
DATABASE ARCHITECTURE FOR MULTI-SCALE GIS

Christopher B. Jones
Department of Computer Studies

The Polytechnic Of Wales
Pontypridd 

Mid Glamorgan, CF37 1DL, UK

ABSTRACT

Many applications of GIS, such as planning, exploration and 
monitoring of natural resources, require the mapping and analysis of 
spatial data at widely differing scales. Ideally, a single large scale 
representation of spatial data might be stored, from which smaller scale 
versions were derived. Currently however, automation of the necessary 
generalisation processes is not sufficiently well advanced for this to be a 
possibility. Consequently, multiple representations must be maintained, 
though proven generalisation techniques can be used to reduce data 
duplication, provided that processing overheads are not prohibitive. 
Maintenance of a multiple representation database requires a flexible 
approach to the use of both single-scale and multiresolution data 
structures. Furthermore, rule-based software is required for a) deciding 
whether new datasets should be merged with existing ones, or stored as 
separate representations, and b) selecting appropriate representations and 
applying generalisation procedures to satisfy user queries. This paper 
presents an overview of a database design, based on a deductive 
knowledge-based systems architecture, which attempts to meet these 
requirements.

INTRODUCTION

Increasing interest in the use of geographical information systems 
(GIS) brings with it requirements for the analysis and display of 
geographical information at various scales, relating to different 
locations and to different themes. The accumulation of this information 
introduces a need for sophisticated databases that are flexible with 
respect to the variety of stored data and to the scale and locational 
accuracy of the output. Such requirements arise in organisations 
concerned with monitoring or exploiting the natural and man-made 
environment.

Maintenance of data derived from a variety of source scales raises a 
major issue of whether the individual real-world objects should be 
represented once, at their highest resolution, or whether multiple 
versions at different scales should be stored. Ideally perhaps the former 
option appears most desirable, since it avoids data redundancy and the

1



possibility of inconsistency between versions. The approach depends 
however upon the assumption that smaller scale versions can be derived 
automatically. With the current, relatively limited, capabilities of 
automatic generalisation software, this is not a valid assumption (Brassel 
and Weibel, 1988). In a multi-scale database servicing a wide range of 
output requirements there is therefore good reason to store multiple 
representations of the same objects (Brassel, 1985). Even when small 
scale versions can be derived automatically, there will be situations, 
involving large degrees of generalisation, in which the delays due to 
computation could not be tolerated in an interactive GIS. In such 
circumstances it could be desirable to store the results of automated 
generalisation.

The presence of multiple representations of spatial objects, and the need 
for retrieval at a range of scales, places considerable demands upon a 
database management system. If it is to maintain and retrieve data with 
the minimum of user-intervention, it must incorporate software capable 
of making decisions about updates and retrievals. When new datasets are 
loaded, decisions must be taken about whether to replace existing data, 
merge with existing data, or store as a separate representation. On 
querying the database there may be several candidate representations. 
One of these may be selected for output or it may be used to derive an 
appropriate representation using automatic generalisation procedures. In 
addition to the inclusion of 'intelligent1 software, the need arises for data 
structures which are efficient for access in terms of ground resolution, 
spatial location, topology and aspatial attributes.

A research project has been initiated with the aim of building an 
experimental multi-scale spatial information system. In the remainder of 
the paper the components of the proposed experimental system are 
outlined, before discussing specific issues which arise in designing and 
implementing multi-scale GIS. Attention is focused in particular on 
multiresolution data structures, indexing mechanisms and the 
maintenance and query of multiple scale representations.

COMPONENTS OF A MULTI-SCALE DATABASE 
ARCHITECTURE

An overview of the main components of a proposed multi-scale 
database is illustrated in Figure 1. All updates and queries are channelled 
through a deductive subsystem, the rule-base of which controls changes 
to the contents of the database and retrievals from it. The contents of the 
database are summarised within an object directory which, though it may 
be spatially segmented, serves primarily to record the presence of stored 
objects in terms of their application-specific classes and the nature of 
their representations with regard to dimension, locational accuracy and 
spatial data model. The rule base of the deductive subsystem refers to the



current contents of this object directory in order to make decisions about 
appropriate strategies for update and retrieval. It also controls the 
execution of spatial processors required for certain update operations 
and for performing, where necessary, generalisation operations on 
retrieved objects.

