four layers and the action 
part has the corresponding values of the combinations (Table 4).

A t
A s
Bt
Bs

2
6
4

1V3

2 2
6 6
3 4
- 2

4 44
666
434

1V3 - 2

2
10
4

1 V3

2 2
10 10
3 4
- 2

4
10
4

1V3

4 4
10 10
3 4
- 2

8
6
4

1 V3

8 8
6 6
3 4
_ 2

8
10
4

1 V3

8 8
10 10
3 4
- 2

1 23 1 23 23123 2 3 2 3

Table 4: X := min(average(A 1 ,A 2 }, Table 2b(B1 ,Bs )). 

Table 4 can be simplified by combining columns with the same actions, e.g.,

2V4V8 2V4V8 2V4V8 2V4V8 2V4V8 2V4V 
6 10 6 10 6 10 
443344 

1V3 1V3 - - 2 2
X

Table 5: X := min(average(A 1 ,A s }, Table 2b(B1 ,Bs )).

Further integrations (over the values of A2 ) and the substitutions of disjunctions 
which cover the entire domain by the value don't care reduce the value operation to 
an operation which is independent of the two layers A\ and A? (Table 6); therefore, 
the entire overlay operation may be reduced to the combination of the two layers 
BI and J52 .
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Bt 
Bs

4 
1V3

3 4 
- 2

2 3

Table 6: The simplified decision table for ^l mtn (^l average(A l , A 2 ), ^Tabie eb(Bi , Bs )}.

The decision table also indicates in which order the two layers should be pro 
cessed. The value of a layer needs not be examined if the result is independent of it. 
For example, it is more efficient to execute £1 Table sb(B\, B^) than ft Table zb (B^, BI). 
In the first case, the result of half of the operations is determined by just examin 
ing BI , because the outcome of the combination with value 3 is independent of the 
value at the corresponding location in B2 . If the value is 4 then the corresponding 
value in B2 must be examined as well. On the other hand, if the converse operation 
is executed then always the values of both layers must be processed.

5 Conclusion
Rigid formal methods have shown to be effective tools to identify optimization 
strategies for combinations of overlay operations. The algebraic specification of a 
generalized overlay operation for tessellations revealed that

• a layer may be considered a set of cells, each consisting of a location and a 
value, and

• arithmetic overlay operations over layers can be broken down into a value 
operation to be performed for each cell of a layer or tuple of corresponding 
cells in several layers, similar to the application of a function to a whole set 
in functional programming.

Since overlay operations are founded upon value operations, it is possible to map 
the considerations about best execution plans for operations onto considerations 
about the combination of value operations. Two particular ways of optimizing 
several overlay operations have been investigated:

1. the use of axiomatic description of the value operations to identify whether or 
not two combinations of value operations are equivalent. Faster executions of 
combinations of overlays are possible, because such equivalent subexpressions 
can be substituted by the result of one single overlay operation.

2. the use of decision tables, representing the characteristics of value operations, 
to integrate several overlay operations. This method can be applied if the sets 
of values of all layers are known. The integration reduces any combination of 
overlay operations into a single one and is most effective if the number of con 
ditions is small. Decision tables are less suitable for large sets of conditions, 
because the tables grow multiplicatively before reduction.
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The results obtained demonstrated the usefulness of the approach. Further in 
vestigations are necessary to build sophisticated query optimizers for raster GIS's. 
The present work, intentionally, excluded geometric operations on cells, e.g., those 
which exploit the neighborhood relationship between cells. Within the formal 
framework provided it is now possible to study their behavior to formalize geo 
metric operations on tessellations.
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Abstract
A methodology for the operation of spatial overlay is presented in this paper. A general 
framework for spatial overlay based on concepts in epsilon geometry is developed to 
cope with the problems of computational errors and handling inaccurate numerical data. 
These problems normally cause topological inconsistencies and generate spurious 
effects in the result. A mapping is defined to accommodate the edges and vertices in all 
spatial layers so they are unambiguously aligned within a prescribed tolerance. 
Geometrical arguments are given to show the correctness of this approach.

1. Introduction
Spatial overlay is an analytical tool used to integrate multiple thematic layers 
(coverages) into a single composite layer. Each layer is organized into a polygon- 
network structure where polygons are assigned to nominal, or ordinal, categories. The 
data may be efficiently stored using a topological data structure [Peucker and Chrisman 
1975]. Spatial overlay has proven to be a very powerful tool to analyse the association 
among different spatial patterns and land characteristics. Despite its popularity there is 
practically no theory to guide the development of algorithms.

Development of programs for spatial overlay have been hindered by a number of 
problems related to map accuracy and computational geometry. If the input coverages 
are overlaid exactly, then sliver polygons are produced along different versions of the 
same boundary or spatially correlated boundaries represented in different layers. Slivers 
are an undesirable byproduct of overlay as they are meaningless and degrade further 
analysis and interpretation of the data [Goodchild 1978]. Other problems that arise are 
as follows;

i) repeated application of tolerance intersections cause objects to move outside
their tolerance [White 1978],
ii) numerical instability causes topological inconsistencies [Franklin 1984],
iii) spurious affects from fuzzy creep and subtolerent segments [Guevara 1985].

One of the most significant achievements in polygon overlay software can be found in 
the ODYSSEY system for geographic information processing [Dougenik 
1979][Chrisman 1983]. The overlay program for ODYSSEY addressed many of the 
problems listed above, and computed tolerant intersections as a solution to the sliver 
polygon problem [White 1978]. The primitive operation for intersection was broadened 
to include a tolerance parameter, and clusters of intersection points were analysed to 
form consistent nodes [Chrisman 1983]. The value for the tolerance parameter is related
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to the accuracy and scale of the input coverages. However, a problem arises when 
trying to overlay many coverages which have multiple accuracies. A central tenet of this 
paper is that the concepts and approaches used to analyze spatial data can profit from 
further improvement of the overlay algorithm. A general framework for map overlay 
which will integrate many coverages, with multiple tolerances, in a single operation is 
described. The overlay algorithm is similar to Zhang and Tulip [1990] in avoiding 
slivers by snapping less accurate points to more accurate points and not moving any 
point outside its tolerance. We extend this work by presenting a verifiable methodology 
for the overlay operation.

The proposed approach, called map accommodation, is based upon a simple concept 
of accommodating the geometry between each layer to bring them into alignment in the 
composite layer. Map accommodation detects and reports all types of intersections and 
proximities between spatial data, and then objectively analyses the data to resolve 
conflicts.

An outline for the paper is as follows. The next section describes issues related to 
geometrical intersection. Section 3 describes an algorithm for reliable polygon set 
operations. It is a robust algorithm, but it does not place an overall bound on positional 
errors introduced in the process. Section 4 gives a brief outline of the solution we 
propose, it aims to both bound and minimize any positional errors. Sections 5 and 6 
give a more formal treatment of the overlay problem and the correctness of the 
proposed solution. Section 7 describes a clustering algorithm which is central to our 
approach. Section 8 analyses the performance of the proposed algorithm and suggests 
some enhancements.

2. Geometric Operations
Geometric operations on objects representing physical phenomena pose special 
problems for the design of computer algorithms. Hoffmann [1989] says that "practical 
implementations of geometric modeling operations remain error-prone, and a goal of 
implementing correct, efficient, and robust systems for carrying them out has not yet 
been attained".

Geometric operations encounter two types of errors; i) numerical errors, and ii) 
representational errors.

2.1 Numerical Errors
Geometric operations on polyhedral objects represented by floating-point numbers will 
introduce numerical errors in the result [Hoffmann 1989], The most common numerical 
error is round-off error. Geometric operations use intermediate results from numerical 
computations to derive symbolic information. For instance, when a computed variable 
is less than, equal to, or greater than zero indicates if a point lies below, on, or above a 
line. If the difference between the values compared is less than a certain threshold £, 
computations can lead to misleading results. Two broad approaches are proposed for 
treating numerical errors; a) compute an exact result by performing intermediate 
computations with a higher precision [Ottmann et al 1987], or b) determine error
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intervals around geometric objects and perturb a version of the input data so objects are 
unambiguously related to one another within their respective intervals [Hoffmann et al 
1988].

2.2 Representational Errors
The coordinate descriptions for geometric objects, whether explicitly stated or not, are 
expressions of measurement and include some positional uncertainty. Geometric 
operations need to, a) capture the notion of "approximate tests", and b) to provide 
estimates on the accuracy of objects. Guibas and others [1989] describe a general 
framework for coping with errors in geometric operations called epsilon geometry, and 
show how epsilon-predicates are incorporated in geometric tests.

In a similar vein Milenkovic [1989] describes a technique, called data normalization, to 
perform reliable geometrical set operations on polyhedral objects. Data normalization 
acts as a preprocessing stage to resolve any topological ambiguities before performing 
set operations. A version of the input data is perturbed slightly to get better agreement 
between vertices and edges in the output overlay. The decisions on what to perturb and 
by how much can become very complex for arrangements of line segments.

Epsilon geometry bears some resemblance to techniques used in computer-assisted 
cartography. Blakemore [1984] suggested an epsilon band could represent the 
positional uncertainty of a digitized line, and illustrated its use to answer a point-in- 
polygon query. It has also been used operationally in procedures for map overlay and 
feature generalization. The overlay program in ODYSSEY was the first to include an 
epsilon tolerance to control moving the location of boundaries for the removal of sliver 
polygons [Dougenik 1979]. In feature generalization an epsilon tolerance is used for 
line filtering [Chrisman 1983] [Perkal 1966].

The approach used in epsilon geometry can cope with inaccuracies significantly larger 
than those introduced by numerical errors. Therefore, epsilon geometry provides a 
good general framework to deal with both numerical and representational errors. This 
chapter builds on these and other works to explore the use of epsilon geometry in 
polygon overlay. The next section describes the method used to compute the 
intersection of polyhedral objects which applies the concepts of data normalization. It is 
a robust algorithm, but has undesirable drawbacks we wish to improve upon.

3. Data Normalization
This section describes a published algorithm that includes some discussion of the 
reasoning steps involved in geometric operations. Milenkovic [1989] describes a simple 
method to give a definite and correct answer to geometric operations on polyhedral 
objects. The idea is to perturb the positions of objects, that are within a certain 
threshold £, so they coincide exactly. The method is called data normalization, and it 
assures all data objects satisfy two numerical tests:

1) no two vertices are closer than a tolerance £, and
2) no vertex is closer to an edge than a tolerance £.
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Two primitive operations are applied to the data to satisfy these conditions, vertex 
shifting and edge cracking. See figures 1 and 2. Vertex shifting will move one vertex 
to another if they are closer than tolerance £. If a vertex is within tolerance £ to an 
edge, edge cracking will move the vertex to a new cracked point along the edge.

Figure 1: Vertex Shifting

Figure 2: Edge Qacking

The algorithm described by Milenkovic initially makes two passes through the data. 
The first pass tests for near coincidence between vertices from the input polygons. 
When two vertices are found within the threshold tolerance then one vertex is shifted 
and identified with the other vertex. The second pass tests for the proximity of vertices 
to edges for the input polygons, and does edge cracking where necessary. Edge 
cracking may introduce further near coincidences. Hence, the algorithm is reiterated 
until both the numerical tests for data normalization are satisfied. With each iteration 
slight perturbations accumulate and may lead to positional alterations larger than £, this 
is called creep. For example, in the left diagram of Figure 3 the vertices ut and Vj are 
within tolerance £ of edge (u0v0). The right diagram shows the results after edge 
cracking, now the vertices u2 and v2 are within £ of the new edge (ufSj) which in 
turn calls for further cracking. Edge cracking may continue in a cascading fashion so 
that points along edge (UOVQ) will migrate outside their given tolerance.

Figure 3: Creep introduced by edge cracking.

This algorithm will compute output polygons with a valid planar topology, so in this 
sense it is robust. However, positional error will accumulate with each iteration so the
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procedure cannot place a constant bound on the extent polygons are perturbed. The next 
section describes another approach which avoids creep.

4. Proposed Solution
This paper has used the ideas behind data normalization and adapted them to a new 
approach to overlay called map accommodation. This section gives a brief description 
of the mechanics of our approach to map overlay, and shows how a clustering 
procedure is incorporated with the primitive operations for vertex shifting and edge 
cracking. Latter sections will give a more formal and detailed description.

4.1 Issues
The two drawbacks to the algorithm described in the previous section are;

i) the perturbations are performed in an arbitrary fashion, and
ii) it does not prevent creep.

First, there is no objective evaluation of relations between the geometric primitives 
(vertices and edges) to guide what gets snapped to what. It is a greedy algorithm which 
accommodates primitives of one polygon to another as violations to normalization 
conditions occur. We propose an algorithm which objectively evaluates the proximities 
between geometric primitives to guide the accommodation process. Like the overlay 
program in ODYSSEY [Dougenik 1979], a clustering strategy is used to minimize the 
perturbations to the data. The benefit of this approach is it promotes a stable map 
topology.

The stability of map topology and its relation to a discrete surface model is investigated 
by Saalfeld [1987]. Measures of stability, or robustness in the topological structure, are 
defined in terms of a geometrical measure of the closeness of primitives. We propose a 
strategy to cluster primitives based upon proximity, such that primitives are clumped 
together to minimize perturbations and provide the greatest separability between cluster 
centers. In this way we expect greater stability in the overlay transformation.

Second, primitives can migrate from their original locations by a significant distance for 
certain degenerate configurations. This was discussed briefly in the previous section 
and, Milenkovic demonstrates a case where a valid polygon can collapse to a point. To 
avoid the effects of creep we perform clustering in a special way to bound the 
perturbations.

4.2 Brief Outline of Algorithm
The remainder of this section gives a simple description of map accommodation, and 
latter sections will go into greater detail. The accommodation algorithm accepts as input 
N layers of data structured in an topological format. To start, we check all vertex-vertex 
proximities. If any two vertices are within a geometrical tolerance to one another they 
are reported in a list. Cluster analysis is performed on the elements in this list to 
determine consistent output vertices. By consistent we mean vertices satisfy the 
normalization condition, that is; i) no two vertices are closer than the tolerance, and ii) 
no vertex is moved greater than its tolerance. In effect, we have performed the task of
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vertex shifting to accommodate the vertices among the layers.

Next, we check all vertex-edge proximities. If a vertex is found to be within the given 
geometrical tolerance to another edge, then the vertex and its closest point along the 
edge are reported in a list. Cluster analysis is again performed on this list to determine 
consistent output vertices. Any internal points to edges that are clustered to other points 
are treated as a cracked edge.

Finally, we check all edge-edge intersections. The composite layer may now be 
assembled in a straight-forward manner.

4.3 Example
The process just described is illustrated by overlaying two simple geometric objects
shown in figure 4.

Triangle 1 

Triangle 2

Figure 4: Two figures to be overlaid.

In figure 5, the highlighted vertices are found to be within the geometrical tolerance to 
one another, and are clustered and identified with a single vertex. In figure 6, the 
highlighted areas show edges found to be within the tolerance to a vertex. The edges 
are broken at the closest point to the offending vertex, this point and the vertex are 
clustered and identified with a single vertex. Now the geometry for the two triangles are 
accommodated to common vertices and edges. It is a now a relatively simple problem to 
compute their Boolean intersection. From the resulting figure we can answer 
approximate tests concerning the coincidence or inclusion of vertices and edges.

Ouster Vertices

Figure 5: Vertex Shifting
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Cluster Vertices 
& Intersect Points

Figure 6: Edge cracking

This section has presented a very simple description of map accommodation. 
Subsequent sections will give a more formal and detailed treatment of the process.

5 Accommodation Conditions
This chapter is mainly concerned with how the overlay transformation affects the 
geometry of objects. Map accommodation is required to satisfy five geometric 
conditions which validate the result of polygon overlay. These conditions form the 
basis for the design of the map accommodation algorithm.

The basic geometric primitives are vertices and edges, and an associated tolerance 
parameter called epsilon. A map layer is denoted by the triple { V,E,G }, where; 

V is the set of vertices v representing points in the plane, 
E is the set of edges e made up of ordered pairs of vertices, and 
6 is the epsilon parameter £ associated with the vertices or edges.

To establish a convention, we will use lower case symbols to denote primitives of a set
D

and upper case to denote the sets. For example, e^ is the i-th element in the R-th set of
R p R edges, or in other words e e E. An element e has an associated tolerance denoted

A vital part of the overlay process is to accommodate the geometric primitives from all 
input layers to resolve topological ambiguities. A number of input layers will be 
mapped to a single composite layer. If a primitive is not within the epsilon tolerance to 
another primitive then it remain unchanged. However, if it is necessary to accommodate 
primitives from different layers then this may cause the combining of primitives or the 
insertion of new primitives. The five conditions for map accommodation determine 
what sort of changes are allowed. These conditions examine spatial proximities and are 
defined in terms of the Euclidean distances d between primitives. Formally, we define 
the accommodation mapping for 1..N input layers to one composite layer as,

{vW.e 1 }, {v2,E2,e 2 }, ... {VN,EN,G N } =» {V,E',e'}
such that the following accommodation conditions are satisfied;
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Al) vf is moved to v^ iff d( vf,v') < if ,

A2) for any two \',v' implies d(v',v') > minimum(£j ,£:) , 
j j ~

R ft'A3) a cracked point p on e^ is moved to v. iff d(p,v.) < £ ^ ,

A 4) for any v.' and point p on any e' implies rf(p,v.') > minimum(£•',£'), 
A5) no two e' intersect except at a common vertex v'.

An infinite number of mappings will satisfy these condition. Therefore, another 
constraint is imposed to minimize any positional alterations. This is achieved by using 
cluster analysis to objectively chose the output vertices to which other vertices are 
moved. The next section describes the way cluster analysis is used in map 
accommodation and presents informal arguments to show how the above conditions are 
satisfied.

6 Accommodation Process
Central to the accommodation process is the clustering procedure. Clustering will 
analyze points and replace the points which are agglomerated with their weighted 
centroid. The weight for a point is related to its associated epsilon parameter. For now, 
we only define the properties of the clustering method and leave the description of the 
clustering algorithm for the next section. The input to cluster analysis is a set {P,6}, 
where;

P is a set of points p in the plane, and
6 is the epsilon parameter £ associated with each point.

Formally, clustering is a mapping between sets as, 

{P,G} ==> {P',6'J,

where p' is the weighted centroid for agglomerated points pj«P, and £ ' is selected as 
the minimum of the £ j«6 , and such that the following clustering properties hold;

Cl) for any p^ clustered to p' implies rf(pj,p') < £j, and 

C2) for any two P.',p[ implies d(p^,p') > minimum(£j',£').

Based on the given properties of a clustering, we describe each stage in the 
accommodation technique and give informal arguments to show they satisfy the 
accommodation conditions. This is followed by an outline of each step in the algorithm. 
The three major stages of the accommodation technique are;

1. Vertex shifting,
2. Edge cracking,
3. Edge intersection.
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The order of execution for each stage is designed to detect and resolve correlation 
between boundaries. Correlated boundaries will demonstrate a similar pattern of 
curvature. This correlation will be most prevalent at corresponding terminal points and 
break points along boundary lines. Therefore, detection of coincident vertices should 
proceed first. Figure 7(a) shows two correlated lines with areas of vertex coincidence 
highlighted. Figure 7(b) shows the result after vertex shifting. Subsequent detection of 
vertex to edge proximities will detect correlation along the boundary line. Figure 7(b) 
also highlights areas of vertex to edge coincidence, and figure 7(c) shows the result 
after edge cracking. The final stage will detect clear cases for two edges crossing.

(a) Detect vertex coincidence (b) After vertex shifting (c) After edge cracking 
Figure 7: Map accommodation for two lines

6.1 Vertex Shifting
The task of vertex shifting is to detect vertices that are approximately coincident, and 
then compute consistent output vertices. One pass is made through the input data 
performing pairwise comparisons between vertices in each layer. When the distance 
between two vertices is discovered to be less than the sum of their tolerances they are 
reported in a list. This list serves as input to the clustering algorithm. Clusters are 
computed and any affected vertices are identified with a new vertex at the respective 
cluster centroid.

Clustering will satisfy properties (Cl) and (C2), which is sufficient to prove that 
conditions (Al) and (A2) for the accommodation mapping (given in §5) are satisfied. 
That is, no vertex is perturbed outside it epsilon tolerance, and vertices are separated by 
at least the minimum epsilon tolerance.

6.2 Edge Cracking
Edge cracking detects vertices that lie approximately on an edge, and then computes 
consistent output vertices which are inserted along the appropriate edge. One pass 
through the data is required to find all vertices near edges. A vertex vj is considered 
near to an edge e;, by first finding point p as the orthogonal projection of v^ onto e;, 
when rf(vj,p) < (£j+£p. Any affected vertices and cracked edges are reported in the
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list.

There does exist degenerate cases that require additional checking. In certain geometric 
configurations cracking an edge will cause further edge cracking. Figure 8 shows such 
a case, v causes e j to be cracked at p j which in turn causes 62 to be cracked at P2- The 
later point is called an induced intersect point, these constructs were first identified in 
the overlay part of the ODYSSEY program [Harvard 1983].

v cracks edge e

Induced intersect point 

Figure 8: Edge ej is cracked at pj which may cause edge 62 to be cracked at P2

To guard against these degenerate cases requires an additional test. All new vertices 
located along a cracked edge are tested against all other edges. If any induced intersect 
points are discovered they are reported in the list. This list serves as input to the 
clustering algorithm. Clusters are computed and any affected vertices are identified with 
a new vertex at the respective cluster centroid.

Clustering properties (Cl) and (C2) are sufficient to guarantee conditions (Al) and 
(A3) for the accommodation mapping (given in §5) are satisfied. Edge cracking will not 
violate condition (A2) because the only way for two vertices to move close to each 
other is if they are cracked by an edge between them, and therefore they must already 
have been discovered and evaluated in the edge cracking procedure. By searching for 
and including induced intersect points in the cluster analysis will guarantee there are no 
further violations to condition (A4). Therefore, conditions (Al) to (A4) for the 
accommodation mapping are satisfied.

6.3 Edge Intersection
Edge intersection identifies a common vertex at the point where two or more edges 
cross. One pass through the data is required to find all cases where edges cross at 
internal points. Note all intersections are computed without ambiguities since vertices 
and edges now satisfy conditions (Al) to (A4). However, by creating a new vertex at 
the intersection point may cause a violation to condition (A4). Figure 9 illustrates the 
degenerate case that needs to be treated. An additional test for further edge cracking is 
required (with the new intersection points only) to detect induced intersections. Again, 
all intersection points and induced intersect points serve as input to cluster analysis.
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Induced intersect points 

Figure 9: Edges ej and 62 intersect at pj, which may cause edge 63 to be cracked at P2

When two edges cross they are cracked at a common point. This point is identified as a 
common vertex for both edges, so condition (A5) of the accommodation mapping is 
now satisfied. After this, all the conditions for the accommodation mapping are 
satisfied and we can proceed to rebuild the topological structure for the composite layer 
in a reasonably straight forward manner by tracing polygonal paths.

6.4 Accommodation algorithm
An outline of the algorithm for accommodation is presented. Accommodation calls the 
cluster analysis procedure. For simplicity it is assumed clustering will satisfy 
conditions (Cl) and (C2) for any input, and then details for the clustering algorithm are 
explained in the next section.

PRELIMINARY
The algorithm accepts as input any number of layers, each composed of a set of edge- 
paths. A tolerance parameter is associated with each edge, therefore tolerances may also 
vary within layers. For convenience we shall denote the R-th layer in our set 
terminology as {VR,ER,6R }. The algorithm needs a data structure to store intersect 
points to be clustered, this is called MSET.

ALGORITHM - overlay of N layers of chains
Map-accommodation: {V l ,E l ,e 1 }, {V2,E2,e2 }..{VN,EN,G N } =* {V,E',6'}

R SStep 1. Do pairwise comparison of vertices v^ , v: where R*S, and report all pairs

within the tolerance, i.e. d( vf, vj) <(£j +£j), to the set MSET. 
Step 2. Perform a clustering on the points in MSET. Identify all agglomerated vertices

v with the appropriate cluster centroid v' and assign the minimum £ to £.'.
R S Step 3. Do a pairwise comparison of vertices and edges v- , $• where R*S, and report

e
pairs within the tolerance, i.e. let p be point on e: perpendicular to Vj then 

d( vf ,p) <(tf+e|), to the set MSET.
e

Step 4. Repeat Step 3 for the newly cracked points, i.e. the cracked points p on e-, to
find any induced intersect points, and report these pairs to the set MSET. 

Step 5. Perform a clustering on the points in MSET. Identify all agglomerated vertices 
v and cracked points on e with the appropriate cluster centroid v' and assign the

minimum £ to £'.
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R S Step 6. Do pairwise intersection of edges e- , e- where R*S, and report pairs that
intersect (at an interior point on both edges) to the set MSET.

R S Step 7. Repeat Step 3 for intersect points, i.e. the point p on e^ and e-, to find any
induced intersect points, and report these pairs to the set MSET. 

Step 8. Perform a clustering on the points in MSET. Identify all intersect points on e

with the appropriate cluster centroid v' and assign the minimum £ to £'.

7. Clustering
A central part of our approach to the accommodation process is the clustering 
algorithm. The previous section defined the properties of a clustering, this section 
describes how clustering is performed. A clustering problem is defined as a partition of 
a finite set into n disjoint sets based upon minimizing an objective function. The 
objective function is typically some proximity measure to bring out intrinsic structure in 
the data. The complexity of obtaining a global optimal solution is NP-complete for n- 
partitions (n>2) in two or more dimensions [Brucker 1978]. This is not computationaly 
feasible, so a suboptimal heuristic solution is proposed.

The task at hand is to describe; i) the objective function used to measure proximity 
between clusters, and ii) the strategy used to form partitions of the data.

7.1 Proximity Matrix
The proximity matrix represents an index of similarity (or dissimilarity) measures 
between pairs of clusters. The most commonly used criteria for computing these 
similarity measures is a square-error criteria, and is based on minimizing the square 
error between component points and their computed cluster centroid [Jain & Dubes 
1988]. This is similar to minimizing the within-cluster variation and maximizing the 
between-cluster variation. We show how this criteria is adapted to clustering points 
with a geometrical tolerance.

The weighted arithmetic mean for a set of values xj and their associated weights Wj is;
N

,N

The weighted mean vector for a cluster K, denoted m , is defined as the cluster 
centroid. This is computed by the weighted arithmetic mean for ordinates of the cluster 
points. If a coordinate is denoted by the pair {x,y} then the weighted coordinate 
centroid m^ is denoted as {x^y w}. The weight is related to the positional uncertainty 
associated with a point, and is defined as the inverse of the square of the epsilon 
tolerance, i.e. w = l/£2.

The square-error for the k"1 cluster with n^ members is given as;
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Figure 10: Distances used in computing square-error

A minimum variance partition is defined as a clustering which minimizes the sum of the 
square-error for a fixed number of N clusters, that is by minimizing the expression; 

2 2

The similarity measure computed in this chapter must additionally obey the following 
constraints;

1) the distance between a cluster centroid and all its member points is not greater 
than the given geometrical tolerance, and

2) the function should seek to minimize the number of clusters.

To fulfill the first requirement, we define the bounded-square-error for the ktn cluster 
Ck as;

_ ̂  ^
if VXi€ck ^(xi,mk) < £{ 

otherwise,

_ ̂ek =

where £j is the geometrical tolerance associated with Xj. This says that we are only 
interested in points within the given geometrical tolerance to the centroid, otherwise the 
square-error can be some very large number.

In the second requirement, we need to limit the final number of clusters by gradually 
merging clusters. The idea is to find the minimum number of clusters which satisfy
conditions (Cl) and (C2). At the same time the partitioning chosen should yield the

2 minimum value for E^ using a bounded-square-error criteria. A solution to this
problem is computationally not feasible. In fact, it requires examining the power set of 
all points. The next section describes a suboptimal solution to the problem.
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7.2 Clustering Strategy
We have already shown that an optimal partitioning based on minimizing an objective 
function is not computationally feasible. Therefore, a selection strategy is used to 
reduce the number of partitions evaluated to achieve a "reasonable" approximation. The 
selection process is designed to converge to a local minima of the objective function. 
Jain and Dubes [1988] give an extensive discussion on the factors involved in cluster 
strategies. The major choices are between hierarchical and partitional schemes. 
Hierarchical clustering schemes organize the data into a nested sequence of groups. 
Partitional clustering schemes successively determine partitions of clusters such that 
points are moved between clusters in an effort to improve a criteria function. The major 
disadvantages we see for a partitional clustering are; i) it is very sensitive to a hill- 
climbing solution, ii) it is designed to solve for a fixed number of partitions. A 
hierarchical procedure is not as sensitive to a hill-climbing solution; but as Jain and 
Dubes state, its most desirable feature is in modeling the global structure of the data.

An agglomerative algorithm for hierarchical clustering is proposed. It starts by placing 
each point into an individual cluster. A proximity matrix made up of similarity measures 
between clusters is computed. This matrix is interpreted to merge two or more clusters 
at each level in the hierarchy. The process is repeated to form a sequence of nested 
clusters. The bounded-square-error criteria will terminate when all values in the 
proximity matrix are infinity. This provides a reasonable solution to minimizing the 
number of clusters.

The algorithm needs an appropriate data structure to store clusters and their respective 
member points. Operations for merging clusters and for finding which cluster a 
particular point is in must be supported. A very efficient data structure called a 
MERGE-FIND ADT is described in Aho, Hopcroft and Ullman [1985] for this 
purpose.

