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Abstract

We describe and analyze the complexity of a procedure for computing and 
updating a Delaunay triangulation of a set of points in the plane subject to 
incremental insertions and deletions. Our method is based on a recent algo 
rithm of Guibas, Knuth, and Sharir for constructing Delaunay triangulations 
by incremental point insertion only. Our implementation features several meth 
ods that are not usually present in standard GIS algorithms. Our algorithm 
involves:

Incremental update: During point insertion or deletion only the portion of 
the triangulation affected by the insertion or deletion is modified.

Randomized methods: For triangulation building or updates involving large 
collections of point, randomized techniques are employed to improve the 
expected performance of the algorithm, irrespective of the distribution of 
points.

Persistence: Earlier versions of the triangulation can be recovered efficiently.

1 Introduction

The Voronoi diagram and its dual, the Delaunay triangulation, are among the most 
useful structures that can be derived from a finite set of n points in the plane. These 
structures have long been recognized as being very useful in automated cartographic 
applications [6, 8]. Although it is known that these structures can be computed in 

worst case O(nlogn) time [2, 5], it is widely felt that the implementation of these 
algorithms involves a significant amount of programming effort. As a consequence 
many implementors have settled for a simple incremental algorithm, which builds the
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diagram site by site [3, 5]. Although there are instances in which this algorithm runs 
in O(n2 ) worst case time, it is often observed that the performance of the incremental 
algorithm is rarely as bad as this quadratic bound suggests.

Recently Guibas, Knuth, and Sharir have given a theoretical explanation of this 
phenomenon [4j. They analyzed the complexity of the simple incremental algorithm 
for Delaunay triangulations combined with an novel technique for locating the triangle 
of the triangulation which contains a given point. They showed that, irrespective 
of the distribution of points, this algorithm operates in O(n log n) expected time 
provided that the points are inserted in random order. (Here the expectation is over 
the possible insertion orders.) We extend their result by giving an algorithm which 
can incrementally maintain a Delaunay triangulation through a sequence of insertions 
as well as deletions.

A.n incremental algorithm is said to have an amortized time complexity of f(n) if 
the total cost of any sequence of N operations divided by N is 0(/(n)), even though 
a single operation may have cost much greater than /(n). We show that, given a base 
set of points, any sequence of insertions and deletions to the Delaunay triangulation 
can be performed on-line in expected amortized time 0(log n) per insertion or deletion 
under the assumptions that (1) for insertion, each of the base points not present in 
triangulation is equally likely to be inserted, and (2) for deletion, each of the points 
present in the triangulation is equally likely to be deleted. Here n reflects the number 
of points present in the triangulation at the time of the update. No assumptions are 
made about the distribution of the base points.

Our algorithm has an interesting type of persistence property. In particular, we 
are able to reconstruct any earlier version of the triangulation more efficiently than 
the naive method of simply reversing the recent history of insertions and deletions.

We have implemented our algorithms in order to establish the actual efficiency, 
which was established theoretically by Guibas, Knuth and Sharir. We present a num 
ber of observations on the algorithm and its practical performance, and in particular 
we consider how the algorithm performs when the assumption of random insertion 
and deletion is violated.

The remainder of the paper is organized as follows. In Section 2 we describe the 
incremental insertion of Guibas, Knuth, and Sharir (for the sake of completeness). In 
Section 3 we describe the deletion algorithm and analyze its expected case complexity 
and in Section 4 we consider the complexity of sequences of insertions and deletions 
and how to keep the search structure balanced through such a sequence. In Section 5 
we discuss our implementation of the algorithm and provide a number of graphs 
displaying the essential elements of the algorithm which determine its complexity.

2 Incremental Insertion

In this section we review the basic incremental algorithm as presented by Guibas, 
Knuth, and Sharir [4]. The algorithm is quite simple. Let P = {pi,p2,       ,pn } be a 
set of points and let D(P] denote the Delaunay triangulation of this point set. For 
points a, b, c £ P, let Aafec denote the triangle (not necessarily in the triangulation) 
determined by these points. We consistently label the vertices of triangles in counter 
clockwise order. For simplicity, we make the usual general position assumptions that 
no three points are colinear and that no four points are cocircular. These assumptions 
are handled in our implementation, but we omit discussion of them here since they 
clutter the presentation with undue detail.
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We assume that the point coordinates have been normalized so that they lie within 
the interior of the unit square. It is assumed that the four corners of the unit square 
are always elements of P, and these four points are not eligible for deletion. When 
the algorithm is initiated, the Delaunay triangulation consists of two triangles formed 
by adding a diagonal through the unit square. (These four points actually violate 
our general position assumption, implying that either of the two diagonals could be 
used.)