The detailed spatial structure of objects listed in the object directory is 
recorded in the topology and metric geometry components. The metric 
geometry component stores data referenced directly to locational 
coordinates and could include both vector and raster data employing 
specialised multiresolution data structures. In the case of vector 
structured objects a close relationship could be expected with 
corresponding elements in the topology component of the database. The 
distinction between topology and metric geometry is intended to 
facilitate efficient search based on topological information at various 
levels of detail. Range searches for all objects in a given rectangular 
window may be served directly by the metric geometry data structures.

The rule-based component of the experimental system is envisaged 
initially as a deductive, or logic database which may be implemented in a 
logic programming language with extensions for calling external 
procedures and for access to permanent storage. Execution of rules for 
update of single resolution and multiresolution spatial data structures and 
for generalisation will then be achieved by calling the various spatial

Rule Base
+

Inference 
Mechanism

Spatial Processors

Geometry 
Generalisation

Database Access Mechanisms

Object Directory 

(spatially segmented)

Figure 1

Topology Metric 
Geometry



processors. Implementation of the spatial data structures requires the use 
of complex data types, while the processors which operate on them 
could, in some cases, consist of knowledge-based subsystems in their own 
right. These latter components of the database may appear therefore to 
be suited to implementation using object-oriented programming 
techniques.

Recognition of the importance of combining rule processing with 
object-oriented databases is reflected in the design of systems such as 
POSTGRES (Stonebraker, 1986). The potential of this type of database 
system for implementing multi-scale GIS has already been identified by 
Guptill (1989, 1990). From the more purely deductive database 
standpoint, new versions of the logic programming language Prolog are 
being developed to provide efficient integration with a permanent 
database (Bocca et al, 1989; Vieille et al, 1990). By adding facilities for 
handling complex data types and for calling external procedures, the 
deductive database architecture may also then provide a suitable basis 
for building multi-scale geographical databases.

MULTIRESOLUTION DATA STRUCTURES

Whether there are single or multiple representations of individual 
objects and classes of object, each representation may be regarded as a 
candidate for retrieval over a range of scales. The largest scale limit will 
be constrained by the locational accuracy of the geometric data. The 
smallest scale limit will be determined by the capability of automated 
generalisation functions which can operate on the object. Widely used 
line generalisation procedures such as the Douglas algorithm (Douglas 
and Peucker, 1973) have been used, in combination with smoothing 
operators over scale changes in excess of a factor of 100 (Abraham, 
1988). When the linear features form part of areal objects, automated 
procedures are generally very much more restrictive, since issues such 
as object amalgamation and displacement must be taken into account. 
Automated areal generalisation was used in the ASTRA system (Leberl 
and Olson, 1986) but scale changes were only of a factor of about two. A 
variety of techniques is available for generalisation of digital terrain 
models (Weibel, 1987). Limits on the possible degree of generalisation 
of these models depends on the error tolerance of the application. 
However, when structure lines (ridges, valleys and form lines) are added 
to the model, the limits may be expected to be similar to those of the 
generalisation of the individual linear features.

Given that individual representations apply over a range of scales, the 
question arises as to how best to store the objects to achieve efficient 
access at different scales. The options are single storage of the object 
with generalisation to smaller scales at the time of the query; storage of 
several pre-generalised versions of the object, with the possibility of data



duplication (as in Guptill, 1990); and storage of a non-duplicating 
hierarchical representation of the single object (see below). The first of 
these options could, in the case of linear features and terrain models, 
require initial retrieval of orders of magnitude excess data before 
simplification by a generalisation function. The second option could give 
efficient access to a representation which may closely approximate the 
retrieval specification, but at the expense of a storage overhead due to 
data duplication. The third option is a compromise in which a 
generalisation function is used to segregate the geometric component of 
the objects according to their contribution to shape and accuracy. By 
organising the component data in a hierarchical manner it is then 
possible to access only the geometric data required to build a 
representation at, or an approximation to, the required level of 
generalisation.