8. Analysis of Algorithm
We can analyse the computational cost for the accommodation mapping in each of the 
three steps by examining the complexity for; i) geometrical intersection, and ii) 
clustering.

First, geometrical intersection involves the pairwise comparison between primitives in 
the various layers. If there are M layers each having T primitives (interpret this as either 
the number of vertices or edges) then it requires (MT)^ proximity comparisons between 
primitives in a brute force approach. The number of points reported will depend on the 
degree of spatial correlation between primitives in different layers. We estimate the 
worst case occurs when all the layers are the same giving 2MT points.

A plane sweep solution to geometrical intersection [Preparata and Shamos 1985] is 
unsuitable because the sweep invariant requires a strict order between edges and the 
vertical sweep line. A modified sweep technique using a band sweep is used in the 
ODYSSEY program [White 1978], and this is claimed to work well. An alternative 
method using a griding technique [Franklin 1989] was adopted for our implementation.
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The edges were organized into edge-cell pairs by testing if the band (given by the 
epsilon tolerance about an edge) overlapped a grid cell. Then a brute force method was 
used to compute tolerance intersection within each cell. Performance tests on 
experimental data, which assume a uniform distribution of line segments, show 
favorable execution times for a grid partitioning technique compared to the plane sweep 
technique [Pullar 1990].

Second, the computational cost for clustering is extremely high using a brute force 
approach. Let N=2MT, then it would require N(N-l)/2 computations to construct the 
proximity matrix for a set of intersect points. To process this matrix for clustering 
requires N^(N-l)/4 computations in the worst case, i.e. all N points merge to a single 
cluster. Therefore, the computational complexity of the algorithm is of order O(N^) in 
the worst case. Day and Edelsbrunner [1984] offer an improvement on this by efficient 
determination of nearest neighbors in the clustering algorithm, they describe an 
algorithm of O(N^ log N) in the worst case. This was still felt to be an unacceptable 
cost.

In our implementation, the efficiency of clustering was improved by incorporating the 
grid partitioning technique in the algorithm. An alternative clustering procedure, which 
in principle works the same as an agglomerative algorithm, is used in collaboration with 
the uniform grid. Assuming points are uniformly distributed over the coverage, a 
nearest-neighbor search can be localized using a grid superimposd over the data. The 
technique is described in Murtagh [1983], and an upper-bound for the expected time 
complexity is reported to be O(N log N). If the grid resolution is no smaller than the 
maximum epsilon tolerance then a nearest-neighbor search may be localized to the 
current grid cell and its adjacent group of grid cells. In our experiments the partitioning 
techniques had a very satisfactory average behavior and exhibited an O(N) cost 
behavior. Further details of the algorithm will be published in a future article.

9. Conclusion
The main objective of this paper was to develop a methodology for map overlay which 
overcomes problems of computational errors and handling numerical data of an 
uncertain pedigree. A technique used to perform reliable geometrical set operation in 
solid modelling systems, called data normalization, is adapted to the map overlay 
problem. We show how the proposed technique, called map accommodation, will 
prevent creep in the geometry of primitives and promote stability in map topology. We 
have also presented informal arguments which demonstrate the correctness of this 
approach.

The advantage of our approach is it breaks the complex task of map overlay into 
simpler tasks which require simple data structures for implementation. The key 
operations for reporting intersections and spatial proximities between primitives, and 
clustering points involve a significant computational workload. Therefore, an efficient 
approach needs to be incorporated in the all stages of the algorithm to provide 
satisfactory performance. We propose the use of a grid partitioning technique.
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ABSTRACT
A test based on exhaustive overlay of two categorical maps provides a 
description of error distinguished into the likely sources of that error (a 
diagnosis of the error). The results of the overlay are characterized by 
geometric, topological and attribute criteria to separate the most likely 
positional errors from the attribute errors. This paper applies the 
proposed test to a simple land cover map, which was replicated by a second 
interpreter. Results diagnose the positional inaccuracy and 
misidentifications common in such a GIS layer. Adopting this test will 
target the efforts of a producer's quality control functions, and it will also 
clarify fitness for the particular uses contemplated by others.

Preamble
A great quantity of geographic information, including maps of land use, 
soils, geology, property ownership and other phenomena, are represented 
in the form of categorical maps. A test for categorical maps is required to 
understand their fitness for use. Beyond a simple accuracy figure, a test 
should provide an indication (a diagnosis) of which component of the 
map might need correction or quality control attention.

For many years, cartographers, remote sensing experts and others have 
made do without tests or with tests that provide much less diagnostic in 
formation than a comprehensive test. The test developed here uses poly 
gon overlay, not point sampling. Such a test is specifically mentioned in 
the US Proposed Standard for Digital Cartographic Data [Part in, 4.3.3].

"4.3 Attribute Accuracy
... Accuracy tests for categorical attributes can be performed by one of the
following methods. All methods shall make reference to map scale in
interpreting classifications.

4.3.3 Tests based on Polygon Overlay
A misclassification matrix must be reported as areas. The relationship between 
the two maps must be explained; as far as possible, the two sources should be 
independent and one should have higher accuracy." (Morrison, 1988, p. 133) 

Despite this explicit reference in the standard, there is no complete 
specification for such a test. Furthermore, the standard does not discuss 
the diagnostic results which are possible.

This paper presents a new test for the accuracy of categorical maps. Rather 
than examining previously studied alternatives, this paper presents the 
case for the new test, using a worked example. In the conclusions, the 
paper will generalize beyond the specific case.
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The Example
The example for this paper derives from the efforts of the Dane County, 
Land Records Project to generate a Soil Erosion Control Plan (Ventura, 
1988). A more complete description of the project and its products has 
been presented in a number of publications (Chrisman and others, 1984; 
Niemann and others, 1987). In producing this plan, the project could rely 
on many layers of existing mapping, but land cover was not readily 
available. For the purposes of the plan, land cover requirements were 
relatively simple, leading to five categories:

Row Crop Row planted crops, particularly corn and soybean 
Meadow Pasture and crops such as alfalfa and hay 
Coop Cooperator fields (in row crops or meadow) 
Woods Forested areas in rural use (not including housing) 
Other all non-rural uses plus wetlands, water, etc. 

The plan needed to separate its realm of interest, rural agricultural land 
use, from the non-agricultural (suburban and urban). Thus, the general 
purpose cover category of Other included wetlands, roads, subdivisions, 
golf courses, industrial and commercial uses. The Woods category applies 
to area out of crop use - whole woodlots, not single trees. The other three 
categories deal with the active agricultural uses. Cooperator fields cover 
those areas with existing soil conservation agreements between the farmer 
and the conservation agencies. In any particular year, a cooperator field 
would be in either a row crop or meadow.

Once the conservation staff developed the categories for mapping, they 
had to acquire photography. The US Agricultural Stabilization and 
Conservation Service (ASCS) takes a color 35mm slide of each section 
(square mile) in Wisconsin (and many other agricultural states) each crop 
year to verify compliance with various federal programs. These photos 
are not strictly controlled photogrammetric products, but they offered 
color, more timely coverage and greater detail than the higher altitude 
products available from other sources. The project decided to use the 1982 
ASCS slides to identify land cover categories and to map the results on the 
photographic base produced for the Dane County Soil Survey.

Map 1: Land Cover by Interpreter 1

Other

The County staff made the maps (in pencil on prints of the photobase) and 
digitized them. Map 1 shows the map product for one soil sheet (the unit
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of original compilation). The University of Wisconsin-Madison team 
assisted in verifying the topological consistency and related operations. By 
summer 1983, one township (out of 35) was mapped. This pilot stage was 
used to demonstrate the capabilities required to complete the county plan. 
Much of the investigation dealt with the economics of data preparation 
and digitizing (Chrisman and others, 1984, p. 33-37).

So far, this process is uneventful. A local government group was making 
do, producing a map product to fill a project need without a large 
appropriation. This stage should also have included a test of accuracy in 
order to determine that the product was fit for the intended use. Most 
applications teams, being sure of their own work, forge ahead without 
such testing. It is the purpose of this paper to describe how a testing 
process could assist in the operational decisions of the GIS user. 
Developing such a test is, of course, a matter for theory and research. 
Much of the paper concentrates on the development of important 
ramifications of the test.

Map 2: Land Cover by Interpreter 2

Row Crop

In summer 1984, another person reproduced the interpretation, according 
to the same rules and using the same materials (see Map 2). The second 
interpreter was a graduate student with some years experience as a 
conservationist in a nearby county. Such a test would be most 
authoritative based on an independent source of higher accuracy, but that 
would require simultaneous acquisition of another source of photography, 
imagery or field reports which cannot be mobilized in retrospect.

Thus, this test began with two maps of the same scale. As a test, it 
provides a measure of the deviation between two trials. If both 
interpreters agree, it shows that the classification can be reproduced 
reliably. When they differ, it may be due to error on either part, but the 
first interpreter had somewhat more field experience with this specific 
area.

332



Polygon Overlay
Map 3 shows the result of overlaying Map 2 onto Map 1. Areas where the 
two interpreters agreed are not shaded, while the disagreement is dark. 
The individual polygon boundaries have been suppressed to permit small 
and thin features to show in the printed format.

Map 3: Disagreement between Interpreters

B Disagree

Agree

The areas of the polygons created by the overlay can be crosstabulated by 
the categories from the two source maps in the form of a matrix called a 
misclassification matrix by the Proposed Standard for Digital Cartographic 
Data Quality (Morrison, 1988, p.133), as in Table 1.

Table 1: Misclassification Matrix (hectares)

Interp. 2: Row Crops 
Interp. 1:
Row Crops 1110.9 
Meadow 17.5 
Coop Fid 4.0 
Woods .9 
Other 32.7

Meadow Coop Field Woods

82.5
212.3

3.6
.3

11.6

.9 

.04 
32.6

.1

.8

.2

.03
10.2

7.5

Other

57.8
35.8

2.0
2.1

212.3

From Map 3 and Table 1, it is clear that the two sources are in rough 
agreement. 85.8% of the area covered by the two maps falls into the 
diagonal of the matrix, meaning that the two interpreters agreed. For the 
purposes of the USGS program of land use and land cover mapping, 85% 
correct was set as a standard (Fitzpatrick-Lins, 1978). Thus, this example 
demonstrates a result at the low end of acceptability (though many remote 
sensing products fall much below this threshold). These overlay results 
were reported earlier (Chrisman, 1987) with a verbal interpretation of the 
reasons for the particular errors. This paper reports on an analytical 
procedure to decompose the error detected by overlay. The basis for such a 
test has been described in earlier publications (Chrisman, 1989a; 1989b); 
this paper reports actual results and some extensions which developed 
from this trial.
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Outline of the Test Procedure
The basic theory behind the test distinguishes positional error from 
attribute (classification) error. The first arises from uncertainty in the 
location of a boundary, while the second arises from lack of agreement in 
the categories mapped. Some researchers deny the utility of this 
distinction. To them, a categorical map is too much of a fiction to merit 
the attention otherwise attached to map error for continuous surfaces. 
While some categorical maps may contain dubious elements, the political 
and administrative requirements for GIS continue to specify sharp 
distinctions in a fuzzy world. A test for categorical maps, such as the land 
cover example presented above, is sorely needed.

This section describes the procedure applied to separate the positional 
errors from the attribute errors. The following sections explain the 
rationale for these decisions, using the example as illustration.

Figure 1: Flow of test applied to each overlay polygon

Mixed sources

Compactness
"Fat"

"Narrow"

Figure 1 shows the steps involved in this test. Sequentially, each polygon 
is examined and fit into one of four resultant categories. There are a 
number of numerical parameters involved; each one may be adjusted, but 
the diagram shows the particular values used in this application. The first 
step simply decides if it represents an error. For a simple test, the 
attributes must be identical, in more complex cases this decision may 
require more information. Second, if both sources coincide to form the 
bulk of the polygon's boundary, then the error must be in attributes (there 
is not enough line work in disagreement). The parameter used here was 
more than 85% of the perimeter. Third, if all the non-coincident lines
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come from one source, it is attribute error since it must be a whole 
"island" of different thematic attribute, and not an area where polygons 
partially overlap. Fourth, polygons with area less than a "minimum map 
unit" are judged to be positional in nature, since they are too small to 
have been identified on the input layers. This threshold may be the 
smallest area mapped on the input layers (the procedure adopted here) or 
some other minimum area parameter which may be appropriate for a 
given test.

Fifth, for those polygons whose area is greater than a different "large" 
threshold (the square of a given "minimum discrimination distance" 
parameter), a minimum compactness value is calculated, and the 
compactness of the polygon is compared to this calculated minimum. 
This compactness value is a measure of polygon shape based upon 
Unwin's S2 (1981). It is reformulated to allow a single calculation from a 
polygon's area and perimeter:

S2 =2(7ca/p2)0-5 (1
The minimum compactness is that of a rectangle with area equal to the 
polygon's area and one side equal to the minimum discrimination 
distance:

S2min= (*a)°-5 /(n + (a/u)) (2
where [a. = minimum discrimination distance (in this case \i is 1/8 inch on 
the original maps). Any polygon that is both larger than u2 and more 
compact than S2 min is at once large enough and wide enough to have been 
identifiable on the input layers, so it is judged to be an attribute error. 
Essentially, this creates a sliding scale. Relatively less compact polygons 
can fall into the attribute error category if they are relatively large.

Figure 2: Classification by size and compactness.

Large —
>2min

Polygon 
Size

Defined 
Attrib. 
Error

For the sixth and final stage of the test, a perimeter index is calculated for 
all polygons not previously classified. The perimeter index, discussed 
more fully below, is a ratio of the perimeter from one source to the total of 
the non-coincident perimeter from both sources. With this index, each 
remaining polygon falls into one of three categories: attribute, ambiguous 
(gray zone) or positional error.
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Explanation of the test procedures
In applications of polygon overlay, it has long been known that "slivers" 
can fill up computer storage and clutter the analytical procedures (see for 
example, Goodchild, 1978; Cook, 1983). In this case, however, the slivers 
provide a clue to the origin of errors. Slivers have been identified in the 
past by their size and by their shape, being generally small and narrow. 
Narrowness is usually interpreted by human visual pattern recognition, 
which is difficult to quantify for complicated map features. One analytical 
approximation of narrowness is compactness. Compactness indices, 
typically ratios of perimeter to area, (see Unwin, 1981) are unreliable 
measures of very narrow shapes for this purpose. Because perimeter 
increases dramatically with line sinuosity and with inner rings of 
polygons, a large polygon may have a compactness index similar to a 
sliver.

The purpose of the test is not solely to isolate those polygons commonly 
called slivers. The purpose is to test the accuracy of the categorical map. 
Slivers are simply one form of commonly recognized error which serve as 
indicators of positional differences. Each of the components mentioned 
above; size, compactness and narrowness play a role in the proposed test, 
alongside a measure of "perimeter contribution". The measure of shape 
described in Formula 1 and 2 above serves well in distinguishing 
relatively compact polygons, but it is not reliable for other circumstances.

Figure 3: A typical positional error

A simple 
illustration: 
2 categories 
(A,B)

2 sources
(uppercase/
lowercase)

In Figure 3, the classical sliver has some clear distinguishing 
characteristics. It is "small"; it is narrow; it is not compact, but these 
criteria are either scale-specific or could falsely identify complex features as 
described above. Other distinguishing characteristics might be proposed. 
For example, one sliver tends to engender another, in a sequence along 
the "true" line (Goodchild, 1978). Thus, slivers would have two possible 
identifying characteristics. Slivers should be topologically adjacent and the 
nodes at either end should be four valent (be formed by the geometric 
intersection of two straight lines). Both of these criteria are relatively 
difficult to implement for a number of reasons. First, slivers will occur at 
different positions, sometimes near true nodes (usually three valent for
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non-parcel data). It may be difficult to separate these true nodes from the 
sliver nodes. Second, polygon overlay is a messy business, involving the 
vagaries of floating point hardware (see Douglas, 1974; Dougenik, 1980). 
While a pure sliver might have four valent nodes at either end, the 
calculations of the intersection might discover a coincident section, 
creating two three valent nodes. Additionally, instead of random 
fluctuations, a long narrow sliver may be produced by a uniform (or one 
sided) misinterpretation of a thematic boundary. Such a sliver may have 
no adjacent slivers. These same difficulties make the topological criterion 
difficult to manage, as well.

Another measure of slivers is required. Observing Figure 3, the linework 
from the two sources is nearly equal in length. In general, a sliver is an 
area bounded by one line from one source and a second line from the 
other source that are both intended to represent the same feature. In 
addition, other forms of positional error which do not exhibit other special 
characteristics of slivers also show the same balance between sources. 
Working backwards from the results of the test, those overlay polygons 
whose boundaries come from the two sources in approximately the same 
amounts are more likely to be positional errors. For sources of equivalent 
scale, the perimeter from the two sources will be very close to equality. Of 
course, when one source records much more detail, the perimeter may be 
much longer to enclose the same area. This form of cartographic texture 
has been related to fractal measures. In those cases, there should be more 
perimeter from the detailed source.

The perimeter index is a ratio which compares the perimeter from one 
source to the sum of the perimeters from each source (Equation 3).

Perimeter index = a / (a+b) (3
where: a = length of chains from source A only; 

b = length of chains from source B only.
In this formula, perimeter does not include those sections of a polygon's 
border which come from both sources (those lines which the overlay 
process finds to be coincident).

This index falls into the range from zero to one, with 0.5 as the result for 
the pure sliver (subject to the concern about scale discussed above). The 
index can be calculated with either map as Source A (the numerator of the 
ratio), which will yield values reflected around 0.5. The two versions are 
equivalent as long as the interpretation of the index is symmetric around 
0.5. Figure 4 shows the observed distribution of the perimeter index for 
the land cover test presented earlier. In Figure 4 and all subsequent 
diagrams, the vertical axis represents percentage of the relevant total, in 
order to standardize the presentations.
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Figure 4: Distribution of perimeter index (all polygons)
a: by percentage of count of polygons; b: by area of polygons
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0.4 0.6 0.8 
Perimeter Index

The pattern in Figure 4 (particularly part b) is somewhat clouded because it 
includes all polygons. While there is a central tendency between .4 and .6 
in the number of polygons, much of the total map area comes from a few 
large polygons. The overlay generates 681 polygons, 106 of which are not 
errors. As shown in Map 3, these 106 polygons have 85.8% of the area, 
hence they dominate Figure 4b.

Figure 5: Distribution of index (tested polygons only)
a: by percentage of tested polygons; b: by percentage of area tested

40 ,

30-

20-

10.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
Perimeter Index Perimeter Index

Figure 5 only tabulates the 153 polygons actually subjected to the perimeter 
index test, as described above. These are the polygons which are not 
classified by the earlier parts of the test. The largest number of overlay 
polygons (Figure 5a) fall near the center of the index, around 0.5. In both 
diagrams, the distribution is similar, and the values of .4 and .6 fall near 
obvious breakpoints in the distribution.
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Figure 6 is a diagram of an area which is misclassified by one interpreter; 
the linework comes from just one source. In the diagram, the uppercase 
letters show a distinction on one source, but the lowercase letters show 
that the whole region is classified "a" in the other source. The line comes 
completely from one source. These errors are classified as attribute errors 
by the single source test (Figure 1).

Figure 6: Attribute error (all lines from one source)

Even without a single source test, a perimeter index near zero or near one 
indicates an attribute-like error. However, while it is a more reliable 
classifier of error than the compactness index, larger polygons will 
occasionally, by chance, have a nearly equal proportion of perimeter from 
each source. Knowing where to draw the line between the ends and the 
positional error in the middle is not immediately obvious. One way to 
proceed is to introduce a known type of error, then see how the perimeter 
index varies.

To test the reliability of the index for classifying identification and 
discrimination error, positional error was introduced by translating 
(shifting) a map relative to itself. The original was used as the source of 
higher accuracy. Figure 7 shows the distribution of the perimeter index 
(for polygons of disagreement) after translating Map 1 south by a distance 
corresponding to .8 meters on the ground. This distance is quite small 
relative to the line width of the map, and an entirely possible registration 
error. These maps were digitized on a tablet with a least count resolution 
of about .4 meters on the ground at map scale. Variations in registration 
will arise from the hardware as well as the visual placement of the cursor 
over the registration marks.
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Figure 7: Perimeter Index distribution from shifting Map 1 
(distribution for all polygons (a) and area (b) in disagreement)
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As Figure 7 shows, this purely positional error is closely packed around 
the theoretical value of 0.5. This indicates that the index correctly 
interprets the translation as a positional error.

Translation error, which would be due to misregistration or similar 
causes, is only one kind of positional error, but other forms of positional 
error also generate similar overall distributions. The result of the test of 
Map 1 on Map 2, shows a peak in Figure 4a much like the peak in Figure 
7a, but the distribution by area in 4b is significantly different from 5b. 
When the restrictions are applied prior to applying the perimeter index, 
Figure 5a still shares the dominant central spike of 7a. Artificially pure 
positional error produces an unmistakable signature in the distribution of 
the perimeter index.

The distribution of the test results (Map 3, Table 1 and Figure 4) is the 
combination of all the error processes that distinguish the two sources. To 
decompose the polygons into two broad categories, position-like error and 
attribute-like error, they were analyzed for area, coincident boundary 
segments, compactness index and perimeter index. The compactness 
index is used to classify the more compact polygons, while the less 
compact polygons are classified with the perimeter index. While as yet 
there is no theory to guide the selection of a threshold between the medial 
and extreme values of the perimeter index, the range of values in Figure 7 
and the breakpoints in Figures 4 and 5 indicate that from 0.4 to 0.6 is very 
likely to be positional error. Thus, for this application, any error with an 
index between 0.4 and 0.6 is termed positional, while those from 0 to 0.25 
and from 0.75 to 1.0 are termed attribute-like. The remaining "gray" zone 
between 0.25 and 0.4 and between 0.6 and 0.75 (which contained 14 
polygons and about 1% of the total area of the map) is ambiguous. In Map 
4 it appears in a separate gray category. A symmetric set of thresholds is 
easily justified for a case, such a this one, of maps at the same approximate 
scale and level of detail. If one source has much more detailed lines, the 
midpoint might be biased due to the well-known effects of resolution on 
perimeter (Perkal, 1966).
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Map 4: Positional and Attribute Errors

Position

Map 4 shades the same polygons as Map 3, but classifies them into the 
position-like and the attribute-like categories. Again, the polygon borders 
are suppressed to show the small polygons. In general, the distinction of 
the two types seems reasonable, although there are some problems. A few 
large areas which were not due to uncertain boundaries were classified as 
position-like because they are classified as "narrow" by the compactness 
index and the perimeter contribution happened to be relatively balanced. 
Further refinement of the model may separate these from the more clearly 
position caused errors. A topological study of the chains may serve this 
purpose.

Table 2 shows the matrix crosstabulating the position-like error. 

Table 2: Position-like Error (hectares)

Interp. 2: Row Crops 
Interp. 1:
Row Crops — 
Meadow 
Coop Fid 
Woods

Meadow Coop Field Woods

Other

11.9 
.5 
.9

14.5

22.8

1.2
.3

4.1

.9

.04

.1

.8 

.2 

.03

.09

Other

34.0
10.2

1.3
1.4

Table 3 shows the areas of polygons classified as attribute errors. In this 
situation, there are many fewer attribute errors, in terms of polygons, but 
the total area is greater. The nature of the attribute error should be 
interpreted in terms of the five categories. The largest attribute cell is 59.8 
hectares which interpreter #1 classed as Row Crop and #2 classed as 
Meadow. This error will have little impact on the soil erosion plan. The 
errors involving the Other category will have greater impact, but are 
relatively small.
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Table 3: Attribute Error (hectares)

Interp. 2: Row Crops Meadow Coop Field Woods Othei 
Interp. 1:
Row Crops — 59.8 15.2
Meadow 5.6 — 22.2
Coop Fid 3.5 2.4 — .3
Woods —
Other 13.2 7.4 7.4 —

Attribute error can be decomposed directly into the cells of the table. An 
error between Meadow and Row Crop does not depend on the error 
between Woods and Other. Thus, any analysis of the attribute error relates 
to the particular classification and the ability to identify it on the source 
material.

In the spirit of a diagnostic test, there is a need to decompose more 
completely the error in Table 2, above. The positional error can have two 
systematic components which can be studied separately: bias in position - 
caused by misregistration, and filtering (or generalization). These two 
cases will be considered separately.

Translation
The experiment of translating a map against itself was described above in 
order to show a pure case of positional error. Such an experiment can be 
used as a diagnostic tool as well. By translating the map of higher 
accuracy, one may obtain a simulation of the amount of error which 
would arise from a given error. This distribution can be compared to the 
actual error discovered. Some goodness-of-fit procedure could be applied 
to pick out the best fitting translation. Error matrices are not random 
samples to which the usual tools of linear regression apply, but estimation 
tools from the toolkit of robust statistics would be the most applicable. 
The Least Median Square is one such method (Shyue, 1989).

Table 4: Misclassification Matrix
resulting from a .8 m South translation of Map 1 (figures in hectares) 
Interp. 2: Row Crops Meadow Coop Field Woods Other 

Interp. 1:
Row Crops 1234.2 5.9 .4 .5 12.6 
Meadow 7.2 256.9 .2 .2 2.1 
Coop Field .9 .2 40.9 .2 
Woods .7 .1 .03 12.6 .2 
Other 11.3 3.1 .7 .3 250.4

For this test, no such fit was examined. The error polygons showed a set of 
narrow polygons elongated east-west (Map 3). These could have been 
generated by a north-south translation error. A small translation was 
performed, which produced the matrix shown in Table 4. The error of the 
translation was completely classified as position-like (see Figure 7). The 
distance of .8 meters was chosen as a reasonable (and small) number
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which produced an error matrix whose values nearly fit the actual errors 
discovered (see Table 2).

The translation error can be subtracted from the total positional error to 
produce a matrix of those errors which could not be ascribed to a simple 
registration problem (Table 5). A subtraction of the attribute error is not 
produced because translation produces only position-like error. In this 
case, the ambiguous error was aggregated with the position-like error, to 
judge the overall effect of translation. The subtraction does not remove 
the large instances of error, but it removes much of the small quantities 
from the matrix. In some cases, the translation produces a fraction of a 
hectare more than observed. Such small negative numbers are, in 
aggregate magnitude, less than the areas which they supplant, and should 
not detract from the use of translation in a larger model of error. It is not 
proven that any particular translation occurred, but such a test could assist 
in discovering the amount of a misregistration in a very specific manner. 
The residual error in Table 5 is not strictly proportional to the error 
reported in Table 2. For instance the errors involving Row Crop are all 
reduced, due to long boundaries, but Meadow/Other is much less affected.

Table 5: Residual Positional Error [Table 2 minus Table 4] (hectares) 
Interp. 2: Row Crops Meadow Coop Field Woods Other 

Interp. 1:
Row Crops - 16.9 .5 .3 30.0 
Meadow 4.7 - -.2 11.5 
Coop Field -.4 1.0 - .03 1.8 
Woods .2 .2 -.03 - 1.6 
Other 8.2 1.0 -.6 -.2

Filtering
An alternative view of positional error does not seek a uniform 
translation, but it recognizes that maps are often digitized in greater 
resolution than is warranted by their accuracy. The overlay test in Map 3 
and Table 2 was carried out at a very exacting tolerance (.4 m). This is 
essentially an exact overlay. Of course, it is critical to apply an exact test to 
determine the total error between two digital maps. But in addition, it is 
useful to study how much of the error observed comes from the classical 
slivers which are entirely unintentional (Goodchild, 1978). Cook (1983) 
included a distribution showing the areas of the objects, as shown 
indirectly in the graphs of Figures 2 &3. But the important characteristic of 
a sliver is narrowness, not area. A distance filter is much more 
appropriate. The epsilon filter (Dougenik, 1980; Chrisman, 1983; Beard, 
1987) was applied during another overlay run. A series of tolerances were 
tried from 1 meter to 20 meters. The results of the test are reported from 
the most drastic filter, 20 meters. Map 5 presents the test results. This 
figure is a better estimate of the accuracy required for a land cover map for 
a soil erosion plan in this landscape. Any point on either map found 
within 20 meters of another point causes the cluster analysis of the 
WHIRLPOOL algorithm to ensure that only one will survive. This 
process does not average coordinates, it selects points.
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Map 5: Test results after a 20 m filter

L-.

i-i-\, -,
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Position

The first observation about Map 5 and Table 6, the misclassification 
produced by a 20 meter filtering overlay, is that the area in the diagonal 
increased from 85.8% to 88.4%. Thus, some area which was found to be in 
error with an exact overlay, was placed into the correct classifications if the 
positional tolerance was broadened to 20 meters. Some small error 
interactions discovered by the exact test disappear. Many categories are 
reduced substantially, while others are unaffected. This difference in 
behavior begins to discover the structure of error. The error below the 20 
meter threshold may have essentially random distributions, but what 
survives may point at specific problems to correct.

Table 6: Misclassification Matrix after filtering [20 m] (hectares)
Interp. 2: Row Crops 

Interp. 1:
1136.6 

12.1 
3.5 

.04

Meadow Coop Field Woods

Row Crops 
Meadow 
Coop Fid 
Woods 
Other 24.1

76.5
221.6

2.9
.1

8.9

34.1

.1

.2

11.0 
7.6

Other

41.0
32.2

1.1
1.9

222.6

It is interesting to compare the effects of the 20 meter filtering and the .8 
meter translation. The two figures seem to be radically different, but the 
error matrices are surpisingly similar. The difference is that the .8 meter 
translation occurs everywhere. All lines (at least those going east-west) 
generate slivers in proportion to their length. The 20 meter filtering 
actually moves things less. Compared to the exact overlay conducted in 
Map 3 which used 6048 points, the 20 meter filtering produces a 
representation in Map 5 with only 3241 points. It is a radical filtering, yet 
the basic message about the error between Map 1 and Map 2 is still there.

