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ABSTRACT

This project is a case study of extraction of roads and houses from low- 
resolution infrared aerial photographs of city block areas. Houses and roads 
are about 2 pixels wide. Infrared renders houses, connecting driveways, and 
roads light, with significant blurring. The situation is challenging because of 
the similar imaging of the objects of interest and the low resolution.

We show how to combine regions from thesholding, a residual-based 
edgefinder, and spot (house) identification through a modified Gaussian curva 
ture to obtain road networks and houses. A tree growing procedure for aggre 
gating points in the plane is developed, and applied to find smooth trajectories 
through detected building locations, yielding rows of houses along roads. In 
addition to proposing a practical method for this problem domain, we hope 
that this and similar studies contribute to development of techniques for low- 
level feature extraction and methods for combining them.

INTRODUCTION

This project is a case study of extraction of roads and houses from low- 
resolution infrared aerial photographs of city block areas. Houses and roads 
are about 2 pixels wide. Infrared renders houses, connecting driveways, and
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roads light, with significant blurring. The situation is challenging because of 
the similar imaging of the objects of interest and the low resolution. We are 
interested in extracting maximum information from low resolution data 
because this reduces the number of images that need be captured, and because 
in surveillance applications, low resolution data may be all that are available.

We show how to combine regions from thesholding, a residual-based 
edgefinder, and spot (house) identification through a modified Gaussian curva 
ture to obtain road networks and houses. A spanning-tree-based procedure for 
sending smooth paths through points is developed. Such a procedure has 
numerous applications because significant physical objects tend to have 
smooth boundaries, while feature detectors often produce fragments. One can 
deduce the boundaries by reassembling the fragments. This module is tested 
by applying it to house locations, yielding rows of houses along roads. In 
addition to proposing a practical method for this problem domain, we hope 
that this and similar studies contribute to development of techniques for low- 
level feature extraction and methods for combining them.

Figure 1 summarizes our results.

PREVIOUS WORK

There has been much work in this area, due to the variety and volume of data 
awaiting availability of practical systems, and suitability of numerous sub- 
domains as testbeds for different techniques.

Emphasis of work in the area includes low-level primitives (Nevada and Babu 
1980), detection of cultural objects by rectangular or smoothly curving con 
tours (Fua and Hanson 1987), complete systems based on applying special 
knowledge of particular sub-domains (Huertas et. al. 1987), and general 
mechanisms for applying knowledge constraints (McKeown et. al. 1985). 
Most work spans the range from use of low level vision to acquire basic data, 
to application of domain-specific knowledge, whether it be applied as a special 
case or through a general mechanism. It is typical for authors to comment on 
special characteristics making their domain challenging to automatic analysis. 
The present study considers a particular sub-domain - low resolution infrared 
city blocks ~ and shows how mathematically well-behaved primitives can be 
used in conjunction with world constraints to extract features. A general sys 
tem will function most efficiently with a library of such sub-domains and a 
kernel of mathematically precise low-level detectors. Binford (1982) argues 
lucidly that success in large domains using model-based analysis will require 
strong low-level modules.
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Figure la. Source picture CIRCLE. 
128 by 128.

Figure Ib. Features located in CIR 
CLE. Straight line segments from 
roads are plotted different shades of 
gray. Isolated black dots are build 
ings.

Figure Ic. Picture BLOCK. House 
Locations found via gaussian curva 
ture marked black. Source image is 
128x128.

Figure Id. House grouping results 
from BLOCK after line fitting (shown 
in black). Results of road extraction 
algorithm are shown in grey.

Figure 1: Summary of road and building extraction techniques.

Cultural Feature Detection
Huertas, Cole and Nevatia (1987) demonstrated a system for detection of air 
port runways from very high resolution photographs. This work showed a nice 
balance of simple but well-considered low (lines) and middle (APAR) level
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vision, use of hand-tooled high level constraints from the problem domain, and 
a working demonstration. APARS are approximately parallel edges of oppo 
site contrast (Anti-PARallel), useful for detecting bars or slowly varying rib 
bon shapes against a contrasting background. They point out that while run 
ways are essentially elongated rectangles, the problem is very challenging 
because of runway markings, non-uniformity of runway surface (oil spots and 
shoulders), repair work, vehicles on the tarmac, and intersections. LINEAR 
(Nevada and Babu 1980) is used to produce line segments and APARS. A 
variety of 5 by 5 masks are used to detect edges, which are then thresholded, 
thinned, linked, and approximated as piecewise linear. APARS are then 
identified. APAR-based approaches tend to produce many false candidates, 
especially when a feature has parallel sub-features (eg lines down a runway), 
and each line can then contributes to many APARS. This is handled by histo- 
gramming APAR widths, and selecting candidates with widths appropriate for 
runways, shoulders and markings. APARS are joined by analyzing continuity, 
collinearity, and gap texture. Finally, hypotheses of positioning of runway 
subfeatures are verified from FA A specifications.

