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ABSTRACT

During the past years it has become apparent that a general framework 
of spatial data management resting on formal methods is indispensable. One 
aspect of such an analytic framework is the adequate characterization of 
functions so that they may be regarded as abstract models of real topogra 
phic surfaces. The importance of a precise mathematical description like this 
results from the fact that the theoretical requirements of differentiability and 
continuity of the derivatives, which are commonly employed in practical ap 
plications, do not, suffice for functions to represent realizable topographic sur 
faces. The reason for this failure is that continuously differentiate mappings 
may still be endowed with some pecularities which are extremely unlikely to 
appear in reality and thus prevent the functions from being suitable models 
for the topography of a given area. It will be demonstrated that a great 
many of these pecularities are due to structural instability - a phenomenon 
which can easily be explained by the presence or absence of degenerate criti 
cal points and saddle connections. Since it can be proved that any function 
possessing degenerate critical points may be approximated accurately enough 
by another one without such points, mappings of the latter type (so-called 
Morse functions) which have, in addition, no saddle connections should de 
scribe topographic surfaces in an appropriate way. The results arrived at in 
this paper, however, are valid not only for functions defined on the plane 
but also for mappings defined on differentiable manifolds and thus help to 
diminish the deficiency of theoretical knowledge concerning curved surfaces 
as has been complained recently.

1 .INTRODUCTION

As a consequence of the numerous applications of computers in cartogra 
phy during the past years it has become apparent that a general framework 
of spatial data management and analysis is indispensable. This realization 
has given rise to an increasing number of publications concerning the formal 
foundations of numerous cartographic concepts. The different approaches 
covered a wide portion of the field of cartography ranging from the develop 
ment of analytic tools for cartographic generalization (e.g. WOLF 1988a,b, 
1989, WEIBEL 1989) to the design of databases for geographic information 
systems (e.g. PEUCKER 1973, PEUCKER/CHRISMAN 1975, PEUQUET 
1983, BOUDRIAULT 1987, SALGE/SCLAFER 1989).
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The subject of the present paper is the formal analysis of another point 
of interest in computer cartography, namely the adequate characterization of 
functions so that they may be regarded as abstract models of real topogra 
phic surfaces. The importance of a formal characterization like this is derived 
above all from the following four facts: First of all, theoretical results ob 
tained for functions describing topography hold also for functions describing 
phenomena like population density, accessibility, pollution, temperature, pre 
cipitation etc. 1 ; secondly, topographic surfaces represent the underlying con 
tinuous model of DTMs whereby DTM may stand as abbreviation for 'digital 
terrain model' or 'discrete terrain model' respectively; thirdly, a great many 
of the results derived for mappings from jR2  > R are also true for real-valued 
mappings defined on curved surfaces - so-called differentiate manifolds. As 
it has been pointed out just recently especially this point deserves our special 
attention '(since) geographical data (are) distributed over the curved surface 
of the earth, a fact which is often forgotten ... (However,) we have few me 
thods for analyzing data on the sphere or spheroid, and know little about how 
to model processes on its curved surface ...' (GOODCHILD 1990, p.5f.). The 
final and perhaps the most important fact why topographic surfaces should 
be characterized in a formal way is that a formal characterization clearly 
reveals those concepts which are commonly used in practice but which are 
seldom or never explicitely stated.

2.TOPOGRAPHIC SURFACES

In almost any geographic or cartographic application functions /(x,y) 
describing the topography of a given area and associating with each point 
(x,y) its respective altitude are presumed to be at least twice continuously 
differentiable. This concept, however, is just an ideal one since, for example, 
overhanging rocks imply that there is no definite correspondence between 
certain points and their altitudes or breaklines prevent f(x,y) from being 
differentiable. In order to apply the powerful tool of calculus, nevertheless, 
the original concept has to be modified by assuming that the continuously 
differentiable functions are not the terrain itself but rather sufficiently close 
approximations of it 2 (cf. WOLF 1988a, 1990).