The filtering has an impact on the distribution of the perimeter index. 
Figure 8 shows the distribution for all polygons, as Figure 4 did for the 
exact case.
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Figure 8: Distribution of perimeter index (all polygons 20 m filter)
a: by percentage of number of polygons; b: by percentage of area
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There are many fewer polygons, but the distribution in 8a is well centered 
around 0.5. The filter removed many small slivers, reducing the 
numbers, and increased the discovery of coincident lines, making the 
distribution of indeces more balanced. Figure 9 shows the distribution of 
the tested polygons only, just as Figure 5 did above. Figure 9 shows a 
dramatic reduction in the positional (central) spike, though it still remains 
the mode of the distribution. Figure 9 involves many fewer polygons and 
less area than Figure 5.
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The filter has reduced the positional error from 6% to near 1% of the total 
area. Thus, we can infer that the positional accuracy of the features on 
these maps match to within 20 meters, except for 1% of more gross 
blunders. Such a statement could be refined by an iterative use of the 
filter.

Table 7 tabulates the errors reported in the positional category by the test at 
20 meter tolerance. This is the positional error residual after the filtering. 
It seems to discover some of the same residual effects found by the
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translation. A few figures in this table (such as Row Crop/Meadow and 
Row Crop/Other) are roughly symmetrical around the diagonal, meaning 
that the one error was about as likely as the other. If the user is interested 
in overall figures for area, a finding of balanced error is similar to a 
finding of an unbiased estimator in statistics. However, if the user needs 
site-specific figures, the errors still are errors.

Table 7: Filtered Positional Error [20 m] (hectares)

Interp. 2: Row Crops Meadow Coop Field Woods Other 
Interp. 1:
Row Crops — 6.3 .2 8.9
Meadow 4.4 — 2.2
Coop Fid .004 — .4
Woods .04 .1 — .4
Other 5.3 1.0 .1 .04 —

Some of the entries in Table 7 are not symmetric. These point out specific 
discrimination biases between the interpreters. This information, if 
produced as a test during a normal GIS production sequence would 
provide information beyond the typical accuracy assessment that would 
diagnose the specific pair of categories. Such information should enhance 
quality control.

The filtering procedure has less effect on attribute-like errors. The matrix 
of attribute error is presented in Table 8. The large propensity for 
interpreter 2 to see Meadow when #1 sees Row Crops carries over from 
the misclassification matrix. The size has risen from 59.8 ha. in Table 3 to 
68.1. Most of the figures in this table have increased from Table 3. This 
matrix is notably less symmetrical compared to Table 7.

Table 8: Filtered Attribute Error [20 m] (hectares)

Interp. 2: Row Crops Meadow Coop Field Woods Other 
Interp. 1:
Row Crops — 68.1 23.9
Meadow 5.6 — 27.9
Coop Fid 3.5 2.9 — .6
Woods — 1.5
Other 18.0 7.9 7.6 —

Considering the size of the map sheet, most of these attribute errors may 
be tolerable. Quality control efforts might apply to correct the positional 
errors as a higher priority, but some attention might also be given to 
Interpreter 2's propensity to classify Row Crops as Meadow.

Limitations
The test procedure developed in this paper is provisional. It does not 
classify all the errors entirely correctly. For example, there are some large 
errors declared to be position-like because the compactness index is
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relatively small and the perimeter index is balanced between the two 
sources, but the nature of the error seems to be much more a disagreement 
over classification, not position. These cases occur when a relatively 
compact polygon has an attached "tail" or when a polygon is a rectangle 
with a relatively narrow width (see the extreme left of Map 4). In these 
cases, unlike more typical position-like errors, the model will require 
further refinement.

In a more general sense, this test simply reports on the results for the area 
studied. It has no mechanism to estimate what would happen in some 
other, even nearby region. It does not have any particular statistical 
distribution or measure of goodness-of-fit. However, separation of the 
distinct forms of error is a first step towards the construction of such 
models.

Conclusions
This paper has attempted to demonstrate that a polygon overlay test is 
indeed possible and useful. It is possible to conduct a test using a 
replication of a map product, not necessarily a source of known higher 
accuracy. Differences of minimum mapping units and classification 
schemes are not a hinderance, but they are the very goal of a test. This test 
offers a chance to diagnose specific forms of mapping error. With some 
development and fine tuning it may come to replace the more standard 
point sampling methods used in the remote sensing discipline.
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Abstract

Topological data structures are useful for reducing the cost of geometrical operations 
within a Geographic Information System (GIS). Unfortunately, manipulating such data 
structures can be quite complex — especially when supporting multiple, overlapping 
geographical maps. The GeoGraph storage model proposed in this paper solves this 
problem. It is implemented as a toolbox, and is used as a low-level system layer for 
support of a GIS. The Ge"oGraph storage model is based on a graph with the 
corresponding basic traversal primitives, and can be integrated within an extensible 
relational DBMS so that important spatial operations can be directly executed by graph 
traversals. Furthermore, the graph is decomposable so that only the useful subset of the 
database can be loaded from disk without format conversion.

1. Introduction

Geographic information systems (GIS) require storage and manipulation of both 
semantic and spatial data. Whereas conventional DBMS data models (e.g., the relational 
model) are well suited to representing and manipulating semantic data, queries concerned 
with spatial data imply the use of geometric operations not directly supported by these 
data models. Furthermore, because the processing performance of geometric operations 
is strongly influenced by data representation, systems supporting spatial data benefit 
greatly from a data model specially tailored for efficient support of these operations.

There are several ways to implement spatial data. A simple solution is to store each 
spatial object as a coordinate list. Although coordinate lists reflecting the position of 
objects are sufficient to perform geometric operations, inter-object spatial relationships 
that are obvious when seen on a map are complex and costly to capture when using this 
representation. To reduce the number of inter-object comparisons required by this

349



approach, it is possible to use spatial indices on coordinate lists. As a more 
fundamental attack on this problem, however, it is possible to enrich the geometrical 
description of objects with topological information. This information explicitly 
materializes the connectivity and contiguity relationships between spatial objects, and can 
be represented as a graph that provides direct and efficient support for adjacency 
operations.

Topological information has been used in several geographical information systems 
[MorehouseSS, Herring87, Kinnear87, SpoonerPO]. The topological information is 
usually stored in a graph using an appropriate internal representation [White79, 
Peuquet84]. These representations can be complex to maintain and may require expensive 
verification of integrity constraints. In many cases, topological graphs have been used to 
store relationships between spatial objects of one geographical map at a time. For 
instance the topology of a road map is stored separatly from the topology of a land cover 
map. As a consequence operations involving several maps require the fusion of several 
graphs, which can be a complex and expensive procedure [Schaller87].

In this paper we present GeoGraph, a storage model for topological information 
that supports efficient operations involving several layers of maps. This model stores 
the topology of an internal map corresponding to the overlay of several geographical 
maps. Hence spatial objects of one geographical map are decomposed into collections 
of elementary spatial objects and the internal map materializes the relationships 
between the spatial objects. This principle has alrady been used in some GIS like 
TIGER [MeixlerSS] and TIGRIS [Herring90]. We focuse on a clean integration of 
topological information in a DBMS so that semantic and spatial data can be manipulated 
in a uniform way.

GeoGraph is implemented using a toolbox approach and constitutes a low-level 
system layer that can support general purpose GIS. This storage model is based on the 
topological map theory that guarantees coherent updates of topological information, and 
provides a minimal set of operations for navigation through a topology [DufourdSS]. In 
this paper, we demonstrate a straightforward integration with an extensible relational 
DBMS supporting a GIS. The integration is based on a single graph that incorporates 
both relational data and spatial data in order to precompute all operations, and is currently 
being investigated in the framework of the G6oTropics system [Bennis90], an extensible 
DBMS based on extensions of SQL.

The paper is organized as follows. Section 2 reviews the basic concepts of 
topological maps used in G6oGraph. Section 3 introduces the concept of map overlay 
and then provides a formal definition of Ge"oGraph in terms of a graph structure and 
primitive operations on the graph. Section 4 illustrates the use of the G6oGraph toolbox 
for implementation of geographical operators of the GeoTropics system. Section 5 argues 
for a specific implementation of GeoGraph when it is incorporated into a relational 
DBMS. Section 6 gives our conclusions.
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2 . Topological map concepts

Topological maps have been defined as an extension of combinatorial maps 
[Edmond60, CoriSl]. They provide the necessary support for expressing relationships 
between spatial objects in a plan [DufourdSS, Dufourd89]. This section gives intuitive 
definitions of the basic concepts of topological maps in order to highlight their 
contribution for topological information management in cartography. To clarify the 
discussion we distinguish non fully-connected topological maps from topological maps.

2.1. Non fully-connected topological maps

A non fully-connected topological map defines a graph similar to the well known 
topological graph [White79, Peuquet84], and uses two basic functions ~ a and a (see 
figure 1). In general this graph is not fully-connected. Edges of this graph represent 
lines which correspond to the location of linear features (e.g., roads), or boundaries of 
surfacic features that we call faces. Nodes of this graph represent intersections of edges. 
Conceptually, each edge is decomposed into two blades labeled by integers (e.g., b and 
-b) corresponding to the two possible orientations of the edge. Function a applied to a 
blade label gives the label corresponding to the opposite blade orientation. Function a is 
a permutation which orders blades around their end-node in a clockwise fashion. Thus, 
a applied to blade b gives the next blade ending at the end-node of b. Any traversal of 
the graph can be expressed by a combination of the functions a and a. For instance, the 
boundaries of one face can be traversed turning counterclockwise applying a loop on 
function q> = OoO to any blade of that face. In the graph, a geometry is associated to each 
edge. For this purpose, a last function y is defined such that y applied to a blade gives a 
coordinate list corresponding to the geometry of the associated edge. A non fully- 
connected topological map can be defined more formally as follows:

Definition: non fully-connected topological map
A non fully-connected topological map is defined as a quadruplet (B, a, a, y) where 
B is a finite set of blades; a : B -> B is a permutation such that Vb € B oc(b) = -b; 
a : B -> B is a permutation such that Vb e B a(b) is the next blade ending at the end 
node of b, turning clockwise; and y is a function which applied to any blade returns 
the geometry of the associate edge. 
A permutation (p can be deduced from a and a such that cp =

According to this definition, the cycles (b,cc(b)) of a define edges, the cycles 
oaCb),...,^ 1 ^)) define nodes and the cycles (b.cpO^.tpoqKb),...,^- 1 ^)) of (p 

define faces. It is important to note that any blade defines one and only one edge, node, 
and face using respectively a cycle of a, a or (p. The reverse is not true. From these 
properties we can deduce that, given a face defined by blade b and function (p, the 
adjacent area along blade b is defined by blade a(b) and function (p.
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-1
Nodes :

nl = (1, 2, -3 ) 
n2 = (-1, -4, -2 ) 
n3 = (3, 4)

Faces :

fl = (1. -2 ) 
f2 = (2, 3, -4 )

Figure 1: An example of map

Compared to the usual adjacency graphs, non fully-connected topological maps have 
the following advantages for geographic applications: (i) faces are easily enumerated; (ii) 
the planarity of a map can be checked very efficiently using a, a, <p and y [Dufourd89].

2.2. Topological maps

Applying the definition of a non fully-connected topological map, the graph 
resulting from a geographical map is in general not fully-connected, and useful 
relationships between different fully-connected components of this graph are not 
captured. In order to avoid this drawback, a topological map is defined below as an 
extension of a non fully-connected topological map, where a partial order among the 
fully-connected components is defined based on geometric inclusion. In support of this 
definition, we note that given any pair of fully-connected components (cl, c2), the 
following property is true: either cl and c2 locations are disjoint (side by side), or one of 
cl or c2 is fully included into one face of the other component. Otherwise (cl, c2) would 
form a single fully-connected component. In the second case, one component, say cl, 
constitutes a hole in a face of the other component (c2).

A hole is an external face which is defined by the external boundaries of a connected 
component. In order to distinguish internal faces from external faces a convention is 
introduced: an internal face is defined by its boundaries, turning counterclockwise; an 
external face is defined by its boundaries, turning clockwise. Figure 2 shows the graphic 
representation of a topological map.

f7

f6
The inclusion tree

f5 and f7 are the most external faces. f6 is included into 
the internal face f2 of the connected-component f5

cO

f5

Figure 2: an example of topological map 
A topological map can be defined formally as follows:
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Definition: topological map
A topological map is defined by: (i) a quadruplet (B, a, a, y) which is a non fully- 
connected topological map; (ii) an inclusion tree T, composed of nodes q 
representing the fully-connected components of the quadruplet (B, a, a, y) and arcs 
(ci—»C2) connecting two components ci and C2 iff C2 is included in ci. An arc 
(ci-»c2) is labeled by the face of ci containing C2- The root of t is a virtual 
component CQ containing all the components of the map.

3 . The GeoGraph model

A topological map can efficiently handle all adjacency operations between objects of 
a map, but is restricted to operations applied to objects belonging to the same map. In 
cartography, however, the same area is often represented through several maps, each 
map representing spatial objects associated to a particular semantic point of view (e.g., 
road map, land cover, etc.), and users frequently apply complex operations involving 
several such maps. The GeoGraph model was therefore designed to efficiently deal with 
a topology involving several layers of maps.

The purpose of this section is to present an extension of topological maps supporting 
map overlay, and to then define the GeoGraph model. Our model is expressed in terms of 
a specific graph structure called GeoGraph (which represents an extended topological 
map), plus a set of basic traversal primitives for GeoGraphs.

3.1. Extending topological maps

Operations involving several layers of maps are based on costly geometrical 
intersection computations. Optimized computational geometry algorithms for computing 
shape intersections have been studied [PreparataSS], but, even with the use of supporting 
index structures, they remain slow.

To avoid geometric intersection computations during query processing, intersections 
between spatial objects (regions, lines and points) of several (overlapping) maps can be 
pre-computed during the creation of the database. This technique has been exploited in 
the GEOQL system [Sack87], where geometric processing is reduced by adding to the 
object coordinate lists of several maps the points corresponding to inter-map object 
intersections. Checking for object intersections then consists of looking for explicit 
shared points.

The GeoGraph model is based on pre-computing a collection of elementary spatial 
objects (ESOs) that correspond to a decomposition of the spatial objects of the original 
maps. Figure 3 illustrates the result of this pre-computation step applied to the overlay of 
a map representing Paris's districts and a map representing the underground rail network 
of Paris. The ESO collection resulting from the pre-computation step constitutes a new 
map which can be stored as a topological map where the ESOs are represented as faces, 
edges, and nodes. To speed up operations defined on the original maps while actually
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using the ESO map in computations, it is necessary to keep links between the original 
objects and the ESOs. These links materialize aggregations of ESOs which represent 
original elements. On the example of figure 3, district number 8 has been split in two 
faces which have to be aggregated to reconstruct the map of Paris's districts. Topological 
maps can be extended to maintain these aggregation links.

Paris Districts

RER: Underground rail network Storage in the database

Figure 3: The corresponding storage of two themes.

A topological map extended with aggregation links maintains adjacency relationships 
between ESOs as usual, plus intersection and inclusion relationships between 
aggregations of ESOs. Using an extended topological map, most of the operators 
involving intersection and inclusion relationships on several maps can be evaluated using 
graph-based processing instead of geometric processing.

3.2. GeoGraph definition

We first introduce a few notations appropriate in the context of a collection of 
geographical maps. In most of our examples M will denote a particular geographical 
map. A geographical map M is described by semantic data and spatial data. The spatial 
data of a geographical map are called regions, lines, or points, and represent, 
respectively, surfacic features, linear features or ponctual features. We denote by R, L, 
or P, sets of regions, lines, and points, and by r, 1, or p, the elements of these sets. The 
spatial data of a particular geographical map constitute a subset of R, L or P which is 
identified by a unique name. We use S to denote one of these subsets. The ESO 
resulting from the pre-computation step applied to the collection of geographical maps 
are called faces (inner faces), holes (outer faces), blades and nodes. We denote by F, 
H, B, N, or C, respectively, the sets of faces, holes, blades, nodes and coordinate lists, 
and by f, h, b, n, or c, the elements of these sets. A region is an aggregation of faces
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and a line is an aggregation of blades. A point is associated to a node.
The GeoGraph graph is a specitic representation of the extended topological map 

described in section 3.1. This graph is illustrated in figure 4. Nodes of this graph are 
elements of R, L, P, F, B, and N. Nodes and faces are explicitly represented in this 
graph (unlike the representation of topological maps given in section 2) in order to more 
directly associate spatial data with semantic data in the database. Edges of the GeoGraph 
represent three kinds of functions: functions connecting elements of the original maps to 
ESOs; functions on the topological maps; and functions connecting each blade to the 
nodes representing the face and the node defined by the blade. Edge functions 
connecting elements of an original map to ESOs are identified using the name associated 
by the map to these elements. This allows retrieving from ESOs the original elements of 
a particular map. The graph of GeoGraph can be defined more formally as follows.

Definition:
GeoGraph is a graph (X, A) where X = RuLuPuFuHuBuNuCis a set of 

vertices of G and A is the set of edges defined below: 
(i) Links between spatial objects and ESO:

• (r, S, f) e A iff r e S, S C R, f € F and f is a component of r,
• (1, S, b) e A iff 1 € S, S C L, b e B and b is a component of 1,
• (p, S, n) e A iff p e S, S C P, n e N and n correspond to p, 

(ii) Topological links:
• (b, a, b') e A iff be B, b1 e B and a (b) = b1 ,
• (b, a, b1 ) e A iff be B, b1 e B and a (b) = b1 ,
• (b, (p, b1 ) e A iff be B, b1 e B and 9 (b) = b',
• (b, y, c) e A iff be B, ce C and c is the coordinate list associated with b,
• (f, h) e A iff f e F, h e H and h is a hole into the internal face f, 

(iii) Correspondence between faces, nodes and blades:
• (b, f) e A iff b e B, f e F and f is the left face of b,
• (b, h) e A iff b e B, h e H and h is the left hole of b,
• (b, n) e A iff b e B, n e N and n is the end node of b.

Spatial 
objects

Elementary 
spatial 
objects

Coordinate | 
lists

Figure 4: Links between objects in GeoGraph
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3.3. Primitive operations

The Ge"oGraph model provides a set of basic primitives to traverse a Ge"oGraph. 
These primitives constitute a toolbox dedicated to the implementation of efficient 
geometric operations involving several maps via graph traversal operations. This set of 
primitives is detailed below:

• traversals of aggregation links between ESO and regions, lines or points are 
supported by the following primitives :

(i) MemberFaces (r, S) = {f € F / r e R and (r, S, f) € A}, 
(ii) OwnerRegions (f, S) = {r e R / f e F and (r, S, f) e A}, 
(iii) MemberBlades (1, S), OwnerLines (b, S), MemberNode (p, S),

Ownerpoint (n, S) are defined similarly. Note that MemberNode and 
Ownerpoint are singletons;

• traversals of the topological map defined on ESO are supported by :
(i) a, a and <p which are the conventional permutations of topological

maps,
(ii) y gives the coordinate list, 
(iii) The primitives necessary to traverse the inclusion tree of topological

maps :
ContainingFace (h) = {fe F/ he H and (f, h) € A},
ContainedFaces (f) = {h e H / fe F and (f, h) e A};

• traversals between faces holes and nodes defined by blades:
(since faces and nodes are described by a list of blades, the inter-connections of
blades, faces and nodes are expressed in the next primitives)
(i) Left (b) = {fe F / be B and (b, f) e A} (Left (b) is a singleton),

BoundingBlades (f) = {b e B / fe F and (b, f) e A}, 
(ii) Left (b) = {he H / be B and (b, h) e A} (Left (b) is a singleton),

BoundingBlades (h) = {b e B / he H and (b, h) e A}, 
(iii) EndNode (b) = {ne N / be B and (b, n) e A} (EndNode (b) is a

singleton),
ArrivingBlades (n) = {b e B / ne N and (b, n) e A}.

Ge"oGraph primitives allow traversal of all edges of a Ge"oGraph in both directions, 
so any traversal of a Ge"oGraph can be expressed by a combination of these primitives. 
Within a GeoGraph, adjacency relationships between objects of several geographical 
maps can be deduced from traversals along aggregation edges and along edges 
materializing the topological map defined on the ESOs. Containment relationships 
between objects of the same type (region/region or line/line) belonging to different 
geographical maps can be deduced directly from traversals along aggregation edges. 
Containment relationships between objects of different types (region/line, region/point or 
line/point) belonging to different geographical maps can be deduced from traversals along

356



aggregation edges and along edges materializing the topological map defined on the ESO. 
GeoGraph primitives are thus sufficient to carry out all the operations based on the inter- 
object relationships.

To ease the implementation of these operations it is possible to deduce functions 
useful as construction blocks in the design of a GIS. For example, the function 
AdjFaces(f) = {Left (b) / b e BoundingBlades (f)} can be defined to retrieve the 
adjacent faces of face f; the function Right(b) = Left (a(b)) can be defined to retrieve the 
right face of blade b. In summary, G6oGraph supports all the links between spatial 
objects which are important to efficient geometric operators. We leave unspecified the 
details concerning links between spatial objects and semantical objects. These links are 
not included in the GeoGraph model for they depend on the data model used in the GIS.

4. Using the GeoGraph model

This section illustrates the implementation of spatial operators as an extention of a 
DBMS using the GeoGraph model. For the sake of clarity, the spatial operators are 
presented in a relational context, but it is important to note that these operators and their 
implementation can be generalized to other data models.

First, we present a possible integration of the GdoGraph data in a database using a 
relational DBMS which can be extended with abstract data types [StonebrakerSS]. Then, 
classical spatial predicates and spatial functions are enumerated. Spatial predicates are 
applied to a couple of spatial objects to check some spatial properties. The definition of 
the main spatial operators required in a relational DBMS extended toward geography is 
then introduced. These operators are based on spatial predicates and spatial functions. 
They work on sets of spatial objects and return the combination of spatial objects which 
satisfy a given predicate. Finally the implementation of these operators with the 
GeoGraph model is detailed. The architecture and the query langage of such a DBMS 
extended toward geography can be found in [Bennis90].

4.1. Connection of GeoGraph with an extended relational database

A cartographic object is composed of semantic and spatial data. In order to support 
the spatial data, the spatial domains Regions, Lines and Points are added to the 
conventional domains of values used in relational DBMSs. A spatial relation is then 
defined as a relation containing at least one attribute which takes its values in a spatial 
domain. A map is a spatial relation with exactly one spatial attribute which is a key of 
the relation. The conventional relational operators (i.e. selection, join and projection) are 
augmented with spatial operators for spatial attribute manipulations.

To clarify the discussion, a few notations are introduced below. We use two spatial 
relations named R and S. We denote by R.k (resp S.I) the spatial attribute of R (resp S). 
We denote by r (resp S) a tuple of the R (resp S) spatial relation. We denote by AV a set 
of values varying on the same domain and by v a particular value of this set. The result 
of a spatial operation is a relation denoted by RES.

357



In the sequel of the paper we assume for clarity that the database is stored according 
to the DBGraph storage model introduced in [Pucheral90]. This model stores a relational 
database as a bipartite graph composed of a set of tuples named T, a set of values named 
V and edges connecting each tuple to each of its attribute values (see figure 5). The 
purpose of this storage model is to precompute all conventinal relational operations, 
which is complementary with the objective of the GeoGraph. Two basic traversal 
primitives are provided: succ_tup(t, R.k) is a function from T to V that delivers the value 
of attribute R.k of tuple t and succ_val(v, R.k) is a function from V to T that delivers the 
set of tuples whose th attribute value is v.

In a DBGraph, tuple vertices (resp. value vertices) may be grouped on a relation 
basis (resp. domain basis) since the relations form a partition of T (resp. V). Spatial 
domains constitute three subsets of V which comprise the sets R, L, P used as entry 
points in the GeoGraph.

DBGraph /£>v GeoGraph 
X^rT—————7J

Legends

T: tuple-vertices '' • •, ( '' • •, (

N

O

O

relational 
data 
spatial data

elementary 
spatial data 
edges of 
Gebgraph 
edges of 
DBGraph

V: value-vertices

Figure 5: a GeoGraph connected to a DBGraph

4.2. Spatial Predicates and Spatial Functions.

A spatial predicate takes two input spatial attribute values, and checks whether a 
given spatial property is satisfied by this pair. The two input values can be of different 
domains, although there are some restrictions depending on the predicate. Figure 6 
summarizes the classical spatial predicates and the domains of the allowed input values. 
Spatial predicates fall into two categories: one for checking neighborhood relationships 
such as adjacency of regions; the other for checking containment relationships such as 
inclusion or overlap of spatial objects. For detailed information on these predicates see 
[David89]. Each spatial predicate can be evaluated by a traversal of the GeoGraph. This 
traversal can be expressed by a sequence of primitive operations of the GeoGraph model. 
One part of this traversal corresponds to a translation of the regions, lines or points given 
in entry into ESO (faces, blades and nodes), while the other part selects elementary 
components which satisfy the predicate. The first part uses operations on aggregation 
links and the second part uses operations of topological maps. Examples of such
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traversals can be found in section 4.4.

Predicate

Region

Line

Point

Region

Adjacent 
Overlap 
Inclusion
Right 
Left 
Overlap 
Inclusion
Inclusion

Line

Border 
Overlap

Connected 
Overlap 
Inclusion

Ends 
Inclusion

Figure 6: The spatial predicates

Spatial functions are useful to calculate new values which are either numerical or 
geometrical (coordinates lists). Some are also used to compute new values of type 
region, line or point based on new aggregations of ESO. These functions can be 
classified into two categories: those requiring a geometrical computation on spatial 
values, and those which can be sped up by the topological map included in the GeoGraph 
model. Figure 7 summarizes the main spatial functions.

Functions

Speed up by 
G6oGraph

Involve a 
geometrical 
computation

Unary

Result is numerical
Area(Ol)withOl e R 
Perimeter(Ol) with Ol e R 
Length(Ol) with Ole L 
Result is a coordinate list 
Geometry(Ol) with Ol € R or L

Binary
Result € R or L or P

Intersection(Ol,O2) with Ol e R or L and O2 € R or L 
Fusion(Ol,O2) with Ol € R andO2 e R orOl e L sidO2 e L 
Difference(Ol,O2) with Ol e RandO2 e RorOl e LaniO2e L

Result is numerical
Distance(Ol,O2) with OleRor Lor P and O2eRor Lor P

Figure 7: The spatial functions

4.3. Spatial Operators
The data model of Ge"oTropics uses three basic spatial operators: the spatial 

selection, the spatial join, and the calculation operators. The first two of these 
correspond to extensions of the conventional selection and join operations of the 
relational model. The spatial operators take as arguments one or two spatial relations and 
return a spatial relation, and are now explained

The Spatial Selection operator, denoted by Sel(S, Q), is applied to a relation S, 
and determines the subset AS of the tuples of S whose spatial attribute satisfy a 
qualification Q. The qualification Q is a simple comparison S.I 0 const where const is a 
spatial constant of the domain region or point and where 0 is a spatial predicate. The 
spatial predicate used is generally inclusion or overlap. Selections involving these 
predicates correspond to the usual geographical operations of clipping and windowing. 
The selection operator is expressed as:
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Sel(S, Q) = {Se S/ (S.I 0 c) is true}

The Spatial Join operator denoted by Join(R, S, 0), is applied to the spatial 
relations R and S, and determines a set of tuples composed of all possible combinations 
of a tuple r e R concatenated to a tuple S € S, such that the spatial attributes R.k and S.I 
of r and S satisfy the join condition R.k0S.l, where 0 is a spatial predicate. Most of the 
spatial operations based on relationships between spatial objects can be expressed by a 
join operation involving a specific spatial predicate. The join operator is expressed as 
follows: 
Join (R, S, 0) = {(r, s) / r e R, S e S and (r.k 0 s.l) is true}

The Spatial Calculation operator, denoted by Calc (R, f) or Calc (R, S, f) can 
take one or two relations as arguments. It is similar to the spatial join, but extends the 
concatenation of the entry relations attributes with the result of a spatial function f 
applied to the spatial attributes. Note that the join predicate is replaced by function f. 
This operation can be expressed as follows : 
Calc (R,f) = { (r,f(r.k)/re R } 
Calc (R, S, f) = { (r, s, f(r.k, s.l)) / r e R, s e S}
The widely used overlay operation can be translated as follows: projection (Calc ( R, S, 
n)) where n involve R.k, S.I and the projection discards these two attributes.

4.4. Spatial Operator Implementation.

The G6oGraph model is currently being used to support the three spatial set-oriented 
operators presented in section 4.3. Numerous versions of these operators can be 
deduced depending on the spatial predicate used. It is not possible to give three general 
algorithms that support all versions of these operators. For illustration, this section 
focuses on two versions of the join operator and one version of the calculation operator 
which correspond to the more commonly used geometric operations and illustrate well the 
functionnality of the GeoGraph model. The join operation is first applied to retrieve all 
couples of adjacent regions of two maps (spatial relations). Then it is applied to retrieve 
all couples of overlaping regions and lines of two maps. The joins involves the 
adjacency and the containment relationships, which belong to the two classes of spatial 
predicates. The classical operation of overlay is then expressed in primitives of the 
GeoGraph model. The execution of the selection operator is not detailed in this section 
because it is efficiently handled by algorithms involving geometrical indices. For this 
operation the GeoGraph model had to be augmented with geometric indices for 
elementary components (Face, Blade and Node) and spatial attribute values (region, line 
or point) (see section 5).