The insertion procedure operates as follows. Suppose that p is a new point to 
be added to the triangulation. By a point location method (to be described later) 
determine the triangle Aabc of D(P) which contains this point. Replace the triangle 
Aabc with three triangles Apai, Ap&c, and Apca (see Fig. l(a)). This operation is 
called augmentation.

(a) (b)

Figure 1: Incremental point insertion.

To determine whether e'ach of these three new triangles, say Apa6, is a Delaunay 
triangle we perform the following Delaunay test. Let Aqba be the triangle on the 
"other side" of the edge ab. If either (1) no such triangle exists (because edge ab is 
an edge of the unit square) or (2) if the triangle does exist but p does not lie within 
the circumcircle of Ag&a, then Apa6 is Delaunay and no further updating is needed. 
Otherwise replace the two triangles Apafr and Aqba with the two triangles Apa<? and 
Apqb (see Fig. l(b)). This is equivalent to swapping the edges ab and p<?, and hence 
is called an edge swap. Continue the test, this time with the triangles Apa<? and Apgfe 
until all triangles pass the Delaunay test. The Delaunay test is then performed for 
the for the other two triangles Ap&c and Apca. The correctness of this algorithm is 
well known (see, e.g. [5]).

Pseudocode for this algorithm is given below. Guibas, Knuth, and Sharir actu 
ally describe an elegant nonrecursive implementation of this algorithm [4]. We have 
presented the algorithm in this recursive form to emphasize its symmetry with the 
incremental deletion algorithm, which we present in the next section. The procedure 
invokes the primitive in(u,t>,u;,p) which determines whether the point p lies within 
the circumcircle of the triangle Auvw (where u, v and w are given in counterclockwise 
order). The argument p is the point to be inserted, and D is the existing triangulation.

procedure Insert(p, D); 
begin

Find the triangle Aa&c of D containing p;
Replace Aofec by the three triangles Apafe, Ap&c, and Apca in D;
SwapTest(a&, D);
SwapTest(k, D);
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SwapTest(ca, D); 
end;

procedure Swap Test (xJ, D); 
begin

if Tz is an edge of the unit square then return;
Let y be the third vertex of the triangle to the right of ~xz in D;
if in(a;,?/,2,p) then begin

Replace triangles Axj/2, Apxz with Apyz, Apxy in D;
SwaPTest(zy, D);
SwapTest(yz, D); 

end; 
end;

Letting (ux ,uy ) denote the coordinate of the point u, the primitive in( 
is implemented by evaluating the following determinant.

in(u,v,w,p) = det
Wx

\ Px Py Px +Py 1

The data structure used for storing the triangulation can be chosen from any 
number of standard structures for storing subdivisions of the plane, such as the quad- 
edge data structure [5] or the winged-edge data structure [7]. These data structures 
are both edge-based in the sense that the primitive objects of the data structure 
are the edges. In our implementation a triangle-based data structure was employed. 
This is particularly convenient for the triangle-based point location techniques which 
discussed below. The fundamental property required of any data structure for this 
problem is that it be able to move from one triangle of the triangulation to each of 
its three neighboring triangles in constant time.

One important aspect of this algorithm is the particular order in which the tri 
angles are deleted from the triangulation. Consider the set of triangles of the origi 
nal triangulation which were replaced during insertion and let R(p) denote the dual 
graph of this set of replaced triangles (where each vertex of this graph corresponds to 
a deleted triangle, and two vertices are adjacent if and only if these triangles share a 
common edge)

LEMMA 2.1 The dual graph R(p) is a tree. Further, if we take the root to be the 
triangle of the original triangulation which contains p, Aa&c, then the sequence of 
deleted triangles forms a counterclockwise preorder traversal of this tree.

PROOF: The dual graph is a tree because the union of the set of new triangles (those 
having p as a vertex) defines a simple polygon. (In fact this polygon is star-shaped 
with respect to p.) This polygon contains no other points of the point set in its 
interior. Thus the set of deleted triangles forms a triangulation of this polygon. It is 
well known that the triangulation of a simple polygon is a tree.