The question remaining, which seems to be deceptively simple in ap 
pearance but which, however, leads rather deeply into abstract mathematics 
is whether the theoretical requirements of differentiability and continuity of 
the derivatives suffice for functions to represent realizable topographic sur 
faces. As will be shown within the next chapters, this must not always be 
true because such mappings may be endowed with a number of pecularities 
like degenerate critical points or saddle connections which are extremely un 
likely to appear in real-world applications and thus prevent the functions

1 In order to achieve substantial results in non-topographic applications one will, how 
ever, have to ensure that data points are not too scarcely distributed.

2 This supposition is also valid for mappings describing socio-economic, physical and 
other phenomena.
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from being suitable models for the topography of a given area3 .

Since the detailed investigation of these pecularities requires several 
concepts from multidimensional calculus, it seems appropriate to repeat some 
basic definitions and theorems before continuing with the analysis of the 
addressed phenomena.

Definition 2.1 A function (mapping) f : Rn —» R is a rule associating 
with each (xi,x 2 ,.. . ,xn ) G Rn a unique element /(xi,x2 ,.. -,xn ) G R.

Though the previous definition has been given for the n—dimensional 
case we will restrict ourselves in most instances to two dimensions since 
this is the commonest case in practical applications. A further advantage 
of the restriction to functions f(x,y) of only two variables is the fact that 
these mappings can be easily visualized, thus offering the chance to prefer 
a geometric approach rather than an abstract one. As a consequence, we 
will give - whenever possible - not only formal definitions but also geometric 
interpretations of the concepts being introduced. To start with, let us draw 
our attention to

Definition 2.2 The partial derivative fx of a function f(x,y) with respect 
to the variable x is the derivative of f with respect to x while keepig y constant. 
The partial derivative fy of f with respect to y is defined in an analogous way. 
The partial derivatives evaluated at the particular point (x0 ,y0 ) are denoted 
by fx (xo,yo) and fy (x0 ,y0 ) respectively.

Geometrically speaking, fx (x0 ,yo) specifies the tangens of the angle bet 
ween the tangent to the intersecting curve f(x,y0 ) and the line y = y0 parallel 
to the x-axis. To phrase it differently, fx (x0 ,y0 ) indicates the slope of the 
surface /(x,y) at the point (x0 ,yo) in direction to the x axis. It is hardly 
necessary to point out that fy (x0 ,y0 ) can be interpreted in a similar way.

Provided that /(x,y) has partial derivatives at each point (x,y) e R2 , 
then /x and fy are themselves functions of x and y which may also have 
partial derivatives. These second derivatives (derivatives of order two) are 
defined recursively by (fx )x = fxx , (fx )y = fxy , (fy )x = fyx and (fy )y = fm . For 
partial derivatives of order two the following theorem, which is important 
from a theoretical as well as from a practical point of view, holds4 .

Theorem 2,1 If the partial derivatives fxy and fyx of a function f(x,y) 
are continuous in R2 then fxy = fyx in R2 .

Partial derivatives of order higher than two are defined recursively in 
an analogous way. We will, however, desist from giving their exact definition 
since partial derivatives of first and second order are sufficient for the purpose 
of this paper. Instead we will turn our interest to another point which is 
of utmost importance for the following chapters and concerns the special 
arrangement of the partial derivatives of order two in form of a matrix, the 
so-called Hessian matrix.

3 For the sake of simplicity we will illustrate these phenomena by examining mappings 
which are given explicitly and not in form of sparsely distributed data points in combina 
tion with an interpolation rule.

4 For a proof cf. ENDL/LUH (1976, p.!85f.).
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Definition 2.3 Let f(x,y) be a function whose partial derivatives fxx , 

fxy, fyx and fvy exist. The matrix Hf = I fxx *y I is termed the Hessian
\ Jyx Jyy /

matrix of f.
The Hessian matrix evaluated at a point (x0 ,y0 ) is defined by

xx(x0 ,yo) fxy(xo,yo) \ d . . j L vaenozea oy

The determinant det(Hf) of the Hessian matrix Hf is called the Hessian de 
terminant; when evaluated at the point (x0 ,y0 ) it is denoted by det(Hf)\(XOiyo ).

With the aid of partial derivatives it is now possible to characterize 
those functions precisely which have been commonly employed for the appro 
ximation of topographic surfaces. These mappings are the so-called A;  fold 
continuously differentiable functions whereby in almost any application a 
value of k = 2 has been chosen.