Multiresolution data structures which avoid or minimise data 
duplication are available for both linear features and surfaces. For linear 
features, the strip tree (Ballard, 1981) provides a means of accessing 
successively higher resolution approximations to a curve represented by 
rectangular strips. In its original form it is not very space efficient, as 
individual points may be stored several times if they bound successively 
narrower strips. Each rectangle must also be explicitly defined. The 
original strip tree consists essentially of a binary tree. The root node 
stores a rectangular strip which encloses the entire feature, along with 
pointers to two offspring. A point where the curve touches the side of 
the initial strip is used to subdivide the curve into two parts, each of 
which is represented by enclosing strips which are stored in the 
offspring nodes. The curve is divided recursively in this manner until 
individual strips coincide with straight line, zero width, segments 
between successive vertices of the feature.

The multi-scale line tree (or line generalisation tree) is related to the 
strip tree and may be regarded as a tree of variable branching ratio 
rather than a binary tree (Jones 1984, Jones and Abraham 1986,1987). 
Each level of the structure corresponds to a maximum implicit strip 
width. Furthermore, it is vertex rather than strip oriented, and each 
level stores vertices which are intermediate to those at the next higher 
level. The result is that it is significantly more space-efficient than the 
strip tree. It has been implemented in a network database in which each 
level of a hierarchy is stored independently of the other levels of the 
same line object, but in association with the equivalent generalisation 
levels of other objects (Abraham, 1988). Thus rapid access to all features 
of a particular resolution is facilitated by only retrieving, for each 
object, those hierarchical levels which are relevant to a specified output 
scale (or spatial resolution).

Use of a multi-scale line tree introduces the problem of maintaining



aspatial and topological attributes of the line features. If the hierarchy 
extends across a wide range o,f scales, the line itself may be 
geographically extensive.such .that;there are distinct internal subdivisions 
relating to .different feature codes .and to topological nodes. By attaching 
sequence numbers to the component vertices of a line, aspatial 
classification and topological structure can ,be .defined in terms of ranges 
of sequence numbers .and individual, sequence ̂ numbers which have been 
designated as -nodes (Jones and Abraham, 1987; Abraham, 1988). To 
retain ac.cess-.efficiency, the node vertices should he stored at the highest 
hierarchical level (lowest resolution) at which they are likely to be 
required. Thus vertices which-the generalisation procedure may classify 
as low level would, if they were logical nodes, be raised to the 
appropriate higher 'level.

Multiresolution representations ,of surfaces may be categorised into 
those teased .on .mathematical ifunctional ̂ models of the :surface and those 
based on -original, <or ^derived, 'sample .points. Jf 'the .coefficients of a 
surface function are orthogonal, dn .the sense that they represent 
independent ̂ components of the.surface.shape, then a/multiresolution data 
structure could :be created by.* separating the .storage of the components 
into distinct records. Each .record would .correspond to a 'level 1 , 
characterised .by'the.extent to which .the stored:coefficients contributed to 
the surface shape.'The most "important components could be stored at the 
highest levels, while.less significant .ones were stored at progressively 
lower levels. A.problem which ̂ occurs whenmsing.global functions, such 
.as iFourier Series, is that the [reconstructed, simplified surface, may be 
subject locally ;to relatively .large ^ejrors. ,A .mathematical function 
approach whicli controls errors '.can l>e obtained -.by partitioning the 
surface into rectangular regions each of which is represented by its own 
function '(Pfaltz, 1975). 'By-partitioning ^the surface in the manner of a 
quadtree, .the .size .of the quadrants ..can ;be reduced locally .until the 
chosen function fits the, surf ace .to within a pre-specified tolerance (Chen 
and Tobler, .1986.; iLeifer and .Mark;, 1987.). Although the method has 
.been applied primarily ;to the representation ,of surfaces at a specified 
error tolerance, it ;,co.uld -b_e .extended into :a multiresolution quadtree in 
which intermediate;(subdividjs.d),nodes stored a function.accompanied by 
a measure <of the .associated srror.

Surfaces represented by sample .points are usually,organised either as 
regular .grids .of elevation values or as ,an Irregular set of significant 
points. Irregularly distributed points are typically -structured by 
triangulation, to -form a 'triangulated irregular network, or TIN 
(Peucker et al, 1978). Because the sample .density-of,a TIN Is.adapted to 
local variation in surface .detail the structure lends itself to 
implementation as .a .multiresolution structure.