The fact that the deleted triangles define to a counterclockwise preorder traversal 
of this tree is an immediate consequence of the facts that (1) the edge swap is per 
formed before either recursive call is made, and (2) the two recursive calls made in
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the algorithm are made in counterclockwise order relative to p. D

To analyze the complexity of the algorithm, Guibas, Knuth, and Sharir proved the 
following result [4]. Observe all of the triangles introduced by the insertion algorithm 
are adjacent to the new point p. Thus a triangle never "reappears" once it has been 
replaced (assuming insertions only).

THEOREM 2.1 (Guibas, Knuth, Sharir) Let P be a set ofn points in the plane, which 
are inserted in random order into a Delaunay triangulation using the above procedure. 
The expected number of triangles that appear at any time the construction is 0(n).

Because the algorithm performs only a constant amount of work with each newly 
created triangle, it would follow that the expected running time of the algorithm is 
0(n). However, the important missing element is the time required to determine 
which triangle the newly added point p lies in. It will be this point location problem 
which drives the total expected running time up to 0(n log n). We describe two ways 
in which this point location can be performed.

The first method involves simple bucketing. Let us assume that the set of points 
P is known in advance. When the algorithm is initiated, the triangulation consists 
of a decomposition of the unit square into two triangles. We partition the initial 
point set into two groups, or buckets, depending on which triangle they lie in. As 
the triangulation is updated, we iteratively redistribute the points into finer and finer 
partitions, so that each triangle of the triangulation is associated with the set of 
points which lie within this triangle. (Our general position assumptions allow us to 
ignore the case in which a point lies on the edge of a triangle. In general this is 
handled by devising a rule which consistently forces all such points into one of the 
adjacent triangles. See also [5].) When a triangle is replaced by augmentation, only 
the points contained within this triangle need be rebucketed into one of three new 
triangles. When two triangles are replaced by two others through an edge swap, only 
the points in the original two triangles need be rebucketed into one of the two new 
triangles. (See Fig. 2(a).)

The second method was introduced by Guibas, Knuth, and Sharir. The history 
of the triangulation updates is stored. In particular, whenever a triangle Aa&c is 
replaced by two or more new triangles, Aafrc remains as part of the structure and 
marked as "old", and pointers are added from Aafec to each of the newly generated 
triangles. The newly added triangles are called the children of the old triangles, and 
the old triangles are the parents of the new triangles. The number of children is either 
three (which occurs when an augmentation is performed) or two (which occurs when 
an edge swap is performed). Thus each node has a constant number of children.

Initially the data structure consists of a single node which implicitly represents the 
unit square (the only node which does not correspond to a triangle), and the insertion 
of the initial diagonal produces two triangular children. This process defines a rooted 
directed acyclic graph, which we call the history graph. The history graph is not a 
tree, because a given node may have as many as two parents in this structure (and 
the deletion algorithm of the next section may produce three parents).

In order to locate the triangle containing a newly added point, we start from 
root node representing the unit square, and trace through the chronological chain 
of "old" triangles containing this point until arriving at the triangle of the current 
triangulation which contains the point. At each "old" triangle there are at most three 
triangles at the next level which could contain the point, thus constant time suffices 
to determine the next triangle of the chain in which the point lies. (See Fig. 2(b).)
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Figure 2: Point location.

Under the assumption that all points of the base set are inserted into the triangu- 
lation, the total time required by the bucketing and the history methods are identical, 
since the same discriminating tests are made for each point, and each point moves 
through the same sequence of triangles in each method. This history approach can 
be viewed as a sort of lazy evaluation of the bucketing scheme since it is only applied 
to the points which are indeed added to the triangulation. Thus if not all of the 
points are added to the final triangulation, the history method has an advantage over 
bucketing with respect to execution time. In addition this method need not know 
all the points in advance. The number of times a point is moved from one triangle 
to another can be as large as 0(n) per insertion. However, Guibas, Knuth, Sharir 
show that the number of triangles through which a point moves, when averaged over 
all the points and all insertions, is only O(log n) in the expected case. From this it 
follows that the incremental algorithm runs in O(n log n) time in the expected case, 
irrespective of whether the bucketing or history method is used.

One disadvantage of the history method is that its space usage is dependent on 
the number of edge swaps performed by the algorithm. Although this number is O(n) 
in the expected case, it could be as large as 0(n2 ) (although the probability of this 
occurring for large n is extremely small under the assumption of random insertion.) 
The bucketing method has the advantage that it never requires more than 0(n) space 
in the worst case even if the point insertion violates the randomness assumption. This 
is true because only the current triangulation is stored.