Let us consider the adjacent-join, a spatial join operation involving an adjacent 
predicate. Two regions are adjacent if they have adjacent faces and if they do not have
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common faces. The algorithm performing the operation is given figure 8. This algorithm 
may be decomposed into four steps, each of which is a traversal of a subpart of the 
Ge"oGraph. For each tuple r of R, the first step decomposes the region-value of attribute 
R.k into faces. The second step executes a sequence of topological operations on ESOs 
in order to get the set of faces which are adjacent to some faces obtained in the first step. 
The third step converts the faces obtained in step2 into region-value of attribute S.I. All 
these regions contain at least a face adjacent to one face of the region-value of r. The 
fourth step checks that region-values selected in the 3fd step do not have common faces 
with the region-value of r.

Function Join (R, S, Adjacent)
/* R.k and S.I take their values in R */
/* we assume card(R) < card(S) */
begin
/*..................................................................................................................l st step */;
for each r € R do

AV3 = 0;
AVi := MemberFaces(r.k, R.k); /* decomposition into elementary faces */
/*...........................................................................................................2ndstep */
for each vi e AVi

AV2 := BoundingBlades (vj); /* give all blades bounding vj */
for each \2 e AV2

AV3 := AV3 u Left (v2); /* give adjacent faces of vi */
endfor 

endfor 
AV~3 := AV"3 - AVI; /* discard faces belonging to r.k */
/*...........................................................................................................3rd step */
for each v3 e AV3

AV4?=AV4uOwnerRegions(v3, S.I); /* retrieve regions of S.I including face V3 */ 
endfor 
/*..........................................................................................................4th step */
for each V4 e AV4

ifAVi n MemberFaces(v4, S.I) * 0 /* discard the regions which have */
/* common faces with region r.k */

then RES := RES + (r, succ_val(v4, S.I)); /* build the result made of tuple r */
/* and the tuple owning the region v4 */ 

endfor 
end

Figure 8: Join operator involving the adjacency predicate

Consider now the overlap-join operator, a join operation involving a spatial predicate 
checking the overlap between a line and a region. The algorithm performing this 
operation is given figure 9 which starts from the lines to reach the overlaping regions. A 
line and a region overlap if at least one blade of the line defines two faces belonging to 
the region. This algorithm is also based on four steps which are similar to the four steps 
of the previous algorithm. Nevertheless, these steps cannot be expressed in exactly the 
same way. The first three steps determine the set of regions on the left of the line and the 
set of regions on the right of the line. The fourth step performs the intersection of these 
two sets.
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Function Join (R, S, Overlap)
/* R.k takes its value in L
and S.I takes its value in R */
/* we assume card(R) < card(S) */
begin
/*...................................................................................................................ist step */
for each re R do

AV4:= 0;
AVi := MemberBlades(r.k, R.k) /* decomposition into elementary blades */
for each vi € AVi

/*.................................................................................................2ndstep */
\1= Left(vi); /* give the face on the left of blade vi */ 
vr:= Left(a(vi)); /* give the face on the right of blade vi */ 
/*.................................................................................................3rd step */
AV2 := OwnerRegions(vr, S.I); /* retrieve regions of S.I including face Vr */ 
AV3:= OwnerRegions(vi, S.I); /* retrieve regions of S.I including face Vj */ 
/*................................................................................................4th step */
AV4:= AV4 u (AV2 n AV3); /* discard the regions which border line r.k */

endfor
for each v4 e AV4

RES = RES u (r, succ_val(v4, S.I)); /* build the result made of tuple r */
/* and the tuple owning the region V4 */ 

endfor 
end

Figure 9: Join operator involving the overlap predicate

Finally, let us consider a version of the spatial Calculation operator involving 
the function of intersection of two regions. This operation is applied to two maps and 
produces the overlay of the maps. The corresponding algorithm is given figure 10. If 
we compare this algorithm to the previous ones, it can be decomposed into four steps 
with an empty second step, since containment relatioships between objects of the same 
type can be deduced from traversals along aggregation edges without the use of the 
topology. In this algorithm, the computation of n (r.k, S.I) is reduced to a simple set- 
intersection between two sets of faces with no access to the coordinates of the spatial 
objects geometry.

In our experience, most of the algorithms of binary geometrical operations can be 
decomposed into four steps. The first step decomposes the spatial attribute values of the 
first map into a set ESO1, using aggregation edges. The second step performs topological 
operations starting from ESO1 to reach a set ESO2 satisfying a topological predicate. The 
third step retrieves spatial attribute values of the second map which aggregate elements of 
ESO2, and the fourth step performs some supplementary verifications. For operations 
involving containment relationships on objects of the same type, the second step is not 
required. An important contribution of the extended topological map is that algorithms 
based on these four steps always access ESOs of the same spatial location.

362



Function Calc (R, S, Intersection) 
/* we assume the R.k and S.I take their values in R */ 
begin 
/*...................................................................................................................1 st step */

for each r e R do
AVi := MemberFaces(r.k, R.k); /* decomposition into elementary faces */
AV2:= 0;
/*.............................................................................................................3rdstep */
for each vi e AVi

AV2=AV2UOwnerRegions(vi, S.I); /* retrieve regions of S.I including face vi */ 
endfor 
/*...........................................................................................................4th step */
for each \2 e AV2

AV3 := MemberFaces(v2> S.I); /* decomposition into elementary faces */ 
RES = RES + (r, succ_val(v2, S.I), AVi <~> AVs); /* build the result made */

/* of tuple r and of the tuple owning region */ 
/* V2 and of the intersection of r.k and V2 */ 

endfor 
endfor 
end

Figure 10: Calculation operator involving the intersection function

5. Implementation

There are many ways to implement the G6oGraph graph. It could be implemented 
within a Network DBMS, an Object Oriented DBMS or as an extension of a Relational 
DBMS. We detail below a particular implementation based on the third approach, and on 
the connection of GeoGraph with the DBGraph model [Pucheral90] (as detailed in 
section 4.1). The key point of this implementation is a good data clustering. The 
objective is to partition the two graphs of figure 5 into separate segments which can be 
loaded separatly according to the needs of operations being executed.

In order to ease the data partitionning, tuples and values are stored separately (see 
figure 11). Since the domains form a partition of the set of values V, all the values 
varying over the same domain can be clustered in a separate segment. Taking advantage 
of vertical partitioning, the values of one domain can be loaded independently of the 
others. Similarly, since the relations form a partition of the set of tuples T, the tuples of 
one relation can be stored in one segment. Each object stored in a segment has a unique 
and invariant identifier (OID). Thus, tuples and values can be referenced by OID's.

In the definition of a DBGraph, an edge between a tuple and a value can be traversed 
in both directions. Consequently an edge is represented with two physical arcs: one from 
the tuple to the value, and also a reverse arc. A tuple is implemented as an array of OIDs, 
each referencing its attributes values, which are stored in separate domains. These OIDs 
materialize arcs from the tuples to the values. Reverse arcs are materialized by inverted 
lists attached to the values. Each inverted list is divided into a set of sublists so that there
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is one sublist per attribute varying on the domain of the value. All these sublists are 
referenced by an array attached to the corresponding value. Because of vertical 
partionning, it is possible to cluster all the inverted sublists of one attribute into one 
segment. Indices may be added on domain values to speed up selections on all attributes 
varying on the same domain.

segment containing 
the inverted sublists 
of R.5

segment containing 
domain Dj

The temporary relation results from a join between R and S. 
The attribute S.4 is assumed to be a key attribute._____

Figure 11: implementation of the DBGraph part

Consider now the implementation of the Ge"oGraph part. There is a direct mapping 
between a value of the spatial domain point and a node. Thus attributes of type point 
directly reference node values stored in a node domain. Values of the spatial domain 
region (resp. line) are stored as set of OIDs referencing face (resp. blade) values stored in 
a face (resp. blade) domain. The sets of OIDs materialize aggregation links from spatial 
objects to ESOs. Reverse links from blades and faces to the tuples, materilize reverse 
aggregation links from ESOs to tuples containing spatial objects. Face and blade 
domains are stored like DBGraph domains with inverted lists in order to materialize these 
links. It is not necessary to maintain inverted lists for region and line values. For some 
attributes it may be inefficient to store the values separatly from the tuples because they 
are accessed each time the tuple is accessed, and graph traversals of costly operations 
don't use links between the corresponding attribute values and the tuples. Values of 
these attributes can be stored directly in the tuples. For example, region and line 
attributes fall in this category. Spatial indices are maintained for the three domains node, 
blade and face. Values of these domains are clustured with the spatial indices which 
reinforce the contribution of the vertical partitionning, since algorithms based on extended 
topological maps favors access to ESOs of the same spatial location (see section 4.4).

Values ot the three domains face, blade and node have a complex structure that stores 
the topology of the ESO map (see figure 12). The main part of this topology is supported 
by the blade values. A blade value is represented by a record containing five fields: (i) 
the ODD of the opposite blade, which materializes the a function; (ii) the OID of the next 
blade of the end-node, which materializes the a function; (iii) the OID of the left face of
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the blade, which, used in conjunction with the a function, allows retrieval of the two 
faces bordering the blade; (iv) the OID of the end-node of the blade, which is necessary 
to access to the inverted list of the node; and (v) the ODD of a coordinate list material!zing 
the geometry of the blade. Coordinate lists are stored in a separate domain without 
inverted list. This domain is clustered with a geometrical index. A face value is the OID 
of any blade of the face. The value of one node contains only the OID of one blade 
reaching it. This information is sufficient for a node since the o function gives the 
complete cycle of blades reaching it. Furthermore its geometry can be extracted from the 
geometry of one of its blade. In a similar way, the value of one face is composed of a 
record containing the OID of one blade of its boundary and a set of OID corresponding to 
the set of holes contained in this face. Applying a succession of a and a functions to the 
blade referenced by the face gives the complete cycle of blades of its boundary. Its 
geometry can be obtained from the geometry of all of these blades.
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Figure 12: Spatial values representation

5. Summary and futur work

In this paper, we have presented the GeoGraph storage model, a toolbox supporting 
low layers of GIS in an extensible way. The definition of this model was given 
independently of implementation detail, in terms of a graph structure and primitive 
operations on that structure. This facilitates the description of the toolbox functionality, 
and supports our argument of general utility. Topological information and geometric 
information of several maps are incorporated in a single graph that directly supports 
geometric operations based on adjacency and containment relationships. This graph is 
based on the topological map theory guaranteeing that all updates on topological 
information are coherent, and providing a minimal set of operations to navigate through 
the graph.

Although GeoGraph is intended for various higher level data models, we illustrated 
the utilization of this storage model in the context of an extensible relational DBMS. In 
this context, the resulting GIS is itself extensible and can exploit fully the toolbox aspect 
of GeoGraph. We showed that the GeoGraph graph can be integrated with relational data 
in a straightforward fashion. Algorithms of the main geographical operations have been
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given in an abstract form using the basic primitives of G6oGraph. These algorithms, 
based on graph traversals, are simple and exibit desirable locality properties.

A specific implementation of the GeoGraph model has been proposed. This 
implementation avoids data duplication and shows that the GeoGraph graph can be 
partitioned to minimize disk trafic. Spatial data are clustered with spatial indices. This, 
combined with the space locality properties of the algorithms, reinforce the contribution 
of vertical partitionning. This implementation is currently being experimented in the 
framework of the GeoTropics system, an extensible GIS based on extensions of SQL 
[Bennis90].

Additional research will be useful in enhancing the G6oGraph model. For example, 
the decision to always overlap geographical maps has some drawbacks: operations 
involving only one map can be slowed down, since the number of elementary storage 
elements can be unnecessarily large. It may prove more efficient to selectively overlap 
layers based on the frequency of their joint use in queries[David90].

References
[AnsaldiSS] Ansaldi S., De Floriani L., Falcidieno B., "Geometric Modeling of

Solid Objects by Using Face Adjacency Graph Representation", ACM
SIGGRAPH'85 Conf., San Francisco, USA, 1985. 

[Bennis90] Bennis K., David B., Quilio I., Vie"mont Y., "GeoTROPICS: Database
Support Alternatives for Geographic Applications", 4th Int.
Symposium on Spatial Data Handling, Zurich, Switzerland, July 1990. 

[CoriSl] Con R. & Vauquelin B., "Planar maps are well labeled trees", Can. J.
Math., Vol. XXXIH, 1981. 

[David89] David B., "External Specifications for the Cartographic DBMS",
ESPRTT-TR 2427-0022 TROPICS Project, June 1989. 

[David90] David B., Viemont Y., "Data Structure Alternatives for Very Large
Spatial Databases", Sorsa colloquium 90, Fribourg, Deutshland, July
1990. 

[Dufourd88] Dufourd J.F., "Algebraic Specification and Implementation of the
Topological Combinatorial Maps", PIXIM'88 proc., Paris, France,
1988. 

[Dufourd89] Dufourd J.F, Gross C. et Spehner J.C., "A Digitizing Algorithm for
the Entry of Planar Maps", Computer Graphics International'89,
Leeds, Spring-Verlag, June 1989. 

[Edmonds60] Edmonds J., "A Combinatorial Representation of Polyhedral
Surfaces", Notices Amer. Math. soc. n°7,1960. 

[Herring87] Herring J.R., "TIGRIS: Topologically integrated geographic
information system", Auto-Carto'8 proc., Baltimore, Maryland, USA,
March 1987. 

[Herring90] Herring J., "The definition and development of a Topologically Spatial

366



Data System", Photogrametry and Land Information Systems,
Lausanne, Suisse, March 1989 (Published in 1990). 

[Lienhardt89] Lienhardt P., "Subdivision of N-Dimensional Spaces and N-
Dimensional Generalized Maps", 5th ACM Symposium on
Computational Geometry, Sarbriiken, RFA, June 1989. 

[Kinnea87] Kinnea C., "The TIGER Structure", Auto-Carto'8 proc., Baltimore,
USA, March 1987. 

[Meier82] Meier A., "A Graph Grammar Approach to Geographic Databases",
Proc. of 2nd Int. Work, on Graph Grammars and their Application of
Computer Science, October 1982, Lecture Notes in Computer Science,
Springer Verlay, 1982. 

[Meixler82] Meixler D., Sadlfeld A., "Storing, Retrieving and Maintaining
Informations On Geographic Structures", Auto-Carto'7 Proc.,
Wachington, USA, March 1985. 

[MorehouseSS] Morehouse S., "A Geo-Relational Model for Spatial Informations",
Auto-Carto'7 Proc., Washington D.C., USA, 1985. 

[Peuquet84] Peuquet Donna J., " A Conceptual Framework and Comparison of
Spatial Data Models", Cartographica vo!21 n°4,1984. 

[Pucheral90] Pucheral P., TheVenin J.M., Valduriez P., "Efficient main memory
Data Management Using the DBGRAPH Storage Model", VLDB90
proc., Brisbane, Australia, August 1990. 

[Sack87] Sack-davis R., Mcdonell K.J., "GEOQL - A Query Language for
Geographic Information Systems", Australian and New-Zeland
Association for the Advancement of Science Congress Townsville,
Australie, August 1987. 

[Samet85] Samet H., Webber E., "Storing a collection of Polygons Using
Quadtree", ACM Transaction on Computer Graphics 3 (4), July 1985. 

[Schaller87] Schaller J., 3The Geographical Information System (GIS)
ARC/INFO", EuroCarto VI proceedings, Czechoslovakia, April 1987. 

[Spooner90] Spooner R. "Advantages and Problems in the Creation and Use of
Topologically Structured Database", Photogrametry and Land
Information Systems, Lausanne, Suisse, March 1989 (Published in
1990). 

[StonebrakerSS] Stonebraker M., Rubenstein B., Guttman A., "Application of Abstract
Data Types and Abstract Indices to CAD Databases", ACM Sigmod,
San-Jose, 1983. 

[Waugh87] Waugh T.C., Healey R.G., "The GEOVIEW Design, a Relational
Approach to Geographical Data Handling", Int. J. Geographical
Information Systems", 1(2), 1987. 

[White79] White M. "A Survey of the Mathematics of Maps", Auto-Carto'4
proc., 1979.

367



TOPOLOGICAL MODELS FOR 3D SPATIAL INFORMATION SYSTEMS

Simon Pigot, 
Environmental Systems Research Institute,1

380 New York St., 
Redlands, Ca. 92373

email: uucp: uunet!esri!atlas!simon 
internet: spigot@esri.com

Abstract

The need for complex modelling and analysis of 3-dimensional data within a 
spatial information system (SIS) has been established in many fields. While much of the 
data that is currently being modelled seems to require "soft-edge" data structures such as 
grids or rasters, the need for certain types of complex topological modelling and analysis 
is clear. Current plane topology models such as the winged edge, widely used in 
computer aided design (CAD), are limited in the types of analysis that can be performed 
but useful because of their basis in the field of algebraic topology. This paper firstly 
reviews the neighborhood structure provided by current plane topological models. It then 
describes the derivation of a fundamental set of binary topological relationships between 
simple spatial primitives of like topological dimension in 3-space. It is intended that these 
relationships provide both a measure of modelling sufficiency and analytical ability in a 
spatial information system based on three dimensional neighborhoods.

1. Introduction

Modelling and analysis of 3-dimensional spatial phenomena has become a 
critical need in many applications, particularly the earth sciences. One of the traditional 
approaches to the modelling problem is to subset the sampled data from the 3D 
phenomena into individual spatial objects based upon theme or convenience; each spatial 
object can then be decomposed into a set of abstract geometric primitives - points, lines, 
faces and volumes; and a set of spatial relationships describing how the object may be 
reconstructed from these primitives. Analysis of the spatial phenomena requires not only 
the spatial relationships between the primitives required to reconstruct individual spatial 
objects, but also those relationships describing how the individual spatial objects interact. 
Such an approach is one method by which spatial objects may be modelled and analyzed 
according to theme or view in a larger model of the real phenomena.

1 From April 11th, 1991, author's address will be: Centre for Spatial Information 
Studies, University of Tasmania, GPO Box 252C, Hobart, Tasmania, Australia, 7001. 
Internet email address: pigot@sol.surv.utas.oz.au
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Topology is useful in both modelling and analysis because it provides simple 
and very useful spatial relationships, such as adjacency and connectivity. Topology can 
be thought of as the most primitive layer in a hierarchy of spatial relationships, where the 
next level of refinement is provided by the addition of familiar concepts based on a metric 
(ie. distance, direction etc.). Recent work by (Greasley 1988),(Kainz 1989) and (Kainz, 
1990) in lattice theory seems to suggest that order relationships may exist at a similar 
level to topology.

Current topological models are either loosely or strongly based on a structure 
from algebraic topology known as the cell complex. The cell complex (in conjunction 
with graph theory) provides rules to govern the decomposition of a continuous 3D object 
into a finite number of points (0-cells), lines (1-cells), faces (2-cells) and volumes (3- 
cells). In governing the decomposition, the cell complex allows for the explicit 
description of three fundamental topological concepts: adjacency, connectivity and 
containment. Other relationships between individual objects such as whether two objects 
are disjoint or apart, may be provided by embedding individual cell complex(es) within a 
single cell or world cell and using the explicit relationships in combination to derive the 
particular relationship required. For example, it may be possible to analyze the explicit 
relationships to determine if two faces meet at a point (compare node connectivity of 
surrounding lines) or share a line (directly from adjacency). However, some relationships 
cannot be derived from these explicit relationships and may violate some of the rules of 
the cell complex, e.g. in 2-space (R^) overlapping polygons (Egenhofer et. al. 1989); in 
3-space (R^), intersecting volumes or a face meeting another face at a point are all known 
to violate the rules of the cell complex governing the decomposition. In (Molenaar 1990) 
it is suggested that other relationships such as a line internal to a volume, also do not fit 
easily within the cell complex. From other work in 3D SIS (Youngmann 1988) and CAD 
(Weiler 1986), it appears that at least some of the modelling and analysis problems could 
be solved by combining the solid, surface and wire frame modelling approaches of CAD.

In this paper, the limitations of the cell complex are described by analyzing 
the direct and indirect topological relationships between cells that it provides. A layered 
set of fundamental binary topological relationships between simple lines, faces and 
volumes in R^ based on point-set topology and extended from the work of (Egenhofer et. 
al. 1990) and (Pullar et. al. 1988) will be derived and presented. This paper and future 
research will attempt to integrate these intuitive yet powerful topological relationships and 
concepts with cell complex theory from algebraic topology since the power of the cell 
complex lies not in the nature and type of topological relationships that it allows, but in 
the ability to pose and solve topological problems as algebraic problems. It is expected 
that this approach will yield advantages both in modelling and analysis. For modelling 
purposes, the new topological relationships are intended to be used to ascertain the 
sufficiency of a cell complex based on 3D neighborhoods and provide insight into other 
useful structures such as lattices. Compactness and efficiency could be maintained by 
modelling only the coarsest topological relationships. For analysis purposes, a detailed
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set of basic topological relationships should provide either direct answers or at least the 
starting point of an answer, to complex spatial questions about the objects being 
modelled. In addition, enhancements to the fundamental modelling capability based on a 
complete set of topological relationships should allow boolean operations to be closed, i.e 
boolean operations may occur without the problem of not being able to model the result.

Sections 2 and 3 of this paper are concerned primarily with the cell complex. 
Section 2 introduces the necessary theory from algebraic topology and section 3 describes 
the current application of cell complex theory and the topological relationships which can 
be modelled. Section 4 introduces the necessary theory from point-set topology and 
presents the derivation of the new and richer set of topological relationships for R.3. 
Finally, section 5 concludes this paper with a summary of the results and the directions 
that will be taken in future research.

2. Topology

Topology is defined as the set of properties which are invariant under 
homeomorphisms (Alexandroff 1961) - one-to-one, continuous and onto 
transformations. Intuitively, it is easier to think of a homeomorphism as a kind of elastic 
transformation which twists, stretches and otherwise deforms without cutting. From the 
definition of topology as the study of those properties which remain invariant under 
homeomorphism, two objects are topologically equivalent if either can be transformed 
into the other using this type of elastic transformation. Clearly, metric properties such as 
distance, angle and direction are affected by homeomorphism and hence are not 
topological properties. It is the notion of homeomorphism which provides a fundamental 
or primitive set of spatial relationships (Chrisman 1987).

About Neighborhoods

The neighborhood of a point is any open set (ie. a set that does not include its 
boundary) that contains the point. Neighborhoods can be defined in any abstract manner, 
but the most common are those that have a metric interpretation. For example in 2D, the 
neighborhood of a point can be considered as any 2D "flat" disk containing that point.

About Manifolds

A manifold is an n-dimensional surface of which every point has a 
neighborhood topologically equivalent to an n-dimensional disk.This property is usually 
defined as local flatness. Manifolds are of interest because of their useful topological 
properties (in particular, the notion of orientation) which are inherited by the cells of a cell 
complex.

About Simplexes. Cells and Complexes
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An n-simplex is the n-dimensional simplest geometric figure eg. a 1-simplex 
is a line, a 2-simplex a triangle and a 3-simplex a tetrahedron - in essence, an n-simplex 
has n+1 vertices and may be viewed as the smallest closed convex set containing the 
given vertices (Alexandroff 1961). An n-simplex is the homeomorph of an n-cell. eg. any 
closed polygon which does not have an internal boundary (ie. genus 0) is homeomorphic 
to a triangle or 2-simplex. Because of this topological equivalence all results for 
simplexes generalize to cells.

An n-simplex is a composite of n-l,n-2,...,l simplexes. eg. a 2-simplex or 
triangle, is bounded by three 1-simplexes, which meet at three 0-simplexes. In 
(Egenhofer et. al. 1989) this property is termed "Completeness of inclusion".

An n-simplicial complex or more generally an n-cell complex is the 
homeomorph of an n-dimensional polyhedron whose faces are all (n-l)-cells, no two of 
which intersect except at a cell of lower dimension. In (Egenhofer et. al. 1989) this 
intersection restriction is termed "Completeness of incidence". With this restriction, an n- 
cell complex may inherit the properties of an n-manifold, thus accessing the topological 
properties of manifolds, the most important of which is orientation. The notion of 
orientation is usually applied to the 1-simplex by defining one of the bounding 0- 
simplexes or points as a point of origin and the other as a point of termination. Relative 
orientations can then be assigned to all higher simplexes according to the traversal of 
bounding 1-simplexes.

About Duality

Two dual operators which arise from these completeness axioms are termed 
boundary and coboundary, originally attributed to Poincar6 (Corbett 1985). The 
boundary of an n-simplex is the incident set of n-1 simplexes. For example, a 3-simplex 
(tetrahedron) has 4 incident 2-simplexes, 6 incident 1-simplexes and 4 incident 0- 
simplexes. The coboundary of an n-simplex is the set of n+1-simplexes incident to the 
given n-simplex. For example, a 1-simplex may have two 2-simplexes cobounding it 
(one either side). The following table shows each cell and its dual, for R^;

Primal Dual
0-cell 3-cell
1-cell 2-cell
2-cell 1-cell
3-cell 0-cell

An important and powerful implication of duality is the fact that a primal may 
be represented and manipulated algebraically using its dual state. For example, 3-cells or 
volumes in a 3D SIS can be manipulated and represented by their dual state, the 0-cell or 
point.
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3. Current Topological Models

Current topological models used either explicitly or implicitly in SIS and 
CAD fields are rather similar, despite the fact that CAD models are more generally used 
for 3D modelling and SIS are predominantly concerned with 2D models.

In SIS, 2D phenomena are assumed to be a connected set of points and lines 
(or a graph) which can be embedded in a 2-manifold - thus creating a set of connected 
and unconnected (or internal areas) (Corbett 1975),(Corbett 1979),(White 1983) and 
(White 1984). The application of the dual concepts of boundary and coboundary as 
described in the last section, provides connectivity and adjacency. Internal areas are 
described by simple application of homology theory. The data structures employed in 
such models are abstracted from graph theoretic concepts. Examples of systems built 
around these principles include DIME (Corbett 1975), ARC/INFO, TIGRIS (Herring, 
1987), TIGER (Boudriault 1979).

In CAD and SIS surface modelling, even though 3D phenomena are being 
modelled, the current assumptions and resulting models are the same. The planar face of 
a 3D polyhedron is embedded in a 2-manifold and the embedded faces exist in 3D space 
resulting in a set of connected and unconnected (or internal) faces and volumes. The same 
application of the dual concepts of boundary and coboundary provides connectivity and 
adjacency e.g. (Corbett 1985) is a 3D extension of (Corbett 1975) and (Corbett 1979). 
Internal faces and volumes can be described by application of homology theory similar to 
that used for 2D SIS. The data structures employed in such models, such as the winged- 
edge model of (Baumgart 1975) and its later variants, e.g. (Braid et. al. 1978), (Woo 
1985) and (Weiler 1985) are also based on graph theory and have been used extensively 
in CAD.

Both of these topological models can be described as vector, edge or 
boundary data structures and the particular topological relationships which are modelled 
can be classified using a system of relationships between 0,1 and 2D primitives specified 
in (Baer et. al. 1979) - see figure 1. Analysis of figure 1 shows that the main topological 
models in use, the winged-edge model in (Baumgart 1975) and the 2D map model in 
(Corbett 1975) and (Corbett 1979), both model the same set of relationships - EV and EF 
(from EV can derive VE, VV and EE, from EF can derive FE and FF, and from EF and 
EV together can derive VF and FV). Note that EV and EF give connectivity and 
adjacency corresponding with the boundary/coboundary principles of the cell complex - 
both models are basic applications of the cell complex. Most practical models do allow 
useful extensions that would normally be excluded by pure cell complex theory. For 
example, "dangling" lines - lines which are not connected at one or both ends to any other
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line.

The algebraic structure provided by cell complex theory has been 
reinvestigated in (Egenhofer et. al. 1989) and (Frank and Kuhn 1986) using concepts 
specified in (Giblin 1977) and (Moise 1977). This work has been applied to geological 
layers in (Carlson 1986) and to algorithms for editing triangular irregular networks in 
(Jackson 1989). The stated approach to the construction and maintenance of the cell 
complex is different to that taken previously because the construction and maintenance 
operations on the complex use topological concepts only - distance and other metric 
notions are not required.

W VE VF

EE

VF EF FF

Figure 1-9 Relationships of (Baer, Henrion & Eastman 1979)

The intention is to avoid or at least minimize any inconsistency between the metric 
geometry and the topology that may be introduced by the limited precision arithmetic of 
computing devices (Franklin 1984). The other interesting aspect of (Egenhofer et. al.
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1989) is that the construction and maintenance techniques are dimension independent.

In all models the necessary topological descriptions of faces with internal 
faces and volumes with internal volumes are described by the application of another 
branch of algebraic topology known as homology theory, e.g. (Corbett 1975), (Corbett 
1979), (White 1983) and (Weiler 1985). Homology provides methods by which these 
internal faces and volumes may be detected by analysis of bounding cycles in cell 
complexes. In a wider sense homology groups give an indication of the connectivity 
present - internal faces and volumes may be regarded as homology group generators. In 
(Saalfeld 1989) other homology groups and additional homology theory are described 
and used in an attempt to determine the number of polygons resulting from the overlay of 
two maps.