The Delaunay pyramid (De Floriani, 1989) is a hierarchical 
multiresolution tree for storing triangulations. The top level of the tree 
stores a Delaunay triangulation of a subset of the original dataset of 
important points. The next lower level is constructed by adding vertices 
which are chosen to be the most distant from the previous triangulated 
surface. Points are added to the previous surface, which is 
re-triangulated to accommodate them until the error between this new 
surface and the remaining points is within a pre-set tolerance. The next 
lower level is created in a similar manner, controlled by the error 
tolerance for that level. Each level stores a list of the triangles and 
vertices .of which it is composed, the differences (in terms of triangles) 
between the adjacent upper and lower levels, and pointers from certain 
triangles to those which replace them, and are hence intersected by them, 
at the immediate lower level. Note that only a subset of triangles at each 
level points to lower triangles, since some of the previous triangles will 
be retained in the lower level.

An advantage of a triangulated surface model is that it provides the 
possibility of being integrated with point, linear and polygonal features. 
If the vertices which define the .latter features are merged with those 
which define a digital elevation model then, after triangulation, the 
linear and.polygonal features can be constituted by the edges within the 

itriangulation, while point features are represented by single nodes. To 
ensure that linear features are retained in this way, the triangulation 
process must be constrained by boundaries defined by the linear features 
(see De Floriani and Puppo, 1988, for the constrained triangulation of 
multiresolution topographic surfaces). Provided all nodes are uniquely 
identified, the embedded spatial objects and their topology can be 
referenced directly to sequences of, and individual, triangulation nodes. 
In a multiresolution structure, references to nodes can include their level 
within the hierarchy and, just as with the multi-scale line tree topology, 
their nodes would be stored at the highest level that they could be 
expected to be of use. A multiresolution triangulation data structure 
integrated with topology and feature specification is currently being 
developed (details will be published elsewhere).

INDEXING MECHANISMS

Appropriate schemes for efficient spatial access to multiresolution 
hierarchies may vary according to whether,the objects encoded in the 
hierarchies are very extensive compared with potential regions of 
interest. This factor determines the desirability of incorporating spatial 
indexing .within the object representation in addition to a spatial index 
which refers only to the entire objects. The latter indexing scheme would 
indicate the storage location of objects, the geometry of which was 
stored in, for example, a multi-scale line tree, a multiresolution 
triangulation or a single level representation. Methods of implementing



the primary object index include techniques such as i) a fixed grid with 
references to intersecting objects; ii) a bounding quadtree cell scheme 
(Abel and Smith, 1983); and iii) an R-tree, or one of its relatives, which 
works with minimum bounding rectangles (Guttman 1984, Faloutsos, 
1987). Depending on the nature of the application, an additional aspatial 
index to objects could also be desirable.

If the geometry of objects referenced by the spatial or aspatial index 
was extensive compared with the search window, it would be necessary 
to traverse the geometric data structure, selecting those parts inside the 
window. If the geometry was stored as a multiresolution hierarchy (line 
tree or triangulation), covering a wide range of scales, then it could 
frequently be expected to be spatially extensive relative to query 
windows for large scale applications. The multi-scale line tree was 
implemented on this assumption and incorporated spatial indexing within 
each level of the hierarchy. In that experimental database, both fixed 
grid and quadtree schemes were applied, in which the cells of the grids 
and of the quadtrees stored sets of vertices in chained records. When the 
fixed grid size was selected to be different for each level (according to a 
regular pyramid) the performance of the two schemes was found to be 
similar (Abraham, 1988).

In De Floriani's Delaunay pyramid (De Floriani, 1989), the 
pointer-based implementation provides some direction to spatial search 
within the structure once candidate triangles have been identified at the 
top level. The implementation described appears to have been oriented 
towards point rather than window searches. An alternative approach, 
currently being pursued, is to impose a spatial index on each level.

Bearing in mind that a multi-scale database may be very large and that 
objects may occur at widely differing levels of class-generalisation 
hierarchies, the concept of a single spatial index and a single list or index 
of objects becomes rather monolithic. Given that the scale of the output 
can be expected to be correlated with the level of class generalisation, a 
natural development of the indexing system is to segregate it into 
generalisation levels allowing direct access into an appropriate level. 
Each level could be associated with some limiting spatial resolution and 
would reference only classes of object which were regarded as likely to 
become significant at that scale. The choice of classes could be somewhat 
arbitrary on the assumption that a data dictionary indicated the 
correlation between class and level. It would not be necessary to refer 
explicitly to the parents of classes in a class-generalisation hierarchy, 
provided the content and structure of all such hierarchies was stored 
separately, allowing them to be inferred (see, for example, Egenhofer 
and Frank, 1989).