Definition 2.4 A function f(x,y) is termed k-fold continuously differen 
tiable, or of class Ck , if the partial derivatives up to order k exist and are 
continuous. 
A smooth function is a function of class C°°.

3.NONDEGENERATE CRITICAL POINTS AND MORSE
FUNCTIONS

Critical points5 representing the peaks, pits and passes of surfaces play 
a major role not only in cartography but also in a great deal of other scientific 
applications where they represent either the extrema or the saddles of func 
tions to be maximized or minimized. The importance of the critical points, 
which are also termed surface-specific points in computer cartography, for 
this field of research results from the fact that they contain significantly 
more information than any other point on the surface because they provide 
information about a specific location as well as about its surrounding (cf. 
PEUCKER 1973, PFALTZ 1976, PEUCKER/FOWLER/LITTLE/MARK 
1978). As a consequence, their employment does not only ease the charac 
terization and visual analysis of the topography of a given area but their 
application within digital terrain models also results in considerable savings 
in data capture and data management. Before stating two theorems which 
allow the classification of the critical points their formal description will be 
given.

Definition 3.1 A point (x0 ,y0 ) is a (relative, local) maximum of f(x,y) 
if and only if f(x,y) < f(x0 ,y0 ) for all (x,y) <E Ue (x0 ,yo). 
A point (x0 ,yo) is a (relative, local) minimum of f(x,y) if and only if f(x,y) > 
f(%o,yo) for all (x,y) <E Ue (x0 ,y0 ).
A point (x0 ,j/o) is a saddle of f(x,y) if and only if f(x,y) has a local maximum 
along one line leading through (zo,2/o) ana a local minimum along another 
line leading through (xo>yo)-

5 Unless stated otherwise critical points will be assumed to be nondegenerate.
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According to the above definition saddle points are only those points 
with exactly two ridges (lines connecting passes with peaks) and exactly 
two courses (lines connecting passes with pits) emanating from them, thus 
excluding monkey saddles or the like. The following theorem6 enables the 
computation as well as the classification of the critical points of a function 
f(x,y) by applying the concepts of the partial derivatives and the Hessian 
determinant of f(x,y).

Theorem 3.1 (x0 ,t/o) is a local maximum of a function f(x,y), which is 
twice continuously differentiate in R2 , if and only if fx (x0 ,y0 ) = fy (x0 ,yo) = 0, 
det(Hf)\ {xQM ) > 0 and fxx (x0 ,y0 ) < 0 (or equivalently fyy(x0 ,y0 ) < 0). 
(x0 ,y0 ) is a local minimum of a function f(x,y), which is twice continuously 
differentiate in R2 , if and only if fx (x0 ,y0 ) - fy (x0 ,y0 ) = 0, det(Hf)\(Xo<yo ) > 0 
and fxx (x0 ,y0 ) > 0 (or equivalently /yy (zo,2/o) > 0)-
(x0 ,t/o) is a saddle point of a function f(x,y), which is twice continuously diffe 
rentiate in R2 , if and only if fx (x0 ,y0 ) = fy (x0 ,yQ ) = 0 and det(H f)\(XOiVo ) < 0. 
(£o>2/o) is a nondegenerate critical point of a function f(x,y), which is twice 
continuously differentiate in R2 , if and only if fx (x0 ,y0 ) = fy (x0 ,y0 ) = 0 and 
det(Hf)\ (x0iW) + 0.

An equivalent characterization of the critical points of a function f(x,y) 
can be given by examining the eigenvalues of the corresponding Hessian 
matrix (cf. NACKMAN 1982, p.65 or NACKMAN 1984, p.444f.). The 
application of eigenvalues has moreover the advantage that they can also 
be used for the precise mathematical description of ridges, courses, flats, 
slopes as well as convex and concave hillsides of topographic surfaces (cf. 
LAFFEY/HARALICK/WATSON 1982, HARALICK/WATSON/LAFFEY 
1983). We will, however, refrain from discussing all of these topographic 
phenomena since this would go far beyond the scope of the present paper.