4. Topological Relationships

What topological relationships may exist between abstract geometric 
primitives in euclidean 3-space? To answer a detailed question about the nature and type 
of all topological relationships is an attempt to classify the types and situations of 
manifolds. This is possible for R* (1-space) and R^ (2-space) however, R3 (3-space) 
has a number of quite difficult and unexpected situations which make general 
classification very difficult. See (Zeeman 1961) and (Alexandroff 1961). Fortunately, it 
is not necessary to attempt this. A number of assumptions about the nature of the 
relationships and the geometry of the n-cells involved can be made without limiting the 
power and application of the derived relationships. Specifically, only binary topological 
relationships between closed, connected (genus 0 - no internal holes) n-simplexes will be 
considered. The use of simplexes rather than cells is intuitive; simplicial complex theory 
is the starting point for the more generalized and advanced cell complex theory. Cells can 
be decomposed into simplexes in what is termed a simplicial decomposition, thus the 
results derived using simplicial complex theory can be generalized to cell complex theory 
via the decomposition.

In section 3, it was shown that cell complex theory as it is currently 
implemented in plane topology models allows a number of useful topological 
relationships such as adjacency and connectivity. In effect, cell complex theory allows n- 
dimensional adjacency (= connectivity in Rl), containment and the complement 
relationship of disjoint existing where no adjacency can be found. In essence, the main 
function of the cell complex is to allow specification of topological problems using 
algebraic methods, the definition of the algebraic operations being confined by the 
intersection rules (the set of allowable topological problems).

Point-set topology (classical topology) provides a much more intuitive view 
of topological relationships. In this paper, point-set binary topological relationships 
between 1-simplexes in R^, 2-simplexes in R^ and 3-simplexes in R^ are based on 
consideration of the fundamental boundary, interior and exterior point-sets of any n-
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simplex in Rn. Additional point-sets are formed generically by embedding the n-simplex 
and its fundamental point-sets for Rn , within Rn+l. Consideration of the possible 
intersections of these point-sets with the boundary point-set of a second n-simplex then 
gives the fundamental topological relationships. The relationships are point-set 
topological relationships because they are derived from the intersection of these 
fundamental point-sets only.

The resulting binary topological relationships are very detailed. A number of 
methods can be chosen to aggregate or subdivide them into a hierarchy of detail. The 
method of aggregation chosen in this paper is consistent with the topological notion of 
homeomorphism. Each of the resulting binary topological relationships is considered to 
be the union of the two n-simplex point sets involved. Some topological relationships are 
then homeomorphic and can be replaced by a single homeomorph. The resulting tree 
structure then provides two levels of detail, the most descriptive relationships being 
found at the "leaves" of the tree. Further subdivision and grouping could also occur by 
considering the dimension of the spatial intersection between the two n-simplexes in each 
relationship as proposed in (Egenhofer et. al. 1990).

In all of the following discussion, a 1-simplex is called an interval, a 2- 
simplex is called a face and a 3-simplex is called a volume.

Theoretical Background

All results used and derived in this section are for metric topological spaces 
since metric topological spaces are most commonly used for modelling purposes. Metric 
topological spaces are a subset of general topological spaces.

An n-simplex in Rn divides Rn into three useful and intuitive point-sets, well 
known in point-set topology; eg. (Kasriel 1971)

Interior ° set of an n-simplex C: a point x is an interior point of C provided 
there exists an open subset U such that x is an element of U and U is strictly contained 
within C. The union of all such points is the interior set

Boundary set 3 of an n-simplex C: C -

Exterior set of an n-simplex C: Complement of C.

A simple and complete method can be found for finding all topological 
relationships between two closed, connected n-simplexes. In (Pullar et. al. 1988), 
(Driessen 1989) and (Egenhofer et. al. 1990) only the intersection of the boundary and 
the interior point-sets of the two n-simplexes is used to derive topological relationships. 
In this paper, a more powerful and fundamental method is used which is based on the set
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intersection of the boundary, interior and exterior point-sets of an n-simplex nj and the 
boundary, interior and exterior sets of another n-simplex n2 in Rn . In practice, the 
derivation of relationships can be simplified by considering the possible set intersection 
of the boundary point-set of n^ and the interior, exterior and boundary point-sets of n^ 
since the boundary set of n^ naturally defines the interior and exterior point-sets of nj 
and governs their possible relationships with the sets of n^- Further detail can then be 
added to each relationship if required by considering the set intersection of the interior 
and exterior sets of n ̂  with those of n2-

Up till now the definitions of the fundamental point-sets of an n-simplex have 
been given in terms of an n-simplex in Rn, however in order to analyze intersections 
between n-simplexes in Rn+l it is necessary to consider what happens to the simplex and 
its point-sets in Rn when they are embedded in Rn+l. This is of particular importance to 
this research, since the aim is to derive topological relationships between 1-simplexes, 2- 
simplexes and 3-simplexes in R^.

The closed boundary and open interior and exterior point-sets of an n- 
simplex in Rn are all closed point-sets when considered relative to Rn+l since the union 
of these point-sets is an n-manifold equivalent to Rn, and Rn itself is a closed point-set in 
Rn+l. Since the intersection process is reliant upon the existence of these three point-sets 
then we have a problem, the solution to which can be found by considering the 
dimension of the n-manifold created from the union of these point-sets and the dimension 
of the space in which they to be embedded. In Rn, we are considering the intersection of 
the boundary, interior and exterior point-sets of two n-simplexes in the same n-manifold 
which is equivalent to Rn. In Rn+l, we consider not only the situation in Rn where both 
n-simplexes are in the same n-manifold, but also the complement situation which occurs 
when both n-simplexes are in different n-manifolds. Clearly any intersection between the 
boundary, interior and exterior point-sets of the two n-simplexes will always occur where 
the two n-manifolds meet, hence if the open/closed point-set properties of the interior, 
exterior and boundary point-sets of an n-simplex are considered strictly relative to the n- 
manifold formed by their union, then their open/closed point-set properties are preserved 
and can be used without loss of generality regardless of the dimension of the space in 
which the n-manifold(s) created from their union are embedded.

It is now necessary to find a simple and comprehensive way of analyzing the 
intersection possibilities between two n-simplexes in Rn+l excluding the subset formed 
specifically for Rn when both n-simplexes are in the same n-manifold. This can be done 
by choosing a specific embedding of such an n-manifold or equivalently Rn, in Rn+l. If 
Rn and Rn+1 are metric spaces with standard orthogonal basis vectors (or coordinate 
system axes) then if we choose the embedding such that the n orthogonal basis vectors of 
Rn are coincident with n of the n+1 orthogonal basis vectors of Rn+ l, then Rn 
disconnects Rn+ l into two open point-sets corresponding to the opposing directions of
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the n+lth orthogonal basis vector of Rn+ l. Using this fact the derivation method for 
possible intersections between n-simplexes in Rn+ * can be extended simply by 
considering those intersection combinations involving either or both of the two new 
point-sets resulting from the embedding.

In the summary of the theory and the rest of this paper, the generic term set is used in 
place of point-set. The theory can now be summarised in five steps as follows;

1. Formulate the boundary, interior and exterior sets of an n-simplex n j in Rn.
2. Derive basic relationships based on all possible set intersections of the boundary 
set of a second n-simplex ^2 anc^ ^e interior, boundary and exterior sets of the n- 
simplex nj from step 1.
3. Consider the union of the interior, exterior and boundary sets of any n-simplex 
in Rn as an n-manifold equivalent to Rn with the definition of the open/closed 
properties of these sets strictly relative to Rn.
4. Disconnect Rn+ l into two new open sets by choosing an embedding of Rn 
(created in step 3) in Rn+ l such that the n orthogonal basis vectors of Rn are 
coincident with n of the n+1 orthogonal basis vectors of Rn+l.
5. Derive additional relationships based on the possible set intersections of the 
boundary set of an n-simplex ^2 w^ *e boundary, interior and exterior sets of the 
a second n-simplex nj with the boundary set of n2 intersecting either or both of the 
two new sets predicted in step 4.

Intervals (l-simplexes)

The boundary, interior and exterior sets of an interval ij in R 1 are shown in 
figure 2.

D

Figure 2 - The exterior, boundary and interior sets of an 
interval in Rl

Note that there are two distinct closed boundary sets (B and D), two distinct open exterior 
sets (A and E) and a single open interior set (C). The union of the sets A,B,C,D and E is 
a 1-manifold equivalent to R*. All possible binary topological relationships between two 
intervals in R* can then be derived by choosing any two points x and y forming the 
boundary set of a second interval i^ either from the same set or each from a different set, 
and making these the boundaries of an interval joining them. The created interval \i will 
then either intersect interval \\ in some way or be disjoint from it. e.g. If both points x 
and y are chosen from set A (the left exterior set) then the created interval \i will not
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intersect ij. The unique combinations and their spatial interpretations are shown in figure 
3.

X •

Figure 3 - Possible choice combinations of the two boundary points x,y from the 
boundary, interior and exterior sets of an interval in Rl

From figure 3, it is possible to distinguish those choices which give distinct relationships 
and name these distinct relationships as follows; (8 = element of a set)

x £ boundary set B or D, y £ boundary set D or B -> ij equals \2
x,y £ exterior set A or E -> il and \i are disjoint
x,y £ interior set C -> ij contains 12
x £ exterior set A or E, y £ interior set C -> ij and \2 overlap
x £ exterior set A or E, v £ boundary set B or D -> \\ meets \i
x £ boundary set B or D, y £ interior set C -> i\ and \2 share

	common bounds

Note that these six relationships are the same as those derived in (Pullar et. al. 1988). The 
names given to the six distinct relationships are also taken from (Pullar et. al. 1988).

If we define the open/closed properties of these sets strictly relative to R1 
then these sets and the set relationships in R.1 are preserved when the five sets A,B,C,D 
and E whose union comprises R.1 are embedded in R.2. As for the new sets created by the 
embedding; if the embedding of R^ in R^ is chosen such that the basis vector of R^ 
corresponds to one of the two orthogonal basis vectors of R^, then R^ will be divided 
into two open sets F and G, separated by a third set corresponding to Rl. The situation is 
shown in figure 4. R! is represented by the line L.
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F 
D

X̂C

G

R2 
If

-4-

Figure 4 - New point sets F & G obtained by embedding Rl in R2

All possible binary topological relationships between intervals in R^ can be 
derived in the same way as for Rl, by choosing two points either from the same set or 
from a different set and making these the boundary of an interval. Since those 
relationships derived in R! apply without modification in R^, only the new combinations 
where x,y are elements of either or both sets F and G will be considered.

The set relationships can be divided into groups by examination of figure 4. 
The first group occurs when both boundary points are in the sets A,B»C,D or E which 
comprise R* (the line L) and has already been considered above. The second group 
occurs when either one or both of the boundary points of \^ are contained within either F 
or G. The spatial situation corresponds to the interval \^ being either left or right of the 
line L. The possible combinations and their spatial interpretations are shown in figure 5a.

B D
Figure 5a - Intersection between the boundary point y of interval i2 and

the boundary, interior and exterior sets of interval il when boundary 
point x of i2 is always chosen from the point set F (or equivalently, G).

The following set relationships may be distinguished based upon which sets the 
boundary points x and y intersect;

x£ set F, y£ setF OR
x£ set G, y£ setF OR
x e set F or set G, y e exterior set A or E ij and \i disjoint
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x£ set F or set G, y £ boundary set B or D 
* £ set F or set G, y £ interior set C

-> 11 meets 12
-> ii intersects \i

The third group occurs when one of boundary points of \2 is an element of F and the 
other is an element of G, indicating that the interior set of interval \2 intersects the line L 
(the boundary, exterior and interior sets of ij) at a point. The possible combinations and 
their spatial interpretations are shown in figure 5b.

D

Figure 5b - Intersection between the interior set of interval 12 and
the boundary, interior and exterior sets of interval il when x and y 
are chosen from the point sets F and G respectively.

The three resulting relationships are distinguished according to which set of ii that the 
interior of \2 intersects (in fact, the three possible relationships between a single point and 
the interior, boundary and exterior sets of an interval);

x 6 set F, y £ set G, intersect exterior set A or E
x £ set F, y £ set G, intersect boundary set B or D
x £ set F, y £ set G, intersect interior set C

-> ij and \2 disjoint
-> ii intersects \2
-> ii and \2 cross

By consideration of both these groups, the only new relationships which result are 
intersect and cross, making a total of 8 relationships between intervals in R^. For R^ 
also, no new relationships result because embedding the scheme for R^ shown in figure 
4, in R3 produces two new sets as a result. The same process of reduction for R^ reveals 
no new relationships - hence there are eight relationships between intervals in R^.

To reduce these 8 relationships in detail, the union of the boundary and 
interior points-sets of ii and \2 is considered. Relationships can then be eliminated which 
are homeomorphic. For intervals, this results in relationships; meet, overlap, contains, 
equal, common-bounds all being homeomorphic to a single interval. Thus, the complete 
two layer hierarchy of binary topological relationships between intervals (1-simplexes) in 
R3 is shown in figure 6.
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disjoint cross intersect

meet commonbounds concur overlap equal

Figure 6 - The eight unique binary topological relationships between 1-cells 
inR3

Faces (l-simplexes)

The boundary, interior and exterior sets of a face (or 2-simplex) a i in R^ are 
shown in figure 7.

A
B

Figure 7 - Exterior (A), Boundary (B) and Interior (C) point-sets of a face in R2

Note that there is a single closed boundary set (B), a single open exterior set (A) and a 
single open interior set (C). The union of sets A,B and C is a 2-manifold equivalent to
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R.2. All possible binary topological relationships between faces in R^ can then be derived 
from the possible set relationships between the boundary, interior and exterior sets A, B 
and C of a\ and the boundary set X of &2- e.g. if the boundary set X of a2 is contained 
within the interior set C, then the face a% will be contained within aj. The combinations 
matrix showing the possible relationships between the boundary of the face &2 and the 
exterior, boundary and interior sets A,B, and C of aj is shown in table 1.

Exterior A

Boundary B

Interior C

X

X

X

X

X

X

X

X

X

X

X

X

Table 1: Set intersection relationships between the boundary set of a2 
and the interior, exterior and boundary sets of al in R2

Note that the seventh relationship in the last column of table 1 is not possible 
in R~ because of the restriction to closed, connected faces.

The six distinct relationships and their names are the same as those in 
(Egenhofer et. al. 1990). The spatial interpretations are shown in figure 8.

af

equal

overlap meet commonbounds

Figure 8 - Six possible relationships between faces based on the intersection of 
the boundary set of face a2 and the exterior, boundary and interior sets 
of face al in R2
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Figure 9 - New point sets D & E obtained by embedding the union 
of the boundary (B), exterior (A) and interior (C) of a face 
al in R3 (A U B U C = R2).

If we define the open/closed properties of these sets strictly relative to R2 
then these properties and the set relationships in R2 are preserved when the 2-manifold 
(equivalent to R2) formed by their union is embedded in R^. If the embedding is chosen 
such that any two orthogonal basis vectors of R2 are coincident to two of any three 
orthogonal basis vectors of R3 then R2 disconnects R3 into two open sets with the third 
open set corresponding to R2 itself. The situation is shown in figure 9.

All possible binary topological relationships between faces in R3 can be 
derived in the same way as for R2, by considering the possible set relationships between 
boundary set of a face &2 and the boundary, interior and exterior sets of the face aj plus 
the two new sets D and E which result from embedding R2 in R3 . Since all set 
relationships derived for R2 are preserved in R3 , only the combinations involving the 
new sets D and E will be considered.

By examination of figure 9, the set relationships can be divided into two 
groups. The first group represents the situation where the boundary set X of a2 is 
contained within the plane P formed from the union of the interior, exterior and boundary 
sets of aj. This situation corresponds to faces in R2 and was considered above. The 
second group corresponds to the situation where the boundary set X of &2 intersects 
either D or E but not both. This corresponds to the spatial situation where &2 *s 
completely on one side of the plane P formed by the boundary, interior and exterior sets 
A,B and C of aj. In this situation, the boundary set X of &2 may intersect the plane P and
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hence the boundary, interior and exterior sets A,B and C or not at all. All combinations 
are shown in table 2.

12345678

Exterior A

Boundary B

Interior C

Above D

Below E
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 2: Set intersections between the boundary set X of a2
and the interior (A), exterior (B) and boundary (C) sets of al in R3 when al
intersects only one of the sets D or E.

Figure 10 - Relationships formed by the intersection of the boundary set X of a face a2 
with the boundary, interior and exterior sets (A3 and C) of a face al when 
the boundary set of of the face intersects the point-set D (or E). a2 is shown 
shaded, however only the black outline is the boundary set of a2
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Since the topological relationships are the same no matter which set D or E on 
either side of the plane P the boundary set of &2 intersects, the combinations are shown in 
the table with the marker offset between D and E. Note that relationship 7 is not possible 
between two closed connected simplexes. The other seven relationships are shown 
spatially in figure 10.

The third group of relationships occurs when the boundary set X of &2 
intersects both D and E and hence must intersect the sets A,B and C of a j at an interval 
whose boundaries correspond to two points from the boundary set X of &2 and interior 
corresponds to the interior set Y of &2- The possible combinations between the boundary 
set X of &2 and the boundary, interior and exterior sets A,B and C of aj when the 
boundary set X intersects both D and E as well, are shown in table 3.

10 11 12 13 14 15

Exterior A

Boundary B

Interior C

Above D

Below E

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 3: Set Intersections between the boundary of set X of a2 and the 
exterior (A), boundary (B) and interior(C) sets of al in R3 when the 
boundary of a2 intersects both of the sets D and E.

The spatial interpretations are shown in figure 11. Note that for relationship 
10 in column two, the interior set of the face &2 mav be used to derive a second 
possibility. These relationships are marked lOa and lOb in the spatial interpretations of 
these relationships, shown in figure 11. In addition, relationship 14 is not possible 
between closed, connected faces.

By examination of all relationships in figures 8, 10 and 11, the number of 
unique relationships between faces in R^ is fourteen since relationships 1,4 and 11 are 
particular types of the disjoint relationship shown in figure 8 and relationships 3, 6 and 
13 are particular types of the meet relationship shown in figure 8.
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Figure 11 - Relationships formed by the intersection of the boundary set X of a face a2 
with the boundary, interior and exterior sets (A3 and C) of a face al when 
the boundary set of of the face intersects both point-sets D and E (passes through! 
the plane P formed from the union of the boundary, interior and exterior sets of al. 
Although a2 is shown shaded, only the black outline is the boundary set

To reduce these fourteen relationships in detail, the union of the boundary 
and interior points-sets of aj and a2 in each relationship is considered. Relationships 
which are homeomorphic can then be reduced to their homeomorphs. Thus, the complete 
two layer hierarchy of binary topological relationships between faces (2-simplexes) in R^ 
is shown in figure 12.

Volumes (3-simplexes)

The boundary, interior and exterior sets of a volume (or 3-simplex) v^ in R^ 
are the same as for a face in R2 (Figure 7). There is a single closed boundary set (B), a 
single open exterior set (A) and a single open interior set (C) just as there was for faces in 
R2 in the previous section. The union of sets A,B and C is a 3-manifold equivalent to 
R^. All possible binary topological relationships between volumes in R^ can then be 
derived from the possible set relationships between the boundary, interior and exterior
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Figure 12 - Hierarchy of 
topologicalrelationships between 
faces in R3.
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sets A, B and C of v\ and the boundary set X of \2- e-S- ^ ̂ e boundary set X of \2 *s 
contained within the interior set C, then the volume \2 will be contained within \\. The 
combinations matrix showing the possible relationships between the boundary of a 
volume \2 and the exterior, boundary and interior sets A,B, and C of v^ is shown in 
table 4.

Exterior A

Boundary B

Interior C

X

X

X

X

X

X

X

X

X

X

X

X

Table 4: Set intersection relationships between the boundary set of v2 
and the interior, exterior and boundary sets of vl in R3

Note that the seventh relationshi p in the last column of table 4 is not possible 
in R.3 because of the restriction to closed, connected volumes. Not surprisingly the 
relationships are the same as those between closed, faces in R .

The six distinct relationships and their names are the same as those used in 
(Egenhofer et. al. 1990). The spatial interpretations are shown in figure 13.

overlap meet

commonbounds

Figure 13 - Six fundamental relationships between the boundary
set of a volume v2 and the boundary, exterior and interior 
sets of a volume vl
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Note that is also possible to use the sixteen different boundary-interior set 
intersection combinations and the theory shown in (Egenhofer et. al. 1990), to derive the 
same eight relationships between volumes or 3-simplexes. The only change in the theory 
required is the use of an extension of the Jordan-Brouwer separation theorem to Ry, 
given in (Alexander 1924).

To reduce these 8 relationships in detail, the union of the boundary and 
interior sets of vj and \2 m each relationship is considered. Relationships which are 
homeomorphic can then be eliminated. For volumes in R^, this results in meet, overlap, 
contains, equal and common-bounds all homeomorphic to a single volume.

5. Conclusions and Future Research

The final aim of this research is a compact and powerful spatial information 
system for 3D modelling and analysis. Since topological situations in 3-space are 
complex and difficult, a natural starting place for the development and investigation of a 
3D neighborhood topological model is to limit the types of relationships to those that may 
occur between simplexes since they may be generalized to complex problems via a 
simplicial decomposition. The topological relationships limiting the cell complex as 
currently used in 3D topological models for SIS and CAD have been described. To 
provide a better theoretical basis for 3D situations, a generic and reusable method for 
deriving fundamental point-set topological relationships between two closed, connected 
n-simplexes (genus zero) in Rn+ l (and higher dimensions) has been developed. The 
generalized method of derivation can be summarised in two steps;

1. Consider the set intersection of the boundary set of a single n-simplex r\2 
with the boundary, interior and exterior sets of a second n-simplex nj in Rn.

2. Extend these relationships by including either or both of the two additional 
sets created by embedding the n-manifold created from the union of the boundary, 
interior and exterior sets of nj in Rn+1.

Using this method, the derived sets of binary topological relationships for R^ 
have been presented as a two-layer hierarchy. Relationships in the first layer are created 
by considering the union of the boundary and interior sets of the two n-simplexes and 
replacing those relationships in the second layer which are homeomorphic with a 
homeomorph. The results are as follows;

Second Layer - Fundamental First Layer - Aggregated 
o

1-simplexes in RJ 8 4
**

2-simplexes in R-3 14 4
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3-simplexes in R^ 6 2

It is interesting to note that the relationships between 3-simplexes verify the 
correctness of the extended set of relationships between faces or 2-simplexes in R.3. Each 
relationship between faces or 2-simplexes implied by the eight 3-simplex relationships is 
predicted within the extended set of 2-simplex face relationships. Similarly, the 
relationships between 2-simplexes verify the extended set of 1-simplex relationships in 
R3.

Future research will concentrate on the development of a 3D neighborhood 
topological model for SIS, the basis for the modelling sufficiency and analytical power of 
this model will be the relationships derived in this paper. In addition, other hierarchies of 
these relationships based on set and order theory will be investigated.
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Abstract

This paper presents the first fully dynamic and reactive data structure. Reac 
tive data structures are vector based structures tailored to the efficient storage 
and retrieval of geometric objects at different levels of detail. Geometric se 
lections can be interleaved by insertions of new objects and by deletions of 
existing objects. Detail levels are closely related to cartographic map general 
ization techniques. The proposed data structure supports the following gener 
alization techniques: simplification, aggregation, symbolization, and selection. 
The core of the reactive data structure is the Reactive-tree, a geometric index 
structure, that also takes care of the selection-part of the generalization. Other 
aspects of the generalization process are supported by introducing associated 
structures, e.g. the Binary Line Generalization-tree for simplification. The 
proposed structure forms an important step in the direction of the develop 
ment of a seamless, scaleless geographic database.

1 Introduction

The deficiencies of using map sheets in Geographic Information Systems are well- 
known and have been described by several authors [5, 10]. The obvious answer to 
these deficiencies is a seamless or sheetless database. A seamless database is made 
possible in an interactive environment by using some form of multi-dimensional in 
dexing, e.g. the R-tree [15] or the KD2B-tree [35]. It turns out that the integrated 
storage of multi-scale (scaleless) data in a spatial indexing structure forms the bot 
tleneck in the design of a seamless, scaleless database [14]. A first approach might 
be to define a discrete number of levels of detail and store them separately each with 
its own spatial indexing structure. Though fast enough for interactive applications, 
this solution is not particularly elegant. It introduces redundancy because some

*A part of this work was done while the author was at the Department of Computer Science, 
University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands.
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a. Scale 1:25,000 b. Scale 1:50,000

Figure 1: The Map Generalization Process

objects have to be stored at several levels. Apart from the increased memory usage, 
another drawback is that the data must be kept explicitly consistent. If an object is 
edited at one level, its "counter part" at the other levels must be updated as well. 
In order to avoid these problems we should try to design a storage structure that 
offers both spatial capabilities and multiple detail levels in an integrated manner: 
a reactive data structure. Two spatial data structures, that provide some limited 
facilities for multiple detail levels, are known: the Field-tree [9, 11] and the reactive 
BSP-tree [33, 34]. However, these are not fully dynamic.
First, we will discuss some of the fundamental problems associated with detail levels 
in a multi-scale database. The concept of multiple detail levels can not be defined 
as sharply as that of spatial searching. It is related to one of the main topics in 
cartographic research: map generalization; that is, to derive small scale maps (large 
regions) from large scale maps (small regions). Figure 1 illustrates the generalization 
process by showing the same part of a 1:25,000 map and of an enlarged 1:50,000 map. 
A number of generalization techniques for geographic entities have been developed 
and described in the literature [26, 30, 31]:

• simplification (e.g. line generalization);
• combination (aggregate geometrically or thematically);
• symbolization (e.g. from polygon to polyline or point);
• selection (eliminate, delete);

• exaggeration (enlarge); and

• displacement (move).

Unlike spatial searching, which is a pure geometric/topologic problem, map gener 
alization is application dependent. The generalization techniques are categorized 
into two groups [23, 26]: geometric and conceptual generalization. In geometric 
generalization the basic graphic representation type remains the same, but is, for 
example, enlarged. This is not the case in conceptual generalization in which the
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a. The global data b. The detailed data

Figure 2: The Place of Global and Detailed Data

representation changes, e.g. change a river from a polygon into a polyline type of 
representation.

Generalization is a complex process of which some parts, e.g. line generalization 
[21, 22], are well suited to be performed by a computer and others are more diffi 
cult. Nickerson [25] shows that very good results can be achieved with a rule based 
expert system for generalization of maps that consist of linear features. Shea and 
McMaster [31] give guidelines for when and how to generalize. Miiller [24] also ap 
plies a rule based system for selection (or its counterpart: elimination) of geographic 
entities. Brassel and Weibel [4] present a framework for automated map general 
ization. Mark [20], Miiller [23], and Richardson [29] all state that the nature of the 
phenomenon must be taken into account during the generalization in addition to 
the more traditional guidelines, such as: the graphic representation (e.g. number of 
points used to draw a line) and the map density. This means that it is possible that 
a different generalization technique is required for a line representing a road than 
for a line representing a river. It is important to note that the spatial data structure 
with detail levels, presented in this paper, is only used to store the results of the 
generalization process.

The guideline that important objects must be stored in the higher levels of the 
tree, is the starting point for the design of the Reactive-tree. This guideline was 
derived during the development of the reactive BSP-tree [33, 34] and is illustrated 
in Figure 2: the global data are stored in the top levels of the tree (gray area in 
Figure 2a) and the detailed data of the selected region are stored in the lower lev 
els of the tree (Figure 2b) in nodes which are "quite close" to each other. The 
Reactive-tree is an index structure, which supports geometric searching at different 
levels of importance. The properties of the Reactive-tree are described in Section 2, 
together with a straightforward Search algorithm. Insert and Delete algorithms are 
given in the subsequent section. Support for the generalization technique simplifi 
cation is provided by representing polygonal or polyline objects by a Binary Line 
Generalization-tree, see Section 4. Support for the generalization techniques aggre 
gation and symbolization is discussed in Section 5. In Section 6 the Alternative 
Reactive-tree is presented, not based on the guideline stated above. This paper is 
concluded with an evaluation of the presented structures.
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2 The Properties of the Reactive-tree

In the following subsection, it is argued that importance values associated with ob 
jects, are required. The two subsequent subsections give an introduction to the 
Reactive-tree and a formal description of its properties, respectively. The last sub 
section describes a geometric Search algorithm, which takes the required importance 
level into account.

2.1 Importance Values

Generalization is, stated simply, the process of creating small scale (coarse) maps out 
of detailed large scale maps. One aspect of this process is the removal of unimportant 
and often, but not necessarily, small objects. This can be repeated a number of 
times, each time resulting in a smaller scale map with fewer objects in a fixed region. 
Each object is assigned a logical importance value, a natural number, in agreement 
with the smallest scale on which it is still present. Less important objects get low 
values, more important objects get high values. The use of importance values for 
the selection of objects was first published by Frank [8].

Which objects are important is depends on the application. In many applications 
a natural hierarchy is already present. In the case of, for example, a road map 
these are: highways, major four-lane roads, two-lane roads, undivided roads, and 
dirt roads. Another example can be found in WDB II [12] where lakes, rivers, and 
canals are classified into several groups of importance. Typically, the number of 
levels is between five and ten, depending on the size and type of the geographic data 
set. In a reasonable distribution the number of objects having a certain importance 
is one or two orders of magnitude larger than the number of objects at the next 
higher importance level; a so called, hierarchical distribution.