One big advantage of the history method is a type of persistence. Persistence 
refers to the ability of a data structure to maintain its history. In this case, by 
storing history of the data structure it is an easy matter to restore a recent version 
of the data structure. This is done quite simply by reversing the sequence of edge 
swaps by walking backwards through the history graph. Since the number of edge 
swaps per insertion is expected to be a constant (and we will see that the same holds 
true for deletion), the time needed to restore an earlier version of the triangulation
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is proportional to the number updates performed between the earlier version and the 
present one. This is a logn factor savings in running time over the naive method 
of reversing the string of recent operations. This same persistence will apply for 
deletions also as we shall see in the next section.

3 Incremental Deletion

In this section we introduce a simple incremental algorithm for deleting a point from a 
Delaunay triangulation. It seems inherently harder to implement a purely incremental 
deletion algorithm in the spirit of the insertion algorithm given in the previous section. 
Our deletion algorithm applies the insertion algorithm of the previous section in 
an off-line mode to compute an intermediate Delaunay triangulation, which it then 
uses to guide an incremental sequence of edge swaps to perform the actual deletion. 
Our algorithm has the interesting property that, with careful implementation (and 
assuming that points are in general position), it swaps edges in essentially the reverse 
order from the insertion algorithm. Thus, by calling the deletion algorithm on the 
points in the reverse order of insertion, the algorithm will incrementally disassemble 
the triangulation in exactly the reverse order of its assembly.

As before, let P — {pi,p2,       ,Pn} denote a set of points in the plane (including 
the vertices of the unit square) and let D(P) denote the Delaunay triangulation of 
this point set. Let p G P be the point to be deleted. We assume that p is not one of 
the vertices of the unit square. We make the same general position assumptions of the 
previous section that no three points are colinear and no four points are cocircular.

Let T denote the set of triangles incident to p in the Delaunay triangulation. 
Because p is not a vertex of the unit square, p does not lie on the convex hull of 
P, and hence the union of the triangles of T is a star-shaped polygon containing 
the point p in its interior (and in fact within its kernel). Let F denote this polygon. 
Observe that any triangle in T cannot be part of the triangulation after the deletion 
of p, and that any triangle in D(P) — T (i.e. any triangle which is not incident to p) 
is still empty after the deletion of p. Thus, only the region of the plane covered by 
the polygon F need be retriangulated.

We begin by outlining a nonincremental algorithm, which we will shortly modify 
to give an incremental algorithm. By a cyclic enumeration of the triangles of T, 
determine the boundary vertices of the star-shaped polygon F. Compute the Delaunay 
triangulation Dr of the polygon F by any algorithm (see the remark below). Replace 
the triangles of T by the triangles of Dr giving the new Delaunay triangulation 
D(P ~{p}}.

Unfortunately, this algorithm is not incremental, and it is unclear how to modify 
the point location algorithms to deal with the sudden replacement of potentially 0(n) 
triangles by 0(n) new triangles. However, imagine that p were the last point of the 
triangulation to be inserted, prior to this deletion. The insertion of p would induce a 
particular sequence of edge swaps mapping D(P — {p}) to D(P}. Since we know both 
triangulations, it is a relatively simple matter to perform the edge swaps in reverse 
order to transform D(P) incrementally to D(P — {p}).

We solve this problem by a simple leaf pruning method. Recalling the discussion 
preceding Lemma 2.1, a triangle of Dr is a leaf of the dual graph of Z?r if and only if 
at least two of its sides lie on the boundary of F. From this lemma we know that by 
the preordering of replaced triangles, the edge swaps are performed in such an order 
that the leaves of F are the last triangles to be replaced in the triangulation. Thus,
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D(P)

Figure 3: Leaf Pruning.

to "undo" the effects of the insertion algorithm we locate a leaf triangle &xyz of the 
Dp and remove this triangle first. Let us assume that the vertices of Axyz are given 
so that x and z are neighbors of y along the boundary of F). Assuming that £\xyz 
does not contain p, swap the edges ~xz and py in the triangulation T (see Fig. 3). As 
a consequence, the vertex y is no longer adjacent to p. We can eliminate y from F, 
by connecting x to 2, and apply the algorithm iteratively to the remaining polygon. 