Theorem 3.2 Let f(x,y) be twice continuously differentiate in R2 and 
(#0,2/0)   R2 - Further let fx (x0 ,y0 ) = fy (xQ ,y0 ) = 0 and the determinant of the 
Hessian matrix Hf evaluated at (x0 ,y0 ) be unequal to zero. Then there is 
a (local) maximum at (x0 ,yo) if the number of negative eigenvalues of Hf\(XoM ) 
is two,
a saddle at (x0 ,yo) if the number of negative eigenvalues of #/|(IO ,yo ) is one 
and
a (local) minimum at (x0 ,y0 ) if the number of negative eigenvalues of Hf\(xo>yo ) 
is zero.

The number of negative eigenvalues of Hf\(xo ,yo ) is also termed the index 
of (x0 ,j/o); thus a maximum is a critical point of index two, a saddle is a 
critical point of index one, and a minimum is a critical point of index zero. 
The so-defined index of a critical point may be also interpreted as an 'index of 
instability (since) a ball displaced slightly from a relative minimum "will roll 
back" to that minimum. It is a point of stable equilibrium; ... A ball displaced 
from a saddle point may or may not return to that point of equilibrium, 
depending on the direction of displacement; while a ball displaced from a

6 A proof can be found in any standard book on elementary calculus as e.g. in COU- 
RANT (1972, p.!59f.).
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relative maximum is completely unstable' (PFALTZ 1976, p.79, cf. also 
PFALTZ 1978, p.7f.) 7 .

Another advantage of the employment of the eigenvalues of Hf is the 
fact that this concept may be transferee! to n—dimensional differentiate ma 
nifolds which represent generalizations of the Euclidean n space. Formally 
a manifold is characterized by

Definition 3.2 An n-dimensional topological manifold is a separable6 
metric space in which each point has a neighbourhood homeomorphic9 to Rn .

An n dimensional manifold thus represents nothing more than a to 
pological space with the same local properties as the Euclidean n-space. 
MASSEY (1967, p.l) gives a vivid illustration of the two-dimensional case of 
this analogy when describing an intelligent bug crawling on a surface (two- 
dimensional manifold) and being unable to distinguish it from a plane (R*) 
due to his limited range of visibility.

The previously defined manifolds, however, must be given some addi 
tional structure so that the concept of differentiability has meaning, thus 
yielding to differentiable manifolds. For the sake of simplicity and because 
only the concept itself is needed we will drop their formal definition10 and 
imagine them as something looking like Rn but being smoothly curved. 
Examples of two-dimensional differentiable manifolds are the sphere or the 
torus whereas the cube, the cone or the cylinder are none. With differentiabi 
lity being specified for mappings defined on manifolds11 it is possible to inve 
stigate not only functions defined on the plane (7?2 ) but moreover mappings 
defined on surfaces (two-dimensional manifolds) as e.g. functions describing 
the distribution of precipitation over the globe because a lot of theoretical 
results for such mappings can be easily obtained due to the homeomorphic 
relationships between differentiable manifolds and Euclidean space12 . Thus 
the concept of a differentiable manifold as it has been sketched above offers 
the chance to diminish the deficiency of theoretical knowledge concerning 
curved surfaces as it has been complained by GOODCHILD (1990, p.5f.) 
and to counteract his criticism.

Since practice has shown that degenerate critical points are extremely 
unlikely to occur in real-world applications, functions possessing exclusively

7 An intuitive classification of the critical points according to their degree of 

(un)stability has been given by PEUCKER (1973, p.28f.) and WARNTZ/WATERS (1975, 

p.485f.).
8 In a topological space, a set A C B is dense in a set B if A = B. A topological space 

C is termed separable if some countable set is dense in C.
9 Two topological spaces A and B are called homeomorphic if there exists a bijective 

function / : A  » B such that both / and f~ l are continuous.
10 The precise mathematical characterization of a differentiable manifold can be found 

e.g. in GAULD (1982, p.54) or PALIS/de MELO (1982, p.4).