MAINTENANCE OF MULTIPLE REPRESENTATIONS

An important issue in maintaining multiple representations is the extent 
to which data duplication and data redundancy are to be tolerated. 
Duplication will occur when one representation is a simplified version of 
the other if its geometry, such as the vertices of a line or triangulated 
surface, is a subset of that of the other version. If an automatic 
procedure exists for performing the simplification, then the smaller scale 
version may be regarded as redundant. Data redundancy in this sense can 
also arise in the absence of data duplication provided that there is an 
automatic procedure for deriving a required small scale version from 
the larger scale version. For the purposes of an interactive information 
system however, this notion of redundancy may be questioned if the 
processing required by the automatic procedure was too much to provide 
an acceptable response time.

The multiresolution data structures referred to earlier give rapid access 
to generalised versions which are geometric subsets, and they therefore 
provide a means of avoiding data duplication, at least for linear features 
and surfaces. When 'quantum leap' differences occur in the course of 
generalisation, due for example to changes in dimensionality and to 
merging and displacement of objects, the existing types of 
multiresolution data structures cannot be used. It can also be expected 
that where automatic procedures do exist for this degree of 
generalisation, there is a greater chance of being too slow for 
satisfactory user interaction. It is in the event of major changes in the 
geometric representation that the storage of multiple versions is most 
likely to be appropriate. This does not however preclude the use of 
multiresolution data structures for separately maintaining both the 
smaller and larger scale representations across their different ranges of 
scales.

Another situation in which multiple versions might be stored is that in 
which data duplication was very localised, due to the presence of 
geographically small areas of large scale, high resolution data within a 
region which was covered by a much more extensive, smaller scale 
representation. A method of maintaining a consistent representation at 
the small scale, while also avoiding the data redundancy, would be to 
generate a multiresolution data structure from the large scale data and 
merge it, at the top level, with the existing small scale version. This 
would involve cutting out the duplicated section and edge matching 
between the two versions (see Monmonier, 1989b, for a discussion of 
techniques for automatic matching of map features which differ in their 
original scale of representation). It may be envisaged that the processing 
overheads incurred in local deletions followed by merging of the new 
data may not be deemed justifiable for relatively small quantities of data, 
since the coverage at the larger scales would only be patchy. As more



extensive coverage at the larger scales accumulated in the database, a 
point would be reached at which the delete and merge process became 
justifiable.

Control over the decision on when to merge new data with stored data 
can be placed within a rule base which is integral to the database 
management system. An analogy may be made with trigger mechanisms 
which have been incorporated in database systems such as POSTGRES 
(Stonebraker, 1986). Triggers are an automatic means of maintaining 
integrity based on rules which dictate that once a particular data element 
has changed, it may propagate a sequence of changes to related records 
in the database. Each trigger may be expressed as a production rule 
which is implemented by a forward chaining mechanism in which the 
firing of one trigger may lead to subsequent firing of another trigger.

The possibility of a chain of triggered updates can be envisaged in a 
multiple representation database if the insertion of large scale 
representations filled gaps in an intermediate scale representation, 
enabling the latter to be merged with an existing, smaller scale, 
representation. Thus databases which include trigger mechanisms can be 
seen, to some extent, as dynamic, self-maintaining systems. If there was 
any doubt about the reliability of such systems, with regard for example 
to correct matching and merging of geometry and topology, these 
updates could be subject to user-verification before being committed to 
the database. All operations could be reversible if historical records 
were maintained in archival memory.