The complete deletion algorithm is given below. The argument p is the point to 
be deleted, and D is the existing triangulation. Leaf pruning is performed recursively, 
to emphasize its symmetry with the insertion algorithm. (Although, as in Guibas, 
Knuth, and Sharir [4], there does exist a purely iterative solution.)

procedure Delete(p, £>); 
begin

Find the set of triangles T C D incident to p; 
Let F be the polyon denned by the union of T; 
Compute £>r, the Delaunay triangulation of F; 
Let Aa6c be the triangle of Dp which contains p; 
UnSwap(ca, Dp, D); 
UnSwap(6c, Dp, D)] 
UnSwap(a6,Z)r,£>);
Replace the three triangles Apab, Apfec, and Apca by Aa6c in Z>; 
Delete the triangulation Dr', 

end;

procedure UnSwap(aTz, Dr, D); 
begin

if ~xz is an exterior edge of Dp then return; 
Let y be the third vertex of the triangle to the right of afz; 
UnSwapd/z', Dp, D); 
UnSwap(xj/, Dp, D);
Replace triangles Apyz, Apxy with Axi/2, Apxz in D; 

end;

REMARK: The most efficient way to construct the Delaunay triangulation of F 
theoretically is by the rather sophisticated linear time algorithm by Aggarwal, Guibas, 
Sha,xe, and Shor [1]. (Although this algorithm is designed for computing the Delaunay
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triangulation of a convex polygon, it is shown in [1] that it can be applied to patch up 
a Delaunay triangulation when a point is deleted.) A much simpler but theoretically 
less efficient way to compute this Delaunay triangulation is to apply the incremental 
insertion algorithm of the previous section to the vertices of F given in random order. 
It is quite easy to show that the boundary of F remains intact in this triangulation 
(because each edge of F was Delaunay prior to the deletion of p), thus the triangulation 
of the interior of F can be determined by discarding all triangles which lie outside of 
the polygon.

This expected case 0(n log n) algorithm is theoretically slower than the linear 
time algorithm. However, since the expected degree of a vertex in a planar graph is 
less than six (by Euler's formula), practically speaking the minute loss of asymptotic 
running time is more than compensated for by the lower constant of proportionality of 
the simple incremental algorithm together with the significant savings of programming 
effort.

Our practical experience has shown that for many natural point distributions, 
the maximum degree in a Delaunay triangulation rarely exceeds 16, independent 
of n. Thus, it may not be entirely unreasonable to apply an O(n^) triangulation 
algorithm. We decided against this approach because (1) the incremental algorithm 
is already available for our use, and (2) if there is even one vertex of degree J7(n) in 
the triangulation, then the expected running time of the deletion. algorithm would 
grow to 0(n}. This is considerably worse than the O(logn) expected case bound, 
which we show below.

Given the structure of the deletion algorithm, it is relatively easy to see that it 
creates triangles in exactly the reverse order of the insertion algorithm, namely in 
a clockwise postorder traversal of the dual tree of Dp. If the points are in general 
position, and the choice of the orientation of the triangle Aaftc in procedure Delete 
is chosen to be identical to the triangle Aa6c of procedure Insert, then the deletion 
algorithm effectively swaps edges in the reverse order as the insertion algorithm (as 
suming that the point deleted is the last point inserted). If the points are not in 
general position (in particular, if four or more points are cocircular) then there may 
be multiple final Delaunay triangulations for F, thus we cannot guarantee that se 
quence of edge swaps is the same. We can force the orientation of the triangle Acz&c 
to be identical in both cases by selecting the point a in some canonical manner (e.g. 
by taking the point whose coordinates are lexicographically maximal).

Observe that the deletion algorithm does not need to deal with point location 
(except perhaps at the level of the user-interface in order to determine which point 
is to be deleted). However, if subsequent insertions are to be performed, the point 
location structures described in the previous section must be updated to reflect the 
change in the triangulation.

When each edge swap is performed we handle it in exactly the same way that 
we handled an edge swap in the case of insertion. For point bucketing the points 
contained within the affected triangles are redistributed among the new triangles. 
For the history graph the affected triangles are marked as "old" and pointers are 
added to the new overlapping triangles. The final step of the deletion algorithm, in 
which the triangles Apa6, Ap&c, and Apca are replaced by AG&C, is the inverse of 
the augmentation step seen in the insertion algorithm. For the bucketing method, 
the three sets of buckets are merged into a common bucket for Aa&c. For the history 
graph method, we store a single pointer from each of the three old triangles to the 
newly created containing triangle.
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Our next task is to analyze the complexity of the deletion algorithm. This task 
is complicated by the fact that the analysis of the insertion algorithm was based on 
the assumption that only insertions are performed and that all points are eventually 
added to the triangulation. To appreciate the difficulties arising when insertions and 
deletions can be combined, consider the case in which a single point is inserted into 
the triangulation and then it is deleted. This process is repeated a large number of 
times, N. If the bucketing method of point location is used, then when a single point 
is inserted all the points in the base set must be rebucketed, requiring 0(n] time. 
If the history method is used then the history graph degenerates into a structure of 
depth 0(N). Thus the expected running time in either case is much worse than the 
desired O(logra).