11 For an adequate definition cf. GAULD (1982, p.60).
12 For example, it is possible to characterize the critical points by their partial derivatives, 

to make a distinction between degenerate and nondegenerate ones as well as to classify the 

latter into maxima, saddles and minima according to the number of negative eigenvalues 

of the associated Hessian matrix.
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nondegenerate critical points have been studied comprehensively by nume 
rous authors 13 .

Definition 3.3 A smooth function is termed a Morse function if all of 
its critical points are nondegenerate.

For Morse functions the folllowing four theorems, whose importance 
will become obvious in the next chapters where the concepts of structural 
stability and the problem of approximating functions possessing degenerate 
critical points by mappings without such points will be discussed, hold (cf. 
ARNOL'D 1972, p.83, PFALTZ 1976, p.83, GAULD 1982, p.118, PALIS/de 
MELO 1982, p.89, FOMENKO 1987, p.SOf.):

Theorem 3.3 Each Morse function on a compact manifold has only a 
finite number of critical points; in particular, all of them are distinct.

Theorem 3.4 The critical points of a Morse function are always iso lated14 .

Theorem 3.5 The set of Morse functions is open and dense in the set 
of all k-fold differentiate functions defined on a manifold.

Theorem 3.6 Let f be a Morse function, which is defined on a simply- 
connected domain bounded by a closed contour line, then the number of mi 
nima of f minus the number of saddles of f plus the number of maxima of f 
equals two.

The concept of Morse functions - though not explicitly mentioned - has 
been employed in almost every geographic application since they represent - 
with one restriction, which will be discussed in Chapter five - the prototype 
of mappings eligible to characterize topographic surfaces. One exception, 
however, constitutes the work of PFALTZ (1976, 1978) whose graph theoretic 
model for the characterization and generalization of topographic surfaces is 
based explicitly on attributes of Morse functions and thus represents the 
first attempt to describe those mappings formally which may be regarded as 
abstract models of the topography of a given area.

4.STRUCTURAL STABILITY

Modern philosophy of science requires that natural science accepts only 
those theories which can be verified at any time. As a consequence of this 
metatheoretical view the concept of repeatability saying that the same ex 
periment must give the same result under the same conditions has become 
fundamental in modernrsciences although, strictly speaking, the idea is just 
an ideal one. Ideal, because it is never possible to guarantee exactly the same 
conditions by abandoning all external factors even in the most carefully de 
signed experiment. To an even greater extent one is confronted with the

13 A great deal of the theoretical work is due to Morse (cf. MORSE/CAIRNS 1969).
14 A critical point is called isolated if sufficiently close to it there exists no other critical 

point.
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problem of repeatability in sciences like geography or cartography. For ex 
ample, physical-geographic theories are based on measurements taken outside 
where side-effects are much less controllable than in the physicists' labora 
tories, or digital terrain models rest on digitized data which are affected by 
errors due to machine inaccuracy and/or human intervention.

Since the rigorous interpretation of repeatability would make any scien 
tific work impossible the previously described idealized concept has been 
weakened by tolerating small changes in the conditions under which an ex 
periment is carried out provided that these changes do not affect the result 
significantly. To phrase it differently, 'what we really expect is not that if 
we repeat the experiment under precisely the same conditions we will obtain 
precisely the same results, but rather that if we repeat the experiment under 
approximately the same conditions we will obtain approximately the same 
results. This property is known as structural stability ...' (SAUNDERS 
1982, p.17). Mathematically, deviations from the ideal experiment which 
are caused by external factors are represented by perturbation functions and 
structural stability is the insensitiveness of the mapping or the familiy of 
mappings describing the experiment to these perturbation functions. The 
impact of this concept of structural stability for geography and cartography 
is that in these disciplines questions like the following ones have to be answe 
red: Is a function describing a geographic phenomenon insensitive to small 
measurement errors and thus structurally stable? Is a family of functions 
describing a geographic phenomenon over time insensitive to temporal chan 
ges and thus structurally stable? Is a mapping representing the underlying 
continuous model of a digital terrain model insensitive to measurement errors 
and thus structurally stable?