DATABASE QUERIES ON MULTIPLE REPRESENTATIONS

A query to a multi-scale, multiple representation database can be 
expected to be faced with a choice of versions which are candidates for 
retrieval. An automatic query processor would then need to make a 
choice of the appropriate retrieval to meet the user's requirements. 
Criteria for an appropriate retrieval would differ according to whether 
the output was required for analytical purposes or solely cartographic 
purposes. In the latter case the version retrieved might be the one which 
most closely resembled the level of generalisation dictated by the map's 
theme and scale. Such a version could be obtained by a variety of means. 
There could be a single level stored representation of the appropriate 
generalisation. Alternatively there could be a multiresolution data 
structure which encompassed the required generalisation level and could 
therefore be traversed to construct the output. Failing that, there could 
be a large scale version which could be generalised by software. In the 
latter case the automated generalisation process could operate only on 
that large scale version or perhaps, as Monmonier (1989a) has proposed, 
an additional smaller scale version could be used to guide generalisation 
to an intermediate level. If no sufficiently large scale data were

10



available, a poorer quality version could be retrieved and the user 
warned accordingly, or a failure reported.

The above strategies would not in general be suitable for queries based 
on the need for data analysis problems in which locational accuracy was 
of prime importance. Cartographic generalisation would not then be 
desirable and the appropriate version would be that derived directly 
from, or a subset of, the largest scale representation. Particular 
problems could arise with this sort of query if coverage of the query 
window required access to representations with differing locational 
accuracy. In any event, data retrieved for analytical purposes would need 
to be labelled with their accuracy, and processes involving overlay 
between different objects would need to maintain a measure of the errors 
propagated by the combination of geometric objects.

It is apparent that implementation of a query processor capable of 
adapting to user requirements will require the specification of rules to 
control the action to be taken under the various conditions of user needs 
and data availablility. The query processor could operate initially on the 
object directory which recorded the class, location, dimension, accuracy 
and spatial data model of objects stored in the data base. The rules could 
then be applied to select the best representation given the query 
conditions. This would include taking the decision on whether to apply 
automatic generalisation procedures and choosing which procedures 
were most suitable. The mechanism for implementing a deductive system 
governing queries may differ somewhat from that governing updates, 
referred to in the previous section. Because a query may be regarded as 
a specific goal, it lends itself to a backward chaining mechanism which 
attempts to match the contents of the database with the search conditions.

SUMMARY

The construction of a database, capable of maintaining multiple scale 
representations of spatial objects, poses major problems with regard both 
to the development of efficient multiresolution data structures and to 
controlling update and answering queries. The need for explicit rules 
governing update, database integrity and the retrieval of generalised 
objects indicates the desirability of a deductive, knowledge-based 
architecture providing declarative rule specification. Storage of complex 
objects in specialised data structures, along with the need for associated 
processors for update and generalisation, suggests however that it may 
also be appropriate to use object-oriented programming techniques. A 
research project is currently in progress with the aim of experimenting 
with deductive databases for implementing a multi-scale spatial 
information system. In the planned system, rules of update and query 
processing are specified in a deductive, logic database which is interfaced 
to spatial processors and spatial data structures which may be

11



implemented, at least in part, in procedural or object-oriented languages. 
The operation of the spatial processors may themselves employ 
knowledge-based inference techniques which are encapsulated within the 
respective modules. The primary, deductive component of the system 
makes decisions about appropriate update and retrieval operations by 
referring to the current contents of an object directory, which 
summarises the nature of stored object representations in terms of their 
feature class, location, dimension, accuracy, and spatial data model. 
Details of the spatial structure of stored objects are maintained within 
separate topology and metric geometry components of the database, to 
which the object directory refers.

REFERENCES

Abel, DJ. and J.L. Smith 1983, A data structure and algorithm based on 
a linear key for rectangular retrieval: Computer Vision. Graphics and 
Image Processing. Vol. 24, pp. 1-13.

Abraham, I.M. 1988, Automated Cartographic Line Generalisation and 
Scale-Independent Databases, PhD Thesis, The Polytechnic of Wales.

Ballard, D.H. 1981, Strip trees: a hierarchical representation for curves: 
Communications of the ACM. 24, pp. 310-321.

Bocca, J., M. Dahmen, M. Freeston, G. Macartney, P.J. Pearson 1989, 
KB-PROLOG, a PROLOG for very large kowledge bases: Proceedings 
7th British National Conference on Databases. Edinburgh, pp. 163-184.

Brassel, K.E. 1985, Strategies and data models for computer-aided 
generalization: International Yearbook of Cartography. Vol. 25, pp. 
11-28.

Brassel, K.E. and R. Weibel 1988, A review and conceptual framework 
of automated map generalization: International Journal of Geographical 
Information Systems. Vol. 2, No. 3, pp.229-244.