2.2 Introduction to the Reactive-tree

Several existing geometric data structures are suited to be adapted for the inclusion 
of objects with different importance values, for example the R-tree [15], the Sphere- 
tree, and the dynamic KD2B-tree [35]. In this paper, the Reactive-tree is based on 
the R-tree, because the R-tree is the best known structure. However, if orientation 
insensitivity is important, then one of the other structures mentioned must be used. 
The Reactive-tree is a multi-way tree in which, normally, each node contains a 
number of entries. There are two types of entries: object-entries and tree-entries. 
The internal nodes may contain both, in contrast to the R-tree. The leaf nodes of 
the Reactive-tree contain only object-entries. An object-entry has the form

(MBR, imp-value, object-id)

where MBR is the minimal bounding rectangle, imp-value is a natural number that 
indicates the importance, and object-id contains a reference to the object. A tree- 
entry has the form

(MBR, imp-value, child-pointer)
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Figure 3: The Scene and the Rectangles of the Reactive-tree

where child-pointer contains a reference to a subtree. In this case MBR is the 
minimal bounding rectangle of the whole subtree and imp-value is the importance 
of the child-node incremented by 1. The importance of a node is defined as the 
importance of its entries. Note that the size of a tree-entry is the same as that of 
an object-entry. When one bit in the object-id/'child-pointer is used to discriminate 
between the two entry types, then there is no physical difference between them in 
the implementation. Each node of the Reactive-tree corresponds to one disk page. 
Just as in the R-tree, M indicates the maximum number of entries that will fit in 
one node, and m < IM/2] is the minimum number of entries. Assume that the 
page size is 1024, then M is 48 in a realistic implementation.

2.3 Defining Properties

In this subsection the defining properties of the Reactive-tree are presented. The 
fact that the empty tree satisfies these properties and that the Insert and Delete 
algorithms given in Section 3 do not destroy them, guarantees that a Reactive-tree 
always exists. The Reactive-tree satisfies the following properties:

1. For each object-entry (MBR, imp-value, object-id), MBR is the smallest axes- 
parallel rectangle that geometrically contains the represented object of impor 
tance imp-value.

2. For each tree-entry (MBR, imp-value, child-pointer), MBR is the smallest 
axes-parallel rectangle that geometrically contains all rectangles in the child 
node and imp-value is the importance of the child-node incremented by 1.

3. All the entries contained in nodes on the same level are of equal importance, 
and more important entries are stored at higher levels.

4. Every node contains between m and M object-entries and/or tree-entries, 
unless it has no brothers (a pseudo-root).
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Figure 4: The Reactive-tree

5. The root contains at least 2 entries unless it is a leaf.
It is not difficult to see that the least important object-entries of the whole data 
set are always contained in leaf nodes on the same level. In contrast to the R-tree, 
leaf nodes may also occur at higher levels, due to the more complicated balancing 
criteria which are required by the multiple importance levels; see properties 3, 4, 
and 5. Further, these properties imply that in an internal node containing both 
object-entries and tree-entries, the importance of the tree-entries is the same as 
the importance of the object-entries. Figure 3 shows a scene with objects of two 
importance levels: objects of importance 1 are drawn in white and the objects of 
importance 2 are drawn in grey. This figure also shows the corresponding rectangles 
as used in the Reactive-tree. The object-en tries in the Reactive-tree are marked 
with a circle in Figure 4. The importance of the root node is 3, and the importance 
of the leaf nodes is 1.

2.4 Geometric Searching with Detail Levels

The further one zooms in, the more tree levels must be addressed. Roughly stated, 
during map generation based on a selection from the Reactive-tree, one should try 
to choose the required importance value such that a constant number of objects will 
be selected. This means that if the required region is large only the more important 
objects should be selected and if the required region is small, then the less important 
objects must be selected also. The recursive Search algorithm to report all object- 
entries that have at least importance imp and whose MBRs overlap search region 
5, is invoked with the root of the Reactive-tree as current node:

1. If the importance of the current node TV is less than imp, then there are no 
qualifying records in this node or in one of its subtrees.

2. If the importance of the current node N is greater or equal to imp, then report 
all object-entries in this node that overlap 5.

3. If the importance of the current node N is greater than imp, then also in 
voke the Search algorithm for the subtrees that correspond to tree-entries that 
overlap 5.
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3 Insert and Delete Entry Algorithms

The Search algorithm is the easy part of the implementation of the Reactive-tree. 
The hard part is presented by Insert and Delete algorithms that do not destroy 
the properties of the Reactive-tree. In the implementation presented here, there 
is exactly one level in the Reactive-tree for each importance value, in the range 
from rain-imp to max jimp, where minjimp and max-imp correspond to the least 
and to the most important object, respectively. If necessary, there may be one or 
more tree levels on top of this, which correspond to importance levels max-imp + 
1 and higher. Then the top level nodes contain tree-entries only. Assume that 
tree-imp > maxjimp is the importance of the root of the Reactive-tree, then the 
height of the tree is tree jimp -f 1 - minJmp. The values of rain-imp and tree jimp 
are stored in global variables. In the algorithms described below, the trivial aspects 
of maintaining the proper values of these variables are often ignored. Because of the 
direct relationship between the importance and the level of a node in the Reactive- 
tree of this implementation, the impjvalue may be omitted in both the object-entry 
and the tree-entry.

3.1 Insert Entry

The Insert algorithm described below does not deal with the special cases: empty 
tree and the insertion of an entry with importance greater than tree-imp. Solutions 
for both are easy to implement and set the global variable tree-imp to the proper 
value. The Insert algorithm to insert a new entry E of importance Ejimp in the 
Reactive-tree:

1. Descend the tree to find the node, that will be called TV, by recursively choosing 
the best tree-entry until a node of importance E-imp or a leaf is reached. The 
best tree-entry is defined as the entry that requires the smallest enlargement 
of its MBR to cover E. While moving down the tree, adjust the MBRs of the 
chosen tree-entries on the path from the root to node N.

2. In the special case that node TV is a leaf and the importance N-imp is greater 
than E-imp, a linear path (with length N-imp — E-imp] of nodes is created 
from node TV to the new entry. Each node in this path contains only one entry. 
This is allowed, because these are all pseudo-roots.

3. Insert the (path to) new entry E in node TV. If overflow occurs split the node 
into nodes TV and TV' and update the parent. In case the parent overflows as 
well, propagate the node-split upward.

4. If the node-split propagation causes the root to split, increment tree-imp by 1 
and create a new root whose children are the two resulting nodes.

The node splitting in step 3 is analogous to the node splitting in the R-tree. A disad 
vantage of the Reactive-tree is the possible occurrence of pseudo-roots. These may 
cause excessive memory usage in case of a "weird" distribution of the number of ob 
jects per importance level; e.g. there are more important objects than unimportant 
objects.
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3.2 Delete Entry

An existing object is deleted by the Delete algorithm:
1. Find the node N containing the object-entry, using its MBR.
2. Remove the object-entry from node N. If underflow occurs, then the entries 

of the under-full node have to be saved in a temporary structure and the node 
N is removed. In case the parent also becomes under-full, repeat this process. 
It is possible that the node-underflow continues until the root is reached and 
in that case tree-imp is decremented.

3. Adjust the MBRs of all tree-entries on the path from the removed object-entry 
back to the root.

4. If underflow has occurred, re-insert all saved entries on the proper level in the 
Reactive-tree by using the Insert algorithm.

There are three types of underflow in the Reactive-tree: the root contains 1 tree- 
entry only, a pseudo-root contains 0 entries, or one of the other nodes contains 
m — I entries. The temporary structure may contain object-entries and tree-entries 
of different importance levels.

4 The Binary Line Generalization-tree

Selection, as supported by the Reactive-tree, can assure that only global and im 
portant polylines (or polygons) are selected out of a large-scale geographic data set, 
when a small-scale map (large regions) has to be displayed. However, without spe 
cific measures, these polylines are drawn with too much detail, because all points 
that define the polyline are used. This detail will be lost on this small-scale due 
to the limited resolution of the display. Also the drawing will take an unnecessary 
long period of time. It is better to use fewer points. This can be achieved by the 
k-th point algorithm, which only uses every k-th point of the original polyline for 
drawing. The first and the last points of a polyline are always used. This is to ensure 
that the polylines remain connected to each other in the nodes of a topologic data 
structure [3, 27]. This algorithm can be performed "on the fly" because it is very 
simple. The k can be adjusted to suit the specified scale. However, this method has 
some disadvantages:

• The shape of the polyline is not optimally represented. Some of the line 
characteristics may be lost if the original polylines contain very sharp bends 
or long straight line segments.

• If two neighboring administrative units are filled, for example, in case of a 
choropleth, and the k-th point algorithm is applied on the contour, then these 
polygons may not fit. The contour contains the re-numbered points of several 
polylines.

Therefore, a better line generalization algorithm has to be used, for instance the 
Douglas-Peucker algorithm [6]. Duda and Hart [7] describe an algorithm similar 
to the Douglas-Peucker algorithm and call it the "iterative end-point fit" method. 
Both references date back to 1973. A slightly earlier publication is given by Ramer 
[28] in 1972. These types of algorithms are time consuming, so it is wise to compute
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Error indicated within 
parentheses. The points Pj_ 
and PIO are implicit.

Figure 5: A Polyline and its BLG-tree

the generalization information for each polyline in a pre-processing step. The result 
is stored in, for instance, a Multi-scale Line Tree [17, 18]. The disadvantages of the 
Multi-scale Line Tree have already been discussed in [37]: it introduces a discrete 
number of detail levels and the number of children per node is not fixed. Strip 
trees [1] and Arc trees [13] are binary trees that represent curves (in a 2D-plane) 
in a hierarchical manner with increasing accuracy in the lower levels of the tree. 
These data structures are designed for arbitrary curves and not for simple polylines. 
Therefore, we introduce a new data structure that combines the good properties of 
the structures mentioned. We call this the Binary Line Generalization-tree (BLG- 
tree).

The BLG-tree stores the result of the Douglas-Peucker algorithm in a binary tree. 
The original polyline consists of the points pi through pn The most coarse approxi 
mation of this polyline is the line segment [pi,pn]- The point of the original polyline, 
that has the largest distance to this line segment, determines the error for this ap 
proximation. Assume that this is point pk with distance e?, see Figure 5a. pk and 
d are stored in the root of the BLG-tree, which represents the line segment [pi,pn ]. 
The next approximation is formed by the two line segments [pi,p/t] and [pfcj^n]- The 
root of the BLG-tree contains two pointers to the nodes that correspond with these 
line segments. In the "normal" situation this is a more accurate representation.
The line segments [pi,pjt] and [pfc,pn] can be treated in the same manner with respect 
to their part of the original polyline as the line segment [p1? pn ] to the whole polyline. 
Again, the error of the approximation by a line segment can be determined by the 
point with the largest distance. And again, this point and distance are stored in a 
node of the tree which represents a line segment. This process is repeated until the 
error (distance) is 0. If the original polyline does not contain three or more collinear 
points, the BLG-tree will contain all points of that polyline. It incorporates an 
exact representation of the original polyline. The BLG-tree is a static structure with 
respect to inserting, deleting and changing points that define the original polyline. 
The BLG-tree of the polyline of Figure 5a is shown in Figure 5b. In most cases, 
the distance values stored in the nodes will become smaller when descending the 
tree. Unfortunately, this is not always the case, as shown in Figure 6. It is not a 
monotonically decreasing series of values.

The BLG-tree is used during the display of a polyline or polygon at a certain scale. 
One can determine the maximum error that is allowed at this scale and the primitive
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Figure 6: Increasing Error in BLG-tree

is simplified and a good graphic representation is obtained. During traversal of the 
tree, one does not have to go any deeper in the tree once the required accuracy is 
met. The BLG-tree can also be used for other purposes, for example (further details 
can be found in [37]):

• Estimating the area of a region enclosed by a number of polylines.
• Estimating the intersection(s) of two polylines. This is a useful operation 

during the calculation of a map overlay (polygon overlay).
Note that the BLG-tree is most useful for polylines and polygons defined by a 
large number of points. For a small number of points, "on the fly" execution of 
the Douglas-Peucker [6] algorithm may be more efficient. For polylines that are 
somewhere in between, another alternative might be interesting. Assign a value to 
each point to decide whether the point is used when displaying the polyline at a 
certain scale. This simple linear structure is probably fast enough for the medium 
sized polyline.

5 Support for Other Generalization Techniques

The Reactive-tree and the BLG-tree reflect only a part of the map generalization 
process: selection and simplification. A truly reactive data structure also deals 
with other aspects of the generalization process. In this section two more aspects 
are discussed: symbolization, and aggregation. These terms may be confusing in 
the context of the Reactive-tree, because the tree is usually described "top-down" 
(starting with the most important objects) and map generalization is usually de 
scribed "bottom-up" (starting at the most detailed level). The two generalization 
techniques are incorporated in the reactive data structure by considering objects 
not as a simple list of coordinates, but as more complex structures. In practice, this 
can be implemented very well by using an object-oriented programming language, 
such as Procol [19, 32, 36, 37].
Symbolization changes the basic representation of a geographic entity, for example, 
a polygon is replaced by a polyline or point on a smaller scale map. Besides the 
coordinates of the polygon, the object structure contains a second representation in 
the form of a polyline or point. Associated with each representation is a resolution 
range which indicates where it is valid. An example of the application of the sym 
bolization technique is a city which is depicted on a small scale map as a dot and
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Figure 7: A Large Object is Composed of Several Small Objects

on a large scale map as a polygon.
The last generalization technique included in the reactive data structure is aggrega 
tion, that is the combination of several small objects into one large object. From 
the "top-down hierarchical tree" point of view, a large object is composed of sev 
eral small objects; see Figure 7. The geometric description of the large object and 
the geometric descriptions of the small objects are all stored, because there is no 
simple relationship between them. The large object is some kind of "hull" around 
the small objects, see Figure 7. Usually, a bounding box around the small objects 
is a sufficient "geometric search structure", because the number of small objects is 
limited. However, if the number of small objects combined in one large object is 
quite large, then a R-subtree may be used.

Aggregation is used, for example, in the map of administrative units in The Nether 
lands [37]. Several municipalities are grouped into one larger economic geographic 
region (EGR), EGRs are grouped into a nodal region, nodal regions are grouped 
in a province, and so on. Another approach to this case is to consider the bound 
aries as starting point of the design, instead of the regions. In that case selection is 
the appropriate generalization technique and the Reactive-tree can be used without 
additional structures.

6 An Alternative Reactive-tree

In this section a reactive data structure is presented, which is not based on the 
guideline that important objects must be stored in the higher levels of the tree. 
The advantage of the Alternative Reactive-tree over the Reactive-tree is that it does 
not assume a hierarchical distribution of the number of objects over the importance 
levels.
The 2D Alternative Reactive-tree is based on a 3D R-tree. The 3D MBR of a 2D 
object with importance imp is denned by its 2D MBR and its extents in the third 
dimension are from imp and to imp+8, where 8 is a positive real number, so an object 
corresponds to a block with non-zero contents (except for point objects). Figure 8 
depicts the 3D MBRs of a number of 2D objects at two different importance levels. 
When the parameter 8 is chosen very small, e.g. 0.01, the Alternative Reactive-tree 
tries to group the objects that belong to the same importance level. This can be 
explained by the fact that there is a heavy penalty on the inclusion of an object with
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Figure 8: The 3D MBRs of the Alternative Reactive-tree

another importance value, as the volume of the 3D MBR will increase by at least a 
factor (1 + S)/6. The larger 8 becomes, the less the penalty, and the more likely it 
is that objects of different importance are grouped, and the Alternative Reactive- 
tree behaves more like a normal 2D R-tree. In any case, all objects, important and 
unimportant, are stored in leaf nodes on the same level.

The Alternative Reactive-tree can be generalized to support objects with general 
labels instead of the hierarchical importance values. This enables queries such as 
"Select all capital cities in region R." The label capital is associated with some of 
the geographic objects, by inserting these entries into the tree. A Geographic object 
may be associated with more labels by inserting more entries for the same object. 
In the implementation, label corresponds to a numeric value. By choosing certain 
values for these labels and for £, possible coherence between labels may be exploited. 
This is what is actually done in the 2D Alternative Reactive-tree for hierarchically 
distributed data.

7 Discussion

This paper described the first fully dynamic and reactive data structure. It was 
presented as a 2D structure, but 3D and higher dimensional variants are possible. 
Note that this has nothing to do with the use of a 3D R-tree for the 2D Alterna 
tive Reactive-tree. The Reactive-tree and the Alternative Reactive-tree have been 
implemented in C++ on a Sun 3/60. Two large data sets have been used to test 
the reactive structures: WDB II [12] and the map of administrative units in The 
Netherlands. Both performance tests showed the advantage of the selection based 
on importance level and geometric position. Displaying the whole map area at in 
teractive speed was possible, in contrast to the situation where the normal R-tree 
was used, which also showed a lot of annoying details. The additional structures 
for the support of simplification, symbolization, and aggregation are currently being 
implemented. Future performance tests depend on the availability of digital maps 
with generalization information.
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Two other generalization techniques where not discussed: exaggeration and dis 
placement. Exaggeration seems easy to include, because it is a simple enlargement 
of an aspect of the graphic representation of one object, e.g. the line width. How 
ever, the enlargement of linear features may cause other features to be covered and 
they must therefore be displaced. Exaggeration and displacement are difficult to 
handle, because multiple objects have to be considered. An ad hoc solution is to 
associate an explicit set of tuples (displacement, map-scale-range) with each object 
that has to be displaced and a set of tuples (enlargement, map-scale-range) with 
each object that has to be enlarged. Further research is required in order to develop 
more elegant solutions.
Very recently, another reactive data structure has been proposed by Becker and 
Widmayer [2]. The Priority Rectangle File (PR-file, based on the R-file [16]) forms 
the backbone of their structure. A significant common characteristic of the PR- 
file and the Reactive-tree is that, in general, both store more important objects in 
higher levels. A few differences of the PR-file, compared to the Reactive-tree, are: 
objects of equal importance (priority) are not necessarily on the same level, and 
object-entries and tree-entries can not be stored in the same node.

Finally, other Reactive-trees should be considered which are able to deal efficiently 
with a non-hierarchical distribution of the number of objects over the importance 
levels, whilst sticking to the guideline that important objects are to be stored in the 
higher levels of the tree. This might be realized by changing the properties in such 
a manner that one tree level is allowed to contain multiple importance levels, but it 
is not (yet) clear how the Insert and Delete algorithms should be modified. This is 
subject to further research.
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INTEGRATION OF SPATIAL OBJECTS IN A GIS

Richard G. Newell, Mark Easterfield & David G. Theriault
Smallworld Systems Ltd,

8-9 Bridge Street,
Cambridge, England

CB2 1UA

ABSTRACT

A GIS is distinguished from other database systems in a number of 
respects, particularly in the requirement to handle spatial objects 
with extent. Whereas a common approach is to treat "geometry" and 
"attributes" separately, a more integrated approach is to treat the 
spatial aspect as but one part of an integrated data model which 
accommodates all objects and their attributes in a seamless manner. 
Spatial objects differ from other object attributes in that they usually 
have extent and therefore efficient retrievals cannot be achieved by 
the mechanisms implemented within database systems on their own. 
This paper addresses the problem of implementing efficient spatial 
retrieval methods within an integrated object data model. An 
improved quadtree mechanism for clustering objects on disk is also 
described.

INTRODUCTION

In recent years, the problem of organising large numbers of spatial 
objects in a database has become much better understood. It is now 
up to the system implementors to apply the known methods in real 
systems. However, although there are many algorithms described for 
indexing and storing spatial objects, there is little published 
information on how to apply the algorithms within the context of a 
complete integrated database system which would support a GIS. In 
particular, there is an almost total lack of clear descriptions of 
implementations within the realm of the relational model, although 
papers have been published which seem to get good results using 
this approach (Abel 1983 and 1984, Bundock 1987).

Older systems use a proprietary structure of sheets or tiles to 
organise their spatial data, but this leads to serious problems in large 
systems. A modern approach is to implement a spatial database 
which is logically seamless. Some systems separate out the geometric 
objects into a separate proprietary database which is specifically built 
for fast spatial retrievals, and then this is linked somehow to a 
database of attributes. It is our contention that this does not meet any 
criteria of integration. This does of course beg the question of what 
to do about the integration of spatially located data that is already 
committed to institutional databases and which needs to be
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accommodated within a GIS. We have no elegant answer to this 
problem.

Currently available relational database systems come under a lot of 
criticism for use with spatial data, on account of their apparent poor 
performance. However, in our view, the jury is still out on this issue, 
as, if appropriate data models are used, then acceptable spatial 
performance seems to be achievable (Abel 1983 and 1984), but this 
depends on the use to be made of the GIS. For relational databases, 
there are more serious issues than this to overcome, especially the 
management of long transactions and versioning (Easterfield et al 
1990).

It is significant however, that most commercial systems that use a 
commercial relational database system for holding spatial data 
employ a system of check out into a single user proprietary database 
before work starts, and they may even go one step further to employ 
a display file to gain adequate graphics performance.

We have been researching the implementation of fast spatial 
retrieval algorithms within the context of a version managed tabular 
database, which uses an interactive object oriented language for its 
development and customisation environment (Chance et al 1990, 
Easterfield et al 1990). Our approach has been to implement spatial 
retrieval methods in the system by using the normal indexing 
methods of the tabular database, without any ad hoc structures 
showing through to the system customiser and developer. We neither 
employ check out for reasons of handling multiple users nor do we 
need to employ a display file to achieve good performance.

HOW TO ACHIEVE FAST SPATIAL ACCESS

The nub of all spatial access algorithms (e.g. range trees, 
quadtrees, field trees, k-d trees etc) seems to be the same, in that if 
one can organise one's data somehow in the form of a tree structure, 
where each node of the tree corresponds to a subset of the area 
covered by its parent node, then candidate objects inside an area or 
surrounding a point can be found quickly. Such algorithms can 
retrieve an object in a time proportional to the logarithm of the 
number of objects in the database.

One approach is to provide an external spatial index into a database 
of objects which is not spatially organised. If one is retrieving many 
objects within say a rectangle, then the candidate objects can be 
identified very quickly, but retrieving the objects themselves is like 
using a pair of tweezers to extract each one from disk. The 
logarithmic behaviour still applies, but the constant term is very 
large because of disk seek time.

Thus, to gain the full benefit, the actual object data itself needs to 
be organised spatially on disk, by clustering the data, so that one can 
at least use a "shovel" to retrieve objects (bulk retrieval), instead of a 
pair of "tweezers" (random retrievals).

Certain methods of spatial indexing are structured so that each 
object is contained once only in the index. Other approaches

409



duplicate an object's entry in the index, based on sub-ranges of the 
total object. This has the advantage that candidate objects are more 
likely to be relevant, but the disadvantage that duplicates must be 
eliminated. (Abel 1983)

There does not seem to be a great performance difference 
between the many methods of indexing and clustering that have been 
described in the literature (Smith and Gao 1990, Kriegel et al 1990). 
The message is, just do anything in a tree structure and you will get 
most of the benefit, the rest is just tuning.

However, we are rather concerned with implementing such 
mechanisms within an overall integrated data model, where the 
peculiarities of particular methods are hidden, because if they are 
not, the complexity and cost of development is increased. In 
addition, as new spatial indexing mechanisms are discovered, these 
should be implementable independently of the overall data model.

SPATIAL KEYS IN TABULAR DATABASES

It is well known that it is possible to encode the size and position 
of an object in a unique spatial key, so that objects which are close to 
each other in space generate similar keys. Further, if objects with 
similar keys are stored at similar locations on disk, then the number 
of disk accesses required to retrieve objects can be greatly 
minimised.

Some methods lend themselves easily to the generation of a spatial 
key, such as a quadtree index and its many close variations (Samet 
1989). However, mechanisms such as range trees preclude this 
approach, indeed the actual structure produced depends on the 
order in which the database is created.

We have not investigated methods such as range trees for 
clustering objects, because they are ad hoc and it seems to us 
difficult to hide the storage mechanisms behind an acceptable 
interface for system developers.

It is common in a tabular database that records with similar 
primary keys are close to each other on disk, especially if the 
fundamental storage mechanism is something like a B*tree. Thus, if 
the most significant part of the primary key of all spatial objects is a 
spatial key, then the desired effects of spatial ordering on disk can 
be achieved (Abel 1983 and 1984, Libera & Gosen 1986). Further, 
topological relationships between objects (e.g. represented by an 
association table) can also be arranged to have the same spatial keys 
as parts of their primary keys so these will become spatially 
clustered as well.

However, the approach has one potential drawback. Consider the 
problem of changing the geometry of such an object in a way that its 
spatial key changes. Thus, making some, possibly minor, geometric 
edit could result in a change to the primary key, i.e. identity, of the 
object, resulting in problems of maintaining the overall integrity of 
the database. Modification of a primary key effectively means deletion 
followed by re-insertion.
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One might consider a storage mechanism where records are 
clustered according to a spatial key which is not a part of the 
primary key. While this would be satisfactory for extremely simple 
models (e.g. a single table of records with an auxiliary index for 
primary key retrievals) it would not cluster the records in the many 
association tables that exist in a richly connected data model.

A PRAGMATIC APPROACH

The idea of containing a spatial key within the identity of each 
object does not complicate other kinds of retrieval. As far as these 
procedures are concerned, a spatial key is no different from an 
ordinary key. Our pragmatic idea is that at the time an object is first 
created, we generate a spatial key as part of its unique identifier. The 
value of this identifier never changes from this point on, even if the 
location and geometric extent of the object is changed. The 
pragmatic part comes in that geometric edits are rare, and major 
changes in position or extent are even rarer. Thus the object rarely 
moves far in space, so why should it move far on disk? Thus an 
object's identity is a function of where it is born and we assume that 
it never moves far from its place of birth.

However, by doing this, spatial retrievals may become unreliable, 
because some objects which should be retrieved may be missed. Our 
solution to this is to have a single external spatial address table, with 
accurate spatial keys which are always maintained up-to-date, and it 
is this which is used to retrieve objects. The "sloppy" spatial key is 
no more than a clustering device, i.e. an accelerator to speed spatial 
search. In the worst case, if large parts of the geometry were 
modified significantly (e.g. following rectification), then the system 
may get slow, but it would still work correctly.

The method used to implement the index does not need to be the 
same as the method used to organise the clustering of the actual data 
so that, for example, a range tree index (Guttman 1984) could be 
used to index data which is clustered in a quadtree.

In our implementation, we use the same approach for both 
clustering the data on disk and for building the external index.

HOW TO GENERATE A SPATIAL KEY

As there seems to be general agreement that there is minimal 
difference in performance between the many tree-based approaches 
to spatial clustering, (Kriegel et al for example found differences of 
the order of 20% between the various methods that they 
investigated) then perhaps the next criterion could be to aim for 
simplicity. This therefore eliminates the range tree, because neither 
is it simple, nor is it easy to see how one generates a permanent, 
reproducible key from it. Smith and Gao found that methods based 
on B-trees were good on storage utilisation, insert speed and delete 
speed, but were inferior on search times. We suggest here a 
modification to the method of creating a key based on a linear 
quadtree which gives a worthwhile performance improvement
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without degrading the other performances, nor adding any undue 
complexity.

Now it is well known that point data can be incorporated in a 
Morton Sequence, which is directly equivalent to encoding the 
quadtree cell in which the point exists. A quadtree index is very good 
for encoding point data, because all points exist in the leaves of the 
tree (See figure 1) (see the MX quadtree in Samet 1989).

Coding Scheme 

Code for "A": 2133

Figure 1: Quad-tree Encoding of Point Object

Encoding spatial objects with extent in a quadtree can also be 
done, but many objects will exist near the root (see MX-CIF Quadtree 
in Samet 1989 and Batty 1990), thereby leading to them being 
included in many retrievals when they are not in fact relevant. For 
large databases, this leads to a degradation in retrieval performance. 
Samet's book contains a number of schemes for getting around this 
problem by allowing an object to exist in more than one quadtree 
node. However, this is not suitable for clustering the object data 
itself.

In our earlier researches we had investigated solving this problem 
by using a key based on a nine-tree in which each square is divided 
into 9 equal sized overlapping squares each of which is a quarter of 
the size (half the dimension) of its parent. Although it had the 
desired effect of not populating the root, the tree is not well 
balanced and the retrieval strategy is more complex. This in fact was 
the basic approach behind Bundock's paper (Bundock 1987).

We include here a simpler solution to this problem because we 
have not seen it described elsewhere. The idea is based on the fact 
that most objects are very small compared to the world. So in order 
to avoid trapping objects near the root of the tree, the subdivision 
method is modified so that each quadtree cell is divided into 4 parts 
which overlap slightly, i.e each quadtree sub-square is slightly more 
than half the dimension of its parent square (See figure 2). The 
overlap never needs to be more than the size of the largest object in 
the database, and in practice can be less than this. The optimum 
overlap depends on some statistic of the object size, such as the 
mean object size times a factor.
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Normal Quad-tree 
Key :0

Overlapping Quad-tree 
Key : 1244

Figure 2: Quad-tree Encoding of Object with Extent

This slight modification to the simple quadtree key is no more 
complex to program, but does lead to worth while performance 
improvements for retrieving objects inside an area and in finding 
objects surrounding a point compared to the simple quadtree key 
mechanism.

A DATA MODEL FOR CIS

Figure 3 below illustrates graphically a simplified data model. It 
should be regarded as just a part of the complete model required for 
a GIS application. A large number of users' requirements for 
modelling their geometry and associated topology can be handled by 
a generic model of this form. Where users differ from one another is 
in the modelling of their own objects and interrelationships. The 
philosophy is not that geometric objects, such as polygons, have 
attributes, but that real world objects can be represented 
geometrically by such things as polygons. In this diagram, a line with 
an arrow signifies a one-to-many or many-to-one relationship and a 
line with an arrow at both ends signifies a many-to-many 
relationship. Of course, in a physical implementation, a many-to- 
many relationship is implemented by means of an intermediate table, 
which itself should also be spatially clustered.