Fua and Hanson (1985) used parallel and perpendicular line segments to locate 
cultural objects in high resolution images. Undersegmentation was resolved 
by using linking to connect almost-collinear lines, complete corners, and close 
open-ended U's and parallels. Subsequently (Fua and Hanson 1987), they pro 
posed detecting roads by using linear edge segments to calculate road width 
and center; fitting a spline to the center; then using the center spline to locate 
splines for each side of the road. This allows the road to be continued even 
when one side is lost due to imaging conditions, occlusion, junctions.

Pavlidis and Liow (Pavlidis and Liow 1988) detected regions by following an 
oversegmented split-and-merge phase with boundary and edge modification 
based on contrast, boundary smoothness, and image gradient along boundaries.

The integration of top-down and bottom-up analysis has been advocated by 
many authors. In particular, Matsuyama (1987) presented an image under 
standing system that generates hypotheses to test for the existence and location 
objects, according to the results of low-level vision techniques.

Similarly, Nicolin and Gabler (1987) demonstrated a knowledge-based system 
for interpretation of aerial images of suburban scenes. Their system is divided 
into several functional units. One unit contains a methods base of low-level 
image processing techniques and a second unit contains a knowledge base for 
suburban scenes. The system's control module uses the knowledge base to 
decide which techniques from the methods base should be applied to the 
image.

McKeown and Denlinger (1988) constructed a system for high-resolution 
imagery based on cooperation between a surface correlation tracker and edge 
tracing. They detect edges using a 5 by 5 Sobel gradient. The correlation 
tracker, after a design of Quam (1978), looks for patterns such as lane markers



and wear patterns. Starting position of the road, its direction, and width are 
assumed given. The hypothesized road trajectory is tested by pushing a cross- 
section of the road forward and testing for cross-correlation.

Aviad and Carnine (1988) presented a method for generating hypotheses for 
fragments of roads, intended to be fed to a road tracker. The Nevatia and 
Babu (1980) edge finder is used, followed by Road Center Hypothesis detec 
tion by antiparallel edges. RCH's are then aggregated by a greedy linker. 
This is followed by editing by a smoothness checker, and a final linking.

Point Grouping
In our paper, we examine how to group points in the plane (houses locations) 
into smoothly varying curves that will lend insight into the feature composi 
tion of an aerial image. Zahn (1971) applied graph theoretic algorithms to 
detection of clusters in arbitrary point patterns. By constructing a minimal 
spanning tree, he is able to cluster dots into groups according to their point 
density, measured by calculating the local average length of the spanning 
tree's edges. A histogram of the local point densities is then calculated and 
categorized. All edges having neighbors of two (or more) different point den 
sity categories are deleted. The resulting graph contains a spanning tree for 
each point cluster.

Stevens (1978) showed that orientation patterns in a field of random dots 
can be detected by the use of a local support algorithm. Local orientation is 
found by drawing virtual lines between neighboring points and then searching 
for the predominant orientation of the virtual lines. For example, Stevens' 
algorithm can deduce local relationships in a pattern consisting of an original 
set of random dots together with a duplicated translation, or with a duplicated 
set expanded about a center. It will also group isolated one-dimensional 
curves. Since it finds the major orientation in two-dimensional neighbor 
hoods, it is not well suited to grouping houses, where there are nearby linear 
strings of different orientation. Likewise, Zucker (1985) presented an 
orientation-based process to infer contours from a collection of dots by locally 
finding the tangent fields.

Tuceryan and Ahuja (1987) performed clustering and linking according to 
properties of the Voronoi polygons induced by the dots, including area, eccen 
tricity, isotropicity, and elongation. For example, dots around the boundary of 
a cluster can be identified because they are eccentric within their polygons.

Vistnes (1987) used a statistical model for the detection of dotted lines 
and curves embedded in a random dot field. His model is based on a local 
operator that detects regions of differing dot densities.

ROAD AND HOUSE DETECTION

The goal of this phase is efficient generation of a map of as many of the main 
roads and houses as possible. When in doubt we are conservative, identify-
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ing those features in which we have high confidence. We pay particular atten 
tion to connectivity of the road networks as this is a key semantic feature.