Chen, Z.-T., and W. Tobler 1986, Quadtree representations of digital 
terrain: Proceedings Auto Carto London. Vol. 1, pp. 475-484.

De Floriani, L. 1989, A pyramidal data structure for triangle-based 
surface description: IEEE computer Graphics and Applications. March 
1989, pp. 67-78.

12



De Floriani, L. and E. Puppo 1988, Constrained Delaunay triangulation 
for multiresolution surface description: Proceedings Ninth IEEE 
International Conference on Pattern Recognition. CS Press, Los 
Alamitos, California, pp. 566-569.

Douglas, D.H. and T.K. Peucker 1973, Algorithms for the reduction of 
the number of points required to represent a digitized line or its 
caricature: Canadian Cartographer. Vol. 10, No. 2, pp. 112-122.

Egenhofer, MJ. and A.U. Frank 1989, Object-oriented modeling in GIS: 
inheritance and propagation: Proceedings Auto-Carto 9. Ninth 
International Conference on Computer-Assisted Cartography. Baltimore, 
Maryland, pp.588-598.

Faloutsos, C., T. Sellis, N. Roussopoulos 1987, Analysis of 
object-oriented spatial access methods: Proceedings ACM SIGMOD'87. 
pp. 426-439.

Guptill, S.C. 1989, Speculations on seamless, scaleless cartographic data 
bases: Proceedings Auto Carto 9. Ninth International Conference on 
Computer-Assisted Cartography, Baltimore, Maryland, pp. 436-443.

Guptill, S.C. 1990, Multiple representations of geographic entities 
through space and time: Proceedings 4th International Symposium on 
Spatial Data Handling. Zurich, pp. 859-868

Guttman, A. 1984, R-trees: a dynamic index structure for spatial 
searching: Proceedings ACM SIGMOD'84. pp.47-57.

Jones, C.B. 1984, A tree data structure for cartographic line 
generalisation: Proceedings Eurocarto III, Research Center Joanneum, 
Institute for Image Processing and Computer Graphics, Graz.

Jones, C.B. and I.M. Abraham 1986, Design considerations for a 
scale-independent database: Proceedings, Second International 
Symposium on Spatial Data Handling. Seattle, pp.384-398.

Jones, C.B. and I.M. Abraham 1987, Line generalisation in a global 
cartographic database: Cartographica. Vol. 24, No. 3, pp.32-45.

Leberl, F.W. and D. Olson 1986, ASTRA - A system for automated 
scale transition: Photo grammetric Engineering and Remote Sensing. Vol. 
52, No. 2, pp. 251-258.

13



Leifer, L.A. and D.M. Mark 1987, Recursive approximation of 
topographic data using quadtrees and orthogonal polynomials: 
Proceedings Auto-Carto 8. Eight International Conference on 
Computer-Assisted Cartography. Baltimore, Maryland, pp. 650-659.

Monmonier, M. 1989a, Interpolated generalisation: cartographic theory 
for expert-guided feature displacement: Cartographica. Vol. 26, No. 1, 
pp. 43-64.

Monmonier, M. 1989b, Regionalizing and matching features for 
interpolated displacement in the automated generalisation of digital 
cartographic databases: Cartographica. Vol. 26, No. 2, pp.21-39.

Peucker, T.K., R.F. Fowler, JJ. Little, D.M. Mark 1978, The 
triangulated irregular network: Proceedings Digital Terrain Models 
(DTM) Symposium. ASP-ACSM, St. Louis, pp. 516-540.

Pfaltz, J.L. 1975, Representation of geographic surfaces within a 
computer: in Display and Analysis of Spatial Data. Edited by J.C. Davis 
and M. J. McCuUagh, Wiley, pp. 210-230.

Stonebraker, M.R. and L.A. Rowe 1986, The design of POSTGRES: 
Proceedings ACM SIGMOD'86. pp.340-355.

Vieille, L., P. Bayer, V. Kuchenhoff, A. Lefebvre 1990, EKS-V1, a 
short overview: Proceedings AAAI-90 Workshop on Knowledge Base 
Management Systems. Boston.

Weibel, R. 1987, An adaptive methodology for automated relief 
generalization, Proceedings Auto-Carto 8. Eight International 
Conference on Computer-Assisted Cartography. Baltimore, Maryland, 
pp. 42-49.

14