In the next section we show how to deal with the question of point location in 
such dynamic situations. For now, we analyze the expected running time of one 
deletion. This running time follows almost directly from the analysis of the insertion 
algorithm. Because the particular edge swaps and point movements (arising from 
point location) for deletion are just the reverse of those for insertion, the expected 
number of edge swaps and point movements needed to delete a random point p from 
a triangulation D(P], is identical to the expected number of edge swaps and point 
movements needed to insert the random point p into the triangulation D(P — {p}). 
Under our assumptions of random point insertion and deletion, the sets P and P — {p} 
are random point sets. Thus, this portion of the cost of deleting a random point from 
a triangulation n points is O(log n) in the expected case.

The only other aspect of the complexity of deleting a point p is the cost of com 
puting the Delaunay triangulation of F, the polygon of neighboring vertices. The 
number of vertices in F is equal to the degree of p in the triangulation. To establish 
the expected cost of this operation, let c?i, c?2 ,..., dn denote the degrees of each of the 
n vertices of the triangulation. By Euler's formula we know that the sum of degrees, 
which equals twice the number of edges in the graph, is at most 6n. By the analysis 
of the previous section, the expected time to compute the Delaunay triangulation of 
a set of di points is O(d{ log dt ). Thus, the expected time needed to compute one such 
Delaunay triangulation, under the assumption that each point is equally likely to be
deleted is

1 n 1 / n \ Qn
- Y^(dt log dt ) < - [^ dt log n < — log n = 6 log n.n ,=i n \,=i / n

Thus, the expected time to delete a point from the triangulation is O(logn), from 
which we have our main result.

THEOREM 3.1 Given the above deletion algorithm (ignoring point location issues) a 
point can be deleted from a Delaunay triangulation of n points in expected 0(log n) 
time, under the assumption that each point of the triangulation is equally likely to be 
deleted.

4 Sequences of Insertions and Deletions

As we mentioned in the previous section, in the worst case, where long sequences of 
insertions and deletions are made, the expected case running time of the algorithm 
can be much larger than O(logrc). In this section we consider how to deal with the 
problem.
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Our first observation is that in certain relatively benign cases (which may be 
quite common in many practical applications) there is really no problem at all. For 
example, if insertions are more common than deletions (in the sense that the ratio 
of the number of insertions to deletions is strictly greater than unity) then it follows 
that over a long sequence, the cost of updating the triangulation is dominated by 
the costs of the insertions. Although the deletions cause an increase in the size of 
the history graph, the assumption of randomness implies that these variations in the 
history graph are distributed evenly throughout the graph, and it was shown in the 
previous section that the local effect of each deletion on the structure is essentially 
equivalent to the effect of an insertion.

In steady state situations, where the number of active points in the triangulation 
reaches an equilibrium, a direct application of the deletion and insertion algorithms is 
rather unpredictable. If the number of active points is a roughly a constant fraction 
of the total number of base points, then the randomness of insertion and deletion, 
combined with Guibas, Knuth, and Sharir's arguments about the widths of triangles, 
imply that only a constant number of points will be rebucketed with each change to 
the triangulation. However, if the number of active points is significantly less than 
the total number of base points, then nearly all of the nonactive base points may 
be rebucketed with each update. The history method will fair even worse, because 
irrespective of the number of active points, the history graph grows without bound 
as updates are made.

In this section we will consider how to periodically rebalance the history graph 
so that these problems can be avoided. The idea is that from time to time, we will 
completely reconstruct the history graph from scratch for only the current set of 
active points, and destroy the old graph. (Observe that this will have the unfortu 
nate consequence of destroying the persistence property provided by the unpruned 
structure.) We refer to this process as reorganization. Let n denote the number of 
active (triangulation) points. We show that by applying reorganization at appropri 
ate times, we can maintain an O(logn) expected time cost for insertion or deletion, 
when amortized over sequences of insertions and deletions. The expectation here is 
over possible random choices of which point to insert or delete. The choice of whether 
to insert or to delete is arbitrary.