When using the term 'structural stability', however, one has to distin 
guish between 'structural stability of a function' (cf. POSTON/STEWART 
1978, p.63) and 'structural stability of a family of functions' (cf. POSTON/ 
STEWART 1978, p.92f., SAUNDERS 1982, p.!7f.). In the above-mentioned 
geographic and cartographic applications of 'structural stability' the first in 
terpretation of the term applies to the first and third examples while the 
second interpretation applies to the second example. Since in the present 
paper only the concept of a structurally stable function is of importance we 
will confine ourselves to this aspect of structural stability and proceed with 
an example in order to explain it 15 .

Let us consider the functions fi(x) = x 2 and /2 («) = x 2 + ex with ex 
representing a perturbation function. For the derivatives of /i(x) and /2 (x) 
holds:

f S r \ _ T 2 f I \ _ 1 
Jl\X) — X J2\&) — X

fi(~,\ — 9™ fi (~,\ — 9,
J^JUj — fiX J 2\ ) — "

/?(*) = 2 /»(*) = 2

15 For the sake of simplicity we will restrict ourselves thereby to functions of a single 
variable.
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In order to obtain the critical points of the two functions we set the 
first derivatives to zero, solve the resulting equations with respect to x and 
examine the second derivates which represent the one-dimensional analogue 
of the Hessian matrix.

2x = 0
x = 0

0 = 2>0

= 0
£

2 
2>0

x = —-

The above calculations indicate that the perturbation function moves 
the minimum from x = 0tox =  | in a way depending smoothly on e (with 
e being an arbitrary small number). The type of the critical point, however, 
as well as the structure of the graph of /i(x) in a surrounding of x = 0 are not 
affected by the perturbation (see also Fig. 4.1) and therefore the function is 
structurally stable at x = 0.

(a) (6) 

Fig. 4.1 Graphs of the functions (a) /i(x) = as 2 and (b) /2 (x) = x 2 + ex.

Next let us examine the two mappings gi(x) = x3 and g^(x) = x3 + ex 
with ex representing again a perturbation function. For the derivatives of 
gi(x) and g2 (x) holds:

9i(x) = x3
g[(x) = 3x2

* = 6x g'J(x) = 6x

In order to determine the critical points of g\(x] and gz(x) we again set 
the first derivatives to zero, solve the resulting equations with respect to x
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and inspect the second derivatives.

3x 2 = 0
x = 0

= 0

3a: 2 + e = 0

The previous calculations yield to the following interesting result: While 
the function #i(x) has a degenerate critical point at x = 0, the mapping #2 (x) 
- which is obtained from #i(x) by adding the term ex - has no critical points 
for positive e but two critical points, namely a local minimum at xi = +v/ f

and a local maximum at « 2 = ~\/3' ^or ne§a^ve £ ^nus showing an irregular 
unstable behaviour. Illustrations of the function gz(x) = x3 + ex for different 
values of e are depicted in Fig. 4.2.

Fig. 4.2 Graphs of the function #2 (x) = x 3 + ex for (a) e < 0, (b) e = 0 and 
(c) e > 0.

The different behaviour of the two functions /i(x) and #i(x) in a sur 
rounding of x = 0 can be explained by the following theorem (cf. PO- 
STON/STEWART 1978, p.63f.).

Theorem 4.1 A critical point is structurally stable if and only if it is 
nondegenerate.

In the above example f\(x) has a nondegenerate critical point at x = 0 
while gi(x) has a degenerate one at this location. In the first case, as a 
consequence of the structural stability induced by the nondegenerate critical 
point the perturbation function does not change the type of the point but 
only moves its location. In the second case, however, the degeneracy of the 
critical point causes structural instability resulting in a change of the type
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of the critical point.

A direct consequence of the last theorem is the following one which 
shows once more the importance of Morse functions (cf. POSTON/STE- 
WART 1978, p.70f.).