The diagram should be read starting from the top. For example, a 
real world object, such as a wood is represented by an area, which 
may be made up of one or more polygons (these polygons may have 
resulted from intersections with other polygons in the same 
topological manifold). It is possible that each polygon may have one 
or more "islands" such as a lake (i.e in this case, a lake is an island). 
The lake area would of course share the same polygon as used by the 
wood area. Polygon boundaries are represented by a closed set of 
links, each one connecting exactly two nodes.
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Figure 3: Spatially Indexed Topological Model

From the point of view of the system implementor, it is only the 
interrelationships of this model that he wishes to worry about, 
without himself being concerned with efficient spatial retrievals. 
However, if all entities in the model are identified by means of a key 
with spatial content, then the desired clustering of instances in each 
table will occur transparently. As it is common that objects which are 
topologically related are also spatially near to one another, disk 
accesses for topological queries should also be greatly reduced.

All that is needed in addition to this model is the external spatial 
index itself, which is merely a device for generating candidate keys 
for spatial retrieval. The point is that the spatial indexing method 
does not perturb the logical structure of the model.

In our implementation, the spatial index is a table, just like any 
other, which refers to real world objects, such as houses, lakes and 
utility pipe segments. A real world object may then have a number of 
different representations depending on such contexts as scale.

CONCLUSION

This paper has been concerned with the implementation of fast 
spatial indexing methods within the context of an integrated GIS 
data model. A design criterion has been to implement the spatial 
mechanisms without complicating other retrievals from the database. 
An approach is advocated based on a precise spatial index which can 
generate candidate keys within a tabular database whose primary 
keys contain a permanent, but "sloppy", spatial key. The external 
precise spatial index could be regarded as part of the data model, or 
could indeed be implemented as an entirely different mechanism. 
The method proposed for generating spatial keys is a minor

414



improvement to the simple quadtree, which we have described here, 
because we have not seen it published elsewhere.
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ALTERNATE REPRESENTATIONS OF GEOGRAPHIC
REALITY

Auto Carto 10 
Panel Discussion

Organizers:
Stephen Guptill, U.S. Geological Survey 

Scott Morehouse, E.S.R.I.

Participants:

Nicholas Chrisman, University of Washington
Michael Goodchild, University of California, Santa Barbara

Stephen Guptill, U.S. Geological Survey
Scott Morehouse, E.S.R.I.

Fran9ois Salge, IGN, France

THE DEBATE

Geographic information systems (GIS) are based on models of 
geographic reality. The functionality and utility of a GIS depends on a 
useful and correct data model. Data modeling involves the abstraction of 
reality as a number of objects or features, then defining these objects, their 
interrelationships, and behavior precisely.

The real world of geographical variation is infinitely complex and often 
uncertain, but must be represented digitally in a discrete, deterministic 
manner. Sometimes it is possible to define discrete features or objects in 
more or less rigorous fashion, but more often the digital representation is an 
abstraction of reality.

GIS databases present two very different views of reality. In one, 
geographical variation is represented by a set of layers, each of which 
records the pattern of one variable over the study area. If there are n layers, 
then n separate items of information are available for each and every point in 
the area. The variation in any one layer may be represented in numerous 
ways, including a raster of point samples, a set of nonoverlapping 
polygons, an irregular set of point samples, or a TIN.

In the second approach, we think of the world as a space populated by 
objects of various kinds - points, lines, and areas. Objects have attributes 
which serve to distinguish them from each other. Any point in the space 
may be empty, or occupied by one or more objects. GISs that take the layer 
view of the world often allow the user to populate a space with objects, but 
then insist that they be forced into the layer model.
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However, much of the recent work on object-oriented design for 
geographic databases has emphasized the syntax of geographic features and 
deemphasized the need for defining useful spatial query, display, and 
analysis operators. It may be more important to design the data model 
around what geographic objects do, rather than what they are.

One contention is that the purpose of a GIS is not only to store and 
query a static schema of entities and relationships, but also to build new 
entities and relations dynamically. Why, therefore, define, capture, and 
store relationships which can be computed as needed? More importantly, 
why define and capture relationships between entities for which there is no 
clear functional requirement? Perhaps the goal of GIS data model design 
should be to develop the simplest model that works.

The layer/object debate is becoming as important to the current GIS 
industry as the earlier raster/vector debate, and carries a fundamental 
message. Whereas the raster/vector debate was over how to represent the 
contents of a map in a database, the layer/object debate is over how to 
represent and analyze the multivariate complexity of geographic reality.

The panelists will present a wide variety of views on the layer/object 
debate from the perspectives of academia, industry, and government. Each 
has been involved in the design, development, and use of geographic 
information systems and geographic databases. The commentary will help 
the audience to clarify their thoughts on this important topic.
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WHAT'S THE BIG DEAL ABOUT GLOBAL HIERARCHICAL 
TESSELLATION?

Organizer: Geoffrey Dutton
150 Irving Street 

Watertown MA 02172 USA 
email: qtm@cup.portal.com

This panel will present basic information about hierarchical tessellations (HT's) as 
geographic data models, and provide specific details about a few prototype systems 
that are either hierarchical tessellations, global tessellations, or both. Participants will 
advocate, criticize and discuss these models, allowing members of the audience to 
compare, contrast and better understand the mechanics, rationales and significance of 
this emerging class of nonstandard spatial data models in the context of GIS. The 
panel has 7 members, most of whom are engaged in research in HT data modeling, 
with one or more drawn from the ranks of informed critics of such activity. The 
panelists are:

- Chairperson TEA
- Zi-Tan Chen, ESRI, US
- Nicholas Chrisman, U. of Washington, US
- Gyorgy Fekete, NASA/Goddard, US
- Michael Goodchild, U. of California, US
- Hrvoje Lukatela, Calgary, Alberta, CN
- Hanan Samet, U. of Maryland, US
- Denis White, Oregon State U., US

Some of the questions that these panelists might address include:

- How can HT help spatial database management and analysis?
- What are "Tessellar Arithmetics" and how can they help?
- How does HT compare to raster and vector data models?
- How do properties of triangles compare with squares'?
- What properties do HT numbering schemes have?
- How does HT handle data accuracy and precision?
- Are there optimal polyhedral manifolds for HT?
- Can HT be used to model time as well as space?
- Is Orthographic the universal HT projection?

Panelists were encouraged to provide abstracts of position papers for publication in the 
proceedings. Those received are reproduced below.

Combination of Global and Local Search strategy in Regular Decomposition Data 
Structure by Using Hierarchical Tessellation

Zi-Tan Chen, PhD
Environmental Systems Research Institute

380 New York St., Redlands, CA 92373, USA
Phone: (714) 793-2853
email: zitan@esri.com
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This presentation describes a role of hierarchical tessellation (HT) in a very large 
spatial data base. Large amount of spatial data can be indexed by regular 
decomposition data structures, like Quad Trees (QT), Quaternary Triangular Mesh 
(QTM), etc. All regular decomposition data structures have advantages of simple 
computation and elegant hierarchy, and facilitate global search.

On the other hand, most spatial features in the real world are irregular in shape and 
size. Therefore, an irregular decomposition data structure, for example a TIN, has more 
efficiency and impact in terrain surface feature representation. An irregular 
decomposition data structure usually has its own local neighbor finding properties. 
These properties can provide valuable fast local search in special cases. For instance, 
TIN has its own properties that make it easy to find a neighbor triangle from any given 
triangle. However, it is not easy to build a global search for a TIN, because its 
irregular shapes causes difficulties in building a hierarchy.

An optimal search strategy is a combination of the global and the local search in a 
large spatial data base environment. In this way, a search can benefit from both global 
hierarchical search and local neighbor finding properties.

The HT explores the local properties of a regular decomposition data structure. Based 
on knowledge of the HT, fast local search in regular data structure for features with ir 
regular shape becomes possible. This paper discusses the concept. As an example, 
some experimental results of quadtree indexes a TIN for search triangles are given.

Rendering and managing spherical data with Sphere Quadtrees

Gyorgy Fekete
SAR at National Space Science Center 
NASA/Goddard Space Flight Center

Greenbelt, MD 20771 
email: gyuri@ncgl.gsfc.nasa.gov

Most databases for spherically distributed data are not structured in a manner 
consistent with their geometry, as a result, such databases possess undesirable 
artifacts, including the introduction of "tears" in the data when they are mapped onto a 
flat file system. Furthermore, it is difficult to make queries about the topological 
relationship among the data components without performing real arithmetic. The 
sphere quadtree (SQT), which is based on the recursive subdivision of spherical 
triangles obtained by projecting the faces of an icosahedron onto a sphere, eliminates 
some of these problems. The SQT allows the representation of data at multiple levels 
and arbitrary resolution. Efficient search strategies can easily be implemented for the 
selection of data to be rendered or analyzed by a specific technique. Furthermore, 
sphere quadtrees offer significant potential for improving the accuracy and efficiency of 
spherical surface rendering algorithms as well as for spatial data management and 
geographic information systems. Most importantly, geometric and topological 
consistency with the data is maintained.
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Implementing a Global GIS Using Hierarchical Tessellations

Michael F. Goodchild
National Center for Geographic Information and Analysis

University of California, Santa Barbara CA 93106
email: good@topdog.ucsb.edu

The QTM scheme described by Dutton and based on recursive subdivision of the faces 
of an octahedron provides a convenient and practical way of representing distributions 
over the surface of the earth in hierarchical, tesselated fashion. This presentation 
describes work at NCGIA Santa Barbara to implement a global GIS using a version of 
Dutton's scheme. The system makes use of the 3D display capabilities of a graphics 
workstation. Algorithms have been developed for the equivalent of raster/vector 
conversion, including filling, and the representation of lines in chain codes. Windowing 
is simple because of the basic transformations used to create the scheme, suggesting 
its use in tiling global databases. Examples are given of displays using the system, 
and of some simple forms of analysis.

The Truncated Icosahedron as the basis for a global 
sampling design for environmental monitoring

A. Jon Kimerling
Department of Geosciences

Oregon State University
Corvallis, OR 97331

Denis White
NSI Technology Services Corp. 

US EPA Environmental Research Laboratory
200 SW 35th St. 

Corvallis, OR 97333

A comprehensive environmental monitoring program based on a sound statistical 
design is necessary to provide estimates of the status of, and trends in, the condition 
of ecological resources. A systematic sampling grid can provide the adaptive capability 
required in a broad purpose monitoring program, but how shall the globe or large areas 
of it be covered by such a grid? Criteria for determining the cartography and geometry 
of the sampling grid include equal areas across the domain of sampling, regular and 
compact shape of sampling areas, and hierarchical enhancement and reduction of the 
grid.

Analysis of systematic subdivisions of projections of the Platonic solids (tetrahedron, 
hexahedron, octahedron, dodecahedron, and icosahedron) onto the globe show that 
subdivisions of the dodecahedron and icosahedron produced the most regular set of 
triangles, but differences among triangles are unacceptably large. In addition, analysis 
of Lambert azimuthal equal-area map projections for the triangular subdivision of each 
Platonic solid show that distortions in shape reach unacceptably large maximum 
values for each solid.

Acceptably small shape distortions (maximum about 2%) can be obtained by 
subdividing the globe into a truncated icosahedron, an Archimedean polyhedron 
(commonly used as the tessellation for soccer balls) consisting of twenty hexagons 
and twelve pentagons. A hexagon face of the truncated icosahedron can be positioned
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to cover the entire conterminous U.S.; adjacent hexagons cover Alaska and Hawaii. A 
hexagon from this model can be decomposed into a grid of equilateral, equal-area 
triangles whose vertex positions can be projected into geodetic latitude and longitude 
coordinates on the spheroid.

This triangular grid of sample points has advantages in spatial analysis over square or 
hexagonal grids. The geometry for enhancement and reduction provides for a 
hierarchical structure, and includes provision for density changes by factors of 3, 4, and 
7. Points in the triangular grid placed on the truncated icosahedron hexagon can be 
addressed with a hierarchical system based on the systematic decomposition from the 
hexagon, or by a system similar to the quadrangle labeling convention of the U.S. 
Geological Survey.

The Evolution of Geopositioning Paradigms

Hrvoje Lukatela
2320 Uxbridge Drive

Calgary, Alberta, CANADA - T2N 3Z6
email: lukatela@uncamult.bitnet

Numerical geopositioning paradigms, used in virtually all of the current geometronical 
systems, are derived by a simple-minded transplant of the procedures and numerical 
apparatus of the classical cartography into the realm of digital computing. Such 
systems suffer from two major faults:

1) Full functionality of their spatial modeling is restricted to a single planar area; 
usually less than one percent of the planetary surface. Modeling of the time-space 
relationships between the near-space objects and the terrestrial surface is imprecise 
and/or inefficient
2) Geometry relationship derived from the planar digital model is, at best, an imprecise 
approximation of the corresponding relationship in the object space; at worst, it is an 
exact opposite.

The purpose for the creation of most geometronical systems is no longer the auto 
mated production of an analog, graphical model, from which a human observer derives 
spatial relationships. In many disciplines, the human map user has been partially or 
completely replaced by a layer of discipline-specific software; layer which depends on 
the geometronical system - and its database - for the selection, manipulation and 
delivery of digitally encoded spatial information. Among the spatial processing 
requirements of a typical application system, two stand out:

1) From the numerical representation of spatial objects, their geometric relationships - 
unions, intersections, proximity sections, distances, etc. - must be derived, with at 
least an order of magnitude higher spatial resolution and precision than that which is 
employed by the measurements and activities carried out in the object-space.
2) Among a large number of objects, populating the digital model and its database, the 
system must select those that conform to a criterion based on the spatial extent of 
another, possibly transient, object. This criterion is frequently combined with non- 
spatial selection criteria.

HIPPARCHUS is one among a number of new numerical geopositioning paradigms, 
which provide these facilities, while avoiding the faults mentioned above. Its reference 
surface - and the data domain - is an ellipsoid of rotation; its repertoire of spatial 
primitives consists of points, lines and areas on the terrestrial surface, as well as the
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time-position relationship of the closed orbits and their sensor geometry.

In order to construct an index into a collection of objects, the domain is partitioned, and 
the fragment identifiers are used as the search arguments of either an implicit or 
explicit index table. Spherical or spheroidal surface partitioning presents a greater 
challenge than that of a planar one; beyond five Platonic solids, spherical surface can 
not be sub-divided into a finite number of regular polygons. The spherical surface can 
be partitioned using one of the two divergent structure classes: pseudo-regular 
(Pythagorean) or irregular (Platonic). Of the latter, spheroidal equivalent of the planar 
Voronoi tessellation - combined with the vector algebra based manipulation of the 
spherical coordinates - seems to yield an extremely efficient implementation of the 
critical spatial algorithms. It is, however, the combination .of both partitioning 
techniques that will likely provide a base for the future numerical geopositioning 
paradigms.
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DESCRIPTION AND SCOPE OF THE ISSUE

Technology currently allows us to process and display large volumes 
of information very quickly. Effective use of this information for analysis 
and decision making presupposes that the information is correct or 
reasonably reliable. Information on the quality of data is essential for 
effective use of GIS data: it affects the fitness of use of data for a particular 
application, the credibility of data representation and interpretation, and the 
evaluation of decision alternatives. The credibility of spatial decision 
support using GIS may indeed depend on the incorporation of quality 
information within the database and the display. As Goodchild (1990) states 
the best insurance will be to sensitize the GIS user community to accuracy 
issues and to develop tools which allow spatial data handling systems to be 
sensitive to error propagation. Visualization should be explored as a 
method for capturing, interpreting and communicating quality information 
to users of GIS. Clearly, the quality of information varies spatially, and 
visual tools for display of data quality will improve and facilitate use of GIS. 
At present, those tools are either unavailable (in existing GIS packages) or 
not-well developed (error models and the process of visualization are only 
recently beginning to be addressed directly as research topics).

The quality of spatial data and databases is a major concern for 
developers and users of GIS (Chrisman, 1983). The quality of spatial 
information products is multidimensional, and relates to accuracy, error, 
consistency and reliability. Implications for spatial analysis and for spatial 
decision-making are too complex for a comprehensive inventory, but can 
be identified in theoretical work (for example in spatial statistics) as well as 
in GIS applications (for example in resource management). This paper 
presents an initial framework for discussion of the role of visualization for 
understanding and analyzing information about the quality of GIS data. 
The discussion will proceed from and expand upon the ideas presented 
here in a panel session at the meeting.

This paper represents part of Research Initiative #7, "Visualizing the 
Quality of Spatial Information", of the National Center for Geographic 
Information and Analysis, supported by a grant from the National Science 
Foundation (SES-88-10917); support by NSF is gratefully acknowledged.
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Our goal in this research panel is to bring together representatives 
from academia, federal agencies and the private sector to present their needs 
for knowledge about the quality of spatial data products. Discussion will 
focus on effective means to manage and visually communicate components 
of data quality to researchers, decision-makers and users of spatial 
information, particularly in the context of GIS. The intention is to consider 
a variety of perspectives on topics for a research agenda available to the 
general GIS community, and to hear the various sectors (educational, 
commercial and applications) express priorities for topics in the agenda.

THEMES FOR RESEARCH

Questions and impediments relating to the visualization of data 
quality conceivably cover a very broad ground. For example, issues of 
modeling and sensitivity analysis might be considered to determine what 
visual tools are appropriate for particular models, the opportunity for 
visualization to facilitate spatial analysis, and caveats to consider in 
implementing visual tools in modeling. The role of visualization in 
geographical analysis and its role in hypothesis testing and data exploration 
have been recently reviewed (Buttenfield and Mackaness, 1991), but these 
topics lie beyond a manageable scope for the panel. Instead, impediments 
and research priorities within four categories will be addressed. These 
include defining components of data quality, identifying impediments for 
maintenance of data models and databases, addressing representational 
issues, and evaluating particular user needs for data quality information.

Data Quality Components. Perhaps the most commonly cited component 
of data quality relates to measures of error. Commonly recognized errors 
include those associated with data collection(source error) and the 
processing of data for map compilation (process error). Information on 
source error is often discarded with the completion of map compilation. 
Process errors have proven difficult to analyze in many cases, for example 
in studies of digitizing error, or in modeling error associated with soil 
mapping (Fisher, 1991). In statistics, the concept of Least Squares Error has 
been applied to determine reliability (or what is called 'confidence') in 
hypothesis testing. A third error component (use error) is associated with 
the appropriate application of data or data products (Beard, 1989).

By some definitions, error (the discrepancy between measurement 
and true value) is much more difficult to assess than accuracy (the 
discrepancy between measurement and a model). The best examples of this 
may be found in determination of geodetic position, which until the 
development of GPS systems was limited to (albeit precise) projection of 
location with reference to a geodetic spheroid and datum. The Proposed 
Standard for Digital Cartographic Data Quality (Moellering, 1988) 
incorporates three accuracy measures (positional accuracy, attribute accuracy, 
and consistency) in addition to lineage and completeness.

A standard definition of data quality and its components may be 
difficult to agree upon, as the domain of an application will likely impact
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the user needs. For soils data, for example, requirements for consistent 
attribution of soil type are more readily evaluated than requirements for 
accurate positioning of soil parcel boundaries. For demographic data, where 
enumeration boundaries are determined by mechanisms unrelated to the 
particular variable at hand, just the converse may be true. Regardless, there 
should be consensus about some of the research priorities for this theme:

What visual tools are appropriate for particular error models? 

How can visualization facilitate monitoring of error propagation?

Data Models and Database Issues. Management of data quality within a GIS 
database requires attention during manipulation and update, and will likely 
impact upon the future architecture of such databases for implementation. 
Information about the information within a database is referred to as 
metadata, and has recently become a research issue in its own right (see for 
example Lanter and Veregin, 1990). The representation of data quality 
components in a data structure will not only have requirements to facilitate 
their visual display, but also must be implemented with efficient pointers 
and links to facilitate update operations. Analysis of error propagation 
might also be facilitated by visual display, and the design of these graphic 
tools may not be closely aligned with the design of conventional GIS 
graphics. This will be covered under the third theme presented below. 
Other questions arise:

How can the metadata be updated simultaneously with the data?

What database requirements must be implemented to accommodate 
real-time data quality representations for static GIS products, or for 
dynamic displays?

Can current data structuring alternatives accommodate changes to 
data and data quality in effective ways? How can links b/t data and 
data quality be preserved during database modification or update?

Representational Issues. The ease with which visualization tools may be 
integrated within GIS packages varies considerably depending on at least 
three issues, including the domain of the phenomena to be studied, the 
purpose or intent of the user, and the format of the GIS software 
(MacEachren, Buttenfield, Campbell, and Monmonier, 1991). This presents 
a substantial challenge to the system designer. Buttenfield and Ganter 
(1990) suggest that GIS requirements for visualization include conceptual, 
technological, and evaluatory solutions, which may be seen to vary over 
three broad domains: inference, illustration, and decision-making. Each 
presents a challenge to the integration of appropriate visualization tools.

Maps are a major tool for decision-making with GIS. Current GIS 
software includes functions to create cartographic output automatically or 
interactively. However, none of the current turnkey systems include 
mechanisms to ensure correct use of graphics functions. Poorly designed 
maps may convey false ideas about the facts represented by the data, and bias
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the decision-making process. Weibel and Buttenfield (1988) explore ways to 
improve the quality of GIS map products, and increase effectiveness of 
information transfer based on graphics. Their guidelines may provide only 
a rudimentary implementation for visualizing data quality. Research 
priorities that come to mind under this theme may involve both system 
benchmarking and cognitive evaluations, as seen for example by the 
following questions:

What design tools are appropriate for graphical depiction of 
data quality?

Will generation of realtime data displays during database 
update facilitate monitoring of error and error propagation?

How can the effectiveness of such displays be evaluated? For 
example, What is the utility of embedding data quality with 
data in graphic display? Can the two be merged, or is this too 
much of a cognitive challenge for effective interpretation?

Evaluation of User Needs. Ganter (1990) discusses visualization from a 
cognitive as opposed to graphical perspective, cautioning readers that 
discovery and innovation, which have traditionally involved thinking 
visually and producing images, increasingly benefit from GIS and CAD. He 
argues for the importance of understanding the human faculties which use 
pictures as tools in thinking. Science and engineering define problems, 
explain processes, and design solutions through observation, imagination 
and logic. Evaluation of user demands for data quality information will 
require sensitivity to the internal (perceptual and cognitive) mechanisms by 
which spatial and temporal patterns are interpreted.

Equally important is the need for sensitivity to the domain of the GIS 
application. For example, reliability associated with a routing of emergency 
dispatch vehicles will likely vary with each link of the route; this 
information must be presented with high precision and in a short 
timeframe. Reliability variations associated with the environmental impact 
of a timber clear-cut operation cannot be tied to a routed network, and 
variations may be interpolated as opposed to tabulated raw data. In this 
context, some research questions may be proposed:

What are expectations of GIS users regarding data quality displays?

How will visualization of data quality impact upon the reliability 
and credibility of spatial decision-making using GIS?

SUMMARY

With advances in technology, storage and displays mechanisms are 
now in place for real-time display not only of spatial pattern but also of the 
quality of the rendered data. Developments in software provide spatial 
inference and statistical explanation to the verge of providing models about
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the reliability and consistency of spatial interpretation, and this has paved 
the way for application of GIS to policy-making and decision support. There 
is a need and timeliness to consider data quality issues in the context of GIS. 
Our acuity for visual processing indicates that current technology in 
graphical display may assist our efforts to validate the decisions and results 
based on GIS analyses. The panel discussion is intended to present multiple 
viewpoints and to encourage the research and user community to address 
visualization of data quality as an attainable goal in the development of GIS.

REFERENCES CITED

Beard M K (1989) Use error: The neglected error component. Proceedings, 
AUTO-CARTO 9, Baltimore, Maryland, March 1989: 808-817.

Buttenfield B P and Ganter J H (1990) Visualization and GIS: what should 
we see? what might we miss? Proceedings, 4th International Symposium 
on Spatial Data Handling, Zurich Switzerland, July 1990, vol.1: 307-316.

Buttenfield B P and Mackaness WA (1991) Visualisation. Chapter II.a.4 in 
Maguire, D. Goodchild, M.F. and Rhind, D (Eds.) GIS: Principles and 
Applications. London: Longman Publishers Ltd. (in press)

Chrisman N R (1983) The role of quality information in the longterm 
functioning of a geographic information system. Cartographica 21(2): 79-87.

Fisher P F (1991) Modeling Soil Map-Unit Inclusions by Monte Carlo 
Simulation. International Journal of GIS (in press).

Ganter J H (1988) Interactive graphics: linking the human to the model. 
Proceedings, GIS/LIS '88, pp. 230-239.

Goodchild, M F (1990) Spatial Information Science. Proceedings, 4th 
International Symposium on Spatial Data Handling, Zurich, Switzerland, 
July 1990, vol.1: 3-12.

Lanter D P and Veregin H (1990) A lineage meta-database program for 
propagating error in geographic information systems. Proceedings GIS/LIS 
'90, Anaheim, California, November 1990, vol.1, 144-153.

MacEachren A E, Buttenfield B P, Campbell J C and Monmonier M S 
(1991) Visualization. In Abler, R. A., Olson, J. M. and Marcus, N. G. (Eds.) 
Geography's Inner World. Washington, D. C.: AAG (forthcoming).

Moellering, H (1988) The proposed standard for digital cartographic data: 
report of the digital cartographic data standards task force. The American 
Cartographer, 15(1) (entire issue).

Weibel, W R and Buttenfield B P (1988) Map design for geographic 
information systems. Proceedings, GIS/LIS 88, November 1988, San 
Antonio, Texas vol.1: 350-359.

427



A General Technique for Creating SIMD
Algorithms on Parallel Pointer-Based

Quadtrees

Thor Bestul
Center for Automation Research 

University of Maryland, College Park, MD 20742

Abstract

This paper presents a general technique for creating SIMD parallel 
algorithms on pointer-based quadtrees. It is useful for creating paral 
lel quadtree algorithms which run in time proportional to the height 
of the quadtrees involved but which are independent of the number 
of objects (regions, points, segments, etc.) which the quadtrees repre 
sent, as well as the total number of nodes. The technique makes use 
of a dynamic relationship between processors and the elements of the 
space domain and object domain being processed.

1 Introduction
A quadtree is a data structure for indexing planar data. It is a tree with 
internal nodes of degree four, where the root represents a planar rectangular 
region, and the four sons of each internal node represent the four quadrants 
of the node's region. Generally, each node stores some information about 
the region it represents and also a color, with the internal nodes being con 
sidered gray and the leaf nodes having some color derived from the data in 
their regions. A particular variety of quadtree is typically denned by giving a 
decomposition rule, which determines whether a region should be subdivided 
and the corresponding node given sons. For example, for quadtrees to repre 
sent binary images (i.e. region quadtrees), the rule is that if a region contains 
pixels with both binary values, it is decomposed and the corresponding node 
is an internal gray node with four sons. If a region consists entirely of only 
one the binary values, the corresponding node is a leaf node and has, say, 
the color black if the single value is 1 and white if it is 0. For our purposes, 
the division of a region into quadrants is always done uniformly, although 
the definition of quadtree does not necessitate this.

This paper describes a technique for creating quadtree algorithms in 
tended to run in a parallel processing environment with many processors 
sharing a single instruction stream (Single Instruction stream Multiple Data 
stream or SIMD) and possessing a general facility for intercommunication 
among the processors. The algorithms are for building and processing quadtrees 
stored with one quadtree node per processor, and with non-leaf node pro-
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cessors possessing pointers to the processors representing their sons. We call 
such a quadtree implementation a parallel pointer-based quadtree.

The target architecture consists of many (several thousand) processors 
each with a modest amount (a couple Kbytes) of local storage, and all of 
which simultaneously perform a single sequence of instructions in lockstep. 
The exception to this is that each processor can ignore instructions depending 
on the current values in its local memory. Each processor has access to 
anywhere within the local memory of any of the other processors. Thus if 
each processor possesses a pointer to data in some other processor's memory, 
they may all dereference their pointers in lockstep. Simultaneous reads of 
data from a single location are supported. Simultaneous writes of data to a 
single location are also supported, as long as a contention resolution operation 
is specified along with the write operation, such as summing the received 
values, min or maxing them, performing various boolean operations on them, 
or selecting one of them arbitrarily.

A fundamental operation used often in the following is that of processor 
allocation, in which a processor obtains a pointer to some other processor 
not in use and initializes its local memory in some fashion, causing it to then 
become part of the active computation underway. Processors can also be de 
allocated, meaning that they no longer contribute to the active computation, 
and lay idle waiting to be allocated again by an active processor. This can be 
done in parallel for many processors which desire to allocate other processors 
by using the rendezvous technique [4].

This algorithm creation technique combines two paradigms for parallel 
computation in the arena of spatial data structures and the objects they 
represent. One paradigm is space parallelism, in which the two or three- 
dimensional space represented by our data structure (in this case a quadtree) 
is divided up among the processors, each of which operates serially across the 
entire set of objects. The other paradigm is object parallelism, in which the 
set of objects involved is divided up among the processors, each of which 
operates serially across the entire space. The technique described here uses 
parallelism across both space and the set of objects. In order to accomplish 
this combination of paradigms the technique leans heavily on the facility 
of general intercommunication among processors, and in particular on the 
capability of the handling of multiple reads and writes.