APARS tend to produce disconnected representations at junctions, (e.g., at a Y 
junction in a road) since the generating parallel edges do not continue all the 
way to the center of the junction. In contrast thinning naturally preserves the 
connectivity at the junction. Centers between APARS are much less sensitive 
to small glitches in data than thinning in finding skeletons for wide objects, 
but thinning is suitable for the present domain because features are only a few 
pixels wide. These data are a difficult (though possibly feasible) case for edge 
linking and APAR detection because very close proximity of houses causes 
the edge-finder to wander. Our greedy thresholding quickly and simply yields 
good connectivity over large segments. 
Road and house detection runs in 6 steps.

1. (Greedy thresholding): Undersegmented regions consisting of houses, 
roads driveways, and some adjoining areas are thresholded from the 
source.
2. (Residual edge cutting): The Lee/Pavlidis/Huang (1988) residual 
edgefinder is tuned to handle these small-scale data, and edges are used to 
further segment the regions.
3. (Thinning and small component removal): Resulting regions are 
thinned. Thinning is careful to respect connectivity, which can now be 
deduced by local analysis of neighbors. Small components are removed.
4. (Gaussian curvature spot detector): A modified Gaussian curvature 
spot detector is applied, yielding most house positions.
5. (Trimming): House locations and connectivity of the road network are 
used to trim the network down to major roads.
6. (Line fitting): The network is decomposed into line segments.

Thresholding
This data set is interesting because neither the regions from thresholding nor 
edgefinding by themselves yield adequate information about the road net 
works. A greedy threshold does maintain good connectivity, but blurs the 
houses into the roads. Adjacent houses blur together, mimicking the linear 
structure of the roads. More conservative thresholds curtail this aggregation 
somewhat, but even when the threshold is reduced to the point where the roads 
begin to disconnect, significant aggregation of distinct features remains. Fig 
ure 2 shows the regions obtained at 2 threshold values.

Edgefinding
Our edgefinder is based on the residual technique of Lee, Pavlidis and Huang 
(1988). They detect edges as zero-crossings of the difference between source 
image and a regularization of the image. We found that effects of small varia 
tions in the image were reduced by applying a mild smoothing to the image 
first. So, edges are the zero-crossings of the difference of a mildly regularized
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(2 a) Image CIRCLE threshold > 80 (2 b) CIRCLE threshold > 110

Figure 2: A greedy theshold yield excellent road connectivity but blurs houses into 
roads. More conservative thresholds yield neater road segments, but leave gaps, 
eliminate small roads, and still leave some building and driveways attached. We 
take the undersegmented greedy image and use edges to refine it.

image ((5= 5.0), and a smoother image (p= 1.0). Zero-crossings are thres- 
holded by slope.

We compared Canny and residual edgefinders at different resolutions. The 
residual finder tended to generate more closed or almost-closed contours 
around small features like houses, which is especially useful in the trimming 
technique we are using. Figure 3 shows Canny and residual edges.

A common method for recording an edge map is to mark edge pixels on a ras 
ter the same size as the source image. Here one might choose to mark the 
edge on the darker side, the lighter side, or on the side nearer zero. Doing so 
in this case blurs nearby linear features (eg adjacent roads) together. For 
tunately zero-crossings have more structure than this - they form contours. A 
zero-crossing falls between raster positions having positive and negative resi 
dual values. We use a zero-crossing tracker which walks this boundary, break 
ing zero-crossing contours into smooth segments. A raster twice the size of 
the source is used, with cells having even coordinates holding the source pic 
ture, and with zero-crossing information stored between.

This data structure is now used to prune the regions. Since we are trying to 
preserve the lighter structures, the zero crossing segment walker sets every 
pixel on the darker side of a zero-crossing to black. This corresponds to a cut 
when lighter areas are chosen by thresholding. Figure 4 shows the result of 
removing edge points.
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(3 a) Edges from residual edge finder 
for image CIRCLE

(3 b) Canny edges, a = 1.0

Figure 3: Residual and Canny edges. Stronger edges are plotted darker. We found 
that the residual edges yielded more road boundaries, and tended to trace closed 
contours around houses.

(4 a) Image CIRCLE with edge points 
removed (black)

(4 b) Image CIRCLE: edge points 
removed from greedy threshold

Figure 4: Tnresholded regions have good connectivity; Edges are sparse but have 
good spatial accuracy.

Residual edges in this example accurately delineate many physically 
significant boundaries but are sparse and would present a difficult case for a 
purely edge-based technique. A purely edge-based analysis might be possible 
and would be very interesting.
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Thinning
The image is thinned (Pavlidis 1982), and small components are removed. 
The results are in Figure 5.