Theorem 4.2 Morse functions are structurally stable.
At the beginning of this chapter the importance of structural stability 

for scientific work in general has been indicated. At this point its importance 
for geography and cartography will be demonstrated in the light of some pos 
sible applications. The most essential one will certainly concern those fields 
in geographic and cartographic research where the systems approach is al 
ready well established as e.g. in ecology, climatology, demography etc. and 
functions or families of functions are used to describe ecosystems, weather, 
population dynamics etc. The major question to be answered in the above 
examples is whether a given system is stable or unstable over time and in 
the latter case if it will explode or collapse. A second field of applications 
comprises the analysis of functions describing cartographic and geographic 
phenomena like terrain, population density, accessibility, temperature and 
the like. The question to be answered in this context is which data points 
are best selected so that the functions obtained are structurally stable. It 
can be assumed, however, that those mappings that are derived from surface- 
specific points which are taken to be nondegenerate will produce results being 
superior to all others. Finally, a third point worth mentioning in this connec 
tion is the analysis of structural stability due to measurement errors caused 
by machine inaccuracy and/or human intervention - a problem which will 
have to be tackled in combination with the aid of statistics.

5.DEGENERATE CRITICAL POINTS AND SADDLE 
CONNECTIONS

Degenerate critical points form - besides saddle connections - part of 
those phenomena which prevent continuously differentiable mappings from 
being suitable models for the topography of a given area. The reason is 
that degenerate critical points are - according to Theorem 4.1 - structurally 
unstable and thus unlikely to appear in real-world applications since any 
perturbation would immediately destroy them.

Formally, a degenerate critical point (x0 ,j/o) is characterized by the fact, 
that the partial derivatives fx (x0,y0 ) and fy (x0 ,y0 ) as well as the Hessian 
determinant det(Hf)\(xo ,yo ) are zero. Some examples of functions possessing 
degenerate critical points are depicted in Fig. 5.1.

Though its definition sounds deceptively simple, degeneracy is a multi- 
faceted phenomenon with different levels to be distinguished. A first subdi 
vision can be made into isolated degenerate critical points and non-isolated 
ones with the latter being extremely uncommon16 (cf. POSTON/STEWART

16 For this reason they are excluded from further consideration.
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1978, p.53.). From the above sketched functions f(x,y) has an isolated de 
generate critical point at (0,0) while g(x,y) has non-isolated ones along the 
a; axis and h(x,y) along the x— and the y— axes. Besides this subdivision 
of the critical points another one can be made according to their degree of 
degeneracy (cf. FOMENKO 1987, p.80) which is explained next.

(a)

197



Fig. 5.1 Some functions having degenerate critical points: (a) f(x,y) = x3 - 
3jct/ 2 (monkey saddle at (0,0)); (b) g(x,y) = x 2 (pig-trough with 
degenerate critical points occuring along the x axis); (c) h(x,y) = 
z2 t/2 (crossed pig-trough with degenerate critical points occuring 
along the x- and the y-ax.es).

Definition 5.1 The degree of degeneracy of a critical point (xQ ,y0 ) is 
equivalent to the number of zero eigenvalues of Hf\(XOiyo ).

To illustrate this concept let us examine the two functions f(x,y) = 
x 3 — 3xy2 and g(x,y) = ^ — £-. By setting the first partial derivatives to 
zero and inspecting the second partial derivatives it can be shown that both 
f(x,y) and g(x,y) possess a degenerate critical point at (0,0).

f(x,y) = x3 -3xy2
fx (x,y) = 3x 2 -3j/2

fv(*,y) = -fay
fxx(x,y) = Qx

fxy(x,y) = fyx (x,y) = -Qy

gm (x,y) = x 2
9v(x,y) = -y

gxx (x,y) = 2x
= gyx (x,y) = 0

9yy(x ,y) = -1

The Hessian matrices of the two mappings run therefore
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Hf = ' -6y -( 

and when evaluated at the critical point (0,0)

2x 0 
0 -1

#/l(o,o) = ( o 0 ) ##1(0,0) =
0 0 
0 -1

In order to obtain the eigenvalues of the two matrices we solve the 
corresponding characteristic polynoms

(0-A)(0-A) = 0 

yielding

Ai, 2 = 0

(0-A)(-1-A) = 0

A! = 0 
A 2 = -1

Thus, in the first case the number of zero eigenvalues and therefore the 
degree of degeneracy of the critical point (0,0) is two, whereas in the second 
case the degree of degeneracy of (0,0) is one. Illustrations of the two functions 
in a surrounding of this location can be found in Fig. 5.2.