The technique succeeds partially because of its use of a very fine-grained 
parallelism in which we have parallel processors distributed both across the 
spatial elements and across the objects in the object set. However, the tech 
nique only attains its full generality when we discover a mechanism to press 
beyond even this level of granularity when necessary, and to make use of a a 
dynamic relationship between processors and the elements of the space and 
object domains being processed.

2 A Degenerate Case
It is simplest to describe the algorithm creation technique by first describing a 
degenerate case of it. We use as an example problem the task of constructing 
a PR quadtree for a collection of points in a plane, and create a parallel 
algorithm for this task. In the construction of a PR quadtree, a node should
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be assigned the color gray and subdivided if more than one point lies within 
its boundary. A node should be white if it contains no points and black if it 
contains exactly one.

We allow a processor for each point, containing that point's coordinates, 
and initially have one processor to represent the root of the quadtree under 
construction. The algorithm consists of a single loop iterating from the top to 
bottom level of the quadtree being built, constructing all the quadtree nodes 
for each particular level at once. Each point processor contains a pointer to 
a node processor, and initially all the point processors point to the single 
root node processor. The algorithm is illustrated in Figures 1 through 4 for 
a small set of points.

For the first iteration of the loop, all points retrieve from the root node 
information about where the boundary of the region it represents lies, and 
then compute whether or not they lie within that boundary. All points 
outside of the root boundaries set their node pointers to null. All points 
with non-null node pointers then send the value "1" to the root node. These 
values are summed at the root node as they are received. The root node 
processor then checks this sum, and if it is greater than 1, meaning that 
more than one point lies within its boundary, it assigns itself the color gray, 
and allocates processors for its four son nodes. If the sum is 0 then the node 
assigns itself the color white, and black if the sum is 1. Each point then 
checks the node it points to (still the root node during this first iteration), 
and if it is gray, computes which quadrant of the node it is in, and fetches 
the corresponding son pointer. Each point processor now possesses a pointer 
to the node processor corresponding to the quadrant within which the point 
lies, if it lies in any, or has a null node pointer otherwise.

On the second iteration of the loop each point again sends the value "1" 
to the node to which it points, the nodes check the sums they receive, and all 
those nodes found to have more than one point within their boundaries are set 
to gray and allocate sons. Each point processor then selects the appropriate 
son to point to. This process is repeated moving down the quadtree being 
created until no node has more than one point within its boundary, or some 
limit on the number of quadtree levels has been reached.

Below is the PR-quadtree construction algorithm. The main procedure 
is 'PR_quadtree()'. This procedure takes as an argument a pointer to a node 
processor, which it uses as the root of the quadtree constructed. Only those 
point processors active when the routine is called are used for the construction 
of the quadtree. This is so that some subset of all the stored points could be 
selected as a basis for the quadtree, by having the routine called from within 
a parallel conditional statement. The effect of a conditional statement in 
a parallel context is to deactivate for the duration of the statement those 
processors whose currently stored values do not satisfy the conditional, as 
will be discussed below.

In the procedure 'PR-quadtree', every node is given a flag called live. At 
the beginning of each iteration of the procedure's loop, we set the live flag 
to true in all those nodes which have some point processor pointing lo them, 
and to false in all other nodes. Only those nodes for which lin is true are 
operated on during the rest of the iteration.

We give here a description of our programming paradigm mid algorithm 
notation.
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The algorithm is given as a procedure, possibly with other supporting 
procedures. There is no nesting of procedure declarations. Besides proce 
dures there are global variables; a variable is global if it is declared outside of 
any procedure. A procedure may return a value; if so, the type of the value 
is given before the 'procedure' keyword.

A variable can be either parallel or non-parallel; in the latter case we say 
that the variable is mono. Every parallel variable belongs to some particular 
parallel processor type, such as point processor or node processor. A variable 
is declared as mono with the construct "mono declaration''' and as parallel 
with the construct "parallel processor-type declaration'''. In certain contexts 
the default type is mono and in certain other contexts the default is parallel; 
in these contexts the prefixes "mono" or "parallel processor-type" may be 
omitted. Global declarations of variables are mono by default, so when global 
declarations of parallel variables are made the prefix "parallel processor-type'1 '' 
must be used, and furthermore the declarations must be given in a record- 
style block delimited by the keywords 'begin' and 'end'. Only one such global 
block of variables is permitted for each processor type. Each processor type 
has its own namespace for global variables.

If a variable is a pointer, both the pointer itself and the type of object 
pointed to can be either parallel or mono. The declaration "mono pointer 
mono integer p" specifies a simple mono pointer to a mono integer, and corre 
sponds to the usual notion of pointers in serial architectures. The declaration 
"mono pointer parallel apple integer p" specifies that 'p' gives a uniform off 
set into the storage of all processors of type 'apple' and that at that offset 
is found a parallel variable of type integer. The declaration "parallel apple 
pointer parallel orange integer p" specifies that the parallel pointer 'p' be 
longs to the processors of type 'apple', and that each instance of 'p' points 
to some datum of integer type in some processor of type 'orange'. The dec 
laration "parallel apple pointer mono integer p" specifies that the parallel 
pointer 'p' belongs to the processors of type 'apple' and that each instance 
of 'p' points to some mono integer datum.

Procedures can also be either parallel or mono. A procedure is specified as 
parallel by prefixing its declaration with "parallel processor-type", otherwise 
it is taken to be mono. The arguments, local variables, and return value of 
a mono procedure are taken to be mono by default. The arguments, local 
variables, and return value, if any, of a parallel procedure are by default 
parallel values. Furthermore, within the body of a parallel procedure, parallel 
global names are interpreted in the context of the processor type given in the 
procedure declaration. Any of the parameters, local variables, or return 
values of any procedure can be forced to be of some type other than their 
default by use the 'mono' and 'parallel' prefixes.

Declarations of procedure parameter types are given between the proce 
dure argument list and the procedure's 'begin' statement.

The construct "in.every processor-type do statement-list" causes precisely 
the set of all processors of the given type to become active at the beginning 
of the statement list. Furthermore, within the statement list the names of 
global variables are interpreted in the context of the given processor type. At 
the end of the statement list, the set of processors which were active before 
the statement list was entered is re-established as the active set.

The are two variants to "in_every". One is "in_every boolean-expression
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processor-type do statement-list" and the other is "in_every processor-type 
having boolean-expression do statement-list". Both are equivalent to "in_every 
processor-type do if boolean-expression then statement-list".

Outside of a parallel procedure for a given type or an 'in_every' statement 
for a given processor type, use of parallel global variable names for that 
processor's type is considered an error.

In the construct "if conditional then statement-list", if the conditional 
is a parallel expression (one involving parallel variables or values), then the 
subset of the present active set of processors whose current values satisfy 
the conditional are made the active set at the beginning of the statement 
list. At the conclusion of the statement list, the set of processors which were 
originally active is re-established as the active set.

When a parallel procedure is called, the set of processors active at the 
time of invocation will be the set active at the beginning of the execution of 
the procedure body.

If 'p' is a pointer to a processor, and 'f is a parallel variable in the 
processors of the type of that pointed to by 'p', then the notation 'f<p>' 
indicates the value of the variable 'f' in the particular processor pointed to 
by'?'.

The symbol '<—h' indicates an assignment statement involving a possibly- 
multiple write, and in which the write contention is to be resolved by sum 
ming the multiply-written values. There are other similar assignment sym 
bols such as '<-or' and '<-min'.

The algorithm is as follows:

node I I pointer node father;
node I I pointer node array son[4];
node I I integer level;
node I I node_color color;
node II real left, right, bottom, top;

point I I real x, y;

node II procedure allocate_sons();
/* Allocates four sons for each node active when

the procedure is called and fills each node's
son array accordingly. */

procedure PR_quadtree(root) 
pointer node root;
/* Builds a PR quadtree for all the points which are in 

allocated point processors. Assumes that root points to 
a node whose level and boundary have been initialized, 
and uses this node as the root of the quadtree 
constructed. */ 

begin
node I I integer total; 
point I I pointer node node_ptr; 
point II integer my_quadrant; 
integer 1;

/* Make all points within the root's boundary point to the
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root, give all other points NULL node pointers. */ 
in_every point do 
begin

node_ptr <- NULL;
if x >= left<root> and x <= right<root> and

y >= bottom<root> and y <= top<root> then 
node_ptr <- root; 

end;

/* Loop from level of root to bottom. */

for 1 <- level<root> downto 0 do 
begin

/* Initialize point total for all nodes on present
level to zero. */ 

in_every node having level = 1 do 
total <- 0;

/* Each point contributes 1 to the point total for the
node containing it. */

in_every point having node_ptr <> NULL do 
total<node_ptr> <-+ 1;

/* Nodes with no points in them are white. Nodes with 
one point in them are black. Nodes with more than 
one point in them are gray. If we're not at the bottom 
level we allocate sons for the gray nodes. */ 

in_every node having level = 1 do 
begin

if total = 0 then color <- WHITE 
else if total = 1 then color <- BLACK 
else begin

color <- GRAY;
if 1 > 0 then allocate_sons(); 

end; 
end;

/* If at bottom level then we're done. */ 
if 1 = 0 then return;

/* The points in each gray node divide themselves among
the sons. */ 

in_every point having node_ptr <> NULL and
color<node_ptr> = GRAY do 

begin
/* Each point determines which subquadrant it is in. */
my_quadrant <- 0;
if x > 0.5 * (left<node_ptr> + right<node_ptr>) then
my_quadrant <- my.quadrant + 1;

if y < 0.5 * (bottom<node_ptr> + top<node_ptr>) then 
my_quadrant <- my_quadrant + 2;

/* Each point fetches the pointer to the corresponding
node son. */

node_ptr <- son<node_ptr>[my_quadrant]; 
end;

end; 
end;
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To summarize the technique so far, we allow one processor per object and 
one processor per quadtree node. Each object is given access to a sequence 
of shrinking nodes which contain it; initially all objects have access to the 
root node. By having each object obtain information from its node, and by 
combining at the node information from all of the objects who access that 
node, the objects make decisions about descending the quadtree from that 
node.

3 The General Technique
Now consider instead the task of constructing a PM quadtree for line segment 
data. In constructing a PM quadtree, a node should be assigned the color 
gray and subdivided if its boundary contains more than one endpoint, or 
if its boundary has two segments which enter it but which do not have a 
common endpoint within it. Initially, we have one processor allocated for 
the quadtree root, and one processor for each line segment, containing the 
coordinates of the segment's endpoints.

Consider creating an algorithm, similar to the one given above, to con 
struct the PM quadtree for this segment data. Each segment processor ini 
tially possesses a pointer to the quadtree root processor. Each segment pro 
cessor computes how many of its segment's endpoints lie within the boundary 
of the node to which the segment processor points; this will be 0, 1, or 2. 
Each segment then sends this value to the node it points to, and both the 
maximum and minimum of these values are computed at the node. Any node 
which receives a maximum value of 2 assigns itself the color gray, since this 
means that some single segment has both endpoints in the node's boundary. 
Any node which receives a maximum of 1 and a minimum of 0 also assigns 
itself the color gray, since this means that there are at least two segments in 
the node's boundary, one which passes completely through it and one which 
terminates within it.

Then each segment with exactly 1 endpoint in the node it points to sends 
the coordinates of that endpoint to the node. The node receives the minimal 
bounding box of the coordinates sent to it (this, of course, amounts simply 
to applying min and max operations appropriately to the coordinate compo 
nents). If this minimal bounding box is larger than a point, the node assigns 
itself the color gray, since this means that some two segments entering the 
node have non-coincidental endpoints within the node.

Finally each segment with 0 endpoints in the node it points to determines 
whether it in fact passes through the interior of the node at all, and if so 
it sends the value "1" to the node, where these values are summed. If the 
sum received by the node is greater than 1, the node assigns itself the color 
gray, since this means that some two segments passing through the node do 
not have any endpoints in the node, which implies that they do not have a 
common endpoint in the node. Then all gray nodes allocate son processors. 
Any nodes which were not given the color gray should be colored white if no 
segments entered their interior (the sum is zero), and black otherwise (the 
sum is one).

At this point in the algorithm, we would like to have all segment proces 
sors which point to gray nodes compute which of the node's sons they belong
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to, and retrieve from the node the appropriate son pointer, just as in the 
case of the PR quadtree construction algorithm. Of course in this case, as 
opposed to the case of the point data, a given segment can intersect more 
than one of the node's sons, and we are left with the situation of wanting to 
assign up to four son pointers to the segment processor's node pointer, and 
processing each of the corresponding sons. The solution to this dilemma is 
to allocate clones of each such segment processor, that is, to create multiple 
processors which represent the same segment, and all of which contain (al 
most) the same information. So for each segment processor pointing to a gray 
node, we allocate three clone processors, all of which contain the segment's 
endpoints and a pointer to the same node as the original segment processor. 
In addition, the original and its clones each contain a clone index from 0 to 
3, with the original containing 0 and each of the clones containing a distinct 
index from 1 to 3. Now the original and its clones each fetch a son pointer 
from the node that they all point to, each one fetching according to its clone 
index, so that each gets a different son pointer.

The subsequent iterations of the algorithm proceed as the first, with each 
segment processor determining how many of its endpoints lie within the 
interior of the node it points to, and with the eventual computation of the 
colors of all the nodes on each particular level. At this point in each iteration, 
notice that any segment processors pointing to leaf nodes, or whose segments 
do not pass at all through the interior of the node to which they point, will 
not have any further effect of those nodes, and can thus be de-allocated and 
re-used later. This reclaiming of segment processors keeps the number of 
clones allocated for each segment from growing exponentially. In fact the 
number of processors required for a given segment at a given level in the 
construction of the quadtree will be only roughly as many as there are nodes 
in that level of the tree through whose interior the segment passes.

To summarize the general technique then, we allow one processor per 
quadtree node, .and initially allow one processor per object. Each object 
is given access to a sequence of shrinking nodes which contain part of it; 
initially all objects have access to the root node. By having each object 
obtain information from its node, and by combining at the node information 
from all of the objects who access that node, the objects make decisions 
about descending the quadtree from that node. For those objects which do 
descend, it is desirable for their various parts which lie in various quadrants of 
the node to descend in parallel. Thus we allow duplicate or 'clone' processors 
for each object, and have each processor handle just that portion of the object 
relevant to one quadrant of the node. Duplicate processors which determine 
that they can no longer effect the the node to which they point, because 
that node is a leaf, or because the object they represent does not overlap 
that node, can deactivate themselves so that they may be used later in the 
computations for some other object.

We see then that this technique allows us to go beyond the level of gran 
ularity of one processor for every element (space component or object) to 
a level where there are multiple processors for certain elements and none 
for others; where the processors are being used and disposed in a dynamic 
fashion.
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4 Other Applications
The same general technique can be applied to create algorithms for several 
other quadtree tasks. For example consider the task of shifting a quadtree. 
Suppose we have already created somehow a quadtree with one processor 
per node, and wish to compute a new quadtree to represent the original 
one shifted by some amount. Using this technique we create the following 
algorithm.

Have each black leaf node of the old quadtree compute its own shifted 
position. Then allocate a new processor for the root node of the new (shifted) 
quadtree, and give each old black leaf node a pointer to this new root node. 
Iterate the following from top to bottom of the new quadtree.

Each old black leaf node fetches the boundary of the new node it points 
to, and computes whether, in its new shifted position, it encloses that node. 
All old black leaf nodes which do enclose the new node they point to send the 
value TRUE to the new node, which combines the received results by or-ing 
them. Any new node which thus determines it is enclosed by some old black 
leaf node assigns itself the color black. Then each old black node computes 
whether it intersects the new node it points to even if it doesn't enclose it, 
and if so sends TRUE to the new node, which combines the received results 
by or-ing them. The new node then assigns itself the color gray if it is not 
already black and if some old black leaf node intersects it, i.e. if the received 
result is TRUE. Any new node which does not determine itself to be black 
or gray in this way assigns itself the color white. All new gray nodes allocate 
sons for themselves. Each old black leaf node pointing to a new gray node 
allocates clones for itself, and divides up among itself and its clones the son 
pointers of the new gray node to which they all point.

In the above procedure, before clones are allocated, any processor rep 
resenting an old black leaf node which points to a black or white new node 
should de-allocate itself so that it may be re-used, since it will no longer affect 
the new node it points to. Of course, this de-allocation should not be done 
for those processors which originally represented the quadtree to be shifted, 
if it is desired that this original quadtree not be lost, but these processors 
can be specially marked to avoid their being de-allocated.

It is not hard to see how this same technique can also be used to create al 
gorithms for quadtree rotation and expansion which run in time proportional 
to the height of the new quadtree, by computing in parallel the rotated or 
expanded version of each old black leaf node, and building the new quadtree 
using cloning. One can also create algorithms for the simultaneous insertion 
of many polygons or arbitrary regions into a quadtree. Some of these al 
gorithms will require an additional post-processing phase in which any node 
with four sons of the same color is given that color and has its sons discarded. 
This can be done in a single bottom-up pass over the new quadtree in time 
proportional to its height.

5 A Hidden Edge Algorithm Using Cloning
To show the flexibility of our technique, we use it here to create an algorithm 
for computing hidden edges in a scene consisting of polygons lodged in 3-
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space. The algorithm builds an MX quadtree of the pixels in the viewplane. 
In an MX quadtree [3], all pixel sized leaf nodes through which an edge passes 
are black, and all other leaf nodes are white.

This algorithm is based on the Warnock algorithm for hidden edge com 
putation [1] [5]. The essential idea of the algorithm is that while recursively 
decomposing the viewplane into quadrants, if it can be determined that all 
of the pixels which compose some entire quadrant at some level of decom 
position should be white, then the quadrant does not need to be further 
decomposed. In order to determine if this is so for a given quadrant, we 
consider the planes (in 3-space) in which our polygons lie. After computing 
the projections onto the viewplane of all polygons (which is done in parallel 
by the polygon processors), we consider the planes of those polygons whose 
projections completely enclose the given quadrant. We wish to determine 
if the plane of any of those polygons is "closer" to the viewpoint than the 
planes of the other polygons whose projections enclose the quadrant. To 
determine this, we compute the inverse projections of the quadrant corners 
onto the planes of the enclosing polygons, and if one plane is found to be 
nearer to the viewpoint for all four corners, it is deemed the closest plane.

The algorithm proceeds as follows. We initially assign one processor per 
polygon, and have one processor representing the root node of the viewplane 
quadtree being constructed. Initially each polygon processor possesses a 
pointer to the root node. The following procedure is iterated from top to 
bottom of the quadtree being built.

Each polygon computes its projection onto the viewplane (these can be 
pre-computed since they are fixed), and determines the relationship of its 
projection with the quadtree node to which it points. Specifically, it de 
termines whether its projection encloses the quadrant, or is involved with 
it, meaning it overlaps but does not enclose the quadrant, or whether it is 
outside the quadrant altogether.

Each polygon whose projection encloses its quadrant computes the in 
verse projection of each of the four corners of its quadrant onto its plane. 
This computation produces for each corner a distance from the viewpoint 
to the polygon's plane. Each of these polygons then sends this distance for 
each of the four corners to its quadrant (node) processor, which computes 
the minimum of these values as they are received. Each polygon then reads 
back the minimum distance for each of the four corners, and if all four min 
imum distances are equal to the corresponding distances which the polygon 
computed for its own plane, the polygon concludes that its plane is closest 
to the viewpoint. The polygon then informs its quadrant that it is enclosed 
by the projection of a polygon whose plane is closest to the viewpoint, and 
based on this the quadrant assigns itself the color white.

Then all polygons which are involved with (i.e. overlapping but not en 
closing) their quadrant send the value TRUE to their quadrant, which com 
bines the values sent to it by or-ing them. Any quadrant not already assigned 
the color white and which determines it has some polygon involved with it 
assigns itself the color gray. All other quadrants have no polygons whose 
projections either enclose them or are involved with them, so they assign 
themselves the color white. All gray quadrants allocate sons.

Those polygons which point to a quadtree leaf node, or which are outside 
the quadrant to which they point, de-allocate themselves, since they will no
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longer affect those nodes. All remaining polygon processors point to a gray 
nodes. Each remaining polygon processor allocates clones, and divides up 
among itself and its clones the son pointers of its node.

On the last iteration of the algorithm, that is, the pixel-level iteration, 
the procedure above is modified so that any node which is involved with some 
polygon assigns itself the color black instead of gray. After this last iteration, 
the quadtree constructed is an MX quadtree representation of the viewplane 
of the projection, with hidden edges eliminated.

Below is the hidden-edge algorithm. The main procedure is 'hidden_edge()', 
which takes as an argument a pointer to a node processor, and uses this as the 
root of the quadtree constructed. As with 'PR_quadtreeQ', only those poly 
gon processors active when the routine is called are used for the construction 
of the hidden-edge image quadtree.

node |
node |
node I
node I
node I

pointer node father;
pointer node array son[4];
integer level;
node_color color;
real left, right, bottom, top;

/* Vertex projections onto viewplane. */
polygon II real array x[NPOINTS], y[NPOINTS];
/* Number of vertices in polygon. */
polygon II int npts;
/* Parameters of polygon plane. */
polygon I I real a, b, c;

polygon II real polygon II procedure poly_plane_dist(x, y);
polygon I I real x, y;
/* For each active polygon, returns the distance from the

viewpoint to the polygon plane via the point (x, y) on
the viewplane. */

polygon II procedure allocate_clones(); 
/* Allocates four clones for each active polygon. The 

clones get the clone indices 0, 1, 2, and 3. */

polygon II procedure deallocate_clones(); 
/* Deallocate all active clones. */

node || procedure allocate_sons();
/* Allocates four sons for each active node. */

polygon I I relation
polygon II procedure find_relation(left, right, bottom, top); 

polygon II real left, right, bottom, top; 
/* Each active polygon determines the relationship (INVOLVED,

OUTSIDE, ENCLOSES) of its projection with the rectangle
defined by the parameters passed. */

procedure hidden_edges(root)
value pointer node root;
/* Builds a parallel quadtree to represent the scene of 

all the polygons. Performs hidden edge elimination 
based on a projection using the plane of the quadtree 
leaves as viewplane. The pointer passed is assumed to 
point to a quadtree node whose level and boundaries
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have been initialized and is used as the
root of the quadtree constructed. */ 

begin
polygon I I relation rel;
polygon || real pleft, pright, pbottom, ptop;
polygon I I pointer node node_ptr;
polygon I| real pll, plr, pul, pur;
polygon I| integer clone_index;
integer 1;

/* Start off with all polygon clones pointing to the root. */ 
in_every polygon do 
node_ptr <- root;

/* Loop from level of root node to bottom. */

for 1 <- level<root> downto 0 do 
begin

/* Each polygon fetches the boundaries of the node it
points to and determines its relationship with it. */ 

in_every polygon do 
begin
pleft <- left<node_ptr>; 
pright <- right<node_ptr>; 
pbottom <- bottora<node_ptr>; 
ptop <- top<node_ptr>;
rel <- find_relation(pleft, pright, pbottom, ptop); 

end;

/* Each node on the current level initializes the minimum
distance for its four corners to be infinity. */ 

in_every node having level = 1 do 
begin

11 <- INFINITY; 
Ir <- INFINITY; 
ul <- INFINITY; 
ur <- INFINITY; 

end;

/* Every polygon processor whose projection is not outside 
its node determines the distance from the viewpoint to 
the polygon's plane for each of the four corners of the 
node. For each of the four corners, the minimum 
distance, computed over the set of planes of all such 
polygons, is accumulated at the node processors. */ 

in_every polygon having (rel <> OUTSIDE) do 
begin

pul <- poly_plane_dist(pleft, ptop); 
pur <- poly_plane_dist(pright, ptop); 
pll <- poly_plane_dist(pleft, pbottom); 
plr <- poly_plane_dist(pright, pbottom);

ul<node_ptr> <-min pul; 
ur<node_ptr> <-min pur; 
ll<node_ptr> <-min pll; 
lr<node_ptr> <-min plr; 

end;

/* Each node on the current level initializes to FALSE 
a flag which indicates that it is enclosed by the
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projection of the closest polygon, and to TRUE a flag 
which indicates that the projections of all polygons 
are outside it. */ 

in_every node having level = 1 do 
begin

enclosed_by_closest <- FALSE; 
all_outside <- TRUE; 

end;

/* Each polygon whose projection encloses its node
determines if its plane is closest (among the planes of 
all such polygons) at all four corners of the node. 
The disjunction of these results is accumulated at the 
node processors. */ 

in_every polygon having (rel = ENCLOSES and
pul = ul<node_ptr> and 
pur = ur<node_ptr> and 
pll = ll<node_ptr> and 
plr = lr<node_ptr>) do 

enclosed_by_closest<node_ptr> <-or TRUE;

/* Each polygon knows if it is outside the node it 
points to. The conjunction of these results is 
accumulated at the node processors. */

in_every polygon having (rel <> OUTSIDE) do 
all_outside<node_ptr> <-and FALSE;

/* Finally we determine the color for each node on the
current level. */ 

in_every node having level = 1 do 
begin

if enclosed_by_closest or all_outside then
color <- WHITE; 

else begin
if 1 = 0 then color <- BLACK; 
else color <- GRAY; 

end; 
end;

/* Each polygon clone pointing to a black or white node, 
or which is outside of the node it points to, 
is de-allocated. */ 

in_every polygon having (color<node_ptr> = WHITE or
color<node_ptr> = BLACK or 
rel = OUTSIDE) do 

begin
deallocate_clones(); 

end;

/* If at the bottom level then we're done. */ 
if 1 = 0 then return;

/* Each gray node on the current level allocates sons. */ 
in_every node having level = 1 and color = GRAY do 

allocate_sons();

/* Each remaining polygon allocates four clones and
tags itself as an old clone. */ 

in_every polygon do 
begin
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allocate_clones();
in_every polygon do new_clone <- TRUE; 
new_clone <- FALSE; 

end;

/* Then the new polygon processors each get a pointer 
to one of the node's sons, and the old polygon 
processors are deallocated. */ 

in_every polygon do 
if new_clone then
node_ptr <- son<node_ptr>[clone_index]; 

else
deallocate_clones();

end; 
end;

6 Some Timing Results
In this section we present some timing results for the PR quadtree build 
ing algorithm and the hidden edge algorithm for implementations of these 
algorithms on a Connection Machine. A Connection Machine is a SIMD 
architecture based on a multi-dimensional cube. The vertices of the cube 
correspond to processors, and the edges correspond to direct communication 
links between the processors. The illusion of direct access from one processor 
to the memory of any other is supported by a sophisticated routing algo 
rithm, which deals with bottlenecks and which also supports simultaneous 
read access and simultaneous write access using several contention resolution 
operations. Due to the nature of the contention resolution mechanism, the 
amount of time required to perform a simultaneous write to or read from 
a single location tends to be proportional to the log of the number of pro 
cessors performing the simultaneous access. The Connection Machine also 
support virtual processors, meaning that each processor can emulate several 
processors, with a proportional reduction in processing speed and memory 
per processor. The mechanism of virtual processors in transparent to the 
code which runs on the Connection Machine.

The algorithms were implemented in C*, a parallel version of C, using 
floating point for all geometric coordinates and were run on a 16384 processor 
CM-2 without floating point hardware. For each algorithm and number of 
objects processed, two times are given. One is the real elapsed time, and one 
is the amount of time spent actually performing operations on the Connec 
tion Machine. The tables reveal that the running times of the algorithms on 
a Connection Machine are not in fact completely independent of the number 
of objects represented, which was expected since the execution of multiple 
reads and writes takes time proportional to the log of the number of pro 
cessors involved in the simultaneous access. This fact, together with the 
fact that such intercommunication operations tend to be the most time con 
suming operations on a Connection Machine, explains the approximate log 
dependency seen in the tables of the algorithm running times on the number 
of objects represented.

Table 1 shows timing results for the PR quadtree building algorithm for 
various numbers of points distributed randomly over a square region, for a
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quadtree with a maximum depth of eight levels.

Number of Points
10

100
1000

10000

Elapsed Time (s)
0.88
2.15
4.09
6.98

CM Time (s)
0.61
1.78
3.25
6.02

Table 1:

Table 2 shows timing results for the hidden edge algorithm for various 
numbers of square polygons distributed randomly over a parallelpiped region 
with a pre-computed parallel projection onto a viewplane parallel to one of 
the faces of the parallelpiped. The MX quadtree constructed has a maximum 
depth of eight levels, i.e. it is the MX quadtree for a 128 by 128 pixel image.

Number of Polygons
5 

50 
500

Elapsed Time (s)
9.49 
12.64 
18.79

CM Time (s)
8.57 
11.24 
15.49

Table 2:

7 Summary
This paper has presented a technique for creating SIMD algorithms for paral 
lel pointer-based quadtrees. It combines parallelism both across the elements 
of the space represented by the quadtree and across the elements of the set of 
objects represented. It produces algorithms wherein a dynamic relationship 
is maintained between elements and processors, with elements having per 
haps several processors operating on them simultaneously, and with elements 
disposing of their processors when they are no longer required, so that they 
may be re-used by other elements.

8 Future Plans
We will continue to apply this technique in the construction of parallel al 
gorithms for a variety of quadtree tasks. In addition, we point out that we 
presented this technique as an embodiment of a control mechanism which 
can exploit fine-grained parallelism to create a useful dynamicism between 
processors and elements of our processing domain. In the future we plan to 
expand on the notion of this sort of dynamicism and apply it to other data 
structures and problem domains.
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Figure 1: Before the 
first iteration

Figure 2: After the 
first iteration

Figure 3: After the 
second iteration

Figure 4: After the 
final iteration
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