We assume initially that the triangulation is trivial (consisting only of the four 
vertices and two triangles of the unit square). Let t denote the total number of inser 
tion/deletion requests which have been performed, and let n(t) denote the number of 
active points in the triangulation after the i-th request. Thus, n(0) = 4. Let t0 be 
the time (i.e. the request number) of the last reorganization. After performing the 
£-th operation we test whether

t - t0 > n(t).

If this is the case then reorganization is performed. Reorganization consists of first 
discarding the existing history graph and triangulation, and then constructing a new 
history graph and Delaunay triangulation by inserting (in random order) each of the 
current active points.

THEOREM 4.1 Using this reorganization scheme, the expected amortized time for pro 
cessing an insertion or deletion request for a random point is 0(log n), where n is the 
number of active points at the time of the insertion or deletion.

PROOF: The theorem follows from two observations. The first is that if periodic 
reorganization is applied, then the execution time of insertion or deletion at any time

229



(ignoring reorganization) is 0(\ogn). The second observation is that reorganization 
is performed infrequently enough that it does not increase the asymptotic running 
time of the algorithm.

To prove the first observation, let n0 denote the number of active points at the 
time of the most recent reorganization. Because this is the first point at which we have 
performed a reorganization since to, it follows that for all s, t0 < s < t, n(s) > s — to.

The number of nodes in the history graph increases by an expected constant 
amount with each insertion or deletion (since the expected number of new edge swaps 
is constant). Thus the expected size of the history graph after the s-th request is 
roughly proportional to n0 + (s — to).

Since we can lose at most one point at each insertion/deletion request, we have 
n(a) + (s- t0) > no. Thus

n0 + (s - t0 ) < n(s) + 2(s - t0) < n(s) + 2n(s) = 3n(s).

In other words, at no time is the expected size of the history graph significantly larger 
than the number of active points. Because changes to the history graph are made 
randomly throughout its structure, it follows that the cost of searching the graph does 
not increase asymptotically, so the search time is O(log(n0 + s — t0 )) — 0(logn(s)). 
All other aspects of the insertion and deletion routines are 0(\ogn(s)) running time. 
This establishes the first observation.

To establish the second observation, observe that the expected time to perform re 
organization is 0(n log n), where n is the number of active points. Since the expected 
case of insertion or deletion ignoring reorganization is 0(log n), it follows that the 
cost of reorganization will not dominate the overall cost if the number of insertions 
or deletions since the last reorganization is at least as large as n = n(t). However, 
in order to perform reorganization it must be the t — to > n, thus the number of 
requests which have been processed since the last reorganization is at least as large 
as the number of active points. This establishes the second observation. D

5 Implementation Experience

In this section we discuss our implementation of the algorithm. The algorithm has 
been implemented in the C programming language, under the Unix operating sys 
tem. (Currently the reorganization scheme has not been implemented.) It has been 
designed to provide statistics on the execution of the algorithm for the purposes of 
evaluating its efficiency. Rather than measuring execution time by CPU seconds, 
because of its dependence on the particular machine and compiler, we have measured 
two quantities which we feel give a strong indication of the algorithm's general per 
formance. First, we have measured the number of times that a point moves from 
one triangle to another in the bucketing algorithm (equivalently, the number of levels 
that each point travels through the history graph), and second we have measured the 
number of edge swaps which were performed.

We have run the following experiments involving point insertion. (The reasons 
that we did not consider deletion are (1) the number of edge swaps and point move 
ments for deletion are identical in the expected case to insertion, and (2) we have not 
yet implemented the reorganization scheme described in the previous section.)
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Uniform Data: Points were sampled from a uniform distribution over the unit 
square and inserted into the triangulation. Point sets of size 50, 100, 200, 
400, 800, 1600, 3200, and 6400 were considered.

Gaussian Data: Points were sampled from a Gaussian distribution whose center is 
at the center of the unit square and whose standard deviation was 0.2 in each 
of the x and y directions. Point sets of the same sizes as in the uniform case 
were considered.

Sorted Data: To test the sensitivity of the algorithm to violations of the randomness 
assumption, we ran an experiment in which points were selected uniformly from 
the unit square, but were inserted in order of increasing x-coordinate.

Partially Random Data: In this variant of the previous experiment, we inserted 
points in which the first p points were inserted randomly (out of a total of 6400), 
and the remaining points were inserted in order of increasing x-coordinate. The 
values of p tested were 25, 50, 100, 200, 400, 800, 1600, 3600, and 6400.