Figure 5: Image CIRCLE after thin 
ning and removal of small components

Gaussian curvature spot finder
Gaussian curvature can be used to construct an efficient operator which 
responds strongly to small bright spots (eg, houses around 2-3 pixels wide, as 
they are in our source image), but does not respond to straight edge data 
(roads).

Gaussian curvature of the gray level picture g(x,y) is given by:

9* 2 9jg2
3*2 3v2

1 + dg
ox

-\2

dxdy

2 
+ dg

dy

2

o4s

(See, e.g., Spivak (1970) or Horn (1986). We have been using the numerator 
of this expression to locate spots. It can be rewritten:

By
x By Bx ' By

In this rendering as cross-product of directional derivatives of gradient vectors 
we can see directly why there is no response to straight edges. All gradients 
point normal to the direction of the edge. Therefore derivatives also point in 
this direction, yielding a zero cross-product. This quantity is invariant of
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orientation of the coordinate system because the Gaussian curvature and 
denominator both are invariant.

In discrete image space at point (x , y ) this curvature c can be computed as:

- \8x-l, y+l ~ 8x-l,y-l

d_sq_x = gx+i >y + gx-i,y -2gx ,y
d_Sqj> = gx,y+l+gx,y-l-2gx,y

c = d_sq_x • d_sq_y -

Our Gaussian curvature module finds bright spots by first convolving the input 
picture with a gaussian; then finding points of high curvature. A spot is 
reported at locations whose curvature is greater than a specified threshold, and 
not less than the curvature of its 4 compass neighbors. This tends to mark a 
single pixel for each bright spot. Figure Ic shows the results of the Gaussian 
curvature operator.

Trimming via Connectivity analysis
At this point the constructed network has much of the connectivity structure of 
the underlying roads. Junctions can be located by locally counting neighbors. 
One must allow for diagonal connectivity to a neighbor if there is no 4- 
connectivity, as in Figure 6(a). Junctions of degree greater than 3 may be 
spread over neighboring pixels (Figure 6b).

(a) (b)

Figure 6: (a): In looking for junctions, cell "a" should count "n" as a neighbor 
only if neither of their common 4-neighbors is occupied, (b): When > 4 roads 
meet, the junction can be spread over nearby cells.
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Strings of nearby houses tend to blur together, producing linear bright strips 
which mimic road structure. A two-stage preening is now undertaken to elim 
inate these. First, starting from each house point, road pixels are deleted back 
up to a distance 7, but not past junctions. Stopping at junctions deletes drive 
ways up to a main road without interrupting it. Then short stubs are deleted, 
by starting at endpoints and looking for a junction within 5 pixels. If a junc 
tion is found, the segment from the endpoint the junction is deleted. Figure 7 
shows the results.

(7 a) Source picture ANGLE; 70 by 
80. May be better viewed from a dis 
tance (like Harmon's Abraham Lin 
coln).

(7 b) Spots from Gaussian curvature 
detector in white. Linear segments 
attached to houses, to be deleted, in 
black.

(7 c) Remaining short stubs to be 
deleted.

(7 d) Final results after line fitting.

Figure 7: Deletion of driveways and aggregated houses. Starting from house 
locations, road pixels are traced and deleted up to distance 7, but not past 
junctions, (b): Result after thresholding, edge cutting, thinning, small com 
ponent deletion, with road segments to be deleted in black, (c): Remaining 
short stubs to be deleted, in black.
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Line Fitting
Straight lines are fit to the thinned segments by testing line segments between 
successively more distant data points, and breaking at points of sufficiently 
large maximum distance between the test line and data (Pavlidis 1988b).

DOT GROUPING

In this section, we develop an algorithm for grouping points in two- 
dimensional Euclidean space, and apply it to detecting the curvilinear structure 
of houses lying beside roads. The algorithm takes as input a set V of points 
from R 2 (the detected locations of houses in our application), and constructs a 
forest joining certain vertices in V. The forest is grown as a sequence of trees, 
and each tree is grown by adding edges. The cost metric C(T,v,w) designates 
the cost, possibly   , of adding edge (v,w) to the partially constructed tree T. 
The algorithm is structurally similar to Prim's (1957) greedy algorithm for 
constructing a minimum cost spanning tree. Our model differs in allowing the 
metric to be a function of the partially constructed tree. A great deal of con 
trol over the grouping can be exercised by varying the metric.

Grouping algorithm
Let TI j denote the i-th tree after ;' edges have been added.

1) (Start a new tree): Let i be the number of trees constructed so far. 
We let Tj+1,1 consist of the edge joining a pair of vertices at minimum 
Euclidean distance, among all vertices not contained in any tree. If no 
edge is found, the construction is complete.