(a)
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Fig. 5.2 Graphs of the functions (a) f(x,y) = a; 3 - 3zy2 and (b) g(x,y) =
2 '

Another point of interest concerning degeneracy is the question whether 
functions possessing degenerate critical points can be approximated accura 
tely enough by mappings without such points, or in other words if it is 
possible to substitute degenerate critical points by nondegenerate ones. In 
order to answer this question let us recall that degenerate critical points are 
structurally unstable and that the set of Morse functions is open and dense 
in the set of all differentiable mappings defined on a manifold. It can be 
proved that due to these two properties the question asked earlier can be 
answered affirmatively since the following theorem 17 holds.

Theorem 5.1 // a function has a degenerate critical point, then by an 
arbitrarily small shift of the function it can be ensured that the complicated 
singularity is dispersed into several nondegenerate ones.

The above theorem, however, does not provide any information about 
the number nor about the types of the nondegenerate critical points one 
obtains when splitting a degenerate one. The following examples illustrate 
two possible cases that might occur when mappings are interfered by per 
turbation functions by means of the two mappings f(x,y) = x3 - 3xy 2 and 
g(x,y) = ^ - ̂  both possessing a degenerate critical point at (0,0) (see Fig. 
5.2). Deformations of /(«, y) and g(x,y) by the perturbation functions ey and 
ex respectively yield f(x,y) = x3 - 3xy2 - ey and g(x,y) = ^ - ̂  - ex. When

17 An exact proof of this theorem which is rather complicated and requires several 
concepts like transversality, jet-spaces etc. from such branches of abstract mathematics 
as differential topology or catastrophy theory can be found in ARNOL'D (1972, p.65).
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(*)

Fig. 5.3 Graphs of the functions (a) f(x,y) = x3 — 3xy2 — ey and (b) g(x,y) =
*1 _id _
3 2 ex.

setting the first partial derivatives of / and g to zero, solving the resulting 
systems of equations with respect to x and y, and inspecting the second
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partial derivatives it becomes apparent that the degenerate critical point 
(0,0) of f(x,y) is substituted by two nondegenerate saddles with locations at 
(v/f> v/f) and ( ./I,./|) respectively, whereas the degenerate critical point 
(0,0) of g(x,y) is substituted by a nondegenerate saddle at (\/e>0) and a 
local maximum at ( ^,0). The visualization of the effect of approximating 
a function having a degenerate critical point by a mapping without such 
points can be achieved by comparing Fig. 5.2 and Fig. 5.3 with the latter 
depicting the graphs of f(x,y) and g(x,y).

It can easily be demonstrated that degenerate critical points are not 
the only phenomena inducing structural instability but saddle connections 
will cause it, too. However, it has been proven that saddle connections may 
always be broken up by perturbation functions which have to be chosen in a 
convenient way (cf. GUCKENHEIMER/HOLMES 1983, p.60ff.). As a con 
sequence of this result and Theorem 5.1 it can be concluded that Morse func 
tions without saddle connections are the most suitable mappings to describe 
topographic surfaces because, on the one hand, they possess only structural 
stable elements like nondegenerate critical points but are, on the other hand, 
also eligible to approximate accurately enough structural unstable elements 
like degenerate critcal points and saddle connections.

6.CONCLUSION

In the present paper the characterization of those mappings which may 
be regarded as abstract models of topographic surfaces has been attempted. 
The importance of a characterization like this is derived from the fact that dif 
ferentiability and continuity of the derivatives do not suffice for functions to 
represent realizable topographic surfaces because continuously differentiable 
mappings may nevertheless be endowed with pecularities which are unlikely 
to appear in reality. An analysis of these pecularities, however, reveals that 
they are primarily due to structural instability of the respective functions - 
a phenomenon induced by degenerate critical points or saddle connections. 
Therefore it has been concluded that mappings describing the topography of 
a given area should be Morse functions without saddle connections. It should 
be emphasized, however, that the results obtained in this article represent 
only the first step in the formal characterization of the topography of a given 
area because a great deal of important phenomena like junctions of channels 
and ridges have not been considered. The analysis of these phenomena and 
its incorporation into a general framework of spatial data management will 
have to be the subject of future research.
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