The results of the these experiments are given below.

Uniform Data: Fig. 4(a) shows a plot of the number of edge swaps performed by 
the algorithm versus n, the number of points. The regression line fitted to the 
data is 2.97n   68.0. Fig. 4(b) shows a plot of Iog10 n versus the average number 
of point movements per point. Standard deviations are indicated by vertical 
lines. The regression line fitted to the data is 9.021og 10 n   3.75.
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Figure 4: Uniform data: Total edge swaps and average point moves.

Gaussian Data: Analogous results for Gaussian data are shown in Figs. 5(a) and (b). 
In the first case the regression equation is 3.01n   77.4, and in the second case it 
is 9.661og 10 n   6.32. Both cases are in close agreement with the uniform case, 
although the number of edge swaps is slightly larger in the Gaussian case.

Sorted Data: Fig. 6(a) shows a plot of the total number of edge swaps performed 
versus n in the case that points are inserted in sorted order. The regression line 
fitted to the data is 4.72n   494. The slope is greater than the previous cases, 
however this supports the observation made by Tipper [9] that the average 
number of edge swaps per point is independent of n. However, the plot of 
Iog 10 n versus the number of point moves showed a striking nonlinear behavior 
(see Fig. 6(b)). It is clear that the assumption of randomness is critical to the 
analysis of the point location schemes.

231



15000

10000'

5000

1000 2000 3000 4000 5000 6000 H———^———$———fTs3" 3.5 

Figure 5: Gaussian data: Total edge swaps and average point moves.
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Figure 6: Sorted data: Total edge swaps and average point moves.

Partially Random Data: The results of the previous experiment lead us to the 
question of how many initial points need be inserted randomly in order to 
guarantee fairly good performance in point location. Fig. 1 shows Iog 10 p versus 
the average number of movements per point. Interestingly, with as few as 200 
of the 6400 points inserted randomly (about .03% of the total) the performance 
is within a factor of 2 of the totally random case.
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Figure 1: Partially random data: Average point moves.

6 Conclusions

We have presented and analyzed the complexity of a procedure for computing and 
updating Delaunay triangulations for point insertion and deletion. The algorithm
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is randomized and incremental, based on a recent algorithm of Guibas, Knuth, and 
Sharir. The algorithm has the nice feature that it is asymptotically as efficient (in the 
expected case) and yet much simpler than standard divide-and-conquer algorithms. 
Its expected running time is independent of the distribution of the points, only on 
the order in which the points are inserted or deleted. We have implemented a portion 
of the algorithm for the purpose of empirical analysis. Our studies seem to indicate 
that the running time is quite good even if the assumption of random insertion order 
is violated as long as an initial fraction of the points are inserted randomly.

One interesting open problem raised by this research is whether these results 
can be applied to more general types of triangulations. In particular, in geographic 
information systems, it is quite common to require that certain edges be present in the 
Delaunay triangulation, giving rise to a constrained Delaunay triangulation. It would 
be of interest to develop and analyze the performance of a randomized incremental 
algorithm for constrained triangulations.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, P. W. Shor, A linear-time algorithm for com 
puting the Voronoi diagram of a convex polygon, Discrete and Computational 
Geometry 4 (1989), 591-604.

2. S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), 
153-174.

3. P. Green and R. Sibson, Computing Dirichlet tesselation in the plane, Comput. 
J. 21 (1977), 168-173.

4. L. Guibas, D. Knuth, and M. Sharir, Randomized incremental construction of 
Delaunay and Voronoi diagrams, Unpublished manuscript (1990), also appeared 
in the Proceedings of 1C ALP, 1990.

5. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions 
and the computation of Voronoi diagrams, ACM Trans. on Graphics, 4 (1985), 
74-123.

6. M. Heller, Triangulation algorithms for adaptive terrain modelling," 4th Sym 
posium on Spatial Data Handling, 1990, 163-174.

7. M. Mantylla, An Introduction to Solid Modeling, Computer Science Press, 
Rockville, Maryland, 1988.

8. T. K. Peucker, R. J. Fowler, J. J. Little, and D. D. Mark, Digital representation 
of three dimensional surfaces by triangulated irregular networks. Tech. Report 
#10, ONR Contract N00014-75-C-0886, 1976.

9. J. C. Tipper, A straightforward iterative algorithm for the planar Voronoi dia 
gram, Information Proc. Letters 34 (1990), 155-160.

233