2) (Grow the current tree): Among all vertices w not in any current 
tree, and all vertices v in the current tree 7,-, find a pair (VQ,WQ) minim 
izing C(T,,v 0,H'o). Add it to T, and iterate this step. If no finite-cost 
addition can be found, go to (1) to start the next tree.

We have found it computationally and semantically advantageous to disallow 
edges longer than a parameter D max. This can be subsumed in the model by 
assigning any edge of length greater than D max infinite cost, and leads to an 
implementation where vertices can be assigned to local buckets of size 2D max 
by 2D max, and search for an appropriate neighbor of vertex v can be con 
strained to at most 4 buckets.

We now demonstrate how our state-dependent metric can be used to advan 
tage. Let

CPci«rv* 1a(7',v,w) = 0, * Dist (v ,w) + ( 1 -cc) * angle (T ,v ,w) .

angle(T,v,w) is the absolute value of the angle (in degrees) that is formed 
between the new branch and the neighboring branch (already included in the 
current tree T) having the most similar orientation. Parameter a determines
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the relative weighting between orientation and proximity, with a = 1 being the 
simple minimum Euclidean distance metric. The value a= .9 has produced 
good results in grouping houses in this dataset.

Figure 8a. Example 1: Minimum Figure 8b. Example 1: Tree con- 
Euclidean distance spanning tree. structed by orientation-sensitive

metric CCMn,g>a= .9

Figure 8c. Example 2: Minimum Figure 8d. Example 2: Tree con- 
Euclidean distance spanning tree. structed by orientation-sensitive

metric Ccurve>ot= .9

Figure 8: Two examples of smooth curve tracking ability of the orientation sen 
sitive metric. Left column shows the minimum cost spanning tree under the 
Euclidean metric; right column shows the metric Cc«m;,a=.9 combining distance 
and change in orientation.
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Figure 8 shows how use of orientation information can assist in tracking 
smooth intersecting curves: Ccum>,o=.9 follows the curves (Figure 8 b, d) better 
than the pure proximity-based metric (Figure 8 a, c).

Figure 9a shows the result of applying CCUrve,a=.9 to detected building locations 
in our dataset. Much of the linear structure of the house groups is captured, 
but some of the branches selected do not lie parallel to the nearby road but 
instead cross perpendicular to it. This occurs when houses on opposite sides 
of the same street are close enough to form a link. These stubs can be avoided 
by looking ahead for a smooth extrapolation: if we are trying to extend from 
vertex v in the current tree to a new vertex w , the extension is allowed only if 
there is an additional vertex x with the angle between (v,w) and (wjc) close to 
180 degrees. This yields a new cost metric:

Cbokahead,a,e(T ,V ,VV ) =

C curve ,a(T ,v ,w ) if there exists a vertex x, with the angle 
between (v ,w ) and (wjc) differing 
from 180 degrees by at most e;

<» otherwise.

This metric prevents the growth of branches that form stubs, but keeps corners 
and crossings intact as shown in Figure 9.

Figure 9a. Ccurve,a=.9 tracks curves 
well, but tends to generate short cross 
links between segments.

Figure 9b. C/oo^^ a=9 inhibits 
cross links by requiring that there be 
at least 2 adjacent edges lying nearly 
along a straight line.
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Finally, we calculate the two most frequently occurring house link orientations 
and delete any links whose orientation differs significantly. This is reasonable 
since communities generally have roads that run in two primary directions. 
Then a simple line fitting program (Pavlidis 1988) is used to straighten the 
house clusters. The house clustering results together with the results of the 
road extraction algorithm are shown in Figure 1.

Future work on clustering
The next step would be to integrate the roadfinding with building grouping. 
Our building groups occasionally cross roads, and this could be inhibited. 
Where houses are relatively sparse the roadfinder alone tends to work well. 
With dense houses, the similarity of house and road imaging tends to compli 
cate the roadfinding, but the houses group well, providing additional semantic 
clues. Grouping algorithms tend to be more tolerant to noise in the case of 
high density. The algorithms should synergize well, as in most places they 
agree, but there are places in the image where one algorithm has strongly 
located a road ( or road segment) in which the other algorithm has difficulty or 
misses completely.

SUMMARY

The residual edge-finder tends to produce strong contours around small 
objects. For this data set, these edges can be used to significantly improve seg 
mentation of low resolution road networks obtained from thresholding. A 
variant of Gaussian curvature is effective in locating buildings. We have 
developed a spanning tree technique sensitive to angles between branches, and 
shown it to be effective in detecting smoothly varying trajectories through 
given points.